
Fully Dynamically Maintaining Minimal Integral
Separator for Threshold and Difference Graphs ?

Tiziana Calamoneri, Angelo Monti, and Rossella Petreschi

Computer Science Department,
“Sapienza” University of Rome, Italy

calamo/monti/petreschi@di.uniroma1.it

Abstract. This paper deals with the well known classes of threshold
and difference graphs, both characterized by separators, i.e. node weight
functions and thresholds. We show how to maintain minimum the value
of the separator when the input (threshold or difference) graph is fully
dynamic, i.e. edges/nodes are inserted/removed. Moreover, exploiting the
data structure used for maintaining the minimality of the separator, we
handle the operations of disjoint union and join of two threshold graphs.

Keywords: fully dynamic graphs, threshold graphs, difference graphs,
chain graphs, threshold signed graphs, graph operations.

1 Introduction

In many applications of graph algorithms, graphs are fully dynamic, i.e. both
edges and nodes may be inserted or eliminated.

Typically, one would like to answer to a precise query on the fully dynamic
graph, so the goal is to update the data structure after dynamic changes, rather
than having to recompute it from scratch each time.

Threshold graphs constitute a very important and well studied graph class,
since they find applications in several fields, such as psychology, parallel process-
ing, scheduling, and graph theory. For this reason, threshold graphs have been
defined many times in the literature (see, e.g. [2, 5]), and have been widely stud-
ied. Difference graphs (also known as chain graphs)–that are strictly related to
threshold graphs, though incomparable–had similar destiny and have been inde-
pendently introduced (see, e.g. [3, 9]). For a comprehensive survey on threshold
graphs, difference graphs and related topics, see [6].

Among the numerous equivalent definitions of threshold and difference graphs,
many of them exploit a node weight function and a threshold. This pair is called a
separator and of course it is not unique. It is of interest to determine a minimum
separator, i.e. a separator with minimum value of the threshold. Orlin [7] pre-
sented an algorithm for minimizing the threshold w.r.t. one of these definitions
in linear time in the number of nodes.

? Partially supported by the Italian Ministry of Education and University, PRIN
project ”AMANDA: Algorithmics for MAssive and Networked DAta”

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/98337112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

u u u u u
5 4 3.5 2.2 2

u u u u u u
10 9.8 8.6 7 6.1 6.1

S = 12

u u u u u
7.5 5 4 2.2 1.4

u u u u u u−8.5 −7 −5 −4.2 −3 −2.9

T = 9

u u u u u
7 5 4.2 2 1.5

u u u u u u
−8.4 −7 −5 −4 −3 −2.1

S = 10
T = 8.5

a b c

Fig. 1. a. A threshold graph; b. A difference graph; c. A threshold signed graph.

In this paper we consider a different (equivalent) definition, also based on a
threshold and a node weight function. After a pre-computation, we have always
available the minimum separator after fully dynamically changing the graph.
Both the pre-computation and each linear time operation of addition/deletion
of either an edge or a node with all its incident edges are performed in linear
time w.r.t. the number of different degrees of the current graph.

So, this is a contribution to the problem of the dynamic maintenance of
threshold and difference graphs. To the best of our knowledge, few works deal
with this topic. Namely, in [8] the problem of dynamically recognizing some
classes of graphs (and among them threshold graphs) is handled. In [4] the au-
thors consider the problem of adding/deleting edges with the aim of transforming
a given graph into a threshold graph with the minimum number of changes.

We conclude this paper with a section that, exploiting the data structure
used for maintaining the minimality of the separator, handles the operations of
disjoint union and join of two threshold graphs.

2 Preliminaries

In this section, we list some definitions and properties, all from [6]. For the sake
of clarity, we reorganized them in order to optimize the presentation.

Definition 1. A graph G = (V,E) is a threshold graph if there is a mapping
a : V → IR+ and a positive real number S such that

a(v) < S for all v ∈ V (1)

{v, w} ∈ E if and only if a(v) + a(w) ≥ S (2)

The pair (a, S) will be called separator for graph G.

In Figure 1.a a threshold graph with one of its separators is depicted.

Definition 2. A graph G = (V,E) is a difference graph if there is mapping
a : V → IR and a positive real number T such that

|a(v)| < T for all v ∈ V (3)

{v, w} ∈ E if and only if |a(v)− a(w)| ≥ T (4)

The pair (a, T) will be called separator for graph G.

The node set of a difference graph G can be partitioned as V = U ∪W , where
U = {v ∈ V : a(v) ≥ 0} and W = {v ∈ V : a(v) < 0}; both U and W induce a
stable set and hence G is bipartite with bipartition (U,W). A difference graph
with one of its separators is shown in Figure 1.b.

Although Definitions 1 and 2 are very similar, the two defined classes are
incomparable. Nevertheless they are strictly related, as shown by the following
theorem:

Theorem 1. A bipartite graph G = (U ∪W,E) is a difference graph if and only
if adding to G all possible edges with both ends in the same side of the bipartition
(either U or W) yields a threshold graph.

Given a graph G = (V,E), we denote by deg(v) the degree of node v.

Definition 3. Let G = (V,E) be a graph whose distinct node-degrees are δ1 <
. . . < δm, and let δ0 = 0 (even if no node of degree 0 exists). Let Di =
{v ∈ V s.t. deg(v) = δi} for i = 0, . . . ,m; Di is called i-th box; the sequence
D0, . . . , Dm is called the degree partition of G.

Definition 4. Let G = (U ∪W,E) be a bipartite graph and let X be either U
or W . The distinct node-degrees for the nodes in X are δX1 < . . . < δXtX and let
δX0 = 0 (even if no node of degree 0 exists in the partition X). Let DX

i = {v ∈
X s.t. deg(v) = δXi } for 0 ≤ i ≤ tX ; the sequence DU

0 , . . . , D
U
tU , D

W
0 , . . . , DW

tW is
called the bipartite degree partition of G.

Lemma 1. Let G = (V,E) be a threshold graph with degree partition D0, . . . , Dm

and whose node set is partitioned into a clique K and a stable set I; let x ∈ Di

and y ∈ Dj be two distinct nodes.

1. D0 ∪ . . . ∪Dbm/2c = I and Dbm/2c+1 ∪ . . . ∪Dm = K;
2. If e = {x, y} /∈ E, the graph G′ = (V,E ∪ {e}) is a threshold graph if and

only if i+ j = m;
3. If e = {x, y} ∈ E, the graph G′ = (V,E \ {e}) is a threshold graph if and

only if i+ j = m+ 1;
4. e = {x, y} ∈ E if and only if i+ j ≥ m+ 1.

Lemma 2. Let G = (U ∪ W,E) be a difference graph with degree partition
DU

0 , . . . , D
U
tU , D

W
0 , . . . , DW

tW , and let x ∈ DU
i and y ∈ DW

j be two distinct nodes.

1. tU = tW = t;
2. If e = {x, y} /∈ E, the graph G′ = (U ∪W,E ∪ {e}) is a difference graph if

and only if i+ j = t;
3. If e = {x, y} ∈ E, the graph G′ = (U ∪W,E \ {e}) is a difference graph if

and only if i+ j = t+ 1;
4. e = {x, y} ∈ E if and only if i+ j ≥ t+ 1.

Given a graph G, we recall that the neighborhood N(v) of a node v is the set
of all neighbors of v, and its closed neighborhood is N [v] = N(v) ∪ {v}.

Lemma 3. Given a graph G = (V,E), the vicinal preorder is a binary relation
on the nodes of V such that u � v ⇔ N [u] ⊇ N(v). The vicinal preorder is total
on V if G is a threshold graph G and on U and V if G is a difference graph.

We now introduce a superclass of both threshold and difference graphs.

Definition 5. [1] A graph G = (V,E) is a threshold signed graph if there is a
mapping a : V → IR and two positive real numbers S and T such that

|a(v)| < min{S, T} (5)

{v, w} ∈ E iff either |a(v) + a(w)| ≥ S or |a(v)− a(w)| ≥ T. (6)

The triple (a, S, T) will be called separator for graph G.

Consider X = {x ∈ V s.t. a(x) < 0} and Y = {x ∈ V s.t. a(x) ≥ 0}.
As highlighted in Figure 1.c, we can see a threshold signed graph as consti-

tuted by two threshold graphs, G− and G+ respectively induced by X and Y ,
that are connected by a difference graph D. Notice that for X we consider the
opposite of the a’s values.

3 A data structure for computing minimal integral
separator for threshold or difference graphs

Although in Definition 1 a threshold graph G = (V,E) is a graph having a
separator with non-negative real values, it is common to equivalently require
the separator to have non-negative integral values (i.e. an integral separator)
[6]. We say that an integral separator (a, S) for G is minimum if for any other
integral separator (a′, S′) for G we have S ≤ S′. In the following theorem we
show that the value of S of a minimum integral separator (a, S) of G is given by
the cardinality of the degree partition of G plus 1.

Theorem 2. Let G = (V,E) be a threshold graph with degree partition D0, . . . ,
Dm. The pair (a, S), where S = m + 1 and for each node v ∈ V , a(v) = i if
v ∈ Di, is a minimal integral separator of G.

Proof. First of all, we prove that (a, S) is a separator, i.e. that it satisfies the two
inequalities of Definition 1. Note that for each v ∈ V it holds 0 ≤ a(v) ≤ m < S
thus the pair (a, S) satisfies Inequality 1. Moreover, Inequality 2 follows from
Item 4 in Lemma 1. Trivially, (a, S) is integral.

Let us now prove that (a, S) is minimal. By contradiction, let (a, S) be not
minimal, and let (a′, S′) be an integral separator for G such that S′ < S. Observe
that only isolated nodes can have weight equal to zero (indeed, if {u, v} ∈ E and
a′(u) = 0 then a′(u) + a′(v) = a′(v) < S′ from Inequality 1, but this contradicts
Inequality 2). Moreover, notice that two nodes u and v having the same weight

necessarily behave in the same way (i.e. for any other node w ∈ V , it holds that
{u,w} ∈ E if and only if {v, w} ∈ E), so nodes having different degree cannot
have the same weight. All this implies that the function a′ on the non isolated
nodes assumes at least m different strictly positive weights. Thus Inequality 1
implies that S′ ≥ m+1. The chain m+1 = S > S′ ≥ m+1 proves the minimality
of (a, S). ut

From the same reasonings, we deduce the following theorem for a difference
graph G.

Theorem 3. Let G = (U ∪ W,E) be a difference graph with bipartite degree
partition DU

1 , . . . , D
U
t , DW

1 , . . . , DW
t . The pair (a, S), where S = 2t+ 1 and, for

each node v ∈ U , a(v) = −i if v ∈ DU
i and a(v) = i if v ∈ DW

i , is a minimal
integral separator of G.

Notice that Orlin [7] shows how to minimize the threshold for threshold
graphs considering an equivalent definition requiring that the sum of the weights
of the nodes of any independent set has to be smaller than the threshold. The
value of this threshold is larger than the value of S computed in this paper.

Now we present two data structures for representing threshold and difference
graphs allowing us to compute in a natural way minimal integral separators for
these graph classes, according to Theorems 2 and 3. Since a threshold graph
G = (V,E) is univocally determined by its degree partition D0, . . . , Dm, we
may store G using two arrays δ[0..m] and µ[0..m], where δ[i] represents the
degree δi of the nodes in the i-th box Di, and µ[i] represents its cardinality,
|Di|. Similarly, let G = (U ∪W,E) be a difference graph with bipartite degree
partition DU

1 , . . . , D
U
t , DW

1 , . . . , DW
t . This partition univocally determines G,

and G may be represented using the arrays δX [0..t] and µX [0..t], where δX [i]
represents the degree of the nodes in the i-th box DX

i , and µX [i] represents its
cardinality |DX

i |, X ∈ {U,W}. If G = (V,E) is a threshold graph, i is the weight
associated to all the µ[i] nodes belonging to the box Di of degree δi. Similarly, if
G = (U ∪W,E) is a difference graph, i is the weight associated to all the µX [i]
nodes belonging to box DX

i of degree δX [i], with X ∈ {U,W}.

Exploiting these two data structures, the following theorem holds:

Theorem 4. Given a threshold (difference) graph G by means of its (bipartite)
degree partition, its minimal integral separator can be found in time linear w.r.t.
the number of different degrees in G.

In Sections 4 and 5, each time we speak about a graph G (either threshold
or difference), G is represented by means of the arrays δ and µ.

4 Adding/deleting an edge to threshold/difference graphs

In this section we study how to get a new graph, obtained by adding/deleting
an edge from a graph that is either a threshold or a difference graph, and to

keep immediately available the knowledge of the minimum separator for the
new graph. In order to make easier the exposition, preliminarily we consider two
functions, operating on the data structures introduced in Section 3.

By IncreaseDeg(δ, µ, i, dim) we denote the operation of updating arrays
δ[0..dim] and µ[0..dim] when the degree of a node in box Di, 0 ≤ i ≤ dim,
is increased by one. IncreaseDeg can have as consequence the appearance of
a new box (if i = dim or if the degree of the nodes in Di+1 is different from
the degree of nodes in Di plus one). On the other hand, this increment can
also have as consequence the disappearance of box Di (if i 6= 0, |Di| = 1 and
the degree of the nodes in Di+1 is equal to the degree of the nodes in Di plus
one). Symmetrically, we may consider the operation DecreaseDeg(δ, µ, i, dim)
of updating arrays δ[0..dim] and µ[0..dim] when the degree of a node in box Di,
0 < i ≤ dim, is decreased by one.

Let us now consider a threshold graph G. Let {x, y}, x ∈ Di and y ∈ Dj , the
edge to add/delete to/from G. Items 2 and 3 of Lemma 1 give a characterization
of the indices i and j to ensure that the modified graph is still a threshold graph;
namely, i+ j = m in case of insertion, and i+ j = m+ 1 in case of deletion.

We present two operations, InsEdge(δ, µ, i,m) and DelEdge(δ, µ, i,m), that
update the data structure when an edge is added between a node in box Di and
a node in box Dm−i and when an edge is deleted between a node in box Di

and a node in box Dm+1−i, respectively. Observe that with the insertion of an
edge, the degrees of its endpoints are increased by one. Thus we can call twice
subroutine IncreaseDeg, once on a node in box Di and once on a node in
box Dm−i. We have just to take into account that the increment of the degree of
node in box Di can change the index of the box of the other endpoint. Analogous
considerations hold for the deletion of an edge. These observations give rise to
the following simple algorithms:

InsEdge(δ, µ, i,m) DelEdge(δ, µ, i,m)
j ← m− i; j ← m+ 1− i;
a← m; a← m;
IncreaseDeg(δ, µ, i,m); DecreaseDeg(δ, µ, i,m);
CASE(m− a) CASE(m− a)

−1 : IncreaseDeg(δ, µ, j − 1,m); −1 : DecreaseDeg(δ, µ, j − 1,m);
0 : IncreaseDeg(δ, µ, j,m); 0 : DecreaseDeg(δ, µ, j,m);

+1 : IncreaseDeg(δ, µ, j + 1,m); +1 : DecreaseDeg(δ, µ, j + 1,m);

Since after the execution of IncreaseDeg (DecreaseDeg), m may poten-
tially vary from m to m ± 1, with the execution of InsEdge (DelEdge) the
number of boxes can potentially vary from m to m±2. In Figure 2 we show that
all the five possibilities may actually occur.

Assume now that G is a difference graph.The algorithms for adding/ elimi-
nating an edge in G are based on the same idea presented for the algorithms on
threshold graphs, but they are even simpler because the data structure used for
representing these graphs keeps separated the bipartition (and so, adding a new
box after the first call of IncreaseDeg does not affect the index of the other

u
u u u

1

3 2 2

⇒ u
u

u
u

2 2

3 3

u u
u u u

1 1

4 2 2

⇒ u u u
u u

2 2 1

4 3

u u u u
u u

2 2 1 1

5 3

⇒ u u u u
u u

2 2 2 1

5 4

m = 3 m = 2 m = 3 m = 4 m = 4 m = 4
(-1) (+1) (0)

u u u
u u

2 2 1

4 3

⇒ u u u
u u

2 2 2

4 4

u u
u u u u

1 1

5 3 3 3

⇒ u u
u u u u

2 1

5 4 3 3

m = 4 m = 2 m = 3 m = 5
(-2) (+2)

Fig. 2. Examples proving that all 5 cases in algorithm InsEdge are possible. Grey
edges represent the edges that are going to be added. (In order to consider DelEdge,
figures must be read from right to left.)

endpoint). Notice that Item 1 of Lemma 2 ensures that the number of boxes in
the two classes is the same t. So, for difference graphs, t can either remain unal-
tered or to change to t±1 and all the three possibilities may actually occur. The
two algorithms for inserting and deleting an edge in a difference graph follow:

D− InsEdge(δU , µU , δW , µW , i, t) D−DelEdge(δU , µU , δW , µW , i, t)
j ← t− i; j ← t+ 1− i;
IncreaseDeg(δU , µU , i, t); DecreaseDeg(δU , µU , i, t);
IncreaseDeg(δW , µW , j, t,); DecreaseDeg(δW , µW , j, t);

Note. All the algorithms described in this section are correct and maintain the
minimality of the integral separators.

5 Adding/deleting a node to threshold/difference graphs

In this section we will work with nodes in an analogous way as we did in Section
4 with edges. Also in this case, we keep immediately available the knowledge
of the minimum separator for the new graph. We start defining four functions,
operating on the data structures introduced in Section 3.

By +Node(δ, µ, d, dim) we denote the operation of giving space to a new
node of degree d either in a threshold graph or in a partition of a difference
graph, without caring about the update of its neighbors (that will be done with
another subroutine). This subroutine looks for the box where the new node must
be inserted: if there exists a box Di with degree d, µi is simply increased by one;
otherwise a new box for the new node is created.

u
u u u

1

3 2 2

u ⇒ u
u

u
u u

1 1

3 2 2

u u
u u u u

2 1

5 4 3 3

u ⇒ u u u
u u

u
u

3 3 2 1

6 5 4

u u
u u u u

2 2

5 5 3 3

u ⇒ u u u
u u u u

2 2 1

6 5 3 3

m = 3 m = 3 m = 5 m = 6 m = 3 m = 5
(0) (+1) (+2)

Fig. 3. Examples proving that all 3 cases in algorithm InsNode are possible. Grey
nodes and edges represent the objects that are going to be added (in order to consider
DelNode figure must be read from right to left).

By IncreaseDegOfSetNode(δ, µ, d, dim) we denote the operation of aug-
menting by one the degree of the d nodes of highest degree either in a threshold
graph or in a partition of a difference graph. This subroutine increases by one
the degree of all the boxes Di s.t. d −

∑m
s=j+1 |Ds| ≥ 0, while nodes of boxes

D1, . . . Dj−1 remain unchanged. For what concerns Dj , it is in general split into
two boxes (precisely d −

∑m
s=j+1 |Ds| nodes leave Dj to form a new box with

degree augmented by one). We can define even the symmetric functions: by -
Node(δ, µ, i, dim) we denote the operation eliminating from the data structure
storing either a threshold or a difference graph a node in box Di, 0 ≤ i ≤ dim, re-
gardless of its neighbors (whose degree will be updated with another subroutine).
By DecreaseDegOfSetNode(δ, µ, d, dim) we denote the operation of decreas-
ing by one the degree of the d nodes of highest degree either in a threshold graph
or in a partition of a difference graph.

Let now G = (V,E) be a threshold graph. Adding a new node of degree d to
G yields a threshold graph if and only if the d neighbors of the new node are the d
nodes with highest degrees (this can be easily deduced from Item 4 of Lemma 1).
So, we can call IncreaseDegOfSetNode and observe that, after its execution,
m could be increased by one. Then, we have to update the data structure by
inserting the new node by means of +Node, and even in this case m could be
increased by one. So, the number of the different degrees can potentially vary
from m to m+ 2. Figure 3 shows that all three possibilities can occur.

By InsNode(δ, µ, d,m) we denote the operation of updating the data struc-
ture storing threshold graph G when a node of degree d is added to the graph.
The previous reasonings can be repeated when G is a difference graph (assum-
ing, w.l.o.g., that the new node is inserted in partition U), so giving rise to
D-InsNode(δU , µU , δW , µW , i, t), that is the operation of updating the data
structure when a node of degree d is added to the difference graph.

InsNode(δ, µ, d,m) D− InsNode(δU , µU , δW , µW , d, t)
+Node(δ, µ, d,m) +Node(δU , µU , d, t)
IncreaseDegOfSetNode(δ, µ, d,m) IncreaseDegOfSetNode(δW , µW , d, t)

Now we consider the problem of deleting nodes to a threshold graph. Any
node-induced subgraph G′ of G is a threshold graph (indeed for the graph G′

use the mapping a restricted to the nodes of G′ and the same value S). Thus the
class of threshold graphs is closed under the deletion of an arbitrary node. Given
a threshold graph, by DelNode(δ, µ, i,m) we denote the operation of updating
the data structure when a node is deleted from box Di, 0 ≤ i ≤ m. This deletion
is performed by -Node that can have as consequence the disappearance of box
Di (if i 6= 0 and |Di| = 1). Thus m can decrease by one. Moreover, the δ[i] nodes
with highest degree must have their degrees decreased by one. These nodes
belong to boxes Dm, . . . , Dm+1−i. It can occur that the degree of nodes in box
m + 1 − i becomes equal to the degree of the nodes in box m − i and, in this
case, the two boxes merge and the number of boxes further decrease by one.
Hence after deleting a node, the number of boxes in the degree partition can
potentially vary from m to m− 2 and all cases can occur, as shown in Figure 3.

Analogous reasonings can be done whenG is a difference graph, and define D-
DelNode(δU , µU , δW , µW , i, t) as the operation of updating the data structure
when a node is deleted (assuming w.l.o.g. that the new node is deleted from
partition U).

DelNode(δ, µ, i,m) D−DelNode(δU , µU , δW , µW , i, t)
d← δ[i] d← δU [i]
−Node(δ, µ, i,m) −Node(δU , µU , i, t)
DecreaseDegOfSetNode(δ, µ, d,m) DecreaseDegOfSetNode(δW , µW , d, t)

Note. All the algorithms described in this section are correct and maintain the
minimality of the integral separators.

6 Disjoint union and join of two threshold graphs

Given two graphs with disjoint node sets G1 = (V1, E1) and G2 = (V2, E2), their
disjoint union is the graph G1 ∪G2 = (V1 ∪ V2, E1 ∪E2); their join is the graph
G1 + G2 obtained adding to their disjoint union all the edges that connect the
nodes of the first graph with the nodes of the second graph. We observe that, if
G1 and G2 are both threshold graphs, G1∪G2 and G1 +G2 are threshold signed
graphs, where the difference graph connecting the two threshold graphs is either
the null graph (in G1 ∪G2) or the complete bipartite graph (in G1 +G2).

In this section, exploiting the considerations done for the data structures
presented in Section 3 for threshold and difference graphs, we introduce a data
structure for representing a threshold signed graph. Thanks to this data struc-
ture, we handle the dynamic operations of disjoint union and join of two thresh-
old graphs.

Given a threshold signed graph G = (X ∪Y,E), two nodes u and w are false
twins if they have the same neighborhood, i.e. N(u) = N(w); they are true twins
if they have the same closed neighborhood, i.e. N [u] = N [w]. We say that u and
w are simply twins if they are either true or false twins and they belong to the
same set, X or Y . Let us consider the partition of the node set into equivalence

classes, B1, . . . , B∆, induced by the relation of being twins. Even though there
is not a tie between the degree partition of a threshold signed graph and its
structure, as in the case of threshold and difference graphs, it is possible to
extend the reasonings done in the proof of Theorem 2 to this class of graphs.
Indeed, if v is an isolated node it is not restrictive to assume a(v) = 0 and,
obviously, if a(v) = 0 then v is an isolated node. Moreover, it is easy to see that
two nodes having the same value of a are necessarily twins. From the other hand,
if there are two twins u and w having a(u) 6= a(w) (w.l.o.g. let a(u) < a(w)),
we can easily modify function a in order to assign them the same value (that is
a(w) if u and w are connected and a(u) otherwise). So, from now on, we consider
only node weight functions assigning value 0 to each isolated node and the same
value to each set of twins.

As consequence of all these reasonings, we may store a threshold signed
graphs by means of two arrays α[0..∆] and µ[0..∆]: in α[i] there is the value of
the weight assigned to the µ[i] nodes of Bi, 0 ≤ i ≤ ∆; if there are no isolated
nodes α[0] and µ[0] are set to 0. Variables S and T store the two thresholds.

Let us now go back to consider the operations of disjoint union and join of
two threshold graphs G1 and G2 stored as δ1[0..m1], µ1[0..m1] and δ2[0..m2],
µ2[0..m2], respectively. Assume first that G1 and G2 have the same threshold S
(i.e. m1 = m2 = m). Informally, the array α[1..∆] of both G1 ∪G2 and G1 +G2

is obtained by opportunely transcribing the values of the node weight function
of the single threshold graphs (deduced through Theorem 2), the array µ[1..∆] is
obtained by copying the values of µ1 and µ2, while threshold S is kept unaltered.
For what concerns threshold T , in the case of G1 ∪G2 it is set to a sufficiently
large value in order to guarantee that no edges are in the difference subgraph,
in the case of G1 +G2 it is set to a sufficiently small value in order to guarantee
that the difference subgraph is a complete bipartite graph. In this latter case, T
assumes a too small value, contradicting Property 5 of Definition 5, so we need
to modify the values of the node weight function and of the two thresholds in
order to restore the property.

The following lemmas formalize the operations of disjoint union and join of
two threshold graphs:

Lemma 4. Let be given two threshold graphs G1 and G2 by means of δ1[0..m],
µ1[0..m] and δ2[0..m], µ2[0..m] and let S = m + 1 be their common threshold.
The following function determines the threshold signed graph G1 ∪G2:

DisjointUnion(δ1, µ1, δ2, µ2,m)
µ[0]← µ1[0] + µ2[0]; α[0]← 0;
FOR i = 1 TO m DO
α[i]← −i; µ[i]← µ1[i];

FOR i = 1 TO m DO
α[m+ i]← i; µ[m+ i]← µ2[i];

∆← 2m;
S ← m+ 1;
T ← 2m+ 1;

RETURN (α, µ, S, T,∆).

Proof. Both S and T determined by function DisjointUnion are greater than
the modulo of each α[i], i = 0, . . . ,∆ as far as they are defined.

Moreover, the two threshold subgraphs G− and G+ of G1 ∪ G2 are exactly
the same as G1 and G2, respectively. Finally, no edge can satisfy the condition
α[u] + α[v] ≥ T in view of the definition of T , so the difference subgraph D is
empty. It follows that α, µ, S and T correctly define G1 ∪G2. ut

Lemma 5. Let be given two threshold graphs G1 and G2 by means of δ1[0..m],
µ1[0..m] and δ2[0..m], µ2[0..m] and let S = m + 1 be their common threshold.
The following function determines the threshold signed graph G1 +G2:

Join(δ1, µ1, δ2, µ2,m)
α[0]← 0; µ[0]← 0;
IF µ1[0] 6= 0

THEN flag1 ← 0
ELSE flag1 ← 1

FOR i =flag1 TO m DO
α[i+ 1− flag1]← −i; µ[i+ 1− flag1]← µ1[i];

IF µ2[0] 6= 0
THEN flag2 ← 0
ELSE flag2← 1

FOR i =flag2 TO m DO
α[m+ i+ 2− flag1-flag2]← i; µ[m+ i+ 2− flag1-flag2]← µ2[i];

∆← 2m+ 2−flag1-flag2;
S ← m+ 1;
T ← min1≤i≤∆{|α[i]|};
k ← m− T + 1;
FOR i = 1 TO m+ 1− flag1 DO
α[i]← α[i]− k;

FOR i = m+ 2−flag1 TO 2m+ 2−flag1-flag2 DO
α[i]← α[i] + k;

S ← S + 2k;
T ← T + 2k;

RETURN (α, µ, S, T,∆).

Proof. Preliminarily, observe that G1 +G2 cannot have isolated nodes, so we set
µ[0] to 0; moreover, if either G1 or G2 contain isolated nodes, a box needs to be
added: we do this exploiting the two boolean variables flag1 and flag2.

So, even in this case, the two threshold graphs G− and G+ of G1 + G2 are
exactly the same asG1 andG2, respectively. T is set to the modulo of the smallest
node weight in order to guarantee that the difference graph D is a complete
bipartite graph. In this way, T results in a value that contradicts Property 5 of
Definition 5. By incrementing the modulo of each α[i] of an opportune value k
and S and T by 2k, we are able to restore the inequality. ut

It remains to handle the case in which G1 and G2 have different thresholds. In
this case, we prepose to the functions described in the proofs of Lemmas 4 and 5
a preprocessing phase that equalize their thresholds as detailed in the following
lemma, where with the notation a′ = xa + y (where x and y are integer values

and a is a node weight function) we compactly mean that, for each node v,
a′(v) = xa(v) + y. We want to underline that now on we represent a threshold
graph in terms of its separator, instead of in terms of our data structure, because
the description of the equalization appears more comprehensive.

Lemma 6. Let be given two thresholds graphs G1 and G2 and let (a1, S1) and
(a2, S2) be their integral separators with S1 < S2. Then (a′1, S

′
1) = (2a1 + S2 −

S1, 2S2) is an integral separator for G1 and (a′1, a
′
2) = (2a2, 2S2) is an integral

separator for G2.

Proof. Let {v, w} be an edge in G1, i.e. a1(v)+a1(w) ≥ S1; then a′1(v)+a′1(w) =
2a1(v)+S2−S1 +2a1(w)+S2−S1 ≥ 2S2 = S′1. In the same way, let v and w be
not connected in G1, i.e. a1(v)+a1(w) < S1; then a′1(v)+a′1(w) = 2a1+S2−S1 <
2S2 = S′1. Finally, the pair (a′1, S

′
1) is a feasible integral separator since, for any

node v, a1(v) < S1 implies a′1(v) < S′1. Analogous reasonings lead to prove that
(a′2, S

′
2) is an integral separator for G2. ut

Notice that the values of the node weight function and of the two thresholds S
and T of the resulting threshold signed graphs will be integral but not necessarily
minimal.

References

1. C. Benzaken, P. L. Hammer and D. de Werra, Threshold characterization of graphs
with Dilworth number two. J. Graph Theory 9, 245–267, 1985.

2. V. Chvátal and P. L. Hammer. Aggregation of inequalities in integer programming,
Annals of Discrete Mathematics 1, 145–162, 1977.

3. O. C. Ferrers digraphs and threshold graphs. Discrete Mathematics 38, 33–46, 1982.
4. P. Heggernes and C. Papadopoulos. Single-edge monitor sequences of graphs and

linear-time algorithms for minimal completions and deletions. Theoretical Com-
puter Science 410, 1–15, 2009.

5. P. B. Henderson and Y. Zalcstein. A graph-theoretic characterization of the
PVchunk class of synchronizing primitives. SIAM Journal of Computing 6, 88–108,
1977.

6. N. V. R. Mahadev and U. N. Peled. Threshold Graphs and Related Topics, Annals
of Discrete Mathematics 56, North-Holland, Amsterdam, 1995.

7. J. Orlin. The minimal integral separator of a threshold graph. Annals of Discrete
Mathematics 1, 415–419, 1977.

8. R. Shamir and R. Sharan. A fully dynamic algorithm for modular decomposition
and recognition of cographs. Discrete applied Mathematics 136, 329–340, 2004.

9. M. Yannakakis. The complexity of the partial order dimension problem. SIAM
Journal on algebraic and Discrete Methods 3, 351–358, 1982.

