439 research outputs found

    On dynamic threshold graphs and related classes

    Get PDF
    This paper deals with the well known classes of threshold and difference graphs, both characterized by separators, i.e. node weight functions and thresholds. We design an efficient algorithm to find the minimum separator, and we show how to maintain minimum its value when the input (threshold or difference) graph is fully dynamic, i.e. edges/nodes are inserted/removed. Moreover, exploiting the data structure used for maintaining the minimality of the separator, we study the disjoint union and the join of two threshold graphs, showing that the resulting graphs are threshold signed graphs, i.e. a superclass of both threshold and difference graphs. Finally, we consider the complement operation on all the three introduced classes of graphs. All these operations produce in output the modified graph in terms of their separator and require time linear w.r.t. the number of different degrees. We observe that recomputing from scratch the separator would run either in linear (for threshold and difference graphs) or quadratic (for threshold signed graphs) time w.r.t. the number of nodes of the graph

    Dynamically mantaining minimal integral separator for Threshold and Difference Graphs

    Get PDF
    This paper deals with the well known classes of threshold and difference graphs, both characterized by separators, i.e. node weight functions and thresholds. We show how to maintain minimum the value of the separator when the input (threshold or difference) graph is fully dynamic, i.e. edges/nodes are inserted/removed. Moreover, exploiting the data structure used for maintaining the minimality of the separator, we handle the operations of disjoint union and join of two threshold graphs. © Springer International Publishing Switzerland 2016

    On conjectures and problems of Ruzsa concerning difference graphs of S-units

    Full text link
    Given a finite nonempty set of primes S, we build a graph G\mathcal{G} with vertex set Q\mathbb{Q} by connecting x and y if the prime divisors of both the numerator and denominator of x-y are from S. In this paper we resolve two conjectures posed by Ruzsa concerning the possible sizes of induced nondegenerate cycles of G\mathcal{G}, and also a problem of Ruzsa concerning the existence of subgraphs of G\mathcal{G} which are not induced subgraphs.Comment: 15 page

    Representation of finite graphs as difference graphs of S-units, I

    Get PDF
    In part I of the present paper the following problem was investigated. Let G be a finite simple graph, and S be a finite set of primes. We say that G is representable with S if it is possible to attach rational numbers to the vertices of G such that the vertices v_1,v_2 are connected by an edge if and only if the difference of the attached values is an S-unit. In part I we gave several results concerning the representability of graphs in the above sense.In the present paper we extend the results from paper I to the algebraic number field case and make some of them effective. Besides we prove some new theorems: we prove that G is infinitely representable with S if and only if it has a degenerate representation with S, and we also deal with the representability with S of the union of two graphs of which at least one is finitely representable with S.p, li { white-space: pre-wrap; }</style

    HH-product and HH-threshold graphs

    Full text link
    This paper is the continuation of the research of the author and his colleagues of the {\it canonical} decomposition of graphs. The idea of the canonical decomposition is to define the binary operation on the set of graphs and to represent the graph under study as a product of prime elements with respect to this operation. We consider the graph together with the arbitrary partition of its vertex set into nn subsets (nn-partitioned graph). On the set of nn-partitioned graphs distinguished up to isomorphism we consider the binary algebraic operation ∘H\circ_H (HH-product of graphs), determined by the digraph HH. It is proved, that every operation ∘H\circ_H defines the unique factorization as a product of prime factors. We define HH-threshold graphs as graphs, which could be represented as the product ∘H\circ_{H} of one-vertex factors, and the threshold-width of the graph GG as the minimum size of HH such, that GG is HH-threshold. HH-threshold graphs generalize the classes of threshold graphs and difference graphs and extend their properties. We show, that the threshold-width is defined for all graphs, and give the characterization of graphs with fixed threshold-width. We study in detail the graphs with threshold-widths 1 and 2

    Difference Ramsey Numbers and Issai Numbers

    Get PDF
    We present a recursive algorithm for finding good lower bounds for the classical Ramsey numbers. Using notions from this algorithm we then give some results for generalized Schur numbers, which we call Issai numbers.Comment: 10 page
    • …
    corecore