181 research outputs found

    Efficiency Resource Allocation for Device-to-Device Underlay Communication Systems: A Reverse Iterative Combinatorial Auction Based Approach

    Full text link
    Peer-to-peer communication has been recently considered as a popular issue for local area services. An innovative resource allocation scheme is proposed to improve the performance of mobile peer-to-peer, i.e., device-to-device (D2D), communications as an underlay in the downlink (DL) cellular networks. To optimize the system sum rate over the resource sharing of both D2D and cellular modes, we introduce a reverse iterative combinatorial auction as the allocation mechanism. In the auction, all the spectrum resources are considered as a set of resource units, which as bidders compete to obtain business while the packages of the D2D pairs are auctioned off as goods in each auction round. We first formulate the valuation of each resource unit, as a basis of the proposed auction. And then a detailed non-monotonic descending price auction algorithm is explained depending on the utility function that accounts for the channel gain from D2D and the costs for the system. Further, we prove that the proposed auction-based scheme is cheat-proof, and converges in a finite number of iteration rounds. We explain non-monotonicity in the price update process and show lower complexity compared to a traditional combinatorial allocation. The simulation results demonstrate that the algorithm efficiently leads to a good performance on the system sum rate.Comment: 26 pages, 6 fgures; IEEE Journals on Selected Areas in Communications, 201

    A Comprehensive Review of D2D Communication in 5G and B5G Networks

    Get PDF
    The evolution of Device-to-device (D2D) communication represents a significant breakthrough within the realm of mobile technology, particularly in the context of 5G and beyond 5G (B5G) networks. This innovation streamlines the process of data transfer between devices that are in close physical proximity to each other. D2D communication capitalizes on the capabilities of nearby devices to communicate directly with one another, thereby optimizing the efficient utilization of available network resources, reducing latency, enhancing data transmission speed, and increasing the overall network capacity. In essence, it empowers more effective and rapid data sharing among neighboring devices, which is especially advantageous within the advanced landscape of mobile networks such as 5G and B5G. The development of D2D communication is largely driven by mobile operators who gather and leverage short-range communications data to propel this technology forward. This data is vital for maintaining proximity-based services and enhancing network performance. The primary objective of this research is to provide a comprehensive overview of recent progress in different aspects of D2D communication, including the discovery process, mode selection methods, interference management, power allocation, and how D2D is employed in 5G technologies. Furthermore, the study also underscores the unresolved issues and identifies the challenges associated with D2D communication, shedding light on areas that need further exploration and developmen

    Multi-cell interference management in In-band D2D communication under LTE-A network

    Get PDF
    Device-to-Device (D2D) communication is an active research area. As a part of this active research area, Device-to-Device (D2D) communication is largely exploited in Out-band non-cellular technologies, such as, Bluetooth or Wi-Fi network. However, it has not been fully incorporated into existing cellular networks. Interference management is the main challenge of this technology as it generates both intra and inter-cell interference resulting in severe network performance degradation. eNodeBs with high transmit power usually affects D2D user equipments (UEs) with high interference. It usually incurs severe interference to the cellular UEs and to the base station (eNB). The scenario becomes more critical in case of multi-cell environment, which is the main research focus in this paper. In order to encourage and increase frequent use of D2D communications, some changes in the network configuration are required for today’s networking scenario. Flexible multi-cell D2D communication is required to reduce the network load. Interference management techniques are necessary in parallel to make the communication smooth, efficient and effective.This paper reviews multi-cell interference in In-Band D2D communications and investigates interference mitigation techniques in scenarios where two or more similar or different devices under same eNB or from two different eNBs can be connected as a D2D pair without compromising user experience and quality of service standard. These issues cannot be guaranteed by the current applications operated on unlicensed frequency band. The research also addresses the following related issues: mode selection, resource allocation (both for cellular and D2D environment), power control (both for eNB and D2D pair), and flexible frequency allocation techniques. The research aims to look at other issues, such as, achieving high SINR, improved system capacity, better throughput and transmission rate

    A Study on Device To Device Communication in Wireless Mobile Network

    Full text link
    Volume 3 Issue 3 (March 2015

    Interference mitigation in D2D communication underlaying LTE-A network

    Get PDF
    The mobile data traffic has risen exponentially in recent days due to the emergence of data intensive applications, such as online gaming and video sharing. It is driving the telecommunication industry as well as the research community to come up with new paradigms that will support such high data rate requirements within the existing wireless access network, in an efficient and effective manner. To respond to this challenge, device-to-device (D2D) communication in cellular networks is viewed as a promising solution, which is expected to operate, either within the coverage area of the existing eNB and under the same cellular spectrum (in-band) or separate spectrum (out-band). D2D provides the opportunity for users located in close proximity of each other to communicate directly, without traversing data traffic through the eNB. It results in several transmission gains, such as improved throughput, energy gain, hop gain, and reuse gain. However, integration of D2D communication in cellular systems at the same time introduces new technical challenges that need to be addressed. Containment of the interference among D2D nodes and cellular users is one of the major problems. D2D transmission radiates in all directions, generating undesirable interference to primary cellular users and other D2D users sharing the same radio resources resulting in severe performance degradation. Efficient interference mitigation schemes are a principal requirement in order to optimize the system performance. This paper presents a comprehensive review of the existing interference mitigation schemes present in the open literature. Based on the subjective and objective analysis of the work available to date, it is also envisaged that adopting a multi-antenna beamforming mechanism with power control, such that the transmit power is maximized toward the direction of the intended D2D receiver node and limited in all other directions will minimize the interference in the network. This could maximize the sum throughput and hence, guarantees the reliability of both the D2D and cellular connections

    Efficient Device to Device Communications Underlaying Heterogeneous Networks

    Get PDF
    Device-to-Device communications have the great potential to bring significant performance boost to the conventional heterogeneous network by reusing cellular resources. In cellular networks, Device-to-Device communication is defined as two user equipments in a close range communicating directly with each other without going through the base station, thus offloading cellular traffic from cellular networks. In addition to improve network spectral efficiency, D2D communication can also improve energy efficiency and user experience. However, the co-existence of D2D communication on the same spectrum with cellular users can cause severe interference to the primary cellular users. Thus the performance of cellular users must be assured when supporting underlay D2D users. In this work, we have investigated cross-layer optimization, resource allocation and interference management schemes to improve user experience, system spectral efficiency and energy efficiency for D2D communication underlaying heterogeneous networks. By exploiting frequency reuse and multi-user diversity, this research work aims to design wireless system level algorithms to utilize the spectrum and energy resources efficiently in the next generation wireless heterogeneous network

    Benchmarking Practical RRM Algorithms for D2D Communications in LTE Advanced

    Full text link
    Device-to-device (D2D) communication integrated into cellular networks is a means to take advantage of the proximity of devices and allow for reusing cellular resources and thereby to increase the user bitrates and the system capacity. However, when D2D (in the 3rd Generation Partnership Project also called Long Term Evolution (LTE) Direct) communication in cellular spectrum is supported, there is a need to revisit and modify the existing radio resource management (RRM) and power control (PC) techniques to realize the potential of the proximity and reuse gains and to limit the interference at the cellular layer. In this paper, we examine the performance of the flexible LTE PC tool box and benchmark it against a utility optimal iterative scheme. We find that the open loop PC scheme of LTE performs well for cellular users both in terms of the used transmit power levels and the achieved signal-to-interference-and-noise-ratio (SINR) distribution. However, the performance of the D2D users as well as the overall system throughput can be boosted by the utility optimal scheme, because the utility maximizing scheme takes better advantage of both the proximity and the reuse gains. Therefore, in this paper we propose a hybrid PC scheme, in which cellular users employ the open loop path compensation method of LTE, while D2D users use the utility optimizing distributed PC scheme. In order to protect the cellular layer, the hybrid scheme allows for limiting the interference caused by the D2D layer at the cost of having a small impact on the performance of the D2D layer. To ensure feasibility, we limit the number of iterations to a practically feasible level. We make the point that the hybrid scheme is not only near optimal, but it also allows for a distributed implementation for the D2D users, while preserving the LTE PC scheme for the cellular users.Comment: 30 pages, submitted for review April-2013. See also: G. Fodor, M. Johansson, D. P. Demia, B. Marco, and A. Abrardo, A joint power control and resource allocation algorithm for D2D communications, KTH, Automatic Control, Tech. Rep., 2012, qC 20120910, http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10205
    corecore