18,060 research outputs found

    Fourier finite element modeling of light emission in waveguides: 2.5-dimensional FEM approach

    Get PDF
    We present a Fourier finite element modeling of light emission of dipolar emitters coupled to infinitely long waveguides. Due to the translational symmetry, the three-dimensional (3D) coupled waveguide-emitter system can be decomposed into a series of independent 2D problems (2.5D), which reduces the computational cost. Moreover, the reduced 2D problems can be extremely accurate, compared to its 3D counterpart. Our method can precisely quantify the total emission rates, as well as the fraction of emission rates into different modal channels for waveguides with arbitrary cross-sections. We compare our method with dyadic Green's function for the light emission in single mode metallic nanowire, which yields an excellent agreement. This method is applied in multi-mode waveguides, as well as multi-core waveguides. We further show that our method has the full capability of including dipole orientations, as illustrated via a rotating dipole, which leads to unidirectional excitation of guide modes. The 2.5D Finite Element Method (FEM) approach proposed here can be applied for various waveguides, thus it is useful to interface single-photon single-emitter in nano-structures, as well as for other scenarios involving coupled waveguide-emitters.Comment: 11 pages, 4 figures, Optics Express, 201

    SIMPEL: Circuit model for photonic spike processing laser neurons

    Get PDF
    We propose an equivalent circuit model for photonic spike processing laser neurons with an embedded saturable absorber---a simulation model for photonic excitable lasers (SIMPEL). We show that by mapping the laser neuron rate equations into a circuit model, SPICE analysis can be used as an efficient and accurate engine for numerical calculations, capable of generalization to a variety of different laser neuron types found in literature. The development of this model parallels the Hodgkin--Huxley model of neuron biophysics, a circuit framework which brought efficiency, modularity, and generalizability to the study of neural dynamics. We employ the model to study various signal-processing effects such as excitability with excitatory and inhibitory pulses, binary all-or-nothing response, and bistable dynamics.Comment: 16 pages, 7 figure

    Matching perturbative and Parton Shower corrections to Bhabha process at flavour factories

    Get PDF
    We report on a high-precision calculation of the Bhabha process in Quantum Electrodynamics, of interest for precise luminosity determination of electron-positron colliders involved in R measurements in the region of hadronic resonances. The calculation is based on the matching of exact next-to-leading order corrections with a Parton Shower algorithm. The accuracy of the approach is demonstrated in comparison with existing independent calculations and through a detailed analysis of the main components of theoretical uncertainty, including two-loop corrections, hadronic vacuum polarization and light pair contributions. The calculation is implemented in an improved version of the event generator BABAYAGA with a theoretical accuracy of the order of 0.1%. The generator is now available for high-precision simulations of the Bhabha process at flavour factories.Comment: 34 pages, 8 figures, uses elsart.cls. Version to appear on Nuclear Physics

    Photonic microstructures as laser mirrors

    Get PDF
    Deeply etched 1-D third-order Bragg reflectors have been used as mirrors for broad-area semiconductor lasers operating at 975-nm wavelength. From a threshold and efficiency analysis, we determine the mirror reflectivity to be approximately 95%. The design of the GaAs-based laser structure features three InGaAs quantum wells placed close (0.5 ÎŒm) to the surface in order to reduce the required etch depth and facilitate high-quality etching. Despite the shallow design and the proximity of the guided mode to the metal contact, the threshold current density (J_(th) = 220 A/cm^2 for infinite cavity length) and internal loss (α_i = 9±1 cm^(−1)) are very low

    Hybrid inorganic/organic photonic crystal biochips for cancer biomarkers detection

    Get PDF
    We report on hybrid inorganic/organic one-dimensional photonic crystal biochips sustaining Bloch surface waves. The biochips were used, together with an optical platform operating in a label-free and fluorescence configuration simultaneously, to detect the cancer biomarker Angiopoietin 2 in a protein base buffer. The hybrid photonic crystals embed in their geometry a thin functionalization poly-acrylic acid layer deposited by plasma polymerization, which is used to immobilize a monoclonal antibody for highly specific biological recognition. The fluorescence operation mode is described in detail, putting into evidence the role of field enhancement and localization at the photonic crystal surface in the shaping and intensification of the angular fluorescence pattern. In the fluorescence operation mode, the hybrid biochips can attain the limit of detection 6 ng/ml.We report on hybrid inorganic/organic one-dimensional photonic crystal biochips sustaining Bloch surface waves. The biochips were used, together with an optical platform operating in a label-free and fluorescence configuration simultaneously, to detect the cancer biomarker Angiopoietin 2 in a protein base buffer. The hybrid photonic crystals embed in their geometry a thin functionalization poly-acrylic acid layer deposited by plasma polymerization, which is used to immobilize a monoclonal antibody for highly specific biological recognition. The fluorescence operation mode is described in detail, putting into evidence the role of field enhancement and localization at the photonic crystal surface in the shaping and intensification of the angular fluorescence pattern. In the fluorescence operation mode, the hybrid biochips can attain the limit of detection 6 ng/ml

    Two-Loop Bhabha Scattering in QED

    Full text link
    In the context of pure QED, we obtain analytic expressions for the contributions to the Bhabha scattering differential cross section at order alpha^4 which originate from the interference of two-loop photonic vertices with tree-level diagrams and from the interference of one-loop photonic diagrams amongst themselves. The ultraviolet renormalization is carried out. The IR-divergent soft-photon emission corrections are evaluated and added to the virtual cross section. The cross section obtained in this manner is valid for on-shell electrons and positrons of finite mass, and for arbitrary values of the center of mass energy and momentum transfer. We provide the expansion of our results in powers of the electron mass, and we compare them with the corresponding expansion of the complete order alpha^4 photonic cross section, recently obtained in hep-ph/0501120. As a by-product, we obtain the contribution to the Bhabha scattering differential cross section of the interference of the two-loop photonic boxes with the tree-level diagrams, up to terms suppressed by positive powers of the electron mass. We evaluate numerically the various contributions to the cross section, paying particular attention to the comparison between exact and expanded results.Comment: 35 pages, 18 figure

    Two-Loop Photonic Corrections to Massive Bhabha Scattering

    Full text link
    We describe the details of the evaluation of the two-loop radiative photonic corrections to Bhabha scattering. The role of the corrections in the high-precision luminosity determination at present and future electron-positron colliders is discussed.Comment: 20 pages, Latex; discussion, references added; to appear in Nucl.Phys.

    Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots

    Get PDF
    The quality factor (Q), mode volume (Veff), and room-temperature lasing threshold of microdisk cavities with embedded quantum dots (QDs) are investigated. Finite element method simulations of standing wave modes within the microdisk reveal that Veff can be as small as 2(lambda/n)^3 while maintaining radiation-limited Qs in excess of 10^5. Microdisks of diameter D=2 microns are fabricated in an AlGaAs material containing a single layer of InAs QDs with peak emission at lambda = 1317 nm. For devices with Veff ~2 (lambda/n)^3, Qs as high as 1.2 x 10^5 are measured passively in the 1.4 micron band, using an optical fiber taper waveguide. Optical pumping yields laser emission in the 1.3 micron band, with room temperature, continuous-wave thresholds as low as 1 microWatt of absorbed pump power. Out-coupling of the laser emission is also shown to be significantly enhanced through the use of optical fiber tapers, with laser differential efficiency as high as xi~16% and out-coupling efficiency in excess of 28%.Comment: 6 figure
    • 

    corecore