1,689 research outputs found

    A general formulation for fault detection in stochastic continuous-time dynamical systems

    Get PDF
    In this work, a general formulation for fault detection in stochastic continuoustime dynamical systems is presented. This formulation is based on the definition of a pre-Hilbert space so that orthogonal projection techniques, based on the statistics of the involved stochastic processes can be applied. The general setting gathers different existing schemes within a unifying framework

    A comparative analysis of fault detection schemes for stochastic continuous-time dynamical systems

    Get PDF
    This paper addresses a comparative analysis of the existing schemes for fault detection in continuous-time stochastic dynamical systems. Such schemes prove to be efficient when dealing with specific types of fault functions; on the other hand, they show very different performance sensitivity when dealing with new fault profiles and system noise. The study suggests the use of a combined scheme, supervised by a high level decision rule set

    Detection and Isolation of Simultaneous Additive and Parametric Faults in Nonlinear Stochastic Dynamical Systems

    Get PDF
    This paper presents a new fault detection and isolation scheme for dealing with simultaneous additive and parametric faults. The new design integrates a system for additive fault detection based on Castillo and Zufiria, 2009 and a new parametric fault detection and isolation scheme inspired in Munz and Zufiria, 2008 . It is shown that the so far existing schemes do not behave correctly when both additive and parametric faults occur simultaneously; to solve the problem a new integrated scheme is proposed. Computer simulation results are presented to confirm the theoretical studies

    A mathematical framework for new fault detection schemes in nonlinear stochastic continuous-time dynamical systems

    Get PDF
    n this work, a mathematical unifying framework for designing new fault detection schemes in nonlinear stochastic continuous-time dynamical systems is developed. These schemes are based on a stochastic process, called the residual, which reflects the system behavior and whose changes are to be detected. A quickest detection scheme for the residual is proposed, which is based on the computed likelihood ratios for time-varying statistical changes in the Ornstein–Uhlenbeck process. Several expressions are provided, depending on a priori knowledge of the fault, which can be employed in a proposed CUSUM-type approximated scheme. This general setting gathers different existing fault detection schemes within a unifying framework, and allows for the definition of new ones. A comparative simulation example illustrates the behavior of the proposed schemes

    Fault isolation schemes for a class of continuous-time stochastic dynamical systems

    Get PDF
    In this paper a new method for fault isolation in a class of continuous-time stochastic dynamical systems is proposed. The method is framed in the context of model-based analytical redundancy, consisting in the generation of a residual signal by means of a diagnostic observer, for its posterior analysis. Once a fault has been detected, and assuming some basic a priori knowledge about the set of possible failures in the plant, the isolation task is then formulated as a type of on-line statistical classification problem. The proposed isolation scheme employs in parallel different hypotheses tests on a statistic of the residual signal, one test for each possible fault. This isolation method is characterized by deriving for the unidimensional case, a sufficient isolability condition as well as an upperbound of the probability of missed isolation. Simulation examples illustrate the applicability of the proposed scheme

    Real-time spatio-temporal coherence estimation for autonomous mode identification and invariance tracking

    Get PDF
    A general method of anomaly detection from time-correlated sensor data is disclosed. Multiple time-correlated signals are received. Their cross-signal behavior is compared against a fixed library of invariants. The library is constructed during a training process, which is itself data-driven using the same time-correlated signals. The method is applicable to a broad class of problems and is designed to respond to any departure from normal operation, including faults or events that lie outside the training envelope

    Model-based fault diagnosis for aerospace systems: a survey

    No full text
    http://pig.sagepub.com/content/early/2012/01/06/0954410011421717International audienceThis survey of model-based fault diagnosis focuses on those methods that are applicable to aerospace systems. To highlight the characteristics of aerospace models, generic nonlinear dynamical modeling from flight mechanics is recalled and a unifying representation of sensor and actuator faults is presented. An extensive bibliographical review supports a description of the key points of fault detection methods that rely on analytical redundancy. The approaches that best suit the constraints of the field are emphasized and recommendations for future developments in in-flight fault diagnosis are provided
    corecore