28 research outputs found

    Irreducible Triangulations are Small

    Get PDF
    A triangulation of a surface is \emph{irreducible} if there is no edge whose contraction produces another triangulation of the surface. We prove that every irreducible triangulation of a surface with Euler genus g1g\geq1 has at most 13g413g-4 vertices. The best previous bound was 171g72171g-72.Comment: v2: Referees' comments incorporate

    Diagonal Flips of Triangulations on Closed Surfaces Preserving Specified Properties

    Get PDF
    AbstractConsider a class P of triangulations on a closed surfaceF2, closed under vertex splitting. We shall show that any two triangulations with the same and sufficiently large number of vertices which belong to P can be transformed into each other, up to homeomorphism, by a finite sequence of diagonal flips through P. Moreover, if P is closed under homeomorphism, then the condition “up to homeomorphism” can be replaced with “up to isotopy.

    k-irreducible triangulations of 2-manifolds

    Get PDF
    This thesis deals with k-irreducible triangulations of closed, compact 2-manifolds without boundary. A triangulation is k-irreducible, if all its closed cycles of length less than k are nullhomotopic and no edge can be contracted without losing this property. k-irreducibility is a generalization of the well-known concept of irreducibility, and can be regarded as a measure of how closely the triangulation approximates a smooth version of the underlying surface. Research follows three main questions: What are lower and upper bounds for the minimum and maximum size of a k-irreducible triangulation? What are the smallest and biggest explicitly constructible examples? Can one achieve complete classifications for specific 2-manifolds, and fixed k

    Triangulated Manifolds with Few Vertices: Geometric 3-Manifolds

    Full text link
    We explicitly construct small triangulations for a number of well-known 3-dimensional manifolds and give a brief outline of some aspects of the underlying theory of 3-manifolds and its historical development.Comment: 48 pages, 18 figure

    Triangulating the Real Projective Plane

    Get PDF
    We consider the problem of computing a triangulation of the real projective plane P2, given a finite point set S={p1, p2,..., pn} as input. We prove that a triangulation of P2 always exists if at least six points in S are in general position, i.e., no three of them are collinear. We also design an algorithm for triangulating P2 if this necessary condition holds. As far as we know, this is the first computational result on the real projective plane

    Noncommutative marked surfaces

    No full text
    The aim of the paper is to attach a noncommutative cluster-like structure to each marked surface Σ\Sigma. This is a noncommutative algebra AΣ{\mathcal A}_\Sigma generated by "noncommutative geodesics" between marked points subject to certain triangle relations and noncommutative analogues of Ptolemy-Pl\"ucker relations. It turns out that the algebra AΣ{\mathcal A}_\Sigma exhibits a noncommutative Laurent Phenomenon with respect to any triangulation of Σ\Sigma, which confirms its "cluster nature". As a surprising byproduct, we obtain a new topological invariant of Σ\Sigma, which is a free or a 1-relator group easily computable in terms of any triangulation of Σ\Sigma. Another application is the proof of Laurentness and positivity of certain discrete noncommutative integrable systems.Comment: 49 pages, AmsLaTex, some typos are corrected and pictures updated, to appear in Advances in Mathematic

    Hopf triangulations of spheres and equilibrium triangulations of projective spaces

    Full text link
    Following work by the first author and Banchoff, we investigate triangulations of real and complex projective spaces of real and complex dimension kk that are adapted to the decomposition into "zones of influence" around the points [1,0,,0],[1,0,\ldots,0], ,\ldots, [0,,0,1][0,\ldots,0,1] in homogeneous coordinates. The boundary of such a "zone of influence" must admit a simplicial version of the Hopf decomposition of a sphere into "solid tori" of various dimensions. We present such {\em Hopf triangulations} of S2k1S^{2k-1} for k4k \leq 4, and give candidate triangulations for arbitrary kk. In the complex case, a crucial role of this construction is the central kk-torus as the intersection of all "zones of influence". Candidate triangulations of the kk-torus with 2k+112^{k+1}-1, k1k\geq 1, vertices -- possibly the minimum numbers -- are well known. They admit an involution acting like complex conjugation and an automorphism of order k+1k+1 realising the cyclic shift of coordinate directions in CPk\mathbb{C}P^k. For k=2k=2, this can be extended to what we call a {\em perfect equilibrium triangulation} of CP2\mathbb{C}P^2, previously described in the literature. We prove that this is no longer possible for k=3k=3, and no perfect equilibrium triangulation of CP3\mathbb{C}P^3 exists. In the real case, the central torus is replaced by its fixed-point set under complex conjugation: the vertices of a kk-dimensional cube. We revisit known equilibrium triangulations of RPk\mathbb{R}P^k for k2k\leq 2, and describe new equilibrium triangulations of RP3\mathbb{R}P^3 and RP4\mathbb{R}P^4. Finally, we discuss the most symmetric and vertex-minimal triangulation of RP4\mathbb{R}P^4 and present a tight polyhedral embedding of RP3\mathbb{R}P^3 into 6-space. No such embedding was known before.Comment: 31 pages, 8 figures, 5 pages of appendi

    Generalized Delaunay triangulations : graph-theoretic properties and algorithms

    Get PDF
    This thesis studies different generalizations of Delaunay triangulations, both from a combinatorial and algorithmic point of view. The Delaunay triangulation of a point set S, denoted DT(S), has vertex set S. An edge uv is in DT(S) if it satisfies the empty circle property: there exists a circle with u and v on its boundary that does not enclose points of S. Due to different optimization criteria, many generalizations of the DT(S) have been proposed. Several properties are known for DT(S), yet, few are known for its generalizations. The main question we explore is: to what extent can properties of DT(S) be extended for generalized Delaunay graphs? First, we explore the connectivity of the flip graph of higher order Delaunay triangulations of a point set S in the plane. The order-k flip graph might be disconnected for k = 3, yet, we give upper and lower bounds on the flip distance from one order-k triangulation to another in certain settings. Later, we show that there exists a length-decreasing sequence of plane spanning trees of S that converges to the minimum spanning tree of S with respect to an arbitrary convex distance function. Each pair of consecutive trees in the sequence is contained in a constrained convex shape Delaunay graph. In addition, we give a linear upper bound and specific bounds when the convex shape is a square. With focus still on convex distance functions, we study Hamiltonicity in k-order convex shape Delaunay graphs. Depending on the convex shape, we provide several upper bounds for the minimum k for which the k-order convex shape Delaunay graph is always Hamiltonian. In addition, we provide lower bounds when the convex shape is in a set of certain regular polygons. Finally, we revisit an affine invariant triangulation, which is a special type of convex shape Delaunay triangulation. We show that many properties of the standard Delaunay triangulations carry over to these triangulations. Also, motivated by this affine invariant triangulation, we study different triangulation methods for producing other affine invariant geometric objects.Esta tesis estudia diferentes generalizaciones de la triangulación de Delaunay, tanto desde un punto de vista combinatorio como algorítmico. La triangulación de Delaunay de un conjunto de puntos S, denotada DT(S), tiene como conjunto de vértices a S. Una arista uv está en DT(S) si satisface la propiedad del círculo vacío: existe un círculo con u y v en su frontera que no contiene ningún punto de S en su interior. Debido a distintos criterios de optimización, se han propuesto varias generalizaciones de la DT (S). Hoy en día, se conocen bastantes propiedades de la DT(S), sin embargo, poco se sabe sobre sus generalizaciones. La pregunta principal que exploramos es: ¿Hasta qué punto las propiedades de la DT(S) se pueden extender para generalizaciones de gráficas de Delaunay? Primero, exploramos la conectividad de la gráfica de flips de las triangulaciones de Delaunay de orden alto de un conjunto de puntos S en el plano. La gráfica de flips de triangulaciones de orden k = 3 podría ser disconexa, sin embargo, nosotros damos una cota superior e inferior para la distancia en flips de una triangulación de orden k a alguna otra cuando S cumple con ciertas características. Luego, probamos que existe una secuencia de árboles generadores sin cruces tal que la suma total de la longitud de las aristas con respecto a una distancia convexa arbitraria es decreciente y converge al árbol generador mínimo con respecto a la distancia correspondiente. Cada par de árboles consecutivos en la secuencia se encuentran en una triangulación de Delaunay con restricciones. Adicionalmente, damos una cota superior lineal para la longitud de la secuencia y cotas específicas cuando el conjunto convexo es un cuadrado. Aún concentrados en distancias convexas, estudiamos hamiltonicidad en las gráficas de Delaunay de distancia convexa de k-orden. Dependiendo en la distancia convexa, exhibimos diversas cotas superiores para el mínimo valor de k que satisface que la gráfica de Delaunay de distancia convexa de orden-k es hamiltoniana. También damos cotas inferiores para k cuando el conjunto convexo pertenece a un conjunto de ciertos polígonos regulares. Finalmente, re-visitamos una triangulación afín invariante, la cual es un caso especial de triangulación de Delaunay de distancia convexa. Probamos que muchas propiedades de la triangulación de Delaunay estándar se preservan en estas triangulaciones. Además, motivados por esta triangulación afín invariante, estudiamos diferentes algoritmos que producen otros objetos geométricos afín invariantes
    corecore