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Identification of fractional-order transfer functions
using a step excitation

Luiz Antonio Jacyntho, Marcelo Carvalho Minhoto Teixeira, Member, IEEE, Edvaldo Assunção, Rodrigo Cardim,
Roberto Kawakami Harrop Galvão, Senior Member, IEEE, Sillas Hadjiloucas, Senior Member, IEEE

Abstract—This brief proposes a new method for the identifi-
cation of fractional order transfer functions based on the time
response resulting from a single step excitation. The proposed
method is applied to the identification of a three-dimensional
RC network, which can be tailored in terms of topology and
composition to emulate real time systems governed by fractional
order dynamics. The results are in excellent agreement with
the actual network response, yet the identification procedure
only requires a small number of coefficients to be determined,
demonstrating that the fractional order modelling approach leads
to very parsimonious model formulations.

Index Terms—Fractional order systems, system identification,
analog circuit simulation, RC circuits.

I. INTRODUCTION

THE need for adopting fractional order calculus in en-
gineering stems from its ability to describe phenomena

that cannot be fully described by a local theory. Examples
include propagating acoustic or electromagnetic waves in the
presence of boundaries, where according to Huygens’ principle
a propagating wave may be seen as a non-local process in
space and time inducing a memory effect (a delayed reaction)
on a propagating wave [1], as well as when a smooth transition
between a local (Newtonian) and a non-local (quantum) theory
of motion is required. By incorporating non-local processes
and phenomena in a mathematical framework, it becomes
possible to extend the application of systems theory to a
much wider range of problems across the physical sciences.
The current contribution proposes an intuitive systems iden-
tification framework for complex systems with emergent be-
haviours emulated using a network of resistive and capacitive
components, when these are subjected to a step excitation.
The new algorithm aims to complement existing literature on
the subject. Applications include filtering [2]-[10], analysis of
dielectric responses [11]-[13], and control [14]-[18].
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A. Notation
The Laplace transform of a signal y(t), t ≥ 0, will be

denoted by Y (s) = L[y(t)]. The notation L−1 will indicate
the inverse transform. Definitions will be stated by using the
, symbol. The limit values of a signal y(t) will be denoted as
y(0+) , limt→0+ y(t) , y(∞) , limt→∞ y(t).

II. PROPOSED IDENTIFICATION METHOD

It is assumed that the system under consideration is stable
and can be described by a transfer function of the form

G(s) =
b0 + b1s

β1 + · · ·+ bms
βm

1 + a1sα1 + · · ·+ ansαn
(1)

where b0, b1, . . . , bm, a1, . . . , an are coefficients to be identi-
fied and β1, . . . , βm, α1, . . . , αn are positive real-valued expo-
nents. Initially, these exponents will be assumed to be known.

The proposed identification method is based on the step
response of the system, which is used to generate a set of
auxiliary signals, as depicted in Fig. 1.

G(s)

s + i

s

s + i

s

u(t)

y(t)

i(t)

pi(t) zi(t)

Fig. 1. Generation of the signals employed in the proposed identification
procedure, using a given filtering parameter σi > 0. The rectangular blocks
correspond to transfer functions, whereas the circle with a × sign indicates a
pointwise multiplication of the signals in the time domain.

In Fig. 1, y(t) represents the response of the system to a
unit step u(t), t ≥ 0, such that

U(s) = 1/s, Y (s) = G(s)U(s) = G(s)/s (2)

In addition, λi(t) is the result of passing the step input u(t)
through a filter with transfer function s/(s+ σi), i.e.

λi(t) , L−1
[

s

s+ σi
U(s)

]
= L−1

[
1

s+ σi

]
= e−σit, t ≥ 0

(3)
where σi > 0 is a given filtering parameter. Signal pi(t) is
obtained as pi(t) , y(t)λi(t) = y(t)e−σit, t ≥ 0, which
corresponds to the following Laplace transform [19]:

Pi(s) = L[y(t)e−σit] = Y (s+ σi) (4)

From (2) and (4), it follows that

Pi(s) =
G(s+ σi)

s+ σi
(5)

c© 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org
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Finally, zi(t), t ≥ 0, is the result of passing pi(t) through
a filter with transfer function (s+ σi)/s, i.e.

Zi(s) ,
s+ σi
s

Pi(s) =
G(s+ σi)

s
(6)

In view of the Final Value Theorem, which is also valid
for fractional calculus [20], zi(∞) can be related to Zi(s) as
zi(∞) = lims→0 sZi(s). By using this relation together with
(1), (6), it follows that

zi(∞) = lim
s→0

G(s+ σi) =
b0 + b1σ

β1

i + · · ·+ bmσ
βm

i

1 + a1σ
α1
i + · · ·+ anσ

αn
i

(7)

which can be rewritten as

zi(∞)a1σ
α1
i + · · ·+ zi(∞)anσ

αn
i

− b0 − b1σβ1

i − · · · − bmσ
βm

i = −zi(∞) (8)

By evaluating zi(∞) with n+m+ 1 different values of σi
(i = 1, 2, . . . , n + m + 1), Eq. (8) can be used to derive a
system of linear equations of the form Aθ = c, with

A =


z1(∞)σα1

1 · · · z1(∞)σαn
1

z2(∞)σα1
2 · · · z2(∞)σαn

2
...

...
...

zn+m+1(∞)σα1
n+m+1 · · · zn+m+1(∞)σαn

n+m+1

−1 −σβ1

1 . . . −σβm

1

−1 −σβ1

2 . . . −σβm

2
...

...
...

...
−1 −σβ1

n+m+1 . . . −σβm

n+m+1

 (9)

θ = [a1 · · · an b0 b1 · · · bm]
T
, c =


−z1(∞)
−z2(∞)

...
−zn+m+1(∞)

. (10)

Therefore, if det(A) 6= 0, the model coefficients can be
obtained by calculating θ = A−1c.

To conclude the presentation of the proposed method,
there remain the issues of choosing appropriate values for
the filtering parameters σ1, σ2, . . . , σn+m+1 employed in the
identification procedure and determining the transfer function
exponents β1, . . . , βm, α1, . . . , αn.

For simplicity, the filtering parameters can be chosen as
σ2 = ρ σ1, σ3 = ρ σ2, . . . , σn+m+1 = ρ σn+m, where ρ is a
constant in the range 0 < ρ < 1. It is worth noting that the
largest parameter σ1 corresponds to the exponential function in
(3) with fastest decay. In this work, the value of σ1 is adjusted
to match the delay times of the exponential e−σ1t and the step
response y(t). In this context, the delay time td is defined as
the time required for a function to reach the midpoint between
its initial and final values, i.e. y(td) = [y(∞) + y(0+)]/2.
Therefore, σ1 can be calculated as σ1 = (ln 2)/td.

Finally, let γ , [β1 · · · βm α1 · · · αn]T denote the vector
of exponents to be determined. For given values of γ and ρ, the
identification procedure can be carried out in order to obtain
the vector of transfer function coefficients as θ = A−1c. The
following cost function J(γ, ρ) can then be calculated as the

root-mean-square error between the step response y(t) and the
output ŷ(t) of the resulting model:

J(γ, ρ) ,

√
1

N

∑N

k=1
[y(kT )− ŷ(kT )]

2 (11)

where T is the sampling period employed in the acquisition of
the step response and N is the number of acquired samples.
Therefore, suitable values of γ and ρ can be obtained by using
numerical optimization techniques to minimize J(γ, ρ).

In the present work, the FOTF Matlab Toolbox [21] was
employed to evaluate the step response ŷ(t) of the fractional-
order model, and the flexible polyhedron algorithm [22] im-
plemented in the Matlab Optimization Toolbox was adopted
to obtain γ and ρ through the minimization of J(γ, ρ).

Remark 1: To simplify the optimization procedure involved
in the determination of the transfer function exponents, the
following particularization can be adopted, as in [23]:

β1 = 1, . . . , βm−1 = (m− 1), βm = β

α1 = 1, . . . , αn−1 = (n− 1), αn = α (12)

where β and α will be the only real-valued exponents to
be determined. Suitable values for n and m can be chosen
by using parsimony criteria on the basis of the resulting
approximation errors, as in integer-order identification [24].

Remark 2: A limitation of the proposed method is the need
to choose a suitable value of ρ. It may be argued that this
parameter affects the distribution of the approximation error
over different frequencies. Indeed, smaller values of ρ result in
the use of exponential functions with faster decay, which may
lead to greater emphasis on the reduction of error at higher
frequencies. This relation could be exploited to guide the se-
lection of ρ, as an alternative to tuning this parameter through
numerical optimization. Such a possibility will be pursued in
future studies. Additional research will also be required for
the analytical or numerical derivation of uncertainty bounds
on the identified coefficients and exponents.

Remark 3: Sufficient theoretical conditions for the invertibil-
ity of the matrix A defined in (9) still need to be investigated.
However, no singularity or ill-conditioning problems were
experienced in the present work.

III. CASE STUDY: THREE-DIMENSIONAL RC NETWORK

Fig. 2 presents an example of the RC networks under
consideration, which can be used as circuit models for the
dielectric response of composite materials containing insulat-
ing and conducting particles [12]. The topology comprises
NZ layers, each consisting of a matrix of nodes with NX
rows and NY columns. A resistor RS is included to model
the internal resistance of the source. The numbers of resistors
(not including the source) and capacitors are denoted by NR
and NC , respectively, so that NR + NC = NZ [NY (NX +
1) + NX(NY − 1)] + (NZ − 1)NXNY [23]. The fraction of
capacitors is defined as fC = NC/(NR +NC).

As shown in [23], a dynamic model in descriptor form
can be derived from Kirchoff’s laws to relate the input
voltage u(t) with the current y(t) entering the network. A
randomized incidence matrix can be employed to place the R,
C components at aleatory positions. The resulting model can
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u t
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Fig. 2. Diagram of a three-dimensional RC network with random allocation
of the R, C elements. The grey plates indicate electrodes employed for
connection to a voltage source with output resistance RS .

be converted to an integer-order transfer function G(s), which
facilitates the time-domain simulation of the network, as well
as the calculation of the admittance in the frequency domain.

It is worth noting that the model order can be very high,
even after taking into account algebraic constraints associated
to closed paths of capacitors, and eliminating non-controllable
or non-observable modes. For example, the network employed
in [23], with 100 resistors and 100 capacitors, resulted in a
transfer function with order 73. However, it was found that
a more compact representation could be obtained by using a
fractional order transfer function of the form:

Gfrac(s) =
b0 + b1s+ · · ·+ bn−1s

n−1 + bns
β

1 + a1s+ · · ·+ an−1sn−1 + ansα
(13)

where single fractional exponents α, β are employed at the
denominator and numerator, as stated in Eq. (12).

The identification procedure adopted in [23] was aimed at
matching the exact admittance G(jω) of the network and
the approximated admittance Gfrac(jω) in fractional-order
form, over a given range of frequencies ω. For this purpose,
the coefficients b0, b1, . . . , bn, a1, . . . , an and the fractional
exponents α, β were adjusted to minimize the following cost:

J =
∑N

k=1
wk|G(jωk)−Gfrac(jωk)|2 (14)

where ω1, ω2, . . . , ωN are frequencies of interest chosen by
the designer and w1, w2, . . . , wN > 0 are frequency-dependent
weights. The flexible polyhedron algorithm [22] was employed
for the minimization of J with respect to the coefficients
and fractional exponents. As a result, a transfer function
Gfrac(s) with n = 2, involving only seven parameters
(b0, b1, b2, a1, a2, β, α), was sufficient to provide a good ap-
proximation of the admittance over a broad frequency range.

In what follows, the results of the proposed identification
method will be compared with those reported in [23], which
were obtained by minimizing the cost (14) over N = 500 fre-
quencies logarithmically spaced between ω1 = 10−2 rad/s and
ω500 = 103 rad/s. The weights were set to wk = |G(jωk)|−2
in order to normalize the cost [23]. The same network will be
employed, with parameters RS = 0.1 Ω, R = 1 Ω, C = 0.5F ,
NZ = 3, NX = NY = 5 and fC = 0.5.

IV. RESULTS

A. Preliminary analysis of the RC network response

Fig. 3a and 3b present the admittance and unit step response
of the network, including the source resistance RS . As can be
seen in Fig. 3a, the admittance converges to −10 dB at low fre-
quencies, which amounts to a resistance of 3.16 Ω. This value
corresponds to the association of RS with the equivalent resis-
tance of the RC network, since the capacitors behave as open
circuits at low frequencies. As a result, the steady-state value
of the input current following the 1 V step excitation is equal to
1 V/3.16 Ω = 0.32 A, which is consistent with the limit value
of the curve shown in the inset of Fig. 3b.
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Fig. 3. (a) Admittance and (b) unit step response of the RC network.

The convergence of the admittance to +20 dB at high
frequencies can be ascribed to a path of capacitors between the
network terminals. Indeed, since the capacitors behave as short
circuits at high frequencies, the overall admittance becomes
20 log10(1/RS) = 20 log10(1/0.1) = 20 dB. This is also the
reason why the input current reaches an initial value of 10 A in
Fig. 3b. The capacitors impose that the voltage across the net-
work remains equal to zero immediately after the application
of the 1 V step excitation and thus the initial current is equal to
1 V/RS = 1 V / 0.1 Ω = 10 A.

B. Identification results

The proposed identification method was initially employed
with a fractional-order transfer function of the following form:

Gn=1
frac(s) =

b0 + b1s
α

1 + a1sα
(15)

where α > 0 is a real-valued exponent. This is a particular
case of (13) with n = 1, in which the same fractional exponent
is used in the numerator and denominator. This configuration
was adopted in view of the asymptotic behavior of the network
admittance at high frequencies, as discussed above. Therefore,
the cost (11) becomes a function of only two parameters,
namely α and ρ. In view of the possible convergence to poor
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local minima, the optimization was carried out from different
initial values of (α, ρ) in a grid formed by varying α from 0.1
to 1.0 and ρ from 0.1 to 0.9, both with step size of 0.1.

The proposed method was also employed to identify a
fractional-order transfer function of the following form:

Gn=2
frac(s) =

b0 + b1s+ b2s
α

1 + a1s+ a2sα
(16)

which is a particular case of (13) with n = 2 and the same
fractional exponent α in the numerator and denominator. The
initial (α, ρ) pairs employed in the optimization were taken
from a grid formed by varying α from 0.1 to 2.0 and ρ from
0.1 to 0.9, both with step size of 0.1. For comparison, the
following integer-order transfer functions were also identified:

Gn=1
int (s) =

b0 + b1s

1 + a1s
, Gn=2

int (s) =
b0 + b1s+ b2s

2

1 + a1s+ a2s2
(17)

In this case, the cost (11) becomes a function of a single
parameter ρ. This parameter was optimized by using initial
values ranging from 0.1 to 0.9, with step size of 0.1.

The identification was based on the step response of the
RC network, with time range of 0−80 s and sampling period
T = 0.001 s. By using a computer with an i5 processor
(1.70 GHz), the optimization times for each initial (α, ρ) point
were approximately 3 and 11 minutes for the integer and
fractional-order model, respectively. No substantial differences
between n = 1 and n = 2 were observed. The workload is
mainly associated to the generation of the model output ŷ(kT )
employed in the cost function (11). The computational demand
of such a procedure is much larger in the fractional order case.

Table I presents the resulting integer and fractional-order
transfer functions, along with the results reported in [23].

TABLE I: SUMMARY OF RESULTS.

n = 1 n = 2

(a)
1.449s+ 0.358

0.229s+ 1

0.875s2 + 2.73s+ 0.339

0.116s2 + 1.614s+ 1

(b)
1.348s0.682 + 0.287

0.145s0.682 + 1

5.311s+ 0.792s0.439 + 0.333

0.481s+ 2.994s0.439 + 1

(c)
1.395s0.698 + 0.281

0.181s0.651 + 1

0.067s+ 3.015s0.852 + 0.346

0.088s+ 1.288s0.472 + 1

(a) Proposed method (integer order), (b) Proposed method (fractional order),
(c) Results reported in [23] (Fractional order).

Fig. 4 compares the step responses of the integer and
fractional order models obtained with the proposed method.
As can be seen, the fractional order models provide a much
better match of the network response. For n = 2, the model
response is almost indistinguishable from that of the network.

Fig. 5 compares the step response of the fractional order
model obtained herein with that reported in [23], which are
labeled “step response identification” and “frequency response
identification”, respectively. The comparison is restricted to
n = 2, because the transfer function obtained in [23] for
n = 1 is not proper (i.e. the dominating term in the numerator
has a larger exponent compared to the denominator), as seen
in Table I. Therefore, the corresponding step response is not
well-defined. In fact, the parametrization adopted in [23] did
not impose that the fractional exponents should be equal in
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Fig. 4. Step response results: Fractional and integer order models.
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Fig. 5. Step response results (fractional order model with n = 2): Comparison
with the frequency-domain identification method reported in [23].

the numerator and denominator. Since the identification was
aimed at matching the network within a limited frequency
range, there was no need to impose an a priori relation
between these exponents. Regarding the n = 2 case in Fig.
5, it can be seen that both models provide a good match of
the network response. However, the model reported in [23]
yields a larger discrepancy in the initial part of the transient
response, as shown in the inset. This finding may be ascribed
to a mismatch between the admittance of the network and the
identified model at frequencies higher than those employed
in the cost function (14). Since the method proposed herein
is directly aimed at matching the step response, the resulting
model provides a much better match of the initial response.

A dramatic improvement using the fractional over the
integral order formulation is shown in Fig. 6, which corrob-
orates the time-domain findings. Finally, Fig. 7 compares the
frequency responses of the fractional order models obtained
herein with those reported in [23]. For n = 2 the results show
excellent agreement to the network frequency response and are
consistent to those in [23]. The proposed method, tailored at
matching the step response in the time domain, also provides
an excellent match in the frequency domain.
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Fig. 6. Frequency domain results: Fractional and integer order models.
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Fig. 7. Frequency domain results (fractional order models): Comparison with
the frequency-domain identification method reported in [23].

V. CONCLUSION

This brief discussed the identification of fractional order
transfer functions using a step excitation. The main advan-
tage of this formulation is that fewer parameters need to be
numerically optimized. Instead of optimizing the coefficients
and fractional exponents of the transfer function, the proposed
method only requires the optimization of the fractional expo-
nents, as well as the parameter ρ employed in the definition of
the auxiliary filtering parameters. Algorithmic implementation
is straightforward using existing computational toolboxes.

Fractional order systems were generated in software using
a nodal analysis of 3D RC circuits. These networks can be
tailored in terms of topology and composition to emulate
real time systems governed by fractional order dynamics.
A single fractional exponent α was sufficient to obtain an
excellent matching of the network dynamics in the time and
frequency domains. Therefore, only two parameters (α, ρ)
had to be numerically optimized. The proposed step response

identification procedure has a very parsimonious formulation,
matches very well the network step response, and is consistent
with previous frequency domain formulations [23].
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