227 research outputs found

    IPv6 Network Mobility

    Get PDF
    Network Authentication, Authorization, and Accounting has been used since before the days of the Internet as we know it today. Authentication asks the question, “Who or what are you?” Authorization asks, “What are you allowed to do?” And fi nally, accounting wants to know, “What did you do?” These fundamental security building blocks are being used in expanded ways today. The fi rst part of this two-part series focused on the overall concepts of AAA, the elements involved in AAA communications, and highlevel approaches to achieving specifi c AAA goals. It was published in IPJ Volume 10, No. 1[0]. This second part of the series discusses the protocols involved, specifi c applications of AAA, and considerations for the future of AAA

    Reconfigurable Security: Edge Computing-based Framework for IoT

    Full text link
    In various scenarios, achieving security between IoT devices is challenging since the devices may have different dedicated communication standards, resource constraints as well as various applications. In this article, we first provide requirements and existing solutions for IoT security. We then introduce a new reconfigurable security framework based on edge computing, which utilizes a near-user edge device, i.e., security agent, to simplify key management and offload the computational costs of security algorithms at IoT devices. This framework is designed to overcome the challenges including high computation costs, low flexibility in key management, and low compatibility in deploying new security algorithms in IoT, especially when adopting advanced cryptographic primitives. We also provide the design principles of the reconfigurable security framework, the exemplary security protocols for anonymous authentication and secure data access control, and the performance analysis in terms of feasibility and usability. The reconfigurable security framework paves a new way to strength IoT security by edge computing.Comment: under submission to possible journal publication

    On the security of the Mobile IP protocol family

    Get PDF
    The Internet Engineering Task Force (IETF) has worked on\ud network layer mobility for more than 10 years and a number\ud of RFCs are available by now. Although the IETF mobility\ud protocols are not present in the Internet infrastructure as of\ud today, deployment seems to be imminent since a number\ud of organizations, including 3GPP, 3GPP2 and Wimax, have\ud realized the need to incorporate these protocols into their architectures.\ud Deployment scenarios reach from mobility support\ud within the network of a single provider to mobility support\ud between different providers and technologies. Current Wimax\ud specifications, for example, already support Mobile IPv4,\ud Proxy Mobile IPv4 and Mobile IPv6. Future specifications will\ud also support Proxy Mobile IPv6. Upcoming specifications in\ud the 3GPP Evolved Packet Core (EPC) will include the use of\ud Mobile IPv4, Dual Stack MIPv6 and Proxy Mobile IPv6 for\ud interworking between 3GPP and non 3GPP networks.\ud This paper provides an overview on the state-of-the-art\ud in IETF mobility protocols as they are being considered by\ud standardization organizations outside the IETF and focusing\ud on security aspects

    Compact extensible authentication protocol for the internet of things : enabling scalable and efficient security commissioning

    Get PDF
    Internet of Things security is one of the most challenging parts of the domain. Combining strong cryptography and lifelong security with highly constrained devices under conditions of limited energy consumption and no maintenance time is extremely difficult task. This paper presents an approach that combines authentication and bootstrapping protocol (TEPANOM) with Extensible Authentication Protocol (EAP) framework optimized for the IEEE 802.15.4 networks. The solution achieves significant reduction of network resource usage. Additionally, by application of EAP header compacting approach, further network usage savings have been reached. The EAP-TEPANOM solution has achieved substantial reduction of 42% in the number of transferred packets and 35% reduction of the transferred data. By application of EAP header compaction, it has been possible to achieve up to 80% smaller EAP header. That comprises further reduction of transferred data for 3.84% for the EAP-TEPANOM method and 10% for the EAP-TLS-ECDSA based methods. The results have placed the EAP-TEPANOM method as one of the most lightweight EAP methods from ones that have been tested throughout this research, making it feasible for large scale deployments scenarios of IoT

    Securing Handover in Wireless IP Networks

    Get PDF
    In wireless and mobile networks, handover is a complex process that involves multiple layers of protocol and security executions. With the growing popularity of real time communication services such as Voice of IP, a great challenge faced by handover nowadays comes from the impact of security implementations that can cause performance degradation especially for mobile devices with limited resources. Given the existing networks with heterogeneous wireless access technologies, one essential research question that needs be addressed is how to achieve a balance between security and performance during the handover. The variations of security policy and agreement among different services and network vendors make the topic challenging even more, due to the involvement of commercial and social factors. In order to understand the problems and challenges in this field, we study the properties of handover as well as state of the art security schemes to assist handover in wireless IP networks. Based on our analysis, we define a two-phase model to identify the key procedures of handover security in wireless and mobile networks. Through the model we analyze the performance impact from existing security schemes in terms of handover completion time, throughput, and Quality of Services (QoS). As our endeavor of seeking a balance between handover security and performance, we propose the local administrative domain as a security enhanced localized domain to promote the handover performance. To evaluate the performance improvement in local administrative domain, we implement the security protocols adopted by our proposal in the ns-2 simulation environment and analyze the measurement results based on our simulation test

    A Multi-authentication Architecture Based on DIAMETER

    Get PDF
    Comparing two AAA protocols, the authors find that the compatibility of the DIAMETER protocol is better and more advanced than that of the RADIUS protocol. The authors design a security model based on this protocol to conduct network management. The principle of this model is to use the extended features of EAP to force users to update the OS and the virus feature library. Using this model to implement network management can reduce objective threats of end users, reduce spam traffic, increase the payload of the network, and enhance the security of the network

    A Review of Authentication Protocols

    Get PDF
    Authentication is a process that ensures and confirms a users identity. Authorization is the process of giving someone permissions to do or have something. There are different types of authentication methods such as local password authentication, server-based-password authentication, certificate-based authentication, two-factor authentication etc. Authentication protocol developed for Password Authentication Protocol (PAP), Challenge-Handshake Authentication Protocol (CHAP), and Extensible Authentication Protocol (EAP). There are different types of application for authentications are as follows: 1.protocols developed for PPP Point-to-Point Protocol 2. Authentication, Authorization and Accounting 3.Kerberos

    Formalization and evaluation of EAP-AKA’ protocol for 5G network access security

    Get PDF
    The end user’s Quality of Experience (QoE) will be improved while accessing services in Fifth Generation Mobile Network (5G), supported by enhanced security and privacy. The security guarantees offered by the Authentication and Key Agreement (AKA) protocols will be depended upon by end users and network operators. The AKA protocols have been standardized for 5G networks, and the Extensible Authentication Protocol (EAP)-AKA’ protocol is one of the main authentication mechanisms that has been specified for User Equipment (UE) and network mutual authentication. This article models the EAP-AKA’ protocol and conducts an extensive formal verification of the EAP-AKA’ protocol as defined in the 5G security standard to determine whether the protocol is verifiably secure for 5G. It provides a security evaluation of the EAP–AKA’ protocol based on the current 5G specifications using ProVerif, a security protocol proof verifier. It also presents security properties that support the security verification, as well as quantitative properties that are used to assess the protocol’s performance. Finally, it compares the EAP-AKA’ and 5G-AKA protocols’ security and performance results

    Secure 3G user authentication in ad-hoc serving networks

    Get PDF
    The convergence of cellular and IP technologies has pushed the integration of 3G and WLAN networks to the forefront. With 3G networks\u27 failure to deliver feasible bandwidth to the customer and the emerging popularity, ease of use and high throughput of 802.11 WLANs, integrating secure access to 3G services from WLANs has become a primary focus. 3G user authentication initiated from WLANs has been defined by an enhancement to the extensible authentication protocol, EAP, used to transport user authentication requests over WLANs. The EAP-AKA protocol executes the 3G USIM user challenge and response authentication process over the IP backbone for WLAN serving networks. To improve the degree of control of 3G subscribers, spatial control has been proposed for 3G-WLAN user authentication. Successful execution of 3G security algorithms can be limited to a specified area by encrypting a user\u27s authentication challenge with spatial data defining his/her visited WLAN. With 3G networks\u27 limited capacity to determine a user\u27s location to the granularity of a small WLAN area and restricted access to users\u27 location due to privacy, 3G operators must rely on spatial data sent from visited WLANs to implement control for authentication. The risks of implementing EAP-AKA spatial control by 3G operators with no prior relationship or trust for serving WLAN networks are presented in this paper. An ad-hoc architecture is proposed for serving networks in 3G-WLAN integration and the advantages of this architecture that facilitate secure 3G user authentication are identified. Algorithms are proposed to define robust trust relationships between the parties in 3G-WLAN networks. The security of 3G user authentication is further protected by new mechanisms defined that are based on the quality of trust established between parties
    • 

    corecore