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SIMPEL: Circuit model for photonic
spike processing laser neurons

Bhavin J. Shastri∗, Mitchell A. Nahmias, Alexander N. Tait, Ben Wu,
and Paul R. Prucnal

Department of Electrical Engineering, Princeton University, Princeton NJ, 08544, USA
∗shastri@ieee.org

Abstract: We propose an equivalent circuit model for photonic spike pro-
cessing laser neurons with an embedded saturable absorber—a simulation
model for photonic excitable lasers (SIMPEL). We show that by mapping
the laser neuron rate equations into a circuit model, SPICE analysis can be
used as an efficient and accurate engine for numerical calculations, capable
of generalization to a variety of different types of laser neurons with sat-
urable absorber found in literature. The development of this model parallels
the Hodgkin–Huxley model of neuron biophysics, a circuit framework
which brought efficiency, modularity, and generalizability to the study of
neural dynamics. We employ the model to study various signal-processing
effects such as excitability with excitatory and inhibitory pulses, binary
all-or-nothing response, and bistable dynamics.

© 2015 Optical Society of America

OCIS codes: (070.4340) Nonlinear optical signal processing; (200.4700) Optical neural sys-
tems; (320.7085) Ultrafast information processing.
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1. Introduction

Photonics has recently witnessed [1–12] a deeply committed exploration of neuro-inspired un-
conventional computing paradigms that promise to outperform conventional technology in cer-
tain problem domains. This field of neuromorphic engineering [13–15] aims to build machines
that better interact with natural environments by applying the circuit and system principles
of neuronal computation, including robust analog signaling, physics-based dynamics, distrib-
uted complexity, and learning. Cognitive computing platforms [16,17] inspired by the architec-
ture of the brain promise potent advantages in efficiency, fault tolerance and adaptability over
von Neumann architectures for tasks involving pattern analysis, decision making, optimization,
learning, and real-time control of many-sensor, many-actuator systems. These neural-inspired
systems are typified by a set of computational principles, including hybrid analog-digital sig-
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nal representations [18], co-location of memory and processing [19], unsupervised statistical
learning [20], and distributed representations of information [21].

A sparse coding scheme called spiking [22, 23] has been recognized as a cortical encoding
strategy [24,25] with firm code-theoretic justifications [26,27] and promises extreme improve-
ments to computational power efficiency [14]. Since spikes are discrete events that occur at
analog times, this encoding scheme represents a hybrid between traditional analog and digital
approaches, capable of both expressiveness and robustness to noise [28]. This distributed, asyn-
chronous model processes information using both space and time [21, 23], is naturally robust,
and is amenable to algorithms for unsupervised adaptation [19, 20]. The marriage of photonics
with spike processing is fundamentally enabled by the strong analogies [7] of the underlying
physics between the dynamics of biological neurons and lasers; they both can be understood
within the framework of dynamical systems theory, and can display the crucial property of
excitability—systems that can be excited from their in a stable steady rest state to emit a spike
by a super-threshold followed by a refractory period. The rate equations of photonics devices,
however operate approximately eight orders of magnitude faster than biological time scales. In
addition to the high switching speeds and high communication bandwidth, the low cross-talk
achievable in photonics are very well suited for an ultrafast spike-based information scheme
with high interconnection densities. Furthermore, the high wall-plug efficiencies of photonic
devices may allow such implementations to match or eclipse equivalent electronic systems in
low energy usage. Consequently, a network of photonic neurons—photonic spike processors—
could access a picosecond and low-power computationally rich domain that is inaccessible by
other technologies. This novel processing domain—ultrafast cognitive computing—represents
a broad domain of applications where quick, temporally precise and robust systems are nec-
essary, including: adaptive control, learning, perception, motion control, sensory processing,
autonomous robotics, and cognitive processing of the radio frequency (RF) spectrum.

Despite their potential in this regard, all the excitable laser systems studied in the context of
spike processing, either with the tools of bifurcation theory [8,29,30] or experimentally [5,31],
have been limited to a couple of devices. This has been largely due to the lack of a dynamical
simulation platform for photonic neurons. Due to the complexity associated with these sys-
tems, it is impossible to apply simplifying assumptions for purely analytic approaches which
would risk not capturing all the rich dynamics associated with such systems. A platform for
simulating photonics neurons must simultaneously capture their underlying physics (photon–
carrier dynamics) and be amenable for studying large scale on-chip optical network architec-
ture to support massively parallel communication between high-performance spiking laser neu-
rons [32–34] (also highlighted in [35]). Furthermore, such a simulation platform would be cru-
cial to gain critical insight into the behavior of a photonic spike processor under a variety of
conditions.

The photon–carrier dynamics in a excitable laser are strongly coupled, making the simulation
of transient spiking phenomena in laser neurons much more involved than steady-state simu-
lation of typical CW lasers. Multidimensional device-level programs (for example, based on
finite element method (FEM)) are too computationally intensive to accurately account for these
complex photon–carrier interactions, and they are also impossible to utilize for simulating a
scalable integrated optoelectronic system with hundreds or thousands of such devices. Numeri-
cal methods such as the Runge–Kutta methods can be employed for calculating solutions of the
rate equations. However, they have a number of limitations for modeling practical situations;
for example, they cannot easily incorporate parasitic networks for studying device interactions
and determining the frequency response. Other simulation techniques take advantage of the
sparse nature of spiking signals and adopt event-based models for extremely large-scale net-
works. While computationally efficient, event-based models must overlook many subtleties in
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the dynamics of individual units, which are fundamentally driven by differential equation mod-
els.

1.1. Our contribution

Here, we propose SIMPEL—SImulation Model for Photonic Excitable Lasers—which bridges
the gap between the underlying physics and relevant dynamics of excitable lasers by trans-
forming its rate equations to an equivalent circuit representation. We show that this circuit
model leads to a highly efficient simulation framework that expedites the computation of the
rate equations, and also facilitates computer-aided design (CAD) and analysis of an integrated
optoelectronic system. The circuit modeling approach captures the important dynamical be-
haviors of a photonic neuron in a way that is extendable to more refined studies of parasitics
and networks while also being agnostic to specifics of device implementation. In our approach,
the carrier density and the photon density are converted to current and voltage representations,
respectively. The input current (carrier) and output voltage (light) form a two-port equivalent
model which can be coupled with other such circuits for an efficient and scalable simulation
platform. This could potentially enable the to study for an architecture of an interconnected
network of laser neurons at the system level for wide range of applications in high-performance
computing, adaptive control, and learning. Our model is compatible with SPICE, the de facto
industrial standard for computer-aided circuit analysis, which is hyper optimized for circuit
analysis.

By recasting excitable laser dynamics in a common language of circuit analysis, SIMPEL
manifests several advantageous features that will aid in the design and characterization of laser
neuron devices for signal processing. This approach parallels the work of Hodgkin and Hux-
ley [36], who developed an equivalent circuit model for biological neuron dynamics in order to
express neuron behavior in a common language of engineering that can abstract away under-
lying biochemical mechanisms. A circuit analysis framework is a modular abstraction, which
is important for incorporating second-order effects, such as parasitics, and for studying small
networks of interconnected laser devices. Compatibility with the SPICE engine means that the
simulation is highly optimized. The resulting increase in speed over physical and Runge–Kutta
methods is particularly relevant for Monte–Carlo studies of noise in which stochastic effects are
studied with many calls of the same simulation. Finally, SIMPEL’s phenomenological nature
makes it applicable to different physical implementations of an excitable laser with embedded
saturable absorber (SA) without resorting to full-scale device simulation. Although the model
and parameters must be derived from the underlying optoelectronic mechanisms, SIMPEL can
more readily grant insight about the relationship between these parameters and behavioral dy-
namics relevant for signal processing, such as energy usage and noise. One example of an
application is parameter fitting data measured from a laser neuron circuit. In this case, the ef-
fects of noise and parasitics must be accounted for, and the internal physical mechanism is not
observable. SIMPEL could allow a user to learn the most about circuit operation by improv-
ing control over the fit degrees-of-freedom and, more generally, over the synthesis of a priori
knowledge with observed behavior.

2. Brief review of spiking neuron model and excitable laser model analogy

2.1. Spiking neuron model

Fig. 1 depicts the basic biological structure of the leaky integrate-and-fire (LIF) neuron. The LIF
model is one of the most ubiquitous models in computational neuroscience and is the simplest
known model for spike processing [37]. The dendrite tree collects N inputs which represent in-
duced currents in input synapses x j that are continuous time series consisting either of spikes or
continuous analog values. Each input is independently weighted by ω j, which can be positive or
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Fig. 1. Schematic of a biological neuron and a two-section excitable laser that share key
dynamical properties. In the LIF neuron model, weighted and delayed input signals are
spatially summed at the dendritic tree into an input current, which travel to the soma and
perturb the internal state variable, the voltage. The soma performs integration and then ap-
plies a threshold to make a spike or no-spike decision. After a spike is released, the voltage
is reset. The resulting spike is sent to other neurons in the network. The excitable laser is
composed of a gain section, SA, and mirrors for cavity feedback. The inputs selectively
perturb the gain optically or electrically. The gain medium acts as a temporal integrator
while the SA acts as a threshold detector; it extracts most of the stored energy from the
gain medium into the optical mode. These dynamics emulate excitability, one of the most
critical properties of a spiking neuron.

negative, and delayed by τ j resulting in a time series that is spatially summed. This aggregate
input induces an electrical current, Iapp = Vm(t)∑

N
j=1 ω jx j(t − τ j) between adjacent neurons,

where the membrane potential Vm(t), the voltage difference across their membrane, acts as the
primary internal (activation) state variable. The weights and delays determine the dynamics of
network, providing a way of programming a neuromorphic system. The soma acts as a first-
order low-pass filter or a leaky integrator, with the integration time constant τm = RmCm that
determines the exponential decay rate of the impulse response function and where Rm and Cm
model the resistance and capacitance associated with the membrane, respectively. The leakage
current through Rm drives the membrane voltage Vm(t) to 0, but an active membrane pump-
ing current counteracts it and maintains a resting membrane voltage at a value of Vm(t) = VL;

that is Vm(t) =VLe−
t−t0
τm + 1

Cm

∫ t−t0
0 Iapp(t− τ)e−

τ
τm , where t0 is the last time the neuron spiked.

Finally, the axon carries an action potential, or spike, to other neurons in the network when
the integrated signal exceeds a threshold; that is, if Vm(t) ≥ Vthresh, then the neuron outputs a
spike and Vm(t) is set to Vreset. This is followed by a relative refractory period, during which



Vm(t) recovers from Vreset to the resting potential VL in which is difficult to induce the firing
of a spike. Consequently, the output of the neuron consists of a series of spikes that occur at
continuously valued times. There are three influences on Vm(t): passive leakage of current, an
active pumping current, and external inputs generating time-varying membrane conductance
changes. Including a set of digital conditions, we arrive at a typical LIF model for an individual
neuron:

dVm(t)
dt︸ ︷︷ ︸

Activation

=
VL

τm︸︷︷︸
Active pumping

− Vm(t)
τm︸ ︷︷ ︸

Leakage

+
1

Cm
Iapp(t)︸ ︷︷ ︸

External input

; (1a)

if Vm(t)>Vthresh then (1b)
release a pulse and set Vm(t)→Vreset.

2.2. Excitable laser model

Next, we briefly summarize the recently discovered mathematical analogy between the LIF
neuron model and an excitable laser composed of a gain section with an embedded SA [7, 38]
as illustrated in Fig. 1. The gain medium acts as a temporal integrator with a time constant
that is equal to the carrier recombination lifetime. The SA extracts most of the stored energy
from the gain medium into the optical mode and performs the function of a threshold detector.
This gain-absorber interplay emulates one of the most critical dynamical properties of a spiking
neuron—excitability.

The Yamada model [39], describes the behavior of lasers with independent gain and SA
sections with an approximately constant intensity profile across the cavity. We assume that
the dynamics operate such that the gain is a slow variable, while the intensity and loss
are both fast. This three-dimensional dynamical system can be described with the following
equations: (1) Ġ(t) = γG [A−G(t)−G(t)I(t)]; (2) Q̇(t) = γQ [B−Q(t)−aQ(t)I(t)]; and (3)
İ(t) = γI [G(t)−Q(t)−1] I(t)+ε f (G) where G(t) models the gain, Q(t) is the absorption, I(t)
is the laser intensity, A is the bias current of the gain, B is the level of absorption, a describes
the differential absorption relative to the differential gain, γG is the relaxation rate of the gain,
γQ is the relaxation rate of the absorber, γI is the inverse photon lifetime, and ε f (G) represents
the small contributions to the intensity made by spontaneous emission, (noise term) where ε is
very small.

It has been shown in [7] that, in certain parameter regimes, the behavior of the system closely
approximates the spiking LIF model. Assuming that the inputs to the system cause perturbations
to the gain G(t) only, and that the fast dynamics are nearly instantaneous, we can compress the
behavior of this system into the following set of equations and conditions:

dG(t)
dt︸ ︷︷ ︸

Activation

= γGA︸︷︷︸
Active pumping

−γGG(t)︸ ︷︷ ︸
Leakage

+ θ(t)︸︷︷︸
External input

(2a)

if G(t)> Gthresh then (2b)
release a pulse, and set G(t)→ Greset.

where θ(t) represent input perturbations. The conditional statements account for the fast dy-
namics of the system that occur on times scales of order 1/γI , and other various assumptions—
including the fast Q(t) variable and operation close to threshold—assure that Gthresh, Greset and
the pulse amplitude remain constant.
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Comparing this to the LIF model, or equation (1), the analogy between the equations be-
comes clear. Setting the variables γG = 1/RmCm, A =VL, θ(t) = Iapp(t)/Cm, and G(t) =Vm(t)
shows their algebraic equivalence. Thus, the gain of the laser G(t) can be thought of as a vir-
tual membrane voltage, the input current A as a virtual leakage voltage, etc. There is a key
difference, however—both dynamical systems operate on vastly different time scales. Whereas
biological neurons have time constants τm = CmRm on order of milliseconds, carrier lifetimes
of laser gain sections are typically in the nanosecond range and can go down to picoseconds.

3. Laser neuron rate equation model

3.1. Rate equations

We start with the coupled rate equations for the photon and carrier densities for a two-section
excitable laser with gain and SA regions, assuming only one longitudinal and one transverse
optical mode is lasing [40]:

dna

dt
=

ηi,aia
qVa︸ ︷︷ ︸

current injection

− na

τa︸︷︷︸
carrier recomb.

− Γag(na)
Nph

Va︸ ︷︷ ︸
stimulated-emission

(3)

dns

dt
=

ηi,sis
qVs︸ ︷︷ ︸

current injection

− ns

τs︸︷︷︸
carrier recomb.

− Γsg(ns)
Nph

Vs︸ ︷︷ ︸
stimulated-emission

(4)

dNph

dt
= −

Nph

τph︸︷︷︸
photon decay

+Γag(na)Nph +Γsg(ns)Nph︸ ︷︷ ︸
stimulated-emission

+ VaβBrn2
a︸ ︷︷ ︸

recombination

(5)

Equations (3) and (4) relate the rate of change in the gain and SA regions’ carrier concentration
nχ to the injection current iχ , the carrier recombination rate, and the stimulated-emission rate.
Note that the gain and SA cavities are represented by the subscript χ = a or s, respectively. The
gain current term ia = Ia + iea accounts for the pump current Ia and the electrical modulation
iea of the gain, whereas the SA current term is = Is allows only for an adjustable threshold.
Equation (5) relates the rate of change in photon number Nph that is common to the gain and
SA regions, to photon decay, the rate of stimulated-emission, and the rate of recombination into
the lasing mode. In addition, ηi,χ is the current-injection efficiency, Vχ is the cavity volume,
q is the electron charge, τχ is the rate of carrier recombination, Γχ is the optical confinement
factor, β is the spontaneous-emission coupling factor, Br is the bimolecular recombination term,
and τph is the photon lifetime. Note that, for the active and passive regions to stay as gain
and absorber regions, Ia > qVana/τa and Is < qVsns/τs, respectively. The stimulated-emission
rate includes a carrier-dependent gain term g(nχ) which can take on either a linear [41] or
logarithmic form [42]. We chose the former for simplicity; that is, g(nχ) = gχ(nχ − n0,χ),
where gχ is the gain and SA region differential gain and loss coefficient, respectively, and
n0,χ is the optical transparency carrier density. Furthermore, these rate equations can be further
generalized by adding a gain-saturation term φ−1

χ (Nph) = 1/(1+ εχ Γχ Nph) [43], where εχ is
the phenomenological gain-compression factor. Finally, the laser output power Pout is related to
the photon number inside the cavity via:

Nph

Pout
=

λτph

ηcΓshc
, ϑ (6)

where λ is the lasing wavelength, ηc is the output power coupling coefficient, h is Planck’s
constant, and c is the speed of light in a vacuum.
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3.2. Equivalent circuit

For a given set of injection currents {Ia, Is} in the gain and SA regions, operating point analysis
of the excitable laser described by the rate equations (3)–(5) and output power (6) leads to four
solutions. In addition to the correct nonnegative solution regime, in which the solutions for the
photon density Nph, and carrier densities na and ns, are all nonnegative when Ia ≥ 0 and Is ≥ 0,
there are also negative-power and a high-power regimes. It is therefore necessary to transform
the carrier population density in the respective cavities nχ and the laser output power Pout via
the following pair of transformations, respectively [41]:

na = neq,a exp
( qva

nkT

)
(7)

ns = neq,s exp
( qvs

nkT

)
(8)

Pout = (vm +δ )2 (9)

where neq,χ is the equilibrium carrier density, vχ is the voltage across the gain and SA region of
the laser, n is a diode ideality factor (typically set to two for III-V devices [44,45]), vm is a new
variable for parameterizing Pout, δ is a small arbitrary constant set to 10−60, k is Boltzmann’s
constant, and T is the temperature of the excitable laser. It has been shown in [46] that these
transformations eliminate the nonphysical solutions (negative-power and a high-power regime)
and improve the convergence properties of the model during simulation.

We model the carrier’s dynamics dnχ/dt, by substituting the set of variable transformations
(7)–(9), and the output power (6), into the rate equations (3) and (4). After applying the appro-
priate manipulations, we obtain:

qneq,χ

nkT
exp
( qvχ

nkT

) dvχ

dt
=

ηi,χ iχ

qVχ

−
neq,χ

τχ

[
exp
( qvχ

nkT

)
−1
]
−

neq,χ

τχ

−
Γχ g(nχ)

Vχ

ϑ(vm +δ )2.

(10)
With some additional rearrangement (10) can be written in terms of the respective cavity cur-
rents as

iχ = iT 1
χ + iT 2

χ +Gχ (11)

where

iT 1
χ = iD1

χ + iC1
χ (12)

iT 2
χ = iD2

χ + iC2
χ (13)

iD1
χ =

qneq,χVχ

2ηi,χ τχ

[
exp
( qvχ

nkT

)
−1
]

(14)

iD2
χ =

qneq,χVχ

2ηi,χ τχ

[
exp
( qvχ

nkT

)
−1+

2qτχ

nkT
exp
( qvχ

nkT

) dvχ

dt

]
(15)

iC1
χ =

qneq,χVχ

2ηi,χ τχ

(16)

iC2
χ = iC1

χ (17)

Gχ =
ϑqΓχ

ηi,χ
g
(

Θχ iT 1
χ

)
(vm +δ )2 (18)

with
nχ = Θχ iT1

χ and Θχ =
2ηi,χ τχ

qVχ

. (19)
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Fig. 2. Circuit-level implementation to model the laser neuron.

These equations can be mapped directly into an equivalent laser neuron model as shown in
Fig. 2, where {Pa,Na} and {Ps,Ns} are the electrical (+ve and −ve) terminals of the gain and
SA regions, respectively. Diodes {D1

a,D
2
a} and {D1

s ,D
2
s}, and current sources {iC1

a , iC2
a } and

{iC1
s , iC2

s }, model the linear recombination and charge storage in both the gain and SA regions,
respectively. The nonlinear dependent current sources {Ga,Gs}, model the effect of stimulated
emission on the carrier densities in both the gain and SA regions.

Similarly, to model the photon dynamics dNph/dt, we substitute the transformations (7)–(9),
and the output power (6), into the rate equation (5). After applying the appropriate manipula-
tions, we obtain

2(vm +δ )
dvm

dt
=− (vm +δ )2

τph
+
{

Γag(na)+Γsg(ns)
}
(vm +δ )2 +

VaβBrn2
a

ϑ
(20)

With some additional rearrangements and the definition of suitable circuit elements, (18) can
be written as

Cph
dvm

dt
+

vm

Rph
= Gr,a +Gr,s +B (21)

where

Gr,a = τphΓag
(
ΘaIT 1

a )(vm +δ
)
−δ (22)

Gr,s = τphΓsg
(
ΘsIT 1

s )(vm +δ
)

(23)

B =
ηcΓahcVaβBr

λ (vm +δ )

(
ΘaiT1

a
)2

(24)

and
Cph = 2τph and Rph = 1Ω. (25)

Finally, Epf transforms the node voltage vm, into the output power Pout, by

Pout = Epf = (vm +δ )2. (26)

These equations can also be mapped directly into an equivalent laser neuron model as shown
in Fig. 2. Cph and Rph help model the time-variation of the photon density under the effect of
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Fig. 3. (a) Cross section of a VCSEL-SA excitable laser. The single cavity mode interacts
with two independent sets of quantum wells (blue). Metal contacts (orange) inject current
into gain and SA sections from below and above, respectively. Insulating regions confine
current to the mode center (yellow). (b) Cross section of a DFB-SA excitable laser. A re-
fractive index grating etched in the waveguide core (dark grey) creates a high-finesse, sin-
gle mode cavity whose mode interacts with both gain and SA MQW active regions (blue).
Metal contacts (orange) inject current into gain and SA sections, which are electrically
isolated by a H+ implanted layer (yellow).

spontaneous and stimulated emission, which are accounted for by the nonlinear dependent cur-
rent sources {Gr,a,Gr,s} and B, respectively. Finally, the nonlinear voltage source Epf, produces
the laser neuron optical output power in the form of a node voltage at o.

3.3. Laser neuron device structures

As a demonstration of the utility of our circuit approach, we simulate our model using realistic
parameters for the recently proposed vertical-cavity surface-emitting laser (VCSEL) photonic
neuron [7] and a distributed feedback (DFB) laser photonic neuron [38]. Fig. 3 illustrates the
cross sections of the VCSEL and DFB excitable lasers with an embedded SA. Despite their
differences, because of the simplicity and generality of our approach, the dynamics of both
models can be represented under the same theoretical framework and are two viable candidates
for large, integrated photonic neural networks. Each model possesses complementary advan-
tages and disadvantages to the other.

VCSEL photonic neurons occupy small footprints, can be fabricated in large arrays allowing
for massive scalability and low power use [47]. In addition, the model is amenable to a variety of
different interconnection schemes: VCSELs can send signals upward to form 3D interconnects
[48], can emit downward into an interconnection layer via grating couplers [49], or connect
monolithically through intra-cavity holographic gratings [50]. An excitable VCSEL with an
intra-cavity SA that operates using the same rate equation model described above has already
been experimentally realized [51].

DFB laser photonic neurons, in contrast, emit light in the planar direction. Although they
have lower wall plug efficiencies, use more power and occupy larger spatial footprints than their
VCSEL counterparts, their natural affinity for waveguide coupling and lithographically defined
operating wavelengths post growth makes them a strong candidate for integrating photonic
neural networks on a single chip. DFB lasers can be coupled into passive waveguides in III-
V materials [52], can butt couple into waveguides on other materials such as silicon [53], or
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Table 1. Typical VCSEL-SA and DFB-SA Excitable Laser Parameters [7, 40, 55–60]

Parameter Description Units VCSEL-SA DFB-SA
ηi,a Active region current-injection efficiency − 0.86 0.70
ηi,s SA region current-injection efficiency − 0.86 0.70
λ Lasing wavelength nm 850 1575
Va Active region cavity volume m3 2.4×10−18 2.55×10−18

Vs SA region cavity volume m3 2.4×10−18 0.85×10−18

Γa Active region confinement factor − 0.06 0.034
Γs SA region confinement factor − 0.05 0.034
τa Active region carrier lifetime ns 1 1
τs SA region carrier lifetime ps 100 100
τph Photon lifetime ps 4.8 2.4
ga Active region differential gain/loss m3s−1 2.9×10−12 0.97×10−12

gs SA region differential gain/loss m3s−1 14.5×10−12 14.5×10−12

n0,a Active region transparency carrier density m−3 1.1×1024 1.1×1024

n0,s SA region transparency carrier density m−3 0.89×1024 1.1×1024

Br Bimolecular recombination term m3s−1 10×10−16 10×10−16

β Spontaneous emission coupling factor − 1×10−4 1×10−4

ηc Output power coupling coefficient − 0.4 0.39
neq,a Active region equilibrium carrier density m−3 7.86×1015 7.86×1015

neq,s SA region equilibrium carrier density m−3 7.86×1015 7.86×1015

can be defined within a silicon on insulator (SOI) substrate using techniques such as wafer
bonding [54].

4. Results and discussion

We simulate our laser neuron circuit model using the HSPICE circuit simulator from Synop-
sys [61]. For our analysis, we consider typical VCSEL-SA and DFB-SA excitable lasers with
material and geometrical parameters as given in Table 1. Fig. 4 depicts the simulation setup
used to test the laser neuron equivalent circuit model in Fig. 2. In the simulation setup, the dc
current sources Ia and Is provide the bias conditions for gain and SA regions, respectively. The
pulsed current sources summed as iea, model the excitatory and inhibitory pulses (from other
laser neurons), and modulate the gain region. The dummy load RL, enables the measurement of
output power from the laser neuron circuit model.

As stated earlier, in certain parameter regimes, a simple model of a single-mode laser with an
SA section has been proven to be analogous to the equations governing an LIF neuron [7, 38].
For such a laser, the active and passive cavities must stay as gain and absorber regions. This
means that Ia > qVana/τa and Is < qVsns/τs, respectively. Fig. 5 depicts the simulated excitabil-
ity of the VCSEL-SA system. This behavior resembles neural spiking behavior. The VCSEL-
SA model is biased just below the threshold: gain current, Ia = 2.7 mA, and SA current,
Is = 0 mA. In Fig. 5(a) pairs of excitatory spikes are incident on the system at various times.
Each excitatory pulse increases the carrier concentration within the gain region by an amount
proportional to its energy—gain enhancement. The first pair of pulses causes the laser to fire
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Fig. 4. Circuit setup to simulate the laser neuron equivalent circuit model.

and emit a pulse, after which a refractory period occurs. During this period, a second pair of
pulses is unable to cause the laser to fire. After several nanoseconds, the laser has recovered to
its equilibrium state and a third pair of excitatory spikes causes it to fire again. In Fig. 5(b) an
excitatory and inhibitory pair replaces the third pair of excitatory spikes. Inhibition, which de-
creases the carrier concentration within the gain region—gain depletion—cancels the excitatory
activity and prevents the laser from firing.

(a) (b)

Fig. 5. Simulation of the excitable VCSEL neuron exhibiting neural spiking behavior by
selectively modulating the gain through both excitatory (gain enhancement) and inhibitory
(gain depletion) pulses. First row: input perturbations to the gain. Second row: output and
sech2 fitting curve. Third row: gain region and SA region carrier concentrations.
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Fig. 6. (a) Laser neuron circuit setup to investigating bistable dynamics. Note that the dc
biasing conditions have been left out for the sake of brevity. (b) Simulation of the excitable
VCSEL neuron system exhibiting bistability with connection delays of 4 ns. Top row: in-
put perturbations to the gain. Second row: output power. Third row: gain region carrier
concentration. Fourth row: SA region carrier concentration.

A crucial property of dynamical systems that arises out of the formation of hysteric attrac-
tors is bistability, which plays an important role in the formation of memory in processing
systems [7]. Here, the system is recursive rather than feedforward, possessing a network path
that contains a closed loop allowing the system to exhibit hysteresis, and it is essentially an
extension of an autapse. Fig. 6(a) illustrates an excitable laser whose output is fed back to the
input with a delay element. This circuit represents a test of the network’s ability to handle re-
cursive feedback. The VCSEL-SA excitable laser model is employed for this simulation with
the biasing conditions for the gain and SA regions: Ia = 2.7 mA (just below threshold) and
Is = 0 mA. Fig. 6(b) shows the result for the simulation. An excitatory pulse input to the laser
neuron at t = 10 ns, initiates the system to settle to a new attractor. The first output pulse is
fed back to the input after being delayed by tdelay = 4 ns, which initiates another excitatory
pulse at the output. This recursive process results in a train of output pulses at fixed intervals
before being deactivated by a precisely timed inhibitory pulse at t = 40 ns. This system suc-
cessfully maintains the stability of self-pulsations. The system is also capable of stabilizing to
other states, including those with multiple pulses or different pulse intervals and thus acts as an
optical pattern buffer over longer time scales [7].

Note, since the output of the laser neuron is light represented in the circuit model as a volt-
age and its input is a current, a voltage-controlled current source is employed for the feedback
connection. A practical implementation for interconnecting laser neurons requires a photode-
tector at its input which can couple the optical outputs of other laser neurons and electrically
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(a) (b)

Fig. 7. Characteristics of the excitable laser neurons biased just below threshold (LIF
VCSEL-SA: Ia = 2.7 mA and Is = 0 mA; LIF DFB-SA: Ia = 16.45 mA and Is = 0 mA)
to a single impulse . (a) Energy transfer function. (b) Decision latency as a function of the
input pulse energy.

modulate the gain section of the laser neuron. We recently proposed such an excitable laser and
photodetector system that can emulate both a LIF neuron and a synaptic variable, completing
a computational paradigm for scalable optical computing [38]. Here, two photodetectors re-
ceive optical pulses (excitatory and inhibitory) from a network and are subtracted passively by
a push-pull wire junction. The resulting photocurrent signal conducts over a short wire to mod-
ulate the laser gain section. Dynamics introduced by the photodetectors are analogous to synap-
tic dynamics governing the concentration of neurotransmitters in between signaling biological
neurons. Future work will include a first-order low-pass filter to model the photocurrent flow
in photodiodes and neural synaptic dynamics. The conversion between optical and electronic
domains also restricts the propagation of optical phase noise and the need for direct wavelength
conversion, thus eliminating two major barriers facing scalable optical computing [38].

We now consider the response of the excitable laser neurons to a single impulse over a
range of amplitudes. The underlying feedback dynamics of the laser cavity yield an ideal all-
or-nothing energy transfer function that resembles a step as shown in Fig. 7(a). More than a
logic level buffer that makes input assumptions, the output of the laser neuron is binary for any
analog input. For neural systems, a binary all-or-nothing pulse output is critical to ensure am-
plitude robustness to channel noise. Other systems, including analog-to-digital converters and
comparators, also rely on an all-or-nothing response. When used as a thresholder, the laser neu-
ron has several uncommon advantages over prior photonic thresholding technologies that do
not use laser cavity feedback [62, 63]. Favorable properties include an all-or-nothing response,
clean pulse generation regardless of input pulse shape, and low threshold amplitude less than a
few mAs.

In phase space, the decision of output pulse or no pulse is determined by an attractive man-
ifold, which separates the basin of attraction of the at rest steady-state from a large transient
trajectory. There are no intermediate output possibilities, but the decision latency is greater
when the input causes the dynamical state to fall close to the separatrix as depicted in Fig. 7(b).
This near-threshold spike latency, characteristic of separatrix dynamics, is also observed in the
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Hodgkin–Huxley model [36]. While variable latency can lead to jitter in synchronous systems,
it has also been proposed as a mechanism for converting continuous amplitude to spike-timing
codes in certain neural systems such as the retina [64]. Further study will focus on the effects
of noise on the energy transfer function and decision latency.

5. Conclusion

There has been a recent surge in unconventional computing paradigms that leverage the un-
derlying physics of devices to breach the limitations inherent in traditional von Neumann ar-
chitectures and CMOS device technologies. Inspired by biological neural networks, cognitive
computers could outperform current technology in both complexity and power efficiency. The
computational primitive for such a platform is the well-studied and paradigmatic spiking neu-
ron. A photonic realization of spiking neuron dynamics—laser neurons—harnesses the high-
switching speeds, wide communication bandwidth of optics, and low cross-talk achievable in
photonics, making it well suited for an ultrafast spike-based information scheme.

In this paper, we have proposed an equivalent circuit model for laser neurons based on ex-
citable lasers with an SA and direct gain injection. We show that by mapping the laser neuron
rate equations into a circuit model, SPICE analysis can be used as an efficient and accurate
engine for numerical calculations. Due to the strongly-coupled photon and carrier interactions,
the laser neuron rate equations can be only solved using numerical methods such as the Runge–
Kutta method. In the same way, the non-perturbative dynamics of neuron biophysics prevent
any analytical solution to their behavior. Hodgkin and Huxley were the first to take an approach
of mapping the underlying physics present in the neuron to equivalent circuit representations,
in order to describe and simulate them within a universal and powerful engineering framework.
We take a parallel approach in mapping the key physics of excitable lasers to an equivalent
circuit, in hopes of establishing a foundation of comparable utility for laser neuron research.

By leveraging the modularity advantages of a circuit abstraction, SIMPEL will serve as a
powerful tool in future studies. We have applied the reported model to different excitable laser
types (i.e. VCSEL-SA and DFB-SA) and employed it to study signal-processing behaviors, in-
cluding excitability with excitatory and inhibitory pulses, binary all-or-nothing response, and
bistability. As a next step, we will investigate the implementation of spike-timing-dependent
plasticity (STDP)—one of the most important algorithms for spike-based learning [20, 65]—
with our model. Optical STDP operating on unprecedented time scales is potentially useful for
applications including coincidence detection, sequence learning, path learning, and directional
selectivity in visual response. Further work could also investigate power consumption, tempera-
ture, and noise, for studying the architecture of an interconnected network of laser neurons at
the system level that could have a wide range of applications in high-performance computing,
adaptive control, and RF spectrum processing.
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