
On Dynamic Threshold Graphs and Related

Classes I

Tiziana Calamoneri, Angelo Monti, Rossella Petreschi

aComputer Science Department,
“Sapienza” University of Rome, Italy

calamo@di.uniroma1.it, monti@di.uniroma1.it, petreschi@di.uniroma1.it

Abstract

This paper deals with the well known classes of threshold and difference
graphs, both characterized by separators, i.e. node weight functions and
thresholds. We design an efficient algorithm to find the minimum separator,
and we show how to maintain minimum its value when the input (threshold
or difference) graph is fully dynamic, i.e. edges/nodes are inserted/removed.
Moreover, exploiting the data structure used for maintaining the minimality
of the separator, we study the disjoint union and the join of two threshold
graphs, showing that the resulting graphs are threshold signed graphs, i.e. a
superclass of both threshold and difference graphs. Finally, we consider the
complement operation on all the three introduced classes of graphs.

All these operations produce in output the modified graph in terms of
their separator and require time linear w.r.t. the number of different degrees.
We observe that recomputing from scratch the separator would run either in
linear (for threshold and difference graphs) or quadratic (for threshold signed
graphs) time w.r.t. the number of nodes of the graph.

Keywords: fully dynamic graphs, threshold graphs, difference graphs,
chain graphs, threshold signed graphs, graph operations.

IPartially supported by the Italian Ministry of Education and University, PRIN project
”AMANDA: Algorithmics for MAssive and Networked DAta” and by Sapienza University
of Rome.

Preprint submitted to Theoretical Computer Science November 29, 2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/154949813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

In many applications of graph algorithms, graphs are fully dynamic, i.e.
both edges and nodes may be inserted or eliminated.

Typically, one would like to answer to a precise query on the fully dynamic
graph, so the goal is to update the data structure after dynamic changes,
rather than to recompute it from scratch each time.

In this paper we deal with the maintenance of fully dynamic graphs when
restricted to the classes of threshold and difference graphs.

Threshold graphs were introduced in 1977, independently as a model for
three different problems: aggregation of inequalities in integer programming
for set packing problems [7], node-labeling of the graph associated to a
scheduling problem [11] and synchronization in parallel processing, lockout-
and deadlock-free, solved with a semaphore-based approach [13]. After that,
they have been defined many other times, as they are a natural model for a
number of problems in many fields, e.g. resource allocation problems [20],
scheduling [14], efficient parallel joins in relational databases [17], polyhedral
combinatorics [5, 4] and spectral graph theory [1].

The first definition of difference graphs –also known as chain graphs–
goes back to 1972 [15] but they have been re-discovered in 1982 indepen-
dently during an in depth analysis of threshold graphs [8] and to model a
problem on partial orders [23]. Even these graphs have been then exploited
in many fields such as recognizing poset dimension [23], studying the learning
behavior of children [10], distributed memory multiprocessors [2], modeling
software development process [9], dynamic networks [18] and cytoplasmic
incompatibility in biology [19].

The pervasive application of threshold and difference graphs in so many
fields makes natural to handle them in a fully dynamic way. To the best
of our knowledge, few works deal with this topic. Namely, in [22] the prob-
lem of dynamically recognizing some classes of graphs (and among them
threshold graphs) is handled. In [12] the authors consider the problem of
adding/deleting edges with the aim of transforming a given graph into a
threshold graph with the minimum number of changes. This paper is a
contribution to the problem of the dynamic maintenance of threshold and
difference graphs.

Among the numerous equivalent definitions of threshold and difference
graphs, many exploit a node weight function and a threshold. This pair

2

is called a separator and it is not unique. It is of interest to determine a
minimum separator, i.e. a separator with minimum value of the threshold.

In this paper we present a new algorithm for finding a minimum separator.
This algorithm, interesting by itself for its simplicity and linearity, is then
considered as a pre-computation for maintaining the minimality after fully
dynamically changing the input graph. To do this, we propose a simple data
structure for maintaining the minimality of the separator, and handle some
binary operations of two threshold graphs (disjoint union and join) whose
result is in general not in the same graph class anymore, but in a superclass,
called threshold signed graphs [3]; this superclass can be defined in terms of
a node weight function and of two thresholds.

Finally, we tackle the problem of computing the weight function and the
thresholds of the complement of one of these graphs without recomputing
them from scratch, taking into account that the classes of threshold and
threshold signed graphs are closed under complement while the complement
of a difference graph is a threshold signed graph. To the best of our knowl-
edge, it is the first time that the weight and thresholds of the complement of
a given threshold signed graph is directly computed.

All the operations presented in this paper run in linear time w.r.t. the
number of different degrees in the graph. This is particularly important,
because recomputing from scratch the node weight function would require
either linear (for threshold and difference graphs) or quadratic (for threshold
signed graphs) time w.r.t. the number of nodes of the graph.

The paper is organized as follows: in Section 2 we recall some definitions.
In Section 3, we describe the assignment algorithm determining a minimal
integral separator for threshold and difference graphs. Moreover, we describe
the data structures we use to store threshold and difference graphs; thanks
to them, we are able to guarantee that all the operations handled in the next
sections work in time that is linear w.r.t. the number of different degrees
in the graph. Sections 4 and 5 describe how to add/delete an edge or a
node, respectively, in either a threshold or a difference graph whenever it
is possible to result in a graph of the same class (threshold or difference
graphs). Section 6 describes a data structure feasible to store threshold
signed graphs. In Section 7 we consider the operations of disjoint union and
join of two threshold graphs and we show that the result is a threshold signed
graph. In Section 8 we address the problem of adjusting the node weight
function and the threshold(s) when the complement operation is applied

3

u u u u u
5 4 3.5 2.2 2

u u u u u u
10 9.8 8.6 7 6.1 6.1

S = 12

u u u u u
7.5 5 4 2.2 1.4

u u u u u u−8.5−7 −5−4.2−3−2.9

T = 9

u u u u u
7 5 4.2 2 1.5

u u u u u u
−8.4−7 −5 −4 −3 −2.1

S = 10
T = 8.5

a b c

Figure 1: a. A threshold graph; b. A difference graph; c. A threshold signed graph.

to threshold, difference and threshold signed graphs, respectively. Finally,
Section 9 concludes the paper with some observations and open problems.

2. Preliminaries

In this section, we list some definitions and properties useful for the rest of
the paper. All the references of the results listed in this section can be found
in the comprehensive survey book on threshold graphs, difference graphs and
related topics by Mahadev and Peled [16].

Given a graph G = (V,E), a subset of nodes V ′ ⊆ V induces a stable set if
∀u, v ∈ V ′ edge (u, v) /∈ E; vice-versa, V ′ ⊆ V induces a clique if ∀u, v ∈ V ′
edge (u, v) ∈ E.

We denote by deg(v) the degree of node v ∈ V . A node v is isolated if
deg(v) = 0.

As we have already pointed out, there are many equivalent definitions of
threshold graphs; in this paper we use the following:

Definition 1. A graph G = (V,E) is a threshold graph if there is a mapping
a : V → R+ and a positive real number S such that

a(v) < S for all v ∈ V (1)

(v, w) ∈ E if and only if a(v) + a(w) ≥ S (2)

The pair (a, S) will be called separator for graph G.

In Figure 1.a a threshold graph with one of its separators is depicted.
Informally speaking, the nodes of a threshold graph can be partitioned

into two sets, one inducing a clique and one a stable set; these sets are
connected by a difference graph, that can be defined as follows:

4

Definition 2. A graph G = (V,E) is a difference graph if there is a mapping
a : V → R and a positive real number T such that

|a(v)| < T for all v ∈ V (3)

(v, w) ∈ E if and only if |a(v)− a(w)| ≥ T (4)

The pair (a, T) will be called separator for graph G.

The node set of a difference graph G can be partitioned as V = U ∪W ,
where U = {v ∈ V : a(v) ≥ 0} and W = {v ∈ V : a(v) < 0}; both U and
W induce a stable set and hence G is bipartite with bipartition (U,W). A
difference graph with one of its separators is shown in Figure 1.b.

Although Definitions 1 and 2 are very similar, the two defined classes are
incomparable (indeed, they have not empty intersection – e.g. a star K1,n−1

is both a difference and a threshold graph – but they are not included one
into the other one). Nevertheless they are strictly related, as shown by the
following theorem:

Theorem 3. A bipartite graph G = (U ∪W,E) is a difference graph if and
only if adding to G all possible edges with both ends in U yields a threshold
graph.

The nodes of both threshold and difference graphs can be partitioned
into two sets, in such a way that the neighborhoods of the nodes in each
set are included one into the other one and form either one or two chains of
inclusions (see e.g. Figures 1.a and 1.b).

Now we introduce the notion of degree partition.

Definition 4. Let G = (V,E) be a graph whose distinct node-degrees are
δ1 < . . . < δm, and let δ0 = 0 (even if no node of degree 0 exists). Let
Di = {v ∈ V s.t. deg(v) = δi} for i = 0, . . . ,m; Di is called i-th box; the
sequence D0, . . . , Dm is called the degree partition of G.

We naturally extend the previous definition to bipartite graphs:

Definition 5. Let G = (U ∪ V,E) be a bipartite graph whose distinct node-
degrees for the nodes in the partition X ∈ {U,W} are δX1 < . . . < δXtX and let
δX0 = 0 (even if no node of degree 0 exists in the partition X). Let DX

i = {v ∈
X s.t. deg(v) = δXi } for 0 ≤ i ≤ tX ; the sequence DU

0 , . . . , D
U
tU
, DW

0 , . . . , D
W
tW

is called the bipartite degree partition of G.

5

The following lemmas show that the notion of degree partition (bipartite
degree partition) is crucial for understanding threshold (difference) graphs.

Lemma 6. Let G = (V,E) be a threshold graph with degree partition D0, . . . , Dm

and whose node set is partitioned into a clique K and a stable set I; let be
given two distinct nodes x ∈ Di and y ∈ Dj for some i and j.

1. D0 ∪ . . . ∪Dbm/2c = I and Dbm/2c+1 ∪ . . . ∪Dm = K;
2. If e = (x, y) /∈ E, the graph G′ = (V,E ∪ {e}) is a threshold graph if

and only if i+ j = m;
3. If e = (x, y) ∈ E, the graph G′ = (V,E \ {e}) is a threshold graph if

and only if i+ j = m+ 1;
4. e = (x, y) ∈ E if and only if i+ j ≥ m+ 1.

Lemma 7. Let G = (U ∪W,E) be a difference graph with degree partition
DU

0 , . . . , D
U
tU
, DW

0 , . . . , D
W
tW

, and let be given two distinct nodes x ∈ DU
i and

y ∈ DW
j for some i and j.

1. tU = tW = t;
2. If e = (x, y) /∈ E, the graph G′ = (U ∪W,E ∪{e}) is a difference graph

if and only if i+ j = t;
3. If e = (x, y) ∈ E, the graph G′ = (U ∪W,E \ {e}) is a difference graph

if and only if i+ j = t+ 1;
4. e = (x, y) ∈ E if and only if i+ j ≥ t+ 1.

Notice that threshold (difference) graphs are univocally determined by
their degree (bipartite degree) partition.

We now introduce a superclass of both threshold and difference graphs.

Definition 8. A graph G = (V,E) is a threshold signed graph if there is a
mapping a : V → R and two positive real numbers S and T such that

|a(v)| < min{S, T} (5)

(v, w) ∈ E iff either |a(v) + a(w)| ≥ S or |a(v)− a(w)| ≥ T. (6)

The triple (a, S, T) will be called separator for graph G.

Consider X = {x ∈ V s.t. a(x) < 0} and Y = {x ∈ V s.t. a(x) ≥ 0}. As
highlighted in Figure 1.c, we can see a threshold signed graph as constituted
by two threshold graphs, G− and G+ respectively induced by X and Y , that
are connected by a difference graph D. Notice that for X we consider the
opposite of the a’s values.

6

3. A data structure for computing minimal integral separator for
threshold or difference graphs

Although in Definition 1 a threshold graph G = (V,E) is a graph having a
separator with non-negative real values, it is common to equivalently require
the separator to have non-negative integral values (i.e. an integral separator)
[16].

We say that an integral separator (a, S) for G is minimum if for any other
integral separator (a′, S ′) for G we have S ≤ S ′. In the following theorem
we show that the value of S of a minimum integral separator (a, S) of G is
given by the dimension m of the degree partition of G plus 1.

Theorem 9. Let G = (V,E) be a threshold graph with degree partition
D0, . . . , Dm. The pair (a, S), where S = m + 1 and for each node v ∈ V ,
a(v) = i if v ∈ Di, is a minimal integral separator of G.

Proof. First of all, we prove that (a, S) is a separator, i.e. that satisfies
the two inequalities of Definition 1. Note that for each v ∈ V it holds
0 ≤ a(v) ≤ m < S thus the pair (a, S) satisfies Inequality 1. Moreover,
Inequality 2 follows from Item 4 in Lemma 6. Trivially, (a, S) is integral.

Let us now prove that (a, S) is minimal. By contradiction, let (a, S) be
not minimal, and let (a′, S ′) be an integral separator for G such that S ′ < S.
Observe that only isolated nodes can have weight equal to zero (indeed, if
(u, v) ∈ E and a′(u) = 0 then a′(u) + a′(v) = a′(v) < S ′ from Inequality 1 of
Definition 1, but this contradicts Inequality 2 of Definition 1).

Moreover, notice that two nodes u and v having the same weight neces-
sarily behave in the same way (i.e. for any other node w ∈ V , it holds that
(u,w) ∈ E if and only if (v, w) ∈ E), so nodes having different degree cannot
have the same weight.

All this implies that the function a′ on the non isolated nodes assume at
least m different strictly positive weights. Thus Inequality 1 of Definition 1
implies that S ′ ≥ m + 1. The chain m + 1 = S > S ′ ≥ m + 1 proves the
minimality of (a, S).

From the same reasonings as in the proof of Theorem 9, we deduce the
following assignment for the minimal integral separator (a, T) of a difference
graph G.

7

Theorem 10. Let G = (U∪W,E) be a difference graph with bipartite degree
partition DU

1 , . . . , D
U
t , DW

1 , . . . , D
W
t . The pair (a, S), where S = 2t+ 1 and,

for each node v ∈ U , a(v) = −i if v ∈ DU
i and a(v) = i if v ∈ DW

i , is a
minimal integral separator of G.

Notice that Orlin [21] and later Ordman [20] show how to minimize the
separator for threshold graphs considering an equivalent definition requiring
that the sum of the weights of the nodes of any independent set has to be
smaller than the threshold. The value of this threshold is larger than the
value of S computed in this paper.

Now we present two data structures for representing threshold and dif-
ference graphs allowing us to compute in a natural way minimal integral
separators for these graph classes, according to Theorems 9 and 10. Since a
threshold graph G = (V,E) is univocally determined by its degree partition
D0, . . . , Dm, we store G using two arrays δ[0..m] and µ[0..m], where δ[i] rep-
resents the degree δi of the nodes in the i-th box Di, and µ[i] represents its
cardinality, |Di|. Similarly, let G = (U ∪W,E) be a difference graph with
bipartite degree partition DU

1 , . . . , D
U
t , DW

1 , . . . , D
W
t . This partition univo-

cally determines G, and G may be represented using the arrays δX [0..t] and
µX [0..t], where δX [i] represents the degree of the nodes in the i-th box DX

i ,
and µX [i] represents its cardinality |DX

i |, X ∈ {U,W}. If G = (V,E) is a
threshold graph, i is the weight associated to all the µ[i] nodes belonging to
the box Di of degree δi. Similarly, if G = (U ∪W,E) is a difference graph, i
is the weight associated to all the µX [i] nodes belonging to box DX

i of degree
δX [i], with X ∈ {U,W}.

Exploiting these two data structures, the following theorem holds:

Theorem 11. Given a threshold (difference) graph G by means of its (bi-
partite) degree partition, its minimal integral separator can be found in time
linear w.r.t. the number of different degrees in G.

In the next two sections we will exploit the data structures introduced
here in order to efficiently manipulate threshold and difference graphs, so
ensuring that the integral separator remains minimal even for the graphs
resulting from the operations handled in the next sections.

There, each time we speak about a graph G (either threshold or differ-
ence), G is represented by means of the arrays δ and µ.

8

4. Adding/deleting an edge to threshold/difference graphs

In this section we study how to get a new graph, obtained by adding/deleting
an edge from a graph that is either a threshold or a difference graph, and to
keep immediately available the knowledge of the minimum separator for the
new graph.

In order to make easier the exposition, preliminarily we consider two
functions, operating on the data structures introduced in Section 3.

By IncreaseDeg(δ, µ, i, dim) we denote the operation of updating arrays
δ[0..dim] and µ[0..dim] when the degree of a node in box Di, 0 ≤ i ≤ dim,
is increased by one.
IncreaseDeg can have as consequence the appearance of a new box (if i =
dim or if the degree of the nodes in Di+1 is different from the degree of
nodes in Di plus one). On the other hand, this increment can also have as
consequence the disappearance of the box Di (if i 6= 0, |Di| = 1 and the
degree of the nodes in Di+1 is equal to the degree of the nodes in Di plus
one).

Symmetrically, we may consider the operation DecreaseDeg(δ, µ, i, dim)
of updating arrays δ[0..dim] and µ[0..dim] when the degree of a node in box
Di, 0 < i ≤ dim, is decreased by one.

The execution of both IncreaseDeg(δ, µ, i, dim) and DecreaseDeg(δ, µ, i, dim)
requires O(dim) time.

IncreaseDeg(δ, µ, i, dim) DecreaseDeg(δ, µ, i, dim)
IF (i 6= dim AND δ[i] + 1 = δ[i+ 1]) THEN IF (δ[i]− 1 = δ[i− 1]) THEN

µ[i]← µ[i]− 1; µ[i]← µ[i]− 1;
µ[i+ 1]← µ[i+ 1] + 1; µ[i− 1]← µ[i− 1] + 1;
IF (i 6= 0 AND µ[i] = 0) THEN IF (µ[i] = 0) THEN

FOR k = i TO dim− 1 DO FOR k = i+ 1 TO dim DO
δ[k]← δ[k + 1]; δ[k − 1]← δ[k];
µ[k]← µ[k + 1]; µ[k − 1]← µ[k];

dim← dim− 1 dim← dim− 1
ELSE ELSE

IF (i 6= 0 AND µ[i] = 1) THEN δ[i]← δ[i] + 1; IF (µ[i] = 1) THEN δ[i]← δ[i]− 1;
ELSE ELSE

µ[i]← µ[i]− 1; µ[i]← µ[i]− 1;
FOR k = dim DOWNTO i+ 1 DO FOR k = dim DOWNTO i DO

δ[k + 1]← δ[k]; δ[k + 1]← δ[k];
µ[k + 1]← µ[k]; µ[k + 1]← µ[k];

δ[i+ 1]← δ[i] + 1; δ[i]← δ[i+ 1]− 1;
µ[i+ 1]← 1; µ[i]← 1;
dim← dim+ 1 dim← dim+ 1

RETURN(δ, µ, dim). RETURN(δ, µ, dim).

9

Let us now consider a threshold graph G. Let (x, y), x ∈ Di and y ∈ Dj,
the edge to add/delete toG. Items 2 and 3 of Lemma 6 give a characterization
of the indices i and j to ensure that the modified graph is still a threshold
graph; namely, i + j = m in case of insertion, and i + j = m + 1 in case of
deletion.

We present two operations, InsertEdge(δ, µ, i,m) and DeleteEdge(δ, µ, i,m),
that update the data structure when an edge is added between a node in box
Di and a node in box Dm−i and when an edge is deleted between a node in
box Di and a node in box Dm+1−i, respectively.

Observe that with the insertion of an edge, the degrees of its endpoints
are increased by one. Thus we can call twice subroutine IncreaseDeg, once
on a node in box Di and once on a node in box Dm−i. We have just to take
into account that the increment of the degree of node in box Di can change
the index of the box of the other endpoint. Analogous considerations hold for
the deletion of an edge. These observations give rise to the following simple
algorithms:

InsertEdge(δ, µ, i,m) DeleteEdge(δ, µ, i,m)
j ← m− i; j ← m+ 1− i;
a← m; a← m;
IncreaseDeg(δ, µ, i,m); DecreaseDeg(δ, µ, i,m);
CASE(m− a) CASE(m− a)
−1 : IncreaseDeg(δ, µ, j − 1,m); −1 : DecreaseDeg(δ, µ, j − 1,m);

0 : IncreaseDeg(δ, µ, j,m); 0 : DecreaseDeg(δ, µ, j,m);
+1 : IncreaseDeg(δ, µ, j + 1,m); +1 : DecreaseDeg(δ, µ, j + 1,m);

Since after the execution of IncreaseDeg (DecreaseDeg), m may po-
tentially vary from m to m ± 1, with the execution of InsertEdge (Dele-
teEdge) the number of boxes can potentially vary from m to m ± 2. In
Figure 2 we show that all the five possibilities may actually occur.

Assume now that G is a difference graph.
The algorithms for adding/eliminating an edge in G are based on the

same idea presented for the algorithms on threshold graphs, but they are
even simpler because the data structure used for representing these graphs
keeps separated the bipartition (and so, adding a new box after the first call
of IncreaseDeg does not affect the index of the other endpoint).
Notice that Item 1 of Lemma 7 ensures that the number of boxes in the two
classes is the same t. So, for difference graphs, t can either remain unaltered
or to change to t± 1 and all the three possibilities may actually occur.

10

u
u u u

1

3 2 2

⇒ u
u

u
u

2 2

3 3

u u
u u u

1 1

4 2 2

⇒ u u u
u u

2 2 1

4 3

u u u u
u u

2 2 1 1

5 3

⇒ u u u u
u u

2 2 2 1

5 4

m = 3 m = 2 m = 3 m = 4 m = 4 m = 4
(-1) (+1) (0)

u u u
u u

2 2 1

4 3

⇒ u u u
u u

2 2 2

4 4

u u
u u u u

1 1

5 3 3 3

⇒ u u
u u u u

2 1

5 4 3 3

m = 4 m = 2 m = 3 m = 5
(-2) (+2)

Figure 2: Examples proving that all 5 cases in algorithm InsertEdge are possible. Grey
edges represent the edges that are going to be added. (In order to consider DeleteEdge,
figures must be read from right to left.)

The two algorithms for inserting and deleting an edge in a difference
graph follow:

D− InsertEdge(δU , µU , δW , µW , i, t) D−DeleteEdge(δU , µU , δW , µW , i, t)
j ← t− i; j ← t+ 1− i;
IncreaseDeg(δU , µU , i, t); DecreaseDeg(δU , µU , i, t);
IncreaseDeg(δW , µW , j, t,); DecreaseDeg(δW , µW , j, t);

Notice that, in view of all the reasonings done, all the algorithms described
in this section are correct and maintain the minimality of the integral sep-
arators. Moreover, they require time linear w.r.t. the number of different
degrees in the graph.

5. Adding/deleting a node to threshold/difference graphs

In this section we will work with nodes in an analogous way as we did in
Section 4 with edges. Also in this case, we keep immediately available the
knowledge of the minimum separator for the new graph. We start defining
four functions, operating on the data structures introduced in Section 3.

11

By +Node(δ, µ, d, dim) we denote the operation of giving space to a new
node of degree d either in a threshold graph or in a partition of a difference
graph, without caring about the update of its neighbors (that will be done
with another subroutine). This subroutine looks for the box where the new
node must be inserted: if there exists a box Di with degree d, µi is simply
increased by one; otherwise a new box for the new node is created.

By IncreaseDegreeOfSetNode(δ, µ, d, dim) we denote the operation
of augmenting by one the degree of the d nodes of highest degree either in
a threshold graph or in a partition of a difference graph. This subroutine
increases by one the degree of all the boxes Di s.t. d −

∑m
s=j+1 |Ds| ≥ 0,

while nodes of boxes D1, . . . Dj−1 remain unchanged. For what concerns Dj,
it is in general split into two boxes (precisely d−

∑m
s=j+1 |Ds| nodes leave Dj

to form a new box with degree augmented by one).
We can define even the symmetric functions: by -Node(δ, µ, i, dim) we

denote the operation eliminating from the data structure storing either a
threshold or a difference graph a node in box Di, 0 ≤ i ≤ dim, regardless of
its neighbors (whose degree will be updated with another subroutine).

By DecreaseDegreeOfSetNode(δ, µ, d, dim) we denote the operation
of decreasing by one the degree of the d nodes of highest degree either in a
threshold graph or in a partition of a difference graph.

The execution of all these subroutines requires O(dim) time.

+Node(δ, µ, d, dim)) −Node(δ, µ, i, dim)
i← 0; µ[i]← µ[i]− 1;
WHILE(i ≤ dim AND d > δ[i]) DO i = i+ 1; IF (i 6= 0 AND µ[i] 6= 0) THEN

IF (i ≤ dim AND d = δ[i]) THEN µ[i]← µ[i] + 1; FOR k = i TO dim− 1 DO
ELSE δ[k]← δ[k + 1];

dim← dim+ 1; µ[k]← µ[k + 1];
FOR k = dim DOWNTO i+ 1 DO dim← dim− 1;

δ[k]← δ[k − 1]; RETURN(δ, µ, dim).
µ[k]← µ[k − 1];

δ[i]← d;
µ[i]← 1;

RETURN(δ, µ, dim).

12

IncreaseDegreeOfSetNode(δ, µ, d, dim) DecreaseDegreeOfSetNode(δ, µ, d, dim)
i← dim; a← d; i← dim; a← d;
WHILE (a ≥ µ[i]) DO WHILE (a > 0) DO

a← a− µ[i]; a← a− µ[i];
δ[i]← δ[i] + 1; δ[i]← δ[i]− 1;
i = i− 1; i← i− 1;

IF (a 6= 0) THEN IF (i 6= dim AND δ[i] = δ[i+ 1]) THEN
dim← dim+ 1; µ[i]← µ[i] + µ[i+ 1]
FOR j = dim DOWNTO i+ 2; FOR k = i+ 1 TO dim− 1 DO

µ[j]← µ[j − 1]; δ[k]← δ[k + 1];
δ[j]← δ[j − 1]; µ[k]← µ[k + 1];

δ[i+ 1]← δ[i] + 1; dim← dim− 1;
µ[i+ 1]← a; RETURN(δ, µ, dim).
µ[i]← µ[i]− a;

RETURN(δ, µ, dim).

Let now G = (V,E) be a threshold graph. Adding a new node of degree
d to G yields a threshold graph if and only if the d neighbors of the new node
are the d nodes with highest degrees (this can be easily deduced from Item
4 of Lemma 6). So, we can call IncreaseDegreeOfSetNode and observe
that, after its execution, m could be increased by one. Then, we have to
update the data structure by inserting the new node by means of +Node,
and even in this case m could be increased by one. So, the number of the
different degrees can potentially vary from m to m+ 2. Figure 3 shows that
all three possibilities can occur.

By InsertNode(δ, µ, d,m) we denote the operation of updating the data
structure storing threshold graph G when a node of degree d is added to the
graph.

The previous reasonings can be repeated when G is a difference graph
(assuming, w.l.o.g., that the new node is inserted in partition U), so giving
rise to D-InsertNode(δU , µU , δW , µW , i, t), that is the operation of updating
the data structure when a node of degree d is added to the difference graph.

InsertNode(δ, µ, d,m) D− InsertNode(δU , µU , δW , µW , d, t)
+Node(δ, µ, d,m) +Node(δU , µU , d, t)
IncreaseDegreeOfSetNode(δ, µ, d,m) IncreaseDegreeOfSetNode(δW , µW , d, t)

Now we consider the problem of deleting nodes to a threshold graph.
Any node-induced subgraph G′ of G is a threshold graph (indeed for the

graph G′ use the mapping a restricted on the nodes of G′ and the same value
S). Thus the class of threshold graphs is closed under the deletion of an
arbitrary node.

13

u
u u u

1

3 2 2

u ⇒ u
u

u
u u

1 1

3 2 2

u u
u u u u

2 1

5 4 3 3

u ⇒ u u u
u u

u
u

3 3 2 1

6 5 4

u u
u u u u

2 2

5 5 3 3

u ⇒ u u u
u u u u

2 2 1

6 5 3 3

m = 3 m = 3 m = 5 m = 6 m = 3 m = 5
(0) (+1) (+2)

Figure 3: Examples proving that all 3 cases in algorithm InsertNode are possible. Grey
nodes and edges represent the objects that are going to be added (in order to consider
DeleteNode figure must be read from right to left).

Given a threshold graph, by DeleteNode(δ, µ, i,m) we denote the operation
of updating the data structure when a node is deleted from box Di, 0 ≤ i ≤
m. This deletion is performed by -Node that can have as consequence the
disappearance of box Di (if i 6= 0 and |Di| = 1). Thus m can decrease by
one. Moreover, the δ[i] nodes with highest degree must have their degrees
decreased by one. These nodes belong to boxes Dm, . . . , Dm+1−i. It can occur
that the degree of nodes in box m+ 1− i becomes equal to the degree of the
nodes in box m − i and, in this case, the two boxes merge and the number
of boxes further decrease by one. Hence after deleting a node, the number of
boxes in the degree partition can potentially vary from m to m − 2 and all
cases can occur, as shown in Figure 3.

Analogous reasonings can be done when G is a difference graph, and
define D-DeleteNode(δU , µU , δW , µW , i, t) as the operation of updating the
data structure when a node is deleted (assuming w.l.o.g. that the new node
is deleted from partition U).

DeleteNode(δ, µ, i,m) D− deleteNode(δU , µU , δW , µW , i, t)
d← δ[i] d← δU [i]
−Node(δ, µ, i,m) −Node(δU , µU , i, t)
DecreaseDegreeOfSetNode(δ, µ, d,m) DecreaseDegreeOfSetNode(δW , µW , d, t)

Also in this case, all the algorithms described in this section are cor-
rect and maintain the minimality of the integral separators. Moreover, they
require time linear w.r.t. the number of different degrees in the graph.

14

6. A data structure for threshold signed graphs

In this section we specify the data structure used for representing thresh-
old signed graphs.

Given a threshold signed graph G, let us call G− and G+ the threshold
graphs induced by node sets X = {x ∈ V s.t. a(x) < 0} and Y = {x ∈
V s.t. a(x) ≥ 0}, respectively, and let D be the difference graph constituted
by all the edges of G between X and Y . We consider the degree of each
node v in G, deg(v), as the sum of the degree in the threshold subgraph to
which it belongs to, deg|G−(v) or deg|G+(v), plus the degree in the difference
subgraph deg|D(v).

Given a graph G, we recall that the neighborhood of a node v is the set
of all neighbors of v, and its closed neighborhood is the neighborhood of v
plus node v itself. Two nodes u and w are false twins if they have the same
neighborhood; they are true twins if they have the same closed neighborhood.
We say that u and w are simply twins if they are either true or false twins
and they belong to the same set, X or Y .

Even though there is not a tie between the degree partition of a threshold
signed graph and its structure, as in the case of threshold and difference
graphs, it is possible to extend the reasonings done in the proof of Theorem
9 to this class of graphs. Indeed, if v is an isolated node it is not restrictive
to assume a(v) = 0 and, obviously, if a(v) = 0 then v is an isolated node.
Moreover, it is easy to see that two nodes having the same value of a are
necessarily twins. From the other hand, if there are two twins u and w having
a(u) 6= a(w) (w.l.o.g. let a(u) < a(w)), we can easily modify function a in
order to assign them the same value (that is a(w) if u and w are connected
and a(u) otherwise).

So, from now on, we consider only node weight functions assigning value
0 to each isolated node and the same value to each set of twins.

Let us consider the partition of the node set into equivalence classes,
B1, . . . , B∆, induced by the relation of being twins.

Before proving that ∆ is linear w.r.t. the sum of the number of different
degrees in X and Y , we need to recall two important properties.

Lemma 12. [6] Given a threshold signed graph, for each pair of nodes u, v ∈
X (respectively u, v ∈ Y) it holds:

deg|G−(u) (respectively deg|G+(u)) ≥ deg|G−(v)(respectively deg|G+(v)) if
and only if deg|D(u) ≥ deg|D(v).

15

Lemma 13. [16] Given a graph G = (V,E), G is a threshold graph if and
only if the neighborhoods of its nodes form a unique chain of inclusions; G
is a differene graph if and only if the neighborhoods of its nodes form two
chains of inclusions (inducing X and Y).

Theorem 14. Given a threshold signed graph G and the partition into equiv-
alence classes, B1, . . . , B∆, induced by the relation of being twins, ∆ is linear
w.r.t. the sum of the number of different degrees in X and Y .

Proof. Let u and v be two nodes of the threshold signed graph s.t. deg(u) =
deg(v), i.e. deg|G−(u)+deg|D(u) = deg|G−(v)+deg|D(v). The previous lemma
implies deg|G−(u) = deg|G−(v) and deg|D(u) = deg|D(v). If u and v are both
in X (respectively, Y), from Lemma 13, it follows that u and v are either
true or false twins, and hence are twins. Conversely, if u is in X and v is in
Y , u and v cannot be twins, even if they have the same degree.

Hence, ∆ is bounded by the number of different degrees of the nodes in
X plus the the number of different degrees of the nodes in Y .

As consequence of all these reasonings, we may store a threshold signed
graphs by means of two arrays α[0..∆] and µ[0..∆]: in α[i] there is the value
of the weight assigned to the µ[i] nodes of Bi, 0 ≤ i ≤ ∆; if there are no
isolated nodes α[0] and µ[0] are set to 0. Variables S and T store the two
thresholds.

7. Disjoint union and join of two threshold graphs

Given two graphs with disjoint node sets G1 = (V1, E1) and G2 = (V2, E2),
their disjoint union is the graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2); their join is
the graph G1 +G2 obtained adding to their disjoint union all the edges that
connect the nodes of the first graph with the nodes of the second graph.

We observe that, if G1 and G2 are both threshold graphs, G1 ∪ G2 and
G1 +G2 are threshold signed graphs, where the difference graph connecting
the two threshold graphs is either the null graph (in G1∪G2) or the complete
bipartite graph (in G1 +G2). In this section we restrict our attention to the
operations of disjoint union and join between threshold graphs since the
result of the disjoint union and the join of two difference graphs do not fall
in general in any of the classes considered in this paper.

16

Let us now show how to generate the data structures representing the
threshold signed graphs, G1 ∪G2 and G1 +G2.

Let δ1[0..m1], µ1[0..m1] and δ2[0..m2], µ2[0..m2] be the arrays storing G1

and G2, respectively. Assume first that G1 and G2 have the same threshold
S (i.e. m1 = m2 = m).

Informally, the array α[1..∆] of both G1 ∪G2 and G1 +G2 is obtained by
opportunely transcribing the values of the node weight function of the single
threshold graphs (deduced through Theorem 9), the array µ[1..∆] is obtained
by copying the values of µ1 and µ2, while threshold S is kept unaltered. For
what concerns threshold T , in the case of G1∪G2 it is set to a sufficiently large
value in order to guarantee that no edges are in the difference subgraph, in
the case of G1 +G2 it is set to a sufficiently small value in order to guarantee
that the difference subgraph is a complete bipartite graph. In this latter
case, T assumes a too small value, contradicting Property 5 of Definition 8,
so we need to modify the values of the node weight function and of the two
thresholds in order to restore the property.

The following lemmas formalize the operations of disjoint union and join
of threshold graphs, and guarantee their correctness.

Lemma 15. Let be given two threshold graphs G1 and G2 by means of δ1[0..m],
µ1[0..m] and δ2[0..m], µ2[0..m] and let S = m+ 1 be their common threshold.
It is possible to determine the threshold signed graph G1 ∪G2 in time linear
w.r.t. the number of its different degrees.

Proof. Consider the following function:

DisjointUnion(δ1, µ1, δ2, µ2,m)
µ[0]← µ1[0] + µ2[0]; α[0]← 0;
FOR i = 1 TO m DO
α[i]← −i; µ[i]← µ1[i];

FOR i = 1 TO m DO
α[m+ i]← i; µ[m+ i]← µ2[i];

∆← 2m;
S ← m+ 1;
T ← 2m+ 1;

RETURN (α, µ, S, T,∆).

Both S and T are greater than the modulo of each α[i], i = 0, . . . ,∆ as
far as they are defined.

17

Moreover, the two threshold subgraphs G− and G+ of G1∪G2 are exactly
the same asG1 andG2, respectively. Finally, no edge can satisfy the condition
α[u] + α[v] ≥ T in view of the definition of T , so the difference subgraph D
is empty. It follows that α, µ, S and T correctly define G1 ∪G2.

We conclude by observing that function DisjointUnion runs in O(∆)
time that is linear w.r.t. the number of different degrees in G1 ∪ G2 for
Theorem 14.

Lemma 16. Let be given two threshold graphs G1 and G2 by means of δ1[0..m],
µ1[0..m] and δ2[0..m], µ2[0..m] and let S = m+ 1 be their common threshold.
It is possible to determine the threshold signed graph G1 +G2 in time linear
w.r.t. the number of its different degrees.

Proof. Consider the following function:

Join(δ1, µ1, δ2, µ2,m)
α[0]← 0; µ[0]← 0;
IF µ1[0] 6= 0

THEN flag1 ← 0
ELSE flag1 ← 1

FOR i =flag1 TO m DO
α[i+ 1− flag1]← −i; µ[i+ 1− flag1]← µ1[i];

IF µ2[0] 6= 0
THEN flag2 ← 0
ELSE flag2← 1

FOR i =flag2 TO m DO
α[m+ i+ 2− flag1-flag2]← i; µ[m+ i+ 2− flag1-flag2]← µ2[i];

∆← 2m+ 2−flag1-flag2;
S ← m+ 1;
T ← min1≤i≤∆{|α[i]|};
k ← m− T + 1;
FOR i = 1 TO m+ 1− flag1 DO
α[i]← α[i]− k;

FOR i = m+ 2−flag1 TO 2m+ 2−flag1-flag2 DO
α[i]← α[i] + k;

S ← S + 2k;
T ← T + 2k;

RETURN (α, µ, S, T,∆).

Preliminarily, observe that G1 +G2 cannot have isolated nodes, so we set
µ[0] to 0; moreover, if either G1 or G2 contain isolated nodes, a box needs to
be added: we do this exploiting the two boolean variables flag1 and flag2.

18

So, even in this case, the two threshold graphs G− and G+ of G1 + G2

are exactly the same as G1 and G2, respectively. T is set to the modulo of
the smallest node weight in order to guarantee that D is a complete bipar-
tite graph. In this way, T results in a value that contradicts Property 5 of
Definition 8. By incrementing the modulo of each α[i] of an opportune value
k and S and T by 2k, we are able to restore the inequality.

It is immediate to see that function Join runs in O(∆) time that is linear
w.r.t. the number of different degrees in G1 +G2 for Theorem 14.

It remains to handle the case in whichG1 andG2 have different thresholds.
In this case, we prepose to the functions described in the proofs of Lemmas
15 and 16 a preprocessing phase that equalize their thresholds, as detailed
in the following lemma, where with the notation a′ = xa+ y (where x and y
are integer values and a is a node weight function) we compactly mean that,
for each node v, a′(v) = xa(v) + y. We want to underline that now on we
represent a threshold graph in terms of its separator, instead of in terms of
our data structure, because the description of the equalization appears more
comprehensive.

Lemma 17. Let be given two thresholds graphs G1 and G2 and let (a1, S1)
and (a2, S2) be their integral separators with S1 < S2. Then (a′1, S

′
1) = (2a1 +

S2 − S1, 2S2) is a integral separator for G1 and (a′1, a
′
2) = (2a2, 2S2) is an

integral separator for G2.

Proof. Let (v, w) be an edge in G1, i.e. a1(v) + a1(w) ≥ S1; then a′1(v) +
a′1(w) = 2a1(v) + S2 − S1 + 2a1(w) + S2 − S1 ≥ 2S2 = S ′1. In the same
way, let v and w be not connected in G1, i.e. a1(v) + a1(w) < S1; then
a′1(v)+a′1(w) = 2a1+S2−S1 < 2S2 = S ′1. Finally, the pair (a′1, S

′
1) is a feasible

integral separator since, for any node v, a1(v) < S1 implies a′1(v) < S ′1.
Analogous reasonings lead to prove that (a′2, S

′
2) is an integral separator

for G2.

From Lemmas 15, 16 and 17, observing that the operations required by
Lemma 17 in order to equalize thresholds S1 and S2 must be performed
directly on array α in order to keep the time complexity bounded by O(∆),
we can conclude underlying that all the algorithms described in this section
are correct and require time linear w.r.t. the number of different degrees
in the graph. Nevertheless, the values of the node weight function and of
the two thresholds S and T of the resulting threshold signed graphs will be
integral but not necessarily minimal.

19

8. Complement of threshold signed graphs

Given a graph G = (V,E), its complement Ḡ has the same node set V of
G and two nodes are adjacent if and only if they are not adjacent in G.

The classes of threshold and threshold signed graphs are closed under
complement [3] while the complement of a difference graph is a threshold
signed graph. So, it is worth to be solved the problem of computing the
weight function and the thresholds of the complement of one of these graphs
without recomputing them from scratch by using, for example, a recognizing
algorithm.

Observe that, given a graph G that is either a threshold or a difference or
a threshold signed graph, all its nodes that have the same degree d in G have
the same degree |V | − 1− d in Ḡ. If we exploit this observation to compute
the complement of a threshold graph G stored through the data structure
described in Section 3, nodes with the same degree are in in the same box,
and so it is easy to efficiently construct arrays δ̄ and µ̄ in O(m) time (see
function ThresholdComplement).

ThresholdComplement(δ, µ,m)
n = 0;
FOR i = 0 TO m DO

n = n+ µ[i];
i = 0; j = m;
IF µ[0] = 0 THEN

FOR i = 0 TO m DO
δ̄[m− i]← n− 1− δ[i];
µ̄[m− i]← µ[i];

m̄← m− 1;
ELSE

¯δ[0]← 0; ¯µ[0]← 0;
FOR i = 0 TO m DO

δ̄[m− i+ 1]← n− 1− δ[i];
µ̄[m− i+ 1]← µ[i];

m̄← m+ 1;
RETURN (δ̄, µ̄, m̄).

Vice-versa, the data structure for threshold signed graphs described in
Section 6 does not store the degree of the nodes, but function a; in order to
compute ā, S̄ and T̄ of Ḡ starting from the degrees of the nodes of Ḡ, we
should run the fastest known algorithm [3], working in O(n2) time, where n
is the number of nodes of G.

20

In this section, we provide a method to determine and store the comple-
ment of a threshold signed graph G in time linear w.r.t. the number of its
different degrees.

Theorem 18. Let be given a threshold signed graph G = (X ∪ Y, a, S, T)
stored through arrays a[0..∆] and µ[0..∆] and the two values S and T . It is
possible to determine the threshold signed graph Ḡ = (X ∪ Y, ā, S̄, T̄) in time
linear w.r.t. the number of different degrees (O(∆)).

Proof. First observe that if G is a complete graph, then it is easy to build
the data structure storing Ḡ in constant time. So, it is not restrictive to
assume that at least one edge is missing from G. Consider the following
function:

Complement(a, µ, δ, S, T)
P ∗ ← max{S, T} −min1≤i≤n{|ai|};
ε← min1≤i,j≤n,(vi,vj)/∈E{S − |ai + aj |, T − |ai − aj |};
FOR i = 0 TO ∆ DO

IF a[i] ≥ 0 THEN ā[i]← −(P ∗ − a[i])
ELSE ā[i]← (P ∗ − |a[i]|)
µ̄[i]← µ[i]

T̄ ← 2P ∗ − T + ε
S̄ ← 2P ∗ − S + ε

RETURN(ā, µ̄,∆, S̄, T̄).

Notice that the value of ε is well defined in view of the hypothesis that
G is not a complete graph.

We have to prove that the assigned weights and the thresholds are feasible
values and that they define exactly the complement of the original graph.

Let us prove first that ¯|a[i]| < min{S̄, T̄} for each i = 1, . . . , n. From the
definitions of S̄ and T̄ we have that both of them are ≥ 2P ∗−max{S, T}+ ε
hence, in particular:

min{S̄, T̄} ≥ 2P ∗ −max{S, T}+ ε > 2P ∗ −max{S, T}. (7)

From the other hand, P ∗ = max{S, T}−min1≤i≤n{|ai|} ≥ max{S, T}−|a[i]|.
From this inequality and from (7) we get that min{S̄, T̄} > P ∗−|a[i]| = | ¯a[i]|.

It remains to prove that (vi, vj) ∈ Ē if and only if either | ¯a[i] + ¯a[j]| ≥ S
or | ¯a[i] − ¯a[j]| ≥ T . We divide the proof into two sub-cases, according to
whether (vi, vj) belongs to Ē or not.

21

Assume first that (vi, vj) ∈ Ē. This means that (vi, vj) /∈ E, i.e. |a[i] +
a[j]| < S and |a[i] − a[j]| < T . As far as ε has been defined, it also holds
that:

|a[i] + a[j]| ≤ S − ε and |a[i]− a[j]| ≤ T − ε. (8)

If a[i] and a[j] have the same sign, then | ¯a[i]+ ¯a[j]| = 2P ∗−|a[i]+a[j]| ≥
2P ∗ − S + ε = S̄ in view of (8) and of the definition of S̄.

If a[i] and a[j] have opposite sign, then | ¯a[i]− ¯a[j]| = 2P ∗−|a[i]−a[j]| ≥
2P ∗ − T + ε = T̄ in view of (8) and of the definition of T̄ .

Assume now that (vi, vj) /∈ Ē. This means that (vi, vj) ∈ E, i.e. |a[i] +
a[j]| ≥ S or |a[i]− a[j]| ≥ T .

If |a[i] + a[j]| ≥ S it means that ai and aj have the same sign, and hence
¯a[i] and ¯a[j] have the same sign, too. So | ¯a[i] + ¯a[j]| = 2P ∗ − |a[i] + a[j]| ≤

2P ∗ − S < 2P ∗ − S + ε = S̄, so proving that (vi, vj) is not an edge of Ḡ.
If, finally, |a[i] − a[j]| ≥ T it means that a[i] and a[j] have different

sign, and hence ¯a[i] and ¯a[j] have different sign, too. So | ¯a[i] − ¯a[j]| =
2P ∗− |a[i]− a[j]| ≤ 2P ∗−T < 2P ∗−T + ε = T̄ , so proving that also in this
case (vi, vj) is not an edge of Ḡ.

It is immediate to see that function Complement runs in O(∆) time,
that is linear w.r.t. the number of different degrees in Ḡ for Theorem 14.

We conclude this section observing that the integral separator we deduce
for Ḡ is minimum if G is a threshold graph, while it is in general not minimum
if G is a threshold signed graph.

9. Conclusions

In this paper we have studied how to dynamically operate on thresh-
old, difference and threshold sign graphs and we provided efficient solutions,
working in time linear w.r.t. the number of the different degrees of the in-
put graph. In order to do this we proposed simple data structures to store
these graphs and studied the problems of adding/deleting edges/nodes, the
disjoint union, the join and the complement. In the case of addition/deletion
of edges/nodes we provided efficient solutions only for the classes of thresh-
old and difference graphs; indeed, it does not seem possible to us to modify
function a and thresholds S and T of a threshold signed graph to which an

22

edge/node is added/deleted without recomputing it from scratch (that would
take O(n2) time). Moreover, we compute a minimum integral separator for
threshold and difference graphs in time that is linear w.r.t. the number of
different degrees, so improving some previous results [20, 21], minimizing
other weight functions raised by other (equivalent) definitions and running
in linear time w.r.t. the number of nodes.

References

[1] M. Andelić and S.K. Simić, Some notes on the threshold graphs. Discrete
Math. 310(17–18), 2241–2248, 2010.

[2] Z. Bao-Lin. Difference Graphs of Block ADI Method, SIAM J. on Nu-
merical Analysis 38(3), 742–752, 2000.

[3] C. Benzaken, P.L. Hammer and D. de Werra, Threshold characterization
of graphs with Dilworth number two. J. Graph Theory 9, 245–267, 1985.

[4] A. Bhattacharya, U. N. Peled, and M. K. Srinivasan, Cones of closed
alternating walks and trails. Linear Algebra and its Applications 423,
351–365, 2007.

[5] A. Bhattacharya, S. Sivasubramaniam, and M. K. Srinivasan, The poly-
tope of degree partitions. Electronic Journal of Combinatorics13: #R46,
2006.

[6] T. Calamoneri and R. Petreschi. On Pairwise Compatibility Graphs hav-
ing Dilworth Number k. Theoretical Computer Science 547, 82–89, 2014.

[7] V. Chvátal and P.L. Hammer. Aggregation of inequalities in integer pro-
gramming, Proc. Worksh. Bonn 1975, Annals of Discrete Mathematics
1, Amsterdam: North-Holland, 145–162, 1975 .

[8] O. Cogis. Ferrers digraphs and threshold graphs. Discrete Mathematics
38, 33–46, 1982.

[9] A. Delugach, H. de Moor: Difference graphs. Proc. ICCS 2005, 41–53,
2005.

23

[10] J.-P. Doignon, A. Ducamp, and J.-C. Falmagne. On realizable biorders
and the biorder dimension of a relation. Journal of Mathematical Psy-
chology 28, 73–109, 1984.

[11] K. Ecker and S. Zaks. On a graph labelling problem. Bericht 99,
Gesellschraft für Mathematik und Datenverarbeitung MBH, Bonn 1977.

[12] P. Heggernes and C. Papadopoulos. Single-edge monitor sequences of
graphs and linear-time algorithms for minimal completions and dele-
tions. Theoretical Computer Science 410, 1–15, 2009.

[13] P.B. Henderson and Y. Zalcstein. A graph-theoretic characterization of
the PVchunk class of synchronizing primitives. SIAM Journal of Com-
puting 6, 88–108, 1977.

[14] G. J. Koop. Cyclic scheduling of offweekends. Operations Research Let-
ters 4, 259–263, 1986.

[15] M. Koren. Extreme degree sequences of simple graphs. Journal of Com-
binatorial Theory 2, 253–276, 1972.

[16] N.V.R. Mahadev and U.N. Peled. Threshold Graphs and Related Topics,
Annals of Discrete Mathematics 56, North-Holland, Amsterdam, 1995.

[17] K. Makino, Y. Uno and T. Ibaraki. Minimum Edge Ranking Spanning
Trees of Threshold Graphs, Proc. ISAAC 2002, LNCS 2518, 428–440,
2002.

[18] V. Neiger, C. Crespelle, E. Fleury. On the Structure of Changes in Dy-
namic Contact Networks. Proc. SITIS ’12 731–738, 2012.

[19] I. Nor, J. Engelstädter, O. Duron, M. Reuter, M.-F. Sagot and S. Char-
lat. On the Genetic Architecture of Cytoplasmic Incompatibility: In-
ference from Phenotypic Data, The American Naturalist 182(1), 15–24,
2013.

[20] E.T. Ordman. Threshold coverings and resource allocation. 16th South-
eastern Conference on Combinatorics, Graph Theory and Computing,
99–113, 1986.

24

[21] J. Orlin. The minimal integral separator of a threshold graph. Annals
of Discrete Mathematics 1, Amsterdam: North-Holland, pp. 415–419,
1977.

[22] R. Shamir and R. Sharan. A fully dynamic algorithm for modular de-
composition and recognition of cographs. Discrete applied Mathematics
136, 329–340, 2004.

[23] M. Yannakakis. The complexity of the partial order dimension problem.
SIAM Journal on algebraic and Discrete Methods 3, 351–358, 1982.

25

