35 research outputs found

    Fractional order differentiation by integration with Jacobi polynomials

    Get PDF
    The differentiation by integration method with Jacobi polynomials was originally introduced by Mboup, Join and Fliess. This paper generalizes this method from the integer order to the fractional order for estimating the fractional order derivatives of noisy signals. The proposed fractional order differentiator is deduced from the Jacobi orthogonal polynomial filter and the Riemann-Liouville fractional order derivative definition. Exact and simple formula for this differentiator is given where an integral formula involving Jacobi polynomials and the noisy signal is used without complex mathematical deduction. Hence, it can be used both for continuous-time and discrete-time models. The comparison between our differentiator and the recently introduced digital fractional order Savitzky-Golay differentiator is given in numerical simulations so as to show its accuracy and robustness with respect to corrupting noises

    Improved IIR Low-Pass Smoothers and Differentiators with Tunable Delay

    Full text link
    Regression analysis using orthogonal polynomials in the time domain is used to derive closed-form expressions for causal and non-causal filters with an infinite impulse response (IIR) and a maximally-flat magnitude and delay response. The phase response of the resulting low-order smoothers and differentiators, with low-pass characteristics, may be tuned to yield the desired delay in the pass band or for zero gain at the Nyquist frequency. The filter response is improved when the shape of the exponential weighting function is modified and discrete associated Laguerre polynomials are used in the analysis. As an illustrative example, the derivative filters are used to generate an optical-flow field and to detect moving ground targets, in real video data collected from an airborne platform with an electro-optic sensor.Comment: To appear in Proc. International Conference on Digital Image Computing: Techniques and Applications (DICTA), Adelaide, 23rd-25th Nov. 201

    Non-asymptotic fractional order differentiators via an algebraic parametric method

    Get PDF
    Recently, Mboup, Join and Fliess [27], [28] introduced non-asymptotic integer order differentiators by using an algebraic parametric estimation method [7], [8]. In this paper, in order to obtain non-asymptotic fractional order differentiators we apply this algebraic parametric method to truncated expansions of fractional Taylor series based on the Jumarie's modified Riemann-Liouville derivative [14]. Exact and simple formulae for these differentiators are given where a sliding integration window of a noisy signal involving Jacobi polynomials is used without complex mathematical deduction. The efficiency and the stability with respect to corrupting noises of the proposed fractional order differentiators are shown in numerical simulations

    On Generalized Fractional Differentiator Signals

    Get PDF
    By employing the generalized fractional differential operator, we introduce a system of fractional order derivative for a uniformly sampled polynomial signal. The calculation of the bring in signal depends on the additive combination of the weighted bring-in of N cascaded digital differentiators. The weights are imposed in a closed formula containing the Stirling numbers of the first kind. The approach taken in this work is to consider that signal function in terms of Newton series. The convergence of the system to a fractional time differentiator is discussed

    A NOVEL APPROACH FOR EDGE DETECTION OF LOW CONTRAST SATELLITE IMAGES

    Get PDF

    Aplicação de filtros de Savitzky-Golay no processamento de sinais de eletrocardiografia.

    Get PDF
    O presente trabalho é parte do projeto FINEP sob o convênio 01.13.0387, cujo objetivo global é a construção de um microssistema de eletrocardiografia de baixo custo para monitoramento remoto. Neste contexto, o objetivo específico deste trabalho é projetar filtros digitais diferenciadores, baseados na técnica dos mínimos quadrados de Savitzky-Golay, capazes de eliminar ruídos provenientes das interferências de alta frequência e também da rede elétrica, para melhorar confiabilidade das medidas, mantendo o projeto comprometido com as normas técnicas aplicáveis e com o baixo custo. As novas abordagens mantêm as mesmas propriedades da abordagem clássica, porém resultam em filtros com menor amplificação de ruído
    corecore