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This paper presents a new fault detection and isolation scheme for dealing with simultaneous
additive and parametric faults. The new design integrates a system for additive fault detection
based on (Castillo and Zufiria, (2009)) and a new parametric fault detection and isolation scheme
inspired in (Münz and Zufiria, (2008)) . It is shown that the so far existing schemes do not behave
correctly when both additive and parametric faults occur simultaneously; to solve the problem
a new integrated scheme is proposed. Computer simulation results are presented to confirm the
theoretical studies.

1. Introduction

Motivated by the importance of safety in modern automated systems, fault detection and
isolation schemes have received an increasing attention in the last two decades [1–4]. As
opposed to costly hardware redundancy approaches, information redundancy schemes make
use of data processing and system modelling paradigms, leading to either data-driven
or model-based approaches. Among model-based fault diagnosis schemes, the FDI (Fault
Detection and Isolation) techniques of the control community make use of explicit analytical
models for redundancy checking [5].

The FDI analytical tools employed up to now can be classified into two main
categories. On the one hand, stochastic discrete-time model-based schemes inherited
from the signal estimation and linear control fields have successfully combined statistical
schemes with geometrical tools in the design and characterization of detection algorithms
for linear systems [1–3, 6]. Nevertheless, these schemes have limited applicability since
many real-world applications are grounded on the use of nonlinear models. On the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148664359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Mathematical Problems in Engineering

other hand, deterministic continuous-time schemes coming from the adaptive and robust
control community have proved to be suitable for nonlinear system modelling, where
detection algorithms rely on the use of observer-type schemes to generate residuals whose
profiles are evaluated [7–12]. In addition, some work has been performed in the design of
accommodation schemes [13] or, more generally, Fault Tolerant Control (FTC) design [14, 15]
that explicitly accounts for system nonlinearities and uncertainty [16, 17].

Recent research has also been focused on the design of diagnosis schemes for nonlinear
stochastic systems, in order to cope with system and measurement noise. These schemes, such
as the local approach [18], particle filters [19, 20], adaptive estimators [21], and hybrid system
estimation based schemes [22], rely on discrete-time stochastic models, and they are also very
computationally demanding, a major drawback for practical applications.

Alternatively, FDI schemes for continuous-time stochastic models have been recently
developed [23–27], which are computationally less demanding. These schemes can be
classified into two main categories: additive fault detectors [23, 24], and parametric fault
detectors and isolators [25]; each of them is based on different techniques and assumptions.
It is worth mentioning that further work has been carried out for implementing isolation
schemes for additive faults [28], complementing the results in [24]. Concerning the FDI
scheme for parametric faults in [25], it was valid for both detection and isolation. Although
both types of schemes can be seen under a single unifying framework [26, 29], each of them
was designed for addressing nonsimultaneous faults (either additive or multiplicative).

Complex real world systems are strongly interconnected, so that any subsystem failure
can rapidly propagate abnormal behavior to other subsystems generating as a result new
simultaneous failures [30–33]. Hence, additive and multiplicative faults are likely to occur
simultaneously.

This paper presents a new detection and isolation scheme valid for simultaneous
additive and parametric faults. The scheme makes use of improved versions of the methods
proposed in [23–25]. Since detection of additive faults is not significantly affected by the
presence of parametric faults, the work mainly focuses on the detection and isolation of
parametric faults, which are more likely to provide specific information on the location of
the system failure.

For doing so, we first show that the additive fault detection scheme proposed in [24]
is robust against parametric faults; then, we illustrate the limitations of the parametric fault
detection and isolation scheme proposed in [25]when additive faults are also present. Hence
an improvement of this last scheme is proposed to overcome the problem.

The paper is organized as follows. In Section 2, the general framework for fault
detection in nonlinear stochastic systems is presented. The existing schemes for detection
and isolation of single faults are explained in Section 3, whereas the new proposed detection
scheme is elaborated in Section 4. Section 5 illustrates the behavior of the presented scheme
via simulation examples. Concluding remarks are summarized in Section 6.

2. Problem Statement

We consider the following class of nonlinear stochastic dynamical systems:

ẋ(t) = Enx(t) + en
(
f(x(t), u(t), ϑ0, t) + η(t) + s(t − T0)φ(t)

)
,

y(t) = h(x(t), u(t), t),

x(0) = x0,

(2.1)
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with

En =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 · · · · · · 0
0 0 1 · · · 0

0 0 · · · . . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, en =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
...
0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.2)

which models, among other cases, any nth order nonlinear scalar system. Here, x(t) ∈ R
n

is the system state, which has known initial value x0 ∈ R
n; u(t) ∈ R

p is the control input;
the known function f ∈ C

1(Rn × R
p × R

m × R
+,R), which accordingly satisfies the Lipschitz

condition, also satisfies that for all x ∈ R
n it holds ‖f(x, u, ϑ, t)‖ ≤ C(1 + ‖x‖), for some

constant L and C, so that existence and uniqueness of solutions are guaranteed; f represents
the dynamics of the nominal model and has some parameters represented by ϑ0 ∈ R

m; the
random vector η : R

+ → R, which gathers external disturbances and modelling errors,
corresponds to a stochastic process of white Gaussian noise with autocorrelation function
Rη(t1, t2) = σηδ(t1 − t2) and noise intensity given by ση.

y(t) ∈ R
l is the measurable output, and the nonlinear mapping h : R

n × R
p × R

+ → R
l

can represent different output availability situations.
We assume that the pair f , h allows the construction of an observer that provides x̃

as an accurate estimate of x, that is, sample-wise ‖x̃ − x‖ ≤ εx; high gain observers [34, 35]
and Lipschitz observers [36] have been successfully employed for this purpose. This paper
mainly focused on the construction and the analysis of the so-called residual (to be explained
in the following section) and addresses its estimation, the statistics of the estimator as well as
the detectability and isolability conditions based on these statistics; hence, to simplify such
exposition, an exact reconstruction of the state x will be considered by assuming for the
remainder of the paper that εx = 0 (i.e., x̃ = x), which is a standard assumption for most
nonlinear FDI schemes, as discussed in Section 1.

Finally, the fault function φ : R
+ → R can represent an unknown additive fault and/or

a change in the parameters of the nominal part of the system, namely,

φ(t) = φa(t) + φp(t)

= φa(t) + φp(x(t), u(t), ϑ0, ϑ1, t)

= φa(t) + f(x(t), u(t), ϑ1, t) − f(x(t), u(t), ϑ0, t).

(2.3)

Note that the possible simultaneous occurrence of both types of faults, generating complex
φ(t) profiles, can make very difficult to unravel the fault origin.

The unit step function s(t − T0) is determined by T0, the instant of time when the fault
occurs. Note also that neither the postfailure parameter vector ϑ1 nor the time T0 is known.

2.1. Residual Construction

Generally speaking, a residual is any variable whose behavior changes significantly when a
fault occurs in the system. In this paper context, a (valid) residual will be a random variable
(or stochastic process) whose statistical properties do change after a fault.
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Under the assumption of full-state availability we can create a new state variable xc(t)
obtained from the following consistency equation:

ẋc(t) = −λ(xc(t) − xn(t)) + f(x(t), u(t), ϑ0, t), xc(0) = x0, (2.4)

where xc(t) ∈ R is the consistency checking state variable, and λ > 0 is a design constant.
Note that this equation makes use of the value of xn, the n-th component of state variable x,
in contrast to the estimated values usually employed in the design of observers. Subtracting
(2.4) from system (2.1)we get a new variable ε(t) = xn(t)−xc(t)which depends on the model
error and whose evolution is described by the following equation:

ε̇(t) = −λε(t) + η(t) + s(t − T0)φ(t), ε(0) = 0. (2.5)

The solution to this differential equation is

ε(t) =
∫ t

0
e−λ(t−τ)η(τ)dτ +

∫ t

0
e−λ(t−τ)s(τ − T0)φ(τ)dτ

= εη(t) + εφ(t),

(2.6)

where the model error ε(t) changes significantly after the occurrence of the fault (t > T0).
Due to this property, the variable ε(t) has usually been utilized as the fundamental signal to
construct valid residuals for detecting single faults. The algorithms for fault detection and
isolation analyze the signal ε(t) by studying its statistical properties and its similarity with
other reference signals. We will see that, when simultaneous faults do occur, ε(t) requires a
more elaborated processing due to its potentially complex evolution.

3. Single Fault Detection Schemes

In this section, some existing schemes for the detection of single faults (either additive or
parametric) are illustrated. The exposition is aimed to highlight those analytical aspects
which will become relevant when designing the new improved scheme to be presented in
Section 4.

3.1. The Single Additive Fault Case

The scheme in [24] analyzes the residual when φ(t) = φa(t) and detects the additive faults
under, roughly speaking, the unique condition that E[φ(t)] > ε > 0 (or alternatively, E[φ(t)] <
ε < 0) for all t > T0 (see [24] for details). In addition, isolation schemes can be implemented
assuming some conditions on the set of possible additive faults [28].

In general, these existing detection schemes will not be critically affected by the
occurrence of a simultaneous parametric fault. Hence, we will see that the existing algorithms
can be directly integrated into the new scheme proposed in Section 4.
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3.2. Analysis of the Single Parametric Fault Case

Under the assumption that a single parametric fault occurs, that is, φ(t) = φp(t), this section
presents the main results from [25], needed for the posterior analysis of the simultaneous
fault case.

3.2.1. Characterization of the Fault Function

The scheme in [25] constructs a residual based on the signal εφp , using also the a priori
knowledge about the fault function φp(t). The knowledge of such residual is limited due
the unknown value of parameter ϑ1 as well as the unknown instant of time T0.

In [25], a finite set of fault classes Θ is defined, and it is assumed that any faulty
parameter vector ϑ1 belongs to one and just one of those classes. Furthermore, there exists
a known function ϕ(x, u, ϑ0,Δϑ, t) such that

φp(x, u, ϑ0, ϑ1, t) = kϕ(x, u, ϑ0,Δϑ, t), (3.1)

where Δϑ ∈ R
m is a known vector specific of the fault class, and k ∈ R is an unknown

constant that depends on which particular faulty parameter of the class has occurred. Note
also that since the profile of ϕ(x, u, ϑ0,Δϑ, t) depends on x(t) it is also affected by T0. This last
dependence can be minimized by assuming that T0 is large enough so that the system evolves
within (or nearby) its ω-limit set. Thus, a set of possible fault classes can be defined, and
the fault function φp(t) will be approximately known for each ϑ1 except for a multiplicative
constant k.

The fact that T0 is unknown implies another limitation when computing the integrals;
this fact leads to an approximation by defining

φLP (t) =
∫ t

0
e−λ(t−τ)φp(τ)dτ = k

∫ t

0
e−λ(t−τ)ϕp(τ)dτ = kϕLP (t), (3.2)

so that, for small parameter variations, the second summand of (2.6) satisfies εφp(t) =
kϕLP (t) − e−λ(t−T0)kϕLP (T0), where limt→∞(εφp(t) − kϕLP (t)) = 0, meaning that

εφp(t) ∼ kϕLP (t). (3.3)

As it will be shown in Section 4, alternative reference signals can be constructed to reduce the
error associated with this approximation (3.3).

3.2.2. Residual Generation

After dealing with the unknown quantities, one can define the residual signal [25]:

cosαϕε(t) =

〈
ε, ϕLP

〉
T∥∥ϕLP

∥∥
T‖ε‖T

, with
〈
ε, ϕLP

〉
T =

1
T

∫ t

t−T
E
{
ε(τ)ϕLP (τ)

}
dτ. (3.4)
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This residual, called moving angle, allows to formulate hypothesis test on it:

H0 : cosαϕεH0
(t) =

〈
ϕLP , εH0

〉
T (t)∥

∥ϕLP

∥
∥
T (t)‖εH0‖T (t)

= 0,

H1 : cosαϕεH1
(t) =

〈
ϕLP , εH1

〉
T (t)∥

∥ϕLP

∥
∥
T (t)‖εH1‖T (t)

=
(1/T)

∫ t
t−T ϕLP (τ)E[εH1(τ)]dτ

∥
∥ϕLP

∥
∥
T (t)
√
(1/T)

∫ t
t−T E
[
ε2H1

(τ)
]
dτ

∼
∥
∥kϕLP

∥
∥2
T (t)

∥
∥kϕLP

∥
∥
T (t)
√∥
∥kϕLP

∥
∥2
T (t) + Rε

=
k

√
k2 + Rε/

∥
∥ϕLP

∥
∥2
T (t)

,

(3.5)

where εH0(t) = εη(t) and εH1(t) = εη(t) + εφp(t). The moving angle changes significantly when
there is a change in the system conditions from H0 (no fault) to H1 (fault), a behavior that
corresponds to a good residual. In a practical application one can only calculate an estimation
of the integral in (3.4)

〈
ε, ϕLP

〉
T,S =

1
T

∫ t

t−T
ε(τ)ϕLP (τ)dτ, (3.6)

so the moving angle estimation is

cos α̂ϕε(t) =

〈
ε, ϕLP

〉
T,S∥∥ϕLP

∥∥
T,S‖ε‖T,S

. (3.7)

Note that such estimator is defined by a quotient of the form g = X/
√
Y , where X and Y are

random variables; hence its expected value and variance can be computed upon [37]

E
[
g
] ∼ E[X]
√
E[Y ]

− Cor[X,Y ]

2
√
E[Y ]3

+
3E[X]Var[Y ]

8
√
E[Y ]5

,

Var
[
g
] ∼ Var[X]

E[Y ]
− Cor[X,Y ]E[X]

E[Y ]2
+
E[X]2 Var[Y ]

4E[Y ]3
.

(3.8)

Applying this result to (3.7), with ‖ϕLP‖T,S deterministic and X = 〈ϕLP , ε〉T,S,
Y = ‖ε‖2T,S, we obtain the expressions shown in Table 1 (where Var[X | H0] =

(1/T2)
∫ t
t−T
∫ t
t−T ϕLP (τ1)ϕLP (τ2)Rε(τ1, τ2)dτ1 dτ2).
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Then, the resulting expressions for the estimator moments under the different
hypotheses are

E
[
cos α̂ϕε̃H0

]
= 0,

Var
[
cos α̂ϕε̃H0

]
=

Var[X | H0]
∥
∥ϕLP

∥
∥2
TRε

,

E
[
cos α̂ϕLP ε̃H1

]
∼ 1
∥
∥ϕLP

∥
∥
T

√
Rε + k2

∥
∥ϕLP

∥
∥2
T

×

⎛

⎜
⎝k
∥
∥ϕLP

∥
∥2
T − 2kVar[X | H0]

2
(
Rε + k2

∥
∥ϕLP

∥
∥2
T

)+

+
3k
∥∥ϕLP

∥∥2
T

((
R2

ε/λ
2T2)(2λT − 1) + 4k2 Var[X | H0]

)

8
(
Rε + k2

∥∥ϕLP

∥∥2
T

)2

⎞

⎟
⎠,

Var
[
cos α̂ϕε̃H1

]
∼ 1
∥∥ϕLP

∥∥
T

(
Rε + k2

∥∥ϕLP

∥∥2
T

)

×

⎛

⎜
⎝Var[X | H0] − 2k3

∥∥ϕLP

∥∥2
T Var[X | H0]

(
Rε + k2

∥∥ϕLP

∥∥2
T

)

+
k2
∥∥ϕLP

∥∥4
T

((
R2

ε/λ
2T2)(2λT − 1) + 4k2 Var[X | H0]

)

4
(
Rε + k2

∥∥ϕLP

∥∥2
T

)2

⎞

⎟
⎠.

(3.9)

Based on these deterministic quantities we can construct γ confidence intervals of cos α̂ϕε̃(t)
under both hypotheses H0 and H1:

Δcos α̂ϕεH0
=
[
cosαϕεH0

, cosαϕεH0

]
,

Δcos α̂ϕεH1
=
[
cosαϕεH1

, cosαϕεH1

]
,

Δcos α̂ϕεH0
∩Δcos α̂ϕεH1

= ∅,

(3.10)

where

cosαϕεH0
≈ E
[
cos α̂ϕεH0

]
− hγ/2

√

Var
[
cos α̂ϕεH0

]
,

cosαϕεH0
≈ E
[
cos α̂ϕεH0

]
+ hγ/2

√

Var
[
cos α̂ϕεH0

]
,

cosαϕεH1
≈ E
[
cos α̂ϕεH1

]
− hγ/2

√

Var
[
cos α̂ϕεH1

]
,

cosαϕεH1
≈ E
[
cos α̂ϕεH1

]
+ hγ/2

√

Var
[
cos α̂ϕεH1

]
.

(3.11)
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These confidence intervals ensure that the estimator will take values on each one of them
with probability γ when the system is operating under the corresponding hypotheses. The
detection scheme is triggered when the residual estimator enters the interval corresponding
toH1 (see [25] for details).

4. The New Simultaneous Fault Detection and Isolation Scheme

When simultaneous faults occur, they may disguise each other’s effects, increasing the
difficulty of their detection; in such case, existing schemes for a separate fault detection may
not work. In this Section, the simultaneous fault case is considered, and a new scheme for
addressing this problem is proposed. The proposed detection scheme integrates improved
versions of the algorithms proposed in [24] for additive faults and the one presented in [25]
for parametric ones.

4.1. Analysis of the Simultaneous Fault Situation

As mentioned in Section 1, simultaneous faults are likely to occur in real-world systems.
Nevertheless, most standard FDI schemes assume that only one single fault occurs at a
time. In some specific cases, separation mechanisms have been developed [9], which are
not directly applicable in general. Here, we analyze the schemes presented in [24, 25] under
simultaneous additive and parametric faults.

If a parametric and an additive fault occur at the same time (we label this hypothesis
of simultaneous faults asHsim

1 ), (2.6) becomes

ε̇(t) = −λε(t) + η(t) + s(t − T0)
(
φp(t) + φa(t)

)
, (4.1)

where φp(t) is the parametric fault function 2 and φa(t) is a stochastic process with constant
mean E[φa(t)] = φa, ∀t. The solution of this stochastic differential equation has three
summands

εHsim
1
(t) = εH0(t) + εφa(t) + εφp(t). (4.2)

4.2. Additive Fault Detection Scheme

As mentioned above, the scheme in [24] analyzes the residual ε(t) and detects the additive
faults under, roughly speaking, the unique condition that E[φ(t)] > ε > 0 (or alternatively,
E[φ(t)] < ε < 0) for all t > T0. In general, when φa(t) satisfies the detectability condition,
such that |E[φa(t)]| = |φa| > ε, it is very unlikely that a parametric fault would generate a
significant value of E[φp(t)] that would precisely compensate and mask the additive term. In
practice, the errors caused by (initially small) parameter variations imply that E[φp(t)] ≈ 0,
so that E[φ(t)] ≈ E[φa(t)], and the additive fault detection scheme will not be affected by
such simultaneous parametric faults.

The main challenge then becomes to detect and isolate the parametric faults in such
working environment (E[φp(t)] ≈ 0). Interestingly, the profile of φp(t)may allow for the fault
detection and isolation, as shown below.
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Table 1: Statistics of magnitudes X and Y under theH0 and H1 hypotheses.

Hypothesis H0 H1

E[X] 0 k
∥∥ϕLP

∥∥2
T,S

Var[X] Var[X | H0] Var[X | H0]
E[Y ] Rε k2

∥∥ϕLP

∥∥2
T,S + Rε

Var[Y ]
R2

ε

λ2T2 (2λT − 1)
R2

ε

λ2T2 (2λT − 1) + 4k2 Var[X | H0]

Cor[X,Y ] 0 2kVar[X | H0]

4.3. Parametric Fault Residuals for Simultaneous Case

As it is shown below, the parametric fault detection and isolation scheme presented in [25] are
likely to be disturbed by the occurrence of simultaneous additive faults disguising parametric
faults. In the following section we modify such scheme in order to reduce its sensitivity to
these additive faults.

Assuming that the extra summand asymptotically behaves

εφa(t) =
∫ t

0
e−λ(t−τ)s(τ − T0)φa(τ)dτ =

φae
λ−t

λ

[
eλt
]t

T0

=
φa

λ

(
1 − eλ(T0−t)

)
∼ φa

λ
= kφa .

(4.3)

So the model error under hypothesis Hsim
1 tends to

εHsim
1
(t) ∼ εH0(t) + kφa + kϕLP (t). (4.4)

Hence, the moving angle takes the following asymptotic expression:

cosαϕε
Hsim
1

∼
〈
εH0 + kφa + kϕLP , ϕLP

〉

∥∥ϕLP

∥∥
T

√〈
εH0 + kφa + kϕLP , εH0 + kφa + kϕLP

〉 . (4.5)

We observe that the additive fault affects both the numerator and the denominator of the
moving angle. Once again this quantity has to be estimated, and its statistics are calculated.
The components of the expressions of the expected value and the variance are shown in
Table 2 (where ϕLP = (1/T)

∫ t
t−T ϕLP (τ)dτ and Vϕε = (1/T2)

∫∫ t
t−TϕLP (τ1)Rε(τ1, τ2)dτ1dτ2).

When compared to Table 1, several new additive terms show up in Table 2. This fact
limits the performance of the estimator under hypotheses Hsim

1 as compared to the case H
p

1
(single parametric fault); fortunately, some approximations can be made. In fact, under the
hypothesis of small parameter variation (E[φp(t)] ≈ 0), we have that even if ϕLP (t) might
oscillate, the ergodicity assumption justifies that ϕLP evolves in a smaller range so that the
corresponding terms can be neglected; hence, the most significant term is k2

φa
, due to the

additive fault, so that Table 2 can be simplified to Table 3.
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Table 2: Statistics of magnitudes X and Y under theHsim
1 hypotheses.

Hypothesis Hsim
1

E[X] kφa
ϕLP + k

∥∥ϕLP

∥∥2
T

Var[X] Var[X | H0]
E[Y ] Rε + k2

φa
+ k2
∥∥ϕLP

∥∥2
T + 2kkφaϕLP

Var[Y ]
R2

ε

λ2T2
(2λT − 1) + 4k2 Var[X | H0] + 8kkφa

Vϕε +
8k2

φa
Rε

T2λ2

(
−T2λ2

4
+ λT − 1

)

Cor[X,Y ] 2kVar[X | H0] + 2kφa
Vϕε

Table 3: Simplified statistics of magnitudes X and Y under theHsim
1 hypotheses.

Hypothesis Hsim
1

E[X] k
∥∥ϕLP

∥∥2
T

Var[X] Var[X | H0]
E[Y ] Rε + k2

∥∥ϕLP

∥∥2
T + k2

φa

Var[Y ]
R2

ε

λ2T2
(2λT − 1) + 4k2 Var[X | H0]

Cor[X,Y ] 2kVar[X | H0]

Using this approximation, the expected value and variance of the estimator under
hypothesis Hsim

1 are

E

[
cos α̂ϕε̃

Hsim
1

]

∼ 1
∥
∥ϕLP

∥
∥
T

√
Rε + k2

∥
∥ϕLP

∥
∥2
T
+ k2

φa

×

⎛

⎜
⎝k
∥
∥ϕLP

∥
∥2
T
− 2kVar[X | H0]

2
(
Rε + k2

∥
∥ϕLP

∥
∥2
T
+ k2

φa

)

+
3k
∥
∥ϕLP

∥
∥2
T

((
R2

ε/λ
2T 2)(2λT − 1) + 4k2 Var[X | H0] +

(
8k2

φa
Rε/T

2λ2
)(−T 2λ2/4 + λT − 1

))

8
(
Rε + k2

∥∥ϕLP

∥∥2
T
+ k2

φa

)2

⎞

⎟
⎠,

Var
[
cos α̂ϕε̃

Hsim
1

]

∼ 1
∥
∥ϕLP

∥
∥
T

(
Rε + k2

∥
∥ϕLP

∥
∥2
T
+ k2

φa

)

×

⎛

⎜
⎝Var[X | H0] −

2k3
∥
∥ϕLP

∥
∥2
T
Var[X | H0]

(
Rε + k2

∥
∥ϕLP

∥
∥2
T
+ k2

φa

)

+
k2
∥
∥ϕLP

∥
∥4
T

((
R2

ε/λ
2T 2)(2λT − 1) + 4k2 Var[X | H0] +

(
8k2

φa
Rε/T

2λ2
)(−T 2λ2/4 + λT − 1

))

4
(
Rε + k2

∥
∥ϕLP

∥
∥2
T
+ k2

φa

)2

⎞

⎟
⎠.

(4.6)
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Both these quantities are considerably different compared to their counterparts under
hypothesis H

p

1 . Thus, the γ confidence interval under hypotheses Hsim
1 and H

p

1 verifies
Δcos α̂ϕε

Hsim
1

/=Δcos α̂ϕε
H
p
1

. This fact causes several detection problems, since the detection scheme

checks if the estimator belongs to Δcos α̂ϕε
H
p
1

to trigger the alarm; however, under the Hsim
1

hypothesis it will belong to Δcos α̂ϕε
Hsim
1

with probability γ .

4.4. Improvements on the Detection Scheme

The scheme presented in [25] has been improved in two directions. On the one hand, the
reference signals have been obtained in a way that reduces the error associated with the
approximation in (3.3); on the other hand, the influence of the additive error has been
minimized via an appropriate filtering of ε(t).

4.4.1. Improving the Reference Signal

The reference signal proposed in [25]

φLP (t) =
∫ t

0
e−λ(t−τ)φp(τ)dτ, (4.7)

is computed integrated from the 0 initial time, since the real value of T0 is unknown.
Nevertheless, it is possible to define a new reference signal

φLP,T0(t) =
∫ t

T0

e−λ(t−τ)φp(τ)dτ, (4.8)

where T0 can be dynamically chosen, for instance, as T0 = t−T the lower bound of the interval
[t−T, t]where the moving angle is defined. The value of T0 is likely to be closer to T0 than the
0 value. Hence,

εφp(t) = kϕLP,T0(t) − e−λ(t−T0)kϕLP,T0(T0), (4.9)

and, if the faults occur in the interval [t−T, t] � T0, then |T0−T0| < T , and we obtain the bound

∣∣∣ϕLP,T0(T0)
∣∣∣ ≤
∥∥ϕp(τ)

∥∥∞
[t−T,t] · T, (4.10)

so that the term e−λ(t−T0)kϕLP,T0(T0)will be small. This means that the new approximation

εφp(t) ∼ kϕLP,T0(t), (4.11)

will have, in general, a smaller error than (3.3); this fact justifies the good performance of the
newly proposed reference signals.
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4.4.2. Eliminating the Additive Term Influence

The analysis in Section 4.3 shows that the detection scheme presented in [25] does not work
correctly under hypothesis Hsim

1 because of the influence of k2
φa
. Note that equality (4.4)

demonstrates that asymptotically kφa is a constant term added to ε(t). Thus, one way to
vanish its effect is to low pass filter ε(t). Let ε̂(t) be a filtered version of ε(t):

ε̂(t) = ε(t) − 1
T

∫ t

t−T
ε(τ)dτ. (4.12)

In this case, under hypothesis Hsim
1 we have

ε̂Hsim
1
(t) = εH0(t) + εφa(t) + kϕLP (t) − 1

T

∫ t

t−T
εH0(τ)dτ − 1

T

∫ t

t−T
εφa(τ)dτ − 1

T

∫ t

t−T
ϕLP (τ)dτ

= εH0(t) + kϕLP (t) − εH0(t) − ϕLP (t).
(4.13)

Since E[εH0(t)] = 0, the ergodicity assumption allows us to consider εH0(t) ≈ 0. Hence,
the statistics of the estimator of the moving angle are now calculated using the elements
of Table 4, where

Vϕ2ε =
1
T2

∫∫ t

t−T
ϕLP (τ1)ϕLP (τ2)Rε(τ1, τ2)dτ1dτ2,

Vϕϕε =
1
T2

∫∫ t

t−T
ϕLP (τ1)ϕLP (τ2)Rε(τ1, τ2)dτ1dτ2.

(4.14)

Comparing this table to Table 2, one can see that the term kφa does not show up in any term.
Finally, under the usual conditions mentioned in Section 4.2 (E[φp(t) ≈ 0, and ergodicity), we
have that ϕLP ≈ 0, so that the terms involving ϕLP (i.e., 〈ϕLP , ϕLP〉, 〈ϕLP , ϕLP〉, Vϕ2ε, and Vϕϕε)
are negligible. Hence, the expected value and the variance of the moving angle satisfy

E

[
cosαϕε

H
p
1

]
≈ E
[
cosαϕε

Hsim
1

]
,

Var
[
cosαϕε

H
p
1

]
≈ Var

[
cosαϕε

Hsim
1

]
,

(4.15)

meaning that the new detection and isolation procedures proposed here can be successfully
applied.

It is worth mentioning that the new resulting scheme is applicable to simultaneous
faults composed by additive and parametric faults that satisfy similar detectability and
isolability conditions to the ones stated in [24, 25], respectively. Concerning detection and
isolation times, although the filtering process may slightly delay the responses, in general
the detection and isolation times are similar to the original schemes times, as shown in the
following example.
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Table 4: Statistics of the magnitudes X and Y under theHsim
1 hypotheses after the filtering process.

Hypothesis Hsim
1

E[X] k
∥∥ϕLP

∥∥2
T − 〈ϕLP , ϕLP〉

Var[X] Var[X | H0]
E[Y ] Rε + k2

∥∥ϕLP

∥∥2
T + 〈ϕLP , ϕLP〉 − 2k〈ϕLP , ϕLP〉

Var[Y ]
R2

ε

λ2T2
(2λT − 1) + 4k2 Var[X | H0] + 4Vϕ2ε − 8kVϕϕε

Cor[X,Y ] 2kVar[X | H0] − 2Vϕϕε

Finally, note that such detection and isolation times do have a clear impact on the fault
accommodation strategy to be applied [13].

5. Application Example

5.1. Simulation Setup

Here the correct behavior of the work presented in the previous sections is illustrated with
the Van der Pol oscillator (VdPO) ÿ + 2ωζ(μy2 − 1)ẏ + ω2y = 0 via simulations with Matlab
Simulink. The election of this system has also been made in other works on deterministic
system fault diagnosis [38] as well as in the study of stochastic systems [24, 25] as it is the
case here.

The VdPO describes an LC oscillator with nonlinear resistive element such as a tunnel
diode. The output y represents the voltage at the inductor, whereas ẏ is the current through
this inductor. In this simulation, it is considered that all electrical elements are not ideal
(e.g., due to change of temperature) but stochastically varying. Consequently, we obtain the
following state space representation of the VdPO:

ẋ1 = x2(t) + η1(t), (5.1)

ẋ2 = 2ωζ
(
1 − μx2

1

)
x2 −ω2x1 + η2(t), (5.2)

where ηi, i = 1, 2 are normalized white Gaussian noise with zero mean and auto correlation
Rηi(t1, t2) = δ(t1 − t2). We assume that both states are measurable as indicated in Section 2.
The system function is f(x, u, θ, t) = 2ωζ(1 − μx2

1)x2 −ω2x1 with θ = [ω, ζ, μ]T .
This system presents a nice feature: it is linear in ζ and μ and nonlinear in ω. Hence,

fault functions that are both linear and nonlinear in Δθ can be investigated; in this example
we focus on the detection of faults on the nonlinear parameter, ω. Moreover, the oscillator
runs on stable limit cycles for ω, ζ, μ > 0, which do change slightly for small parameter
changes. Despite this fact, the detection scheme presented in [25] successfully detects these
single faults.

A fault class is defined for the ω parameter whose corresponding representative is

ϕw(x, u, θ0,Δω, t) = Δω
(
2ζ0
(
1 − μ0x

2
1

)
x2 − 2ω0x1

)
. (5.3)
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Table 5: Relevant simulation parameters.

Parameter Value
T 10
λ 25
T0 15
ω0 1
Δω 0.25
φa(t) 1
s(t) u(t)

Note that since f is nonlinear in ω, ϕω is only a linearization. The consistency equation is:

˙̂x2 = −λ(x̂2 − x2) + 2ω0ζ0
(
1 − μ0x

2
1

)
x2 −w2

0x1. (5.4)

The simulation parameters are presented in Table 5. Note that only small changes in the ω
parameter are to be detected; in this example it will be a 25% of the maximum change in ω0.
The value considered for the additive fault φa(t) is also small. λ has been chosen rather big in
order to reduce Rε, and T has been chosen such that several periods of the oscillator output
are included in the integration range.

5.2. Simulation Results

Figure 1 gives an overview of the behavior of the system, the representative, its mean, and
the additive fault before and after the simultaneous fault (these quantities are not affected
by the presence of the filter). The state space values do not change significantly due to the
fault. Yet, the error function suffers a significant change when the fault occurs. It can be
observed that the mean of the representative function is one order of magnitude less than
such representative function: this result matches the fact that this mean has been neglected
in the theoretical analysis. Note that these representative values are much smaller than the
abrupt additive fault function represented in the last plot; this fact supports the validity of
the new scheme.

On the other hand, Figure 2 shows the behavior of the estimator for the existing
scheme (top figure) and for the new proposed scheme (bottom figure). It is clear that when
a simultaneous fault occurs and the old detector/isolator is employed, the estimators do
change due to the parametric fault but not enough to get out the upper boundary of the
decision region (grey line in the figure). This undesirable situation is not encountered when
the new detector/isolator is applied, as it can be seen in the bottom figure; there, the additive
fault does not disguise the effect of the parametric one, and the estimators do change beyond
the boundary of the decision region, demonstrating the improved behavior of the new
proposed scheme.

6. Conclusions

A new scheme for the detection and isolation of simultaneous additive and parametric faults
in nonlinear stochastic dynamical systems has been presented. A theoretical analysis has been
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Figure 1: Behavior of the states x1, x2, the error function ε, the representative ϕLPω, its mean ϕLPω, and the
additive fault function φa(t) of a simulation with a parameter change in ω at T0 = 15.
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Figure 2: Behavior of the estimator cos α̂ϕωε(t) (black solid line) and the upper boundary cosαϕωεH0
(grey

solid line) of the decision region when a simultaneous fault occurs at T0 = 15 and the old detector/isolator
(top figure) or the new proposed detector/isolator is applied (bottom figure).

developed to highlight the limitations of the existing detection/isolation schemes when such
types of simultaneous faults occur. Based on the analytical studies, a new detector/isolator
has been designed which integrates improved versions of the existing schemes. Comparative
simulations have supported the theoretical results by showing the good performance of the
new detector/isolator as opposed to the previously existing schemes.
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