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Abstract

Efficient Device to Device Communications Underlaying Heterogeneous Networks

by

Xue Chen, Doctor of Philosophy

Utah State University, 2016

Major Professor: Dr. Rose Qingyang Hu
Department: Electrical and Computer Engineering

In this dissertation, we have investigated cross-layer optimization, radio resource al-

location and interference management algorithms to significantly improve user experience,

system spectral efficiency, and energy efficiency for D2D communications underlaying wire-

less heterogeneous networks. By exploiting frequency reuse and multi-user diversity, this

research work aims to design wireless system level algorithms to utilize the spectrum and

energy resources efficiently in the next generation wireless heterogeneous network.

First an analytical evaluation of coverage for the D2D communications underlaying

cellular network is given, which is derived from stochastic geometry theory. The SINR

distributions for both cellular users and D2D users in uplink and downlink resource sharing

scenario are analyzed under various network environments to find out the critical parameters

that influence the network performance. The conclusions drawn from the analysis provide

us a guideline in design of D2D communication network when considering power control,

interference management and resource allocation.

Second, we discuss the joint power and spectrum allocation for D2D communications

and try to find an optimal algorithm to improve overall network efficiency. A sub-optimal

distributed resource and power allocation scheme based on Stackelberg game framework

is proposed and the problem is decomposed into sub-problems and solved in a two-step
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approach. We also include the mode selection for D2D users and derive an optimal resource

allocation scheme for the D2D communication in an OFDM based cellular system. We de-

velop a dual optimization framework to transform the intractable problem into equivalent

problem and solve it with reasonable computational complexity. In order to investigate as-

pects of network energy efficiency for the D2D communication networks, resource allocation

between cellular users and D2D users are modeled as a non-cooperative game, where each

user tries to determine which resource blocks to select and how much power they plan to

transmit correspondingly so as to maximize a utility function. A unique Nash equivalence

exists when the channel is assumed as flat fading.

We also study the tradeoff between energy efficiency and spectral efficiency in presence

of statistical QoS requirements for delay constrained communication. To exploit the EE-SE

relationship under different SNR regimes, we propose a generic close-form approximation

with curve fitting. When the circuit power is incorporated in the energy model, it turns

out that in the high SNR regime, QoS has a dominant impact on the EE-SE tradeoff,

while circuit power impacts EE-SE tradeoff more in the low SNR regime. We also propose

a joint uplink and downlink resource optimization scheme for mobile association in the

heterogeneous network.

(145 pages)
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Public Abstract

Efficient Device to Device Communications Underlaying Heterogeneous Networks

by

Xue Chen, Doctor of Philosophy

Utah State University, 2016

Major Professor: Dr. Rose Qingyang Hu
Department: Electrical and Computer Engineering

Device-to-Device communications have the great potential to bring significant perfor-

mance boost to the conventional heterogeneous network by reusing cellular resources. In

cellular networks, Device-to-Device communication is defined as two user equipments in a

close range communicating directly with each other without going through the base station,

thus offloading cellular traffic from cellular networks. In addition to improve network spec-

tral efficiency, D2D communication can also improve energy efficiency and user experience.

However, the co-existence of D2D communication on the same spectrum with cellular

users can cause severe interference to the primary cellular users. Thus the performance of

cellular users must be assured when supporting underlay D2D users.

In this work, we have investigated cross-layer optimization, resource allocation and

interference management schemes to improve user experience, system spectral efficiency

and energy efficiency for D2D communication underlaying heterogeneous networks. By ex-

ploiting frequency reuse and multi-user diversity, this research work aims to design wireless

system level algorithms to utilize the spectrum and energy resources efficiently in the next

generation wireless heterogeneous network.
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Chapter 1

Introduction

1.1 Background

Wireless communication networks have witnessed a tremendous growth in the past

decades, which is boosted by ubiquitous communication services such as video streaming,

online gaming, social networking, and so on. And this trend will keep on growing exponen-

tially in the next decade. However, the progress to improve wireless network infrastructure

is far from satisfying the increasing demand for communication service, especially with the

boom of local area services. The future success of wireless networks critically depends on the

two factors: network spectral efficiency (SE) and energy efficiency (EE). As a non-renewable

natural resource, spectrum must be efficiently used for supporting ever increasing wireless

traffic growth and quality of services (QoS) demands from end users. Furthermore, sys-

tem energy efficiency is becoming more and more important due to the green gas emission

control and relatively slow progress on battery technologies.

In order to meet capacity demands from the quick expansion of data traffic growth,

heterogeneous network with base stations (BSs) of diverse sizes and various transmission

powers are expected to achieve a higher spectral efficiency and energy efficiency. A typical

heterogeneous network model consists of Macro-Base Station (M-BS), Pico-Base Station

(P-BS),Femto-Base Station (F-BS) and relay base-stations (R-BS). An M-BS transmits at

a high power and hence serves a larger coverage area; other types of BSs transmit at a

relatively lower power so that their coverage size is also smaller. M-BSs are normally de-

ployed for blanket coverage while other low power BSs are deployed more or less for capacity

expansion and coverage extension. Heterogeneous networks have a number of prominent

advantages compared to the traditional homogeneous networks. First, a heterogeneous net-

work can greatly improve the wireless link quality since the BSs are now much closer to
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the mobiles. Second, due to the coexistence of BSs with different transmit powers, the

heterogeneous network can be more energy and spectral efficient. Compared to the tradi-

tional homogeneous networks, issues such as mobile association, load balancing, interference

management all need to be studied carefully in order to realize the performance gain in a

wireless heterogeneous network.

On the other hand, researchers have been seeking for new paradigms to revolution-

ize the existing wireless networking technologies. Device-to-Device (D2D) communications

in the wireless heterogeneous network have been lately used to facilitate proximity-aware

services and data traffic offloading, especially with the boom of local area communication

services in social networks. D2D communications in cellular networks provide a direct com-

munication between two mobile users without going through a BS and can provide four

types of performance gain. The first one is proximity gain as short range communication

using a D2D link enables high bit rates, low delays, and lower power consumption. The

second one is hop gain as D2D communications use one hop rather than two hops consist-

ing of one uplink and one downlink. The third one is reuse gain as D2D communications

can reuse cellular spectrum in an underlay mode. The last one is paring gain, which fa-

cilitates new types of wireless services. A UE with D2D capability has the flexibility to

switch between cellular mode and D2D communication mode as needed. System spectral

efficiency and energy efficiency can be significantly boosted from this new communication

paradigm. Meanwhile, new challenges and issues are also arising. How to maximize system

capacity while guaranteeing service quality for both cellular users and D2D users stays as a

big challenge, especially when dense D2D users are supported in an underlay mode. In or-

der to understand the problems and develop various mechanisms to support desirable D2D

communications in cellular networks, we need to be empowered with effective analytical

and simulation tools, among which stochastic geometry theory based analytical approaches

have been widely used in cellular network study and considered as an effective tool for this

purpose.

Furthermore, when evaluating the performance of a system design, QoS, SE, and EE
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are usually considered among the most important performance metrics. In reality these

three system performance metrics are not independent with each other. Improvement in

one of them does not necessarily boost another, sometimes even has a negative impact on

another one. For wireless communication in a point to point additive white Gaussian noise

(AWGN) channel, SE and EE relationship has been investigated extensively [1–4]. It is

either a cup shape curve without considering circuit power or a bell shape curve if circuit

power is incorporated. More and more research works have been done to study the tradeoff

between EE and SE in the presence of statistically QoS requirements in wireless systems.

The concept of effective capacity was first proposed by Wu et al. [5], which is used to

model the physical layer fading channel with link layer parameters, such as delay and data

rate, provides an effective tool to measure SE and EE with respect to QoS requirements in

wireless systems. Under this context, SE is defined as effective capacity per unit bandwidth

and EE is defined as energy consumed per effective capacity bit. Hence, analysis of EE-SE

relation under the QoS constraint is becoming much more direct for wireless communication

in our study.

1.2 Literature Survey

In this section, we provide a survey on state-of-the-art techniques that support D2D

communications in wireless heterogeneous network to improve SE and EE.

1.2.1 Related Technologies

The increasing demand for local area services and high data rates have triggered exten-

sive research efforts on improving system capacity and achieving better user QoS. Current

4G cellular technologies have significantly improved physical and MAC layer performance,

but they are still lagging behind mobile booming data demands. It is predicted that by 2020,

there will be seven trillion wireless devices serving billions of people [6], which is mainly

attributed to the advent of new devices such as wearable and machine type communication

(MTC) devices. Given the limited availability of spectrum and marginal improvement on

spectral efficiency, capacity provision for this enormous number of devices through the con-
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ventional cellular communication connecting all of them to the base stations (BSs) may not

be sustainable. Hence, researchers have been seeking for new paradigms to revolutionize

the traditional communication wireless cellular network. D2D communication using a di-

rect communication link between two mobile users without going through any BS has been

considered as a promising technology to improve SE and EE and to provide better user

experience in next generation cellular networks [7]. A comprehensive survey on these topics

is provided in [8].

In research community, D2D communication was first proposed to provide multi-hop

relays in cellular networks [9]. It was then used to support other services such as peer-to-peer

communication, multicasting, content distribution, machine-to-machine (M2M) communi-

cations, cellular offloading, and so on. The first implementation of D2D communication

in cellular network was made by Qualcomm’s FlashLinQ [10]. By joint optimizing PHY

and MAC layers, FlashLinQ creates an efficient method for timing synchronization, peer

discovery, and link management based on OFDM/OFDMA technologies in D2D-enabled

cellular networks. If categorized by spectrum reuse mode, the related technologies on D2D

communication can be grouped into two types: inband D2D and outband D2D [8]. Inband

D2D communication reuses cellular spectrum either orthogonally or non-orthogonally. In

the orthogonal mode, part of the cellular resources are dedicated to D2D communication

exclusively, while in the non-orthogonal mode D2D communication shares the same radio

resources with cellular users. Non-orthogonal mode tends to provide a higher SE than the

orthogonal mode. However, it creates interference between D2D communication and cel-

lular communication, which inevitably leads to performance degradation for both. Hence,

advanced interference management algorithms are required and they may increase the com-

plexity and computational overhead of cellular and D2D users. For an outband D2D scheme,

D2D users generally contain two radio interfaces: one can operate in the cellular spectrum

just as normal and the other one can operate in an independent spectrum such as ISM spec-

trum. Outband D2D communication faces a few challenges in coordinating communications

over two different bands.
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Comparing D2D communications with other wireless technologies of similar architec-

ture, e.g., wireless local-area network (WLAN) based on IEEE 802.11 standards, wireless

person-area network (WPAN) such as Bluetooth and Ultra Wideband technologies, the

main difference lies in a central entity in the cellular network such as evolved NodeB (eNB)

that is involved in the D2D communication. A general session setup of D2D communication

includes following steps [11]: 1) a D2D user initiates a communication request. 2) The BS

checks if the communication source and destination are in the same subnet or not. 3) If a

number of criteria are met, BS can set up a D2D link for communication. These criteria

may include minimum data requirement, D2D capable devices, higher SE/EE with D2D

communications, etc. Even if a D2D connection has been set up, UEs can still switch to

cellular communication mode if needed. The availability of a supervising/ managing central

entity in D2D communications resolves many challenges such as spectrum hole detection,

collision avoidance, and synchronization, which may exist in a network without a super-

vising/managing central entity, such as Cognitive Radio Networks (CRN). Furthermore,

D2D communication operating in a licensed band owned by a cellular network can pro-

vide a better interference-controlled environment. M2M communication also has a similar

architecture as D2D, but M2M communication is between two devices with the help of

infrastructure nodes. It is different from D2D communication in the sense that its commu-

nication is not constrained by any distance requirement, and it is application-oriented and

technology-independent. D2D aims at proximity connectivity and it is technology depen-

dent.

1.2.2 Spectral Efficiency

D2D communication can significantly increase cellular SE, benefited from frequency

reuse and multi-user diversity. The main challenge is to deal with co-channel interfer-

ence between D2D users and cellular users caused by spectrum resource reuse. Exten-

sive research efforts have been spent on solving the problem through efficient interference

management [12–16], mode selection, resource allocation and network coding. Paper [12]

proposed a scheme to use cellular uplink resources for D2D communication. Since reusing
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uplink resources generates interference to the received signals at BS, D2D users monitor the

received power of downlink control signals and estimate the pathloss between D2D trans-

mitters and the BS. In order to avoid excessive interference to cellular users, D2D users keep

the transmit power below a threshold. Paper [13] proposes two mechanisms to tackle the

interference between cellular users and D2D users on the cellular uplink. D2D users read

the resource block allocation information from the control channel and avoid using resource

blocks that are used by the cellular users in the proximity. Furthermore, D2D interference

is broadcast among all D2D users so that D2D users can adjust their transmission power

and resource block selection. Interference from D2D communication to uplink transmission

is thus kept below a tolerable threshold.

Paper [14] proposes an interference control mechanism based on user locations. First, a

dedicated control channel is allocated for D2D users. Cellular users listen to this channel and

measure the received SINR. If the SINR is higher than a pre-defined threshold, a report is

sent to the eNB. Accordingly, the eNB stop scheduling cellular users on the resource blocks

currently occupied by D2D users. The eNB also sends broadcast information regarding

the location of the cellular users and their allocated resource blocks. Hence, D2D users

can avoid using resource blocks which interfere with cellular users. Paper [15] proposes a

scheme to minimize the maximum D2D received power from cellular users. Very similar to

the approach in [14], D2D users also measure the signal power levels of cellular users and

feed them back to the BS, which then avoids allocating the same frequency-time slot to

cellular and D2D users that have strong interference to each other. Another interference

cancellation algorithm is proposed in [17] by using Han-Kobayashi rate splitting technique

to improve throughput of D2D communications. In rate splitting, the message is divided

into two parts, namely, private and public. The private part, as its name suggests, can be

decoded only by the intended receiver while the public part can be decoded by any receiver.

This technique helps D2D interfered victims to cancel the interference from the public part

of the message by running a best-effort successive interference cancellation algorithm. Their

simulation results show that throughput improvement is prominent when two D2D users
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are far from the BS but close to each other.

A new interference management scheme is proposed in [16,18], where interference con-

trol is not achieved by limiting D2D transmission power as in other conventional D2D

interference management schemes. The proposed scheme is based on the concept of in-

terference limited area, in which cellular users and D2D users should not be allocated the

same resources. Hence, the interference between D2D and cellular users is avoided. But

this physical separation limits the scheduling alternatives for the BS and as a consequence

multi-user diversity is not fully exploited. Nevertheless, numerical results show that the ca-

pacity loss due to multi-user diversity reduction is negligible compared to the gain achieved

by their proposal. In [18], the authors propose an interference limited area according to the

amount of tolerable interference and minimum SINR requirements for successful transmis-

sion, which consists of 1) defining interference limited areas where cellular and D2D users

cannot use the same resources; and 2) allocating the resources in a manner that D2D and

cellular users within the same interference area use different resources.

Doppler et al. also study several aspects of D2D communications in cellular networks

to improve network spectrum efficiency in [19–24]. They discuss optimal mode selection

strategies for D2D communication in [19, 20] and propose a joint D2D communication and

network coding scheme in [21]. In [19], some semi-analytical studies are performed to

optimally select the mode of D2D communication in a single cell scenario with one cellular

user and one D2D pair. By utilizing power optimization and optimal mode selection, the

sum rate increases sevenfold for a D2D connection separated by 10% of the cell radius.

The sum rate increase is threefold when supporting a rate guarantee to the cellular user.

In [20], they first study the optimal selection of possible resource sharing modes with the

cellular network in a single cell, based on which they propose a mode selection procedure

for a multi-cell environment. The mode selection algorithm is not only based on the D2D

link quality but also takes into account the quality of the cellular link and the interference

level under each possible mode. Simulation results show that in the local area scenario,

the proposed mode selection improves the sum rate in the network by 50% compared to
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pure cellular communication and the ratio of successful D2D communications is more than

doubled. The same research group also proposes a joint D2D communication and network

coding scheme in [21], where D2D communication is used for uplink message exchange

among cellular users before the messages are transmitted to the BS. Then each user sends

the coded data containing the original data from both users to the BS. In their scheme,

they also propose to group users with complementary characteristics to improve network

coding performance rather than just randomly selecting cooperative users, which is much

less efficient.

1.2.3 Energy Efficiency

Energy efficiency is another important research area for D2D enabled cellular networks.

A common technique to achieve this is to adaptively select operation mode for D2D com-

munication based on user’s location and CSI. Usually, the resource allocation problem is

formulated as linear or non-linear programming, which is a NP hard, and there is no direct

way for the solution. Due to the complexity of these problems, a heuristic algorithm is pro-

posed to solve the problem and only a sub-optimal solution is available. In [25], Xiao et al.

propose a power optimization scheme for OFDMA-based cellular networks. They address

the joint resource allocation and mode selection problem in a D2D communications, aiming

at minimizing total downlink power consumption and propose a heuristic approach using

existing subcarrier and bit allocation algorithms in [26, 27]. The heuristic first performs

subcarrier and bit allocation for all users in cellular mode and then selects a proper trans-

mission mode for each D2D pair between the direct links and cellular links. Simulation

results show that their proposed heuristic algorithm can save the downlink power consump-

tion of the network around 20% compared with the traditional OFDMA system without

D2D.

Yu et al. consider resource allocation and power control for D2D communication in a

single cell scenario where one cellular user and one D2D pair share the same radio resources

[19, 24]. They analyze two power control cases. In the first case, cellular and D2D are

treated as competing services without priority. The system is aiming for a greedy sum-rate
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maximization under a maximum transmit power constraint. In the second case, cellular

users are the prioritized users with guaranteed minimum transmission rate, under the same

maximum transmit power constraint. They assume that the instantaneous Channel State

Information (CSI) of all links is available at BS which controls the transmit power and

resource allocation for D2D links. Optimality is discussed under practical constraints for

different resource sharing modes, namely non-orthogonal sharing mode, orthogonal sharing

mode, and cellular mode. Authors in paper [28] extend the scenario in [24] to multiple D2D

pair multiple resource allocation and propose a maximum-weight bipartite algorithm for

optimal power control. The scheme is divided into three steps. First, it performs admission

control for D2D connection based on QoS requirement, then allocates powers for each

admissible D2D pair and its potential cellular partner. Finally, a maximum-weight bipartite

matching based scheme is proposed for resource allocation for cellular and D2D users to

maximize overall system throughput. Simulation results show that their approach can

significantly improve system performance in terms of D2D access rate and overall network

throughput, which provides up to 70% throughput gain compared with other approaches

in [12,15,29].

In [30], the authors aim to minimize the overall transmission power in a multi-cell

OFDM cellular network. They first formulate the problem of joint mode selection, schedul-

ing and power control as mixed integer linear programming, which is proven to be NP-hard

in the strong sense and results in the solution of brute-force approach. To reduce the

computational complexity, they propose the load control policy with distributed algorithm

which performs mode selection and resource allocation cell by cell. The performance of

proposed heuristic method is compared with other two schemes: 1) cellular mode in which

transmission should go through the BS; and 2) D2D mode in which all D2D users can only

communicate directly and passing through the BS is not allowed. Simulation and analysis

show that the gain of power efficiency of the proposed method over conventional cellular

networks is significant (up to 100%) when the distance between D2D users is less than 150m.

Different from other research work on power efficiency in D2D communication which
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usually focus on minimizing transmission power under various constraints, system object

in [31] is directly to optimize energy efficiency. In the work, authors of the paper define

energy efficiency as a function of transmission rate and power consumption in different

transmission mode (cellular and D2D). They propose a heuristic approach which performs

power allocation and mode selection to maximize energy efficiency in two steps. First,

they obtain the energy efficiency for all possible mode selections of each user through the

suboptimal power allocation. Then based on this information, the algorithm selects a mode

sequence which has the maximal energy efficiency among all possible mode combinations

of users in the second step. Simulation results demonstrate that proposed algorithm can

achieve up to 100% gain over other schemes.

1.2.4 Other Aspects

For most problems in D2D communication such as power control, mode selection,

scheduling or resource allocation, no matter the proposed algorithm is BS centralized or

distributed approach based, most of these algorithms critically rely on Channel State Infor-

mation (CSI). However, CSI is usually obtained from channel estimation, which could be

inaccurate in reality and also causes high signaling overhead in some scenarios. Moreover,

if there are a large number of D2D communication users in the cellular network, to obtain

CSI of different D2D communication links such as from D2D users to cellular users or from

D2D users to BS, is both time consuming and bandwidth consuming, which causes system

delay, and requires extra system resources to transmit the CSI.

Approaches based on stochastic geometry theory have been widely used to analyze

complex wireless system design issues [32]. By modeling the spacial distribution of net-

work nodes and mobile users as homogeneous spatial Poisson Point Processes (PPP), it is

more convenient to study the large dimension wireless system problems through analytical

approaches instead of seeking complex system-level simulations for cellular network in con-

ventional way, which is usually modeled by a large number of parameters (e.g. grid model).

One obvious advantage of analytical approach is that it only uses the link’s statistical in-

formation and user distribution to evaluate system performance such as network spectral
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efficiency, energy efficiency and coverage, and there is no need for user’s instant CSI. Sec-

ondly, the simulation approach based on conventional grid model for cellular network is

highly idealized and becoming less and less accurate as cell size shrinks to support a dense

user capacity.

These research papers [32–35] are focusing on D2D communication in cellular network

to evaluate network performance and find out the bottleneck of improving spectral efficiency

and energy efficiency. In [32], authors develop a general model to evaluate downlink coverage

/outage probability and rate for multi-cell heterogeneous network using stochastic geometry.

The analytical results are compared to the grid model and actual base station deployment,

which suggests to be more tractable and capable of capturing opportunistic and dense

placement of base stations. Research work in [33,34] gives out downlink SINR distribution

for multi-tier heterogeneous cellular network, which consists of multiple tiers of transmitters

(e.g., macro-, pico-cell and femto-cells). Authors in [35] give out coverage analysis for

OFDMA-based cellular networks, where two types of interference management schemes:

strict fractional frequency reuse and soft frequency reuse are discussed. Based on the

analysis expressions, they propose a SINR-proportional resource allocation strategy which

can increase sum-rate as well as coverage for cell-edge users.

1.3 Our Approach and Thesis Outline

The major goal of this research is to investigate resource allocation and interference

management algorithms to improve user experience, system spectral efficiency, and energy

efficiency for D2D communication underlaying heterogeneous networks. By exploiting multi-

user diversity and CSI, this research work aims to design integrated algorithms to utilize

the spectrum and energy resources efficiently for the heterogeneous wireless networks.

First, we provide an extensive review of background and current technology devel-

opment on D2D communications in Chapter 1. Research work on D2D communications

for improving system spectral efficiency, energy efficiency, users’ QoS are discussed. This

chapter provides new insights to current research works which lead to our own research

topics about analytical evaluation of SINR distribution for D2D communications, power
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and resource allocation in D2D underlaying cellular network, energy efficient resource al-

location in D2D communications and tradeoff between EE and SE in delay constrained

communications.

In Chapter 2, we present an approach to jointly optimize the downlink and uplink

resources for mobile association in a heterogeneous network. The proposed scheme considers

both capacity and uplink power consumption during mobile association. A gradient descent

search algorithm is developed to search for the optimal mobile association that can maximize

the system capacity and also minimize mobile uplink transmission power consumption.

The simulation for the network model is based on 3GPP case 1, which demonstrates a

good performance improvement on network spectral efficiency and energy efficiency in our

proposed scheme.

In Chapter 3, we give out an analytical evaluation of SINR distribution in a D2D

communications underlaying cellular network model, which is derived based on stochastic

geometry theory. The users’ 2-dimensional location is draw from a Poisson Point Process

(PPP). Only statistical channel information and user distribution is needed for evaluation

of system metrics such as network coverage, outage probability and throughput. The SINR

distribution is analyzed for both cellular users and D2D users in the uplink and downlink

resource sharing scenario, respectively. We also validate our analysis with the simulated

network model. The conclusion draw from this chapter can provide a guideline in design

of D2D communication network when considering power control, interference management

and resource allocation.

We begin to discuss the power/resource allocation for D2D communications in Chap-

ters 4 and 5. A sub-optimal distributed resource allocation and power scheme based on

Stackelberg game framework is proposed for improving network capacity in Chapter 4. The

system aims to maximize the number of supportable underlay D2D users while guaran-

teeing QoS of the prioritized cellular users. Thereafter, the problem and system objective

are formulated with Stackelberg game theoretical model. Due to computational complex-

ity, we decompose the problem into sub-problems and solve it in two steps, first grouping
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DUEs that share the same radio resource of a CUE, and then allocating resources to them

distributively through a price mechanism. Simulation results show that our proposed dis-

tributed algorithm converges fast and the system capacity of D2D communication network

is significantly improved. In Chapter 5, we consider a joint resource/power allocation and

mode selection for D2D communication in the OFDMA based cellular network. The opti-

mization problem is formulated as a mixed integer nonlinear programming, which is proven

NP-complete. Thus we develop a dual optimization framework to transform the intractable

problem into equivalent problem and solve it with reasonable computational complexity.

Analytical results show that our scheme can achieve a much higher system throughput

compared with other schemes.

In Chapter 6, we investigate aspects of network energy efficiency when allocating radio

resources for D2D communication networks. The resource allocation between CUEs and

DUEs is modeled as a non-cooperative game, where cellular users or D2D users determine

which resource blocks to allocate and how much power they plan to transmit correspondingly

so as to maximize a utility function. The utility function in the work is defined as the

achievable rate normalized by power consumption. In flat fading channel, we prove there

exist a unique point of Nash equivalence for our proposed game model. We also propose a

method for the game to converge to its Nash equivalence.

In Chapter 7, we study the fundamental tradeoff between energy efficiency and spectral

efficiency in presence of statistical QoS requirements for the delay constrained communica-

tion. System QoS metric is incorporated and measured through effective capacity, based on

which the spectral efficiency is defined as effective capacity per unit bandwidth and energy

efficiency is defined as energy consumed per effective capacity bit. Total power consumption

consists of both circuit power and transmission power. To exploit the EE-SE relation un-

der different SNR regime, we propose a generic close-form approximation by using a curve

fitting approach.

In Chapter 8, we make conclusions and summarize contributions for the dissertation.
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Chapter 2

Joint Uplink and Downlink Optimal Mobile Association in a

Wireless Heterogeneous Network

In this chapter, we discuss the architecture and system model of the heterogeneous

networks, then we present the mathematical formulations for the proposed mobile associa-

tion scheme and develop a gradient descent algorithm to search the sub-optimal solutions

for two scenarios, full frequency reuse and partial frequency reuse respectively. In the end,

simulation results and numerical analysis are provided.

2.1 Heterogeneous Network Structure

A typical heterogeneous network is illustrated in 2.1, which has a prominent advantage

compared to the traditional homogeneous networks. A heterogeneous network can greatly

help reduce the uplink transmission power since the BSs are much closer to the mobiles.

Furthermore, due to the coexistence of base stations with different transmitting powers,

high power base stations can offer blanket coverage while low power nodes can be capacity

boosters. So the heterogeneous network can be more energy and spectral efficient. In our

study, there exist two types of base stations. One type is a Macro-Base Station (M-BS)

that transmits at a higher power and hence serves a larger coverage area; the other type is

a Micro-Base Station (m-BS) that transmits at a lower transmitting power with a smaller

coverage area. There will be one M-BS each sector while several m-BSs can be deployed

each sector per capacity needs. In this paper, we focus on a specific type of m-BSs, called

relay node (RN), due to its unique multi-hop feature that imposes extra complexity to the

problem under investigation. A RN transmits at a low power and can help forward the

information between MSs and M-BSs on both uplink and downlink. As shown in Figure

2.1, in a relay network, a MS can connect to the wireless network either through a direct link
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(D-link) to a M-BS or through an indirect link (I-link) to a RN, which is further connected

to its donor M-BS via a backhaul.

The following notations are used. Nc denotes the number of M-BSs in network. Nr

denotes the total number of RNs per sector. The total number of MSs in the network is Nu.

We use hk,0,i and hk,j,i to denote the channel gain on the D-link between kth MS and M-BS

in the ith sector, and the channel gain on the I-link between kth MS and jth RN in the ith

sector, respectively. For simplicity but without loss of generality, in the work, we assume

channels are reciprocal, i.e., an uplink channel and a downlink channel between the same

communicating parties have the same channel gain. Ck,0,i represents the D-link bandwidth

needed to support MS k if it is associated with M-BS in the ith sector while ck,j,i represents

the I-link bandwidth needed to support MS if it is associated with jth RN in the ith sector.

C denotes the total system bandwidth. Deploying multiple RNs in each sector will create

cell splitting within that sector. Each RN may reuse total bandwidth C or part of C. Xk,j,i

indicates the association status between the kth MS and the jth node in the ith sector. Here

j = 0 represents the M-BS in that sector and j > 0 represents the RNs in that sector.

Xk,j,i = 1 indicates that the kth MS is associated with the defined node while Xk,j,i = 0

indicates otherwise. The transmit power of the M-BS i is P bi and the transmission power

for the RN j is P rj .

During the uplink open loop power control, the target SNR at the receiving node is

set to 10dB. All the BSs bear the same noise level at σ2
W per resource block (RB). Pk,j,i

represents the desired transmission power of MS k when it is associated with j node in the

ith sector. The goal of uplink power control is to achieve the same level of the designated

SNR at the receiving node for all MSs. So we have Pk,j,i =
10σ2

W
PLk,j,i

, where PLk,j,i denotes

the average channel gain or simply pathloss between kth MS and jth node in the ith sector.

In the heterogeneous networks, due to the difference between the transmission powers

of M-BSs and the RNs, conventional best power or best-quality based association schemes

may lead to a highly uneven traffic distribution and thus a low resource utilization at RNs.

The recently proposed range-expansion association scheme uses a bias to offset the power
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difference between M-BSs and RNs so that more MSs can be associated with RNs [36].

However, there has been little study on how to select the best bias or how to best save mobile

power consumptions when doing mobile association. Furthermore, most of the existing

mobile association schemes are based on either only downlink information or only uplink

information but not both [37]. Little has been done to jointly consider downlink and uplink

information during mobile association. We propose an association scheme that can optimize

an objective function that jointly considers downlink capacity and the mobile uplink power

consumption. The scheme will be formulated and evaluated in two scenarios: full frequency

reuse and partial frequency reuse.

2.2 Full Frequency Re-use Scheme

In an OFDM based wireless network, usually different RBs are allocated to different

MSs within a sector so that there is not much co-channel interference among MSs in the

same sector. The co-channel interference mostly exists between MSs in the different sectors

or different cells. In the full frequency scenario, all the M-BSs and RNs use the same fre-

quency band, for both downlink and uplink transmissions. There is no inter-cell interference

coordination between the M-BSs and RNs. It represents the most aggressive spectrum reuse
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scenario and also causes the strongest co-channel interference between M-BSs and RNs. In

the full frequency reuse case, the downlink received signal-to-interference-noise (SINR) at

the kth MS through direct link and indirect link, can be expressed as

SINRD−DL
k,0,i =

|hk,0,i|2P bi∑Nc
i′ 6=i |hk,0,i′ |

2P b
i′

+
∑Nc

i=1

∑Nr
j=1 |hk,j,i|2P rj + σ2

w

. (2.1)

SINRD−DL
k,j,i =

|hk,j,i|2P rj∑Nc
i=1 |hk,0,i|2P bi′ +

∑Nc
i=1

∑Nr
j′ 6=j |hk,j′ ,i|

2P r
j′

+ σ2
w

. (2.2)

The corresponding uplink SINRs for kth MS are:

SINRD−UL
k,0,i =

|hk,0,i|2Pk,0,i∑Nc
i′ 6=i

1

N i
′
u

∑N i
′
u |hk,0,i′ |2Pk,0,i′ +

∑Nc
i=1

∑Nr
j=1

1
N i
u

∑N i
u |hk,0,i|2Pk,j,i + σ2

w

.

(2.3)

SINRI−UL
k,j,i =

|hk,j,i|2Pk,j,i∑Nc
i=1

1
N i
u

∑N i
u |hk,j,i|2Pk,0,i +

∑Nc
l=1

∑Nr
l 6=i
j
′ 6=j

1
N l
u

∑N l
u |hk,j,i|2Pk,j′ ,l + σ2

w

. (2.4)

On the uplink, the co-channel interference for a MS comes from the MSs that use the

same RBs in the neighboring cells. In reality, the MSs that cause interference change from

one scheduling cycle to another cycle due to the scheduling dynamics on RB allocations.

However, from mobile association point of view, an average interference to a MS is more

important than the instantaneous interference level at each scheduling cycle. Thus in our

study the average interference to a MS is calculated. 1

N i
′
u

∑N i
′
u |hk,0,i′ |

2Pk,0,i′ in 2.3 and 2.4

represents the average interference to MS k from all the MSs the neighboring M-BSs while∑Nc
l=1

∑Nr
l 6=i
j
′ 6=j

1
N l
u

∑N l
u |hk,j,i|2Pk,j′ ,l represents the average interference from all the MSs in

the neighboring RNs.
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According to Shannon’s theorem, the downlink resource allocated to MS k for the

D-link and I-link can be determined through formulation.

ck,j,i =
Φk

log2(1 + SINRk,j,i)
. (2.5)

Φk is a parameter reflecting user’s QoS requirement.

In this chapter we assume that the wireless backhaul quality SINRBH
j,i is the same for

all j, i. The radio resource needed for MS k on the backhaul is

cbk,j,i =
Φk

log2(1 + SINRBH
j,i )

. (2.6)

The optimal mobile association proposed in this paper will maximize the downlink

system capacity as well as minimize the MS uplink power consumption. The optimization

formulation is expressed as:

max G(x) =
∑
i

∑
j

∑
k

xk,j,i − ρ1(
∑
i

∑
k

xk,0,ick,0,i

+
∑
i

∑
j

∑
k

xk,j,i(Wck,j,i + cbk,j,i))− ρ2

∑
i

∑
j

∑
k

xk,j,iPk,j,i (2.7)

s.t. ∑
k

xk,0,ick,0,i +
∑
j

∑
k

xk,j,ic
b
k,j,i < CBS

i , (2.8)

∑
k

xk,j,i(ck,j,i + cbk,j,i) < CRN
j , (2.9)∑

i

∑
j

xk,j,i = 1 or 0. (2.10)

The first term in (2.7) is the total number of accepted mobiles. The second term in

(2.7) is the total consumed hypothetical resources while the third item is the total sum of

the mobile power consumption on the uplink. We choose to minimize the sum of power

density instead of total actual mobile power consumptions so that all the mobiles will have

equal chance to save unit power consumption regardless of the sizes of their allocated uplink
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bandwidth. Coefficients ρ1, ρ2 are the relative weights of the total consumed resources, and

of the sum of uplink power density with respect to the total system capacity in terms of the

number of granted mobiles. Coefficient W in (2.7) specifies the relative weight of the RN

resources with respect to the M-BS resources in the objective function. We can set W < 1

so that RNs resources are less weighted than the M-BS resources. Through proper choice

of W , there would be more traffic offloaded from M-BSs to RNs, so that RN resources can

be more effectively utilized, which actually enlarges a RNs coverage area [38].

The above optimization problem is a 0-1 knapsack problem, and it is NP-hard. An

optimal solution is difficult to derive, especially given a large number of MSs and BSs in

the network. In the following, we propose a pseudo-optimal solution based on a gradient

descent method. To apply the gradient descent method, we relax integer variables xk,j,i

into real variables in the range of [0, 1]. The value for each xk,j,i indicates the probability

of mobile k being associated with node j in sector i . When the gradient search completes,

all the xk,j,i are ranked in a descending order, so that the nodes with higher probability

values will be selected to serve the MSs. The whole procedure stops when all the MSs

are accepted in the network (under-loaded case) or the boundaries of the constraints are

reached (over-loaded case). The gradient value of the objective function with respect to

each association probability is evaluated as follows

∂G(x)

∂xk,0,i
= 1− ρ1ck,0,i − ρ2Pk,j,i, (2.11)

∂G(x)

∂xk,j,i
= 1− ρ2(Wck,j,i + cbk,j,i)− ρ2Pk,j,i. (2.12)

The association probability xk,j,i is updated along the direction ∆k,0,i = ∂G(x)/∂xk,0,i

and ∆k,j,i = ∂G(x)/∂xk,j,i according to equations (2.13) and (2.14). The weight coefficient

W is crucial in the optimization of the network capacity and resource utilization. A low

value of W reduces the weight of the RN resources in the objective function (2.7), which
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helps to increase the RN utility.

xk,0,i(t+ 1) = xk,0,i(t) + δ∆k,0,i, (2.13)

xk,j,i(t+ 1) = xk,j,i(t) + δ∆k,j,i. (2.14)

Coefficient δ indicates the step size for each update. After each update, total resources

consumed at each node (M-BS or RN) are calculated. The update for xk,j,i continues till

constraints (2.23) and (2.24) are reached with equality.

2.3 Partial Frequency Re-use for Better Interference Management

Due to the co-existence of high power and low power nodes, MSs served by the low

power nodes, especially the ones located at the cell edge, may subject to strong interference

from the neighboring high power nodes in the full frequency reuse scenario. Inter-cell

interference control techniques such as partial frequency reuse have been widely used to

improve the cell edge user performance in the traditional homogenous networks [39]. In

this chapter, we extend the idea of partial frequency reuse to the heterogeneous network

by using different frequency sub-bands for the M-BSs and RNs in the same sector. More

specifically, the M-BS will vacate a portion of its bandwidth C and allow all the RNs in

its sector to use the vacated bandwidth, thus effectively creating cell-splitting within each

sector with no inter-layer interference between high power M-BS and low power RNs. The

bandwidth division between M-BS and RNs in each sector can be adjusted in order to

maximize the system capacity. Compared with the full frequency reuse scheme, a better

SINR is achieved in the partial frequency reuse scheme due to the suppressed interference

from the adjacent cells. As illustrated in Figure 2.2, RNs operate in a half-duplex TDD

mode to avoid self-interference. In time slot T1 , M-BS transmits to its MSs on band F11

and simultaneously transmits to its connected RNs on band F12 . In time slot T2 , M-BS

transmits to its MSs on band F21 while all the RNs transfer the data received from M-BS

to the MSs on band F22. A similar reuse scheme applies to the uplink. The total radio

bandwidth C for each sector is the same. The resource partition between M-BS and RN
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resource can be expressed as:

C1 = (
T1

T1 + T2
+

T2

T1 + T2
· F21

F21 + F22
)C, (2.15)

C2 =
T2

T1 + T2
· F22

F21 + F22
C. (2.16)

C1 is the equivalent total bandwidth for a M-BS and C2 is the equivalent total band-

width for a RN in the partial frequency re-use case. On the downlink transmission, the

received SINR for MS k can be expressed as

SINRD−DL
k,0,i =

|hk,0,i|2P bi∑Nc
i′ 6=i |hk,0,i′ |

2P b
i′

+ σ2
w

, (2.17)

SINRI−DL
k,j,i =

|hk,j,i|2P rj∑Nc
i=1

∑Nr
j′ 6=j |hk,j′ ,i|

2P r
j′

+ σ2
w

. (2.18)

And for uplink, the expressions are similarly defined:

SINRD−UL
k,0,i =

|hk,0,i|2Pk,0,i∑Nc
i′ 6=i

1

N i
′
u

∑N i
′
u |hk,0,i′ |2Pk,0,i′ + σ2

w

, (2.19)

SINRI−UL
k,j,i =

|hk,j,i|2Pk,j,i∑Nc
l=1

∑Nr
l 6=i
j
′ 6=j

1
N l
u

∑N l
u |hk,j′ ,l|2Pk,j′ ,l + σ2

w

. (2.20)
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Fig. 2.2: Illustration of partial frequency re-use scheme

Let r = T1
T1+T2

+ T2
T1+T2

· F21
F21+F22

. The optimal mobile association can be formulated as

the following:

max G(x) =
∑
i

∑
j

∑
k

xk,j,i − ρ1(
∑
i

∑
k

xk,0,ick,0,i (2.21)

+
∑
i

∑
j

∑
k

xk,j,i(Wck,j,i + cbk,j,i))− ρ2

∑
i

∑
j

∑
k

xk,j,iPk,j,i (2.22)

s.t. ∑
k

xk,0,ick,0,i +
∑
j

∑
k

xk,j,ic
b
k,j,i < C1, (2.23)

∑
k

xk,j,i(ck,j,i + cbk,j,i) < C2, (2.24)∑
i

∑
j

xk,j,i = 1 or 0. (2.25)

Where C1 = r × C, C2 = (1 − r) × C. Coefficient W is the weight of RN resources with

respect to M-BS resources. We can apply gradient descent algorithm in the similar way to

search the pseudo-optimal solution.
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2.4 Numerical Simulation and Analysis

To verify the performance of the proposed mobile association scheme, a simulation plat-

form has been built in Matlab by following 3GPP case 1 simulation methodology specified

in [40]. The system model is based on a 19-cell 3-sector three-ring hexagonal cell structure.

In each sector 4 RNs are uniformly deployed around the M-BS. All the M-BSs transmit

at 46dBm and all the RNs transmit at 30dBm. Maximum MS transmission power is set

to 23dBm. We use Log-normal shadowing and Okumura-Hata model as the propagation

model for both direct and indirect links on downlink and uplink. In the simulation, we set

W = 1/6, ρ1 = 1, ρ2 = 0.015. As shown in Fig. 2.3, radio resource utilizations of M-BSs

and RNs are compared between our proposed scheme and the traditional best power mobile

association scheme in the full frequency reuse scenario. MSs are uniformly distributed in

the network. The first 57 nodes represent M-BSs while the rest represent the RNs. From

the results, we observe that both mobile association schemes achieve 100% utilization at

M-BSs. The performance difference lies in the utilization rates for RNs. Most of the RNs

in the joint optimal scheme have a utilization rate of more than 90%, while in best power

scheme, RNs can only achieve an average of 48% utilization rate. Through the proposed

optimal mobile association, more MSs are offloaded from M-BS to the RNs and traffic load

is better balanced. So the overall network capacity increases. And the same improvement

for load balancing and network capacity can be observed in the partial frequency re-use

scenario.

In Figures 2.4 and 2.5, we simulate the MS received downlink SINR distribution for

both full frequency and partial frequency reuse scenarios. The results from range expansion

and best power association schemes are also plotted in the same figures for comparison.

SINR distributions are plotted separately for MSs associated with M-BSs and with RNs.

As expected, the SINR performance of the proposed scheme lies in between the range

expansion and best power schemes. With joint consideration of downlink and uplink during

the mobile association, more MSs would be offloaded from M-BSs to RNs, although some

of them may receive a stronger signal from the M-BSs. Due to the coverage shrinkage
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Fig. 2.3: Resource utilization rate comparison between best power and joint optimization

of M-BSs and expansion of RNs by using the optimal mobile association scheme, M-BS

associated MSs will get a better SINR distribution while RN associated MSs will have

a worse SINR distribution, compared with the best power association scheme. This has

been demonstrated in Figure 2.4. From the same figure, we can also observe the proposed

scheme can achieve a much better SINR distribution for the MSs associated with RNs than

the range expansion scheme, which leaves 35% RN associated MSs below -10dB in the full

frequency reuse case. However, the SINR difference among all three mobile association

schemes becomes smaller in the partial frequency reuse case, in which high power M-BSs

do not cause any interference to the low power RNs.

Simulation results in Figure 2.6 show the uplink transmission power and uplink SINR

distributions for the full frequency reuse scenario. The mobile power consumption for the

joint optimization scheme lies in between the best power and range expansion schemes. As

the target received SNR at base stations is fixed to 10dB, the less the transmission power

of a MS, the less interference the MS will cause to others. With the joint optimization
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Fig. 2.4: MS received SINR in full frequency re-use scenario

scheme, uplink SINR distribution is better than that of the best power association scheme

but slightly worse than that of the range expansion scheme. In the partial frequency reuse

scenario as shown in Figure 2.7, inter-layer interference is eliminated, so the SINR distribu-

tions for all the schemes are improved. Without uplink inter-layer interference, best power

association scheme actually achieves a slightly better uplink SINR performance than the

joint optimization scheme while the range expansion has the poorest uplink SINR distri-

bution. When considering uplink and downlink jointly in mobile association, the optimal

scheme will provide the best compromise among downlink SINR, uplink SINR and mobile

power consumptions. More importantly, it also gives the highest system capacity among all

schemes as will be shown later. Worth of mentioning, by adjusting ρ1 and ρ2 , the optimal

scheme can achieve different compromise between uplink and downlink.

2.5 Summary

This chapter presents a new approach to jointly optimize downlink and uplink based
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Fig. 2.5: MS received SINR in partial frequency re-use scenario

mobile association in a wireless heterogeneous network. The proposed scheme considers

both capacity and uplink power consumption during mobile association. A gradient descent

search algorithm is developed to search for the optimal mobile association that can maximize

the system capacity and also minimize mobile uplink transmission power consumption. The

simulation results demonstrate that the proposed scheme can effectively achieve both high

spectrum efficiency and energy efficiency. The mathematical model proposed in this paper

can also be used for a more generic mobile association study by considering different design

objectives.
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Chapter 3

Downlink and Uplink Coverage of Device-to-Device

Communications

In this chapter, we consider the D2D communication in a single-cell scenario and pro-

vide an analytical framework to evaluate the SINR distribution and coverage in a D2D

underlaid cellular network based on stochastic geometry theory. The spacial distribution of

D2D pairs are modeled with the homogeneous Poisson Point Process (PPP). The instanta-

neous channel state information (CSI) of cellular links and D2D links is not available at the

base station. we analyze and derive the uplink and downlink SINR distribution for both

cellular users and D2D users given only statistical channel information. Simulation results

validate our theoretical analysis based on the proposed system model. This analytical tool

can be conveniently used to evaluate other aspects of D2D underlaying cellular network

such as outage probability, network throughput and provide critical insights for network

design guidelines on power control, interference management, resource allocation and so on.

3.1 Problem Formulation

3.1.1 System Model

The system consists of one BS located in the cell center and user equipments (UEs)

scattered around the cell. There are two types of UEs in the network, namely Cellular UE

(CUE) and D2D UE (DUE). A CUE communicates directly to the BS for both its downlink

and uplink communications. CUEs are considered as the primary service users to allocate

cellular radio resources and thus their performance is of primary interests when designing

such a D2D underlay network. D2D communication provides complementary services when

the direct communication of a D2D pair becomes desirable. Although the communication
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between a D2D pair can go through the cellular networks by using two hops, i.e., uplink and

then downlink, the performance and spectrum efficiency may go down, compared with the

D2D direct communication. In our study, we assume that a D2D pair is randomly dropped

in a virtual circle, the center of which is derived from the PPP distribution. The radius

of circle Rd is set below certain threshold to keep the link quality of D2D communication.

Spatial distribution of CUEs and DUEs both follow an independent homogeneous PPP

model with an intensity of λc and λd, respectively.

We consider a co-channel deployment between CUEs and DUEs. Be more specific, a

cellular channel (either a frequency band or a time slot) can be allocated to one CUE and

multiple D2D pairs. So there is no co-channel interference among CUEs within a cell. But

the co-channel interference can exist between a CUE and multiple D2D pairs as well as

between two D2D pairs. The BS has in total N channels. In the underlay communication

mode, it is desirable for the DUEs not to cause harmful interference to the CUEs. The

channel path loss exponent between BS and a CUE is αc, and between a D2D pair is αd.

We assume the fast fading between BS and a CUE and the fast fading between any two

DUEs are independent and identically distributed Rayleigh fading process. In the work, we

number CUEs and DUEs separately. hbci denotes the fading coefficient between the BS and

ith CUE, hbdj is the fading coefficient between the BS and jth DUE, hcdij denotes the fading

coefficient between the ith CUE and jth DUE, hddjk denotes the fading coefficient between

the jth DUE and the kth DUE, hddjj denotes the fading coefficient between the transmitter

DUE and receiver DUE in the jth D2D pair. Downlink and uplink channels are assumed

to be symmetric. N0 is average power level for the AWGN noise. The following notations

are also used in the paper. A illustration of our system model is shown as in 3.1.

• Φd,i: the set of DUEs that share the same channel with CUE i in a cell

• K: Number of D2D pairs

• Pb: BS transmission power

• Pd: D2D user transmission power
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R

Fig. 3.1: Illustration of Device-to-Device underlaying cellular network

• Pc: Cellular user uplink transmission power

• R: Radius of the cellular cell

3.1.2 D2D Pair Location Model

We assume that all the D2D pairs in the cell have been pre-formed and are randomly

distributed within the cell. The instantaneous D2D channel state information is not avail-

able at the BS. The 2-D geometry location distribution of D2D pairs is modeled based on

the homogeneous Poisson point process with an intensity λd. In our system model, a chan-

nel can be shared among a number of D2D pairs and one CUE that can be in any location

within the cell. Since there are N channels in the system, each D2D pair has the probability

1/N to be allocated to a particular channel. According to Coloring Theorem [41], the lo-

cation model for co-channel D2D users can be still considered as a new PPP with intensity

λd/N . In the work, for simplicity but without loss of generality, we still use λd to represent

the effective intensity for the co-channel D2D pairs in the cell. The PPP model has the

following properties [42].
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• The average number of DUE pairs in an area with size AS is denoted as λAS .

• The probability that m DUE pairs locate in any considered area with a radius Ra is

given by

P(M = m) =
(λπR2

a)
m

m!
exp(−λπR2

a), k ≥ 0 (3.1)

• The m DUE pairs in the cell are i.i.d. uniformly distributed in the area. The distance

from a D2D pair to the BS follows the following distribution:

fM=m(r) =


2r
Ra2 0 ≤ r ≤ Ra,

0 otherwise.

(3.2)

3.1.3 Distance Distribution of Two DUEs Forming a D2D Pair

The probability density function (PDF) of the distance between the two DUEs forming

a pair can be expressed as:

f∆R
(r) = 

2r(Rd
2+r2)

Rd
4 − 4r2

πRd
3G(arccos( r

2Rd
)), 0 < r < Rd,

4π−3
√

3
3πRd

, r = Rd,

− 4r2

πRd
3G(arccos( r

2Rd
)), Rd < r < 2Rd,

0, otherwise.

(3.3)

Proof. See Appendix A.

3.1.4 Channel Model and Interference Distribution

The wireless channel considered in this paper can be characterized as:

Pr =
Pt ∗ h2

rα
, (3.4)

where Pt is the transmission power, Pr is the power at receiver end. h denotes the chan-

nel coefficient accounting for multipath fading and shadowing. α represents the pass loss



32

exponent, which usually ranges from 1.6 (indoor environment) to 5 (dense urban area)

depending on the spacial environment between the receiver and the transmitter [43]. We

assume Rayleigh fading channel model, i.e., h2 ∼ exp(µ). The D2D communication can use

either the cellular downlink or uplink resources [44]. In the downlink case, IDLc represents

interference to a CUE which comes from all co-channel D2D transmission pairs while IDLd

denotes the interference to a D2D link which contains the one from BS and other co-channel

D2D links. Similar for downlink case, IULc denotes interference to a CUE from all co-channel

D2D links and IULd is the interference to a D2D transmission which comes from co-channel

CUE uplink transmission as well as other co-channel D2D transmission pairs. We have the

following interference model for cellular link and D2D link.

When the D2D communication uses the cellular downlink resources:

IDLci =
∑
j∈Φd,i

Pd(h
cd
ji )

2(rcdji )
−αd , (3.5)

IDLdj =
∑
k∈Φd.i
k 6=j

Pd(h
dd
jk)2(rddjk)−αd + Pb(h

bd
j )2(rbdj )−αc . (3.6)

When D2D communication uses the cellular uplink resources:

IULci =
∑
j∈Φd,i

Pd(h
bd
j )2(rbdj )

−αc
, (3.7)

IULdj =
∑
k∈Φd,i
k 6=j

Pd(h
dd
jk)2(rddjk)−αd + Pc,i(h

cd
ij )2(rcdij )−αd . (3.8)

rcdji denotes the distance from the ith CUE to the jth D2D pair. rddjk denotes the distance

from the jth D2D pair to kth D2D pair. rbdj denotes the distance from the BS to the

jth D2D pair. Pb, Pd, Pc,i represent the transmission powers of BS, DUE and CUE i,

respectively. In this work, we assume all the channels are reciprocal, i.e., the channel gain

from the ith user to jth user is the same to that from jth user to ith user.
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Based on properties of the PPP model and the assumption of i.i.d. Rayleigh fading

channel on all the wireless links, we can calculate the Laplace Transform of interference

variable by the definitions in [41] and [45].

For a CUE, the interference only comes from the co-channel D2D pairs, on both down-

link and uplink.

LIr(s) = EIr [exp(−sIr)]

= exp(−λ
∫
S
{1− Eh2 [exp(−sPdh2r−α)]}dr).

(3.9)

For a D2D communication, the interference consists of two parts. One part comes

from all co-channel D2D pairs and another part comes from the co-channel cellular com-

munications. These two parts are independent to each other and denoted as as Ir1 and Ir2

respectively. The joint Laplace transform of Ir1 and Ir2 is given by:

LIr(s1, s2) = EIr [exp(−s1Ir1 − s2Ir2)]

= exp(−λ
∫
S
{1− Eh2

1
[exp(−s1P1h

2
1r
−α1
1 )]}dr1)

×Eh2
2
[exp(−s2P2h

2
2r
−α2
2 )].

(3.10)

3.2 Coverage Analysis when DUEs Using Downlink Cellular Channels

This section analyzes the CUE and DUE SINR characteristics when D2D communi-

cations share the cellular downlink resources. For a CUE which is rbci from the BS, the

downlink SINR can be expressed as:

SINRDL
c |r=rbci =

Pb(h
bc
i )2(rbci )−α∑

j∈Φd,i

Pd(h
cd
ji )

2(rcdji )
−αd +N0

. (3.11)

rcdij is the distance from jth D2D pair center to the considered CUE. rbdj denotes the distance
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between jth D2D pair to the BS. The distance between the D2D transmitter and receiver

in jth D2D pair is denoted as rddjj . The SINR for the D2D communication can be expressed

as: SINRDL
d |r=rbdj

=
Pd(h

dd
jj )2rddjj

−αd∑
k 6=j
k∈Φd,i

Pd(h
dd
jk)2(rddjk)−αd + Pb(h

bd
j )2(rbdj )

−α
+N0

.

(3.12)

The channel coefficient of the link in the considered jth D2D pair is hddjj and channel coeffi-

cient of the link between jth and kth D2D pairs is hddjk .

3.2.1 CUE Downlink Coverage

We define the UE coverage probability as the probability that the UE’s SINR is above

a certain threshold Γ. So when we talk about coverage in this work, it is always associated

with a threshold value. The coverage probability of CUE i located rbci away from BS is

given by

P(SINRDL
c > Γ) = P(

Pb(h
bc
i )2(rbci )−αc

Ir +N0
> Γ)

= EIr [P((hbci )2 >
Γ(rbci )

αc

Pb
(Ir +N0)|Ir)]

= EIr [exp(−µΓ

Pb
ri
αc(Ir +N0))]

= exp(−µΓri
αcN0

Pb
)LIr(

µΓri
αc

Pb
), (3.13)

where LIr(s) is the Laplace transform of random variable Ir evaluated at s conditioned on

the distance from considered UE to the BS.
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From property of PPP [41] and Ir =
∑
j∈Φd

Pd(h
cd
ji )

2(rcdji )
−αd , we have LIr(s)

= EIr [exp(−sIr)]

= EΦd,i [
∏
j∈Φd.i

E(hcdji )2 [exp(−sPdh2rji
−αd)]]

= exp(−λ
∫
S
{1− E(hcdji )2 [exp(−sPdh2r−αd)]}dr)

= exp(−λ{
∫ R−rbci

0
f(s, r)2πrdr +

∫ √
R2−(rbci )

2

R−rbci
f(s, r)[2π − 2 arctan(

y0

x0 − rbci
)]rdr +∫ R+rbci√

R2−(rbci )
2
f(s, r)2 arctan(

y0

rbci − x0
)rdr})

= exp(−λ{
∫ √

R2−(rbci )
2

0
f(s, r)2πrdr +∫ R+rbci

R−rbci
f(s, r)2 arctan(

y0

rbci − x0
)rdr})

= exp{−λ[π(R2 − (rbci )
2
) ·

2F1(1;
2

αd
;
2 + αd
αd

;−(R2 − (rbci )
2
)
αd
2
µd
sPd

) +

∫ π

0

−2Rrbci sin(x) arctan[ sin(x)

cos(x)−
rbc
i
R

]

1 + µd
sPd

[R2 + (rbci )
2 − 2Rrbci cos(x)]

αd
2

dx]}, (3.14)

where f(s, r) = 1 − E(hcdji )2 [exp(−sPdh2r−αd)] = sPdr
−αd

sPdr
−αd+µd

, and 2F1(a; b; c; z) is hyperge-

ometric function from [46]. For the last step in the above expression, we follow the same

approach used in proof of Appendix A, and x0, y0 also have the same meaning as defined

in Appendix A. Although there is no closed-form expression derived, numerical evaluation

can be easily applied to calculate the integration.

3.2.2 DUE Downlink Coverage

Assume the distance between the two DUEs forming a pair is rd and the distance

between the D2D pair j and the BS is rbdj . The coverage probability for D2D pair j is given

by
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P(SINRDL
d > Γ)

= P(
Pd(h

dd
ii )2rd

−αd

Ir +N0
> Γ)

=

∫ 2Rd

0
P((hddii )2 >

Γrd
αd

Pd
(Ir +N0)|Ir, (hddii )2, rd)f∆R

(rd)drd

=

∫ 2Rd

0
exp(−µdΓN0rd

αd

Pd
)LIr|rd(s1, s2)f∆R

(rd)drd,

(3.15)

where s1 = s2 = µdΓrd
αd

Pd
and LIr|rd(s1, s2) is equal to:

= exp(−λ
∫
S
{1− E(hddjk)2 [exp(−s1Pdh

2r−αd)]}dr)×

E(hbdj )2 [exp(−s2Pb(h
bd
j )2(rbdj )

−αc
)]

= exp(−λ{
∫ √

R2−(rbdj )
2

0
f(s1, r)2πrdr +∫ R+rbdj

R−rbdj
f(s1, r)2 arctan(

y0

rbdj − x0
)rdr})× µ

µ+ s2Pb(r
bd
j )
−αc .

(3.16)

f(s1, r) and the integral part have the same form as in equation (3.14).

3.3 Coverage Analysis when DUEs Using Uplink Cellular Channels

This section gives the CUE and DUE coverage analysis when the D2D communications

share the cellular uplink resources.

CUE j has a distance rbci from the BS. Its uplink SINR is expressed as

SINRUL
c |r=rbci =

Pc(h
bc
i )2(rbci )

−αc∑
j∈Φd,i

Pd(h
bd
j )2(rbdj )−αc +N0

.

(3.17)

Assume the distance between the two DUEs forming D2D pair j is rddjj . The distance



37

between the D2D pair j and its co-channel CUE i is rdcij . D2D pair j is located at r = rbdj

from the BS. The SINR distribution for D2D pair can be expressed as

SINRUL
d |r=rbdj =

Pd(h
dd
jj )2(rbdj )

−αd∑
k 6=j
k∈Φd,i

Pd(h
dd
kj)

2rddkj
−αd+Pc(hdcij )2(rdcij )−αd+N0

.

(3.18)

3.3.1 CUE Uplink Coverage

The CUE uplink coverage probability can be expressed as

P(SINRUL
c > Γ)

= exp[−µΓ(rbci )
αcN0

Pc
− λπR2 ·

2F1(1;
2

αc
;
2 + αc
αc

;−Rαc Pc

Γ(rbci )
αcPd

)].

(3.19)

Proof. P(SINRUL
c > Γ)

= P(
Pc(h

bc
i )2(rbci )

−αc

Ir +N0
> Γ)

= EIr [P((hbci )2 >
Γ(rbci )

αc

Pc
(Ir +N0)|Ir)]

= EIr [exp(−µΓ(rbci )
αc(Ir +N0)

Pc
)]

= exp(−µΓ(rbci )
αcN0

Pc
)LIr(

µΓ(rbci )
αc

Pc
). (3.20)
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LIr(s) is the Laplace transform of random variable Ir evaluated at s conditioned on the

distance from considered cellular user to BS. Similarly,

LIr(s) = EΦd,i,(h
bd
j )2 [exp(−s

∑
j∈Φd,i

Pd(h
bd
j )2(rbdj )

−αc
)

= exp(−λ
∫
S
{1− Ehj [exp(−sPd(hbdj )2r−αc)]}dr)

= exp(−λ
∫ R

0

sPdr
−αc

sPdr−αc + µ
2πrdr)

= exp[−λπR2 · 2F1(1;
2

αc
;
2 + αc
αc

;−Rαc µ

sPd
]. (3.21)

3.3.2 DUE Uplink Coverage

D2D pair j is located at r = rbdj from the BS. The distance between the two DUEs

forming the pair is rddjj . The DUE coverage probability can be expressed as P(SINRUL
d >

Γ)|r=rbdj

= P(
Pd(h

dd
jj )2(rddjj )

−αd

Ir +N0
> Γ)

=

∫ 2Rd

0
P((hddjj )2 >

Γrd
αd

Pd
(Ir +N0)|Ir, rd)f∆R

(rd)drd

=

∫ 2Rd

0
exp(−µdΓN0rd

αd

Pd
)LIr|rd(s1, s2)f∆R

(rd)drd,

(3.22)
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Where s1 = s2 = µdΓrd
αd

Pd
, and LIr|rd(s1, s2) is

= exp(−λ
∫
S
{1− E(hddkj )

2 [exp(−s1Pdh
2r−αd)]}dr)×

E(hdcij )2,rdcij
[exp(−s2Pch

2r−αd)]

≈ exp(−λ{
∫ √

R2−(rbdj )
2

0
f(s1, r)2πrdr +∫ R+rbdj

R−rbdj
f(s1, r)2 arctan(

y0

rbdj − x0
)rdr})× µd

µd + s2Pcr̄
−αd
ij

.

(3.23)

f(s1, r) has the same form as in equation (3.14), and Eh2
ji,rij [exp(−s2Pch

2rij
−αd)] ≈

µd

µd+s2Pcr̄
−αd
ij

. r̄li denotes average distance between cellular user and the considered D2D

user. Numerical approach can be applied to calculate the integration.

3.4 Numerical Results

In this section, we evaluate the performance of the given D2D network. We consider a

normalized circular cell with a unity radius and set the BS transmit power Pb to ensure that

the cell edge user Signal-to-Noise Ratio (SNR) is at least 1dB. All other transmit powers

and distances are given with respect to these two values in the simulation. The path loss

model used in the work is based on [47] PL(d) = PL(d0) + 10α log(d)(dB), where PL(d) is

the receiver’s path loss at a distance d away from the transmitter. PL(d0) represents the

reference path loss at distance d0 and α is the path loss exponent. The path loss exponent

for all the channels is assumed to be 4.

3.4.1 System Validation

In our system model, all the D2D users appear as communication pairs and their 2-D

spacial locations are distributed according to homogeneous PPP with intensity λd. DUEs

and CUEs can share radio resources. First, we verify the developed system model and

derived formulas in Section III and Section IV. Simulation based on Monte Carlo approach

is applied to estimate the statistical SINR distribution of CUEs and DUEs for both downlink
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and uplink, which are compared to the analytical results given by the corresponding formula

expression. It can be observed that the simulation curves matches very well with the

analytical results.

3.4.2 Downlink and Uplink Coverage

Figure 3.2 presents the coverage probability for the CUEs when D2D communication

uses cellular downlink resources. The curves with a legend ”S” represent the results from

simulation while the curves with a legend ”A” are the results from the analysis. For a

downlink CUE, there is no interference from other CUEs. All the interferences are from the

co-channel D2D users. We evaluate the impact of parameters, such as CUE distance to BS,

D2D user density λd, DUE transmission power Pd, on the performance of CUE downlink

coverage. As expected, a CUE closer to BS, i.e., ri = 0.3R has a better coverage than the

one further away, i.e., ri = 0.5R, from the BS. Also a higher DUE transmission power and

a higher DUE density will cause a larger interference to the CUEs, resulting in a lower

CUE coverage probability and thus a higher outage for the CUEs. It is worth noting that

simulation results in the plot match very well with our analytical formula from (3.13), which

confirms the accuracy of our theoretical study.

Figure 3.3 shows the coverage probability of DUEs in the downlink resource sharing

scenario. We again use different system parameter settings to study the network perfor-

mance and verify our analysis. The curves with the same color share the same parameter

settings for DUE density λd, DUE transmission power Pd, and D2D pair circle radius Rd.

The curve marked with circle represents the scenario that the DUE under observation is

0.5R away from the BS, while the curve marked with square represents the scenario that

the DUE under observation is 0.3R away from the BS. The closer the DUE is to the BS,

the stronger the interference it will receive from the BS downlink transmission and thus

the smaller its coverage probability will be, i.e., the coverage becomes worse. It can be also

observed from the plots that a higher DUE density, a lower DUE transmission power, and

a larger circle radius for D2D pairs will degrade the DUE coverage performance. There is

a tradeoff between the selection of maximum D2D transmission power and D2D commu-
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Fig. 3.2: Probability of coverage for downlink cellular user

nication distance. The optimal selection becomes even more complicated when the system

needs to manage the DUE interference to CUEs on the downlink.

On the uplink, the CUEs will need power control so that the received SNR at BS for all

CUEs can reach the target value 5dB. Since the CUEs are considered as the primary users,

we consider a simple approach to reducing the interference to the CUEs on the uplink

transmission by restricting the operation area of DUEs. When operating on the uplink

resource sharing mode, the DUEs are not allowed to use the cellular channels when its

distance to the BS is less than Rg. Thus We simulate two different scenarios, i.e., with and

without guard area. In these two scenarios, the total number of D2D pairs in the cell are

set to be the same. Without a guard area, the DUEs can locate anywhere in the cell while

with a guard area, the DUEs can only locate outside the circular area around the BS with

a radius of Rg. Although the area density of DUEs with a guard area case is higher than

that without a guard area, the interference to the CUEs is still reduced significantly when

guard area is applied, which can be seen from the CUEs SINR distributions in Figure 3.4.
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Fig. 3.3: Probability of coverage for downlink D2D user

From the same figure we can see that a lower co-channel DUE density and a lower DUE

transmission power can always help improve the CUE SINR performance. Thus in reality,

when serving D2D users, the system needs to be careful with what power level to use for the

DUEs and which cellular channel to use for the DUEs. This can be done though intelligent

interference coordination and power control between CUEs and DUEs.

Figure 3.5 illustrates the coverage probability for DUEs in the uplink scenario. We

study the impact of system parameters such as D2D user density, D2D circle radius and

DUE transmission power on the performance of DUEs in uplink resources sharing mode.

The analytical curve is plotted based on the approximation formula in (3.22), (3.23) by using

an average distance R̄cd between CUEs and DUEs, which still matches the simulation results

very well. It is observed that when D2D communication uses cellular uplink resources, the

transmit power of DUEs has a very limited influence on the DUE SINR performance,

although its influence on the CUEs is significant (as can be seen from 3.4). it can be

explained in the following. When increasing the DUE transmit power, the increase of
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Fig. 3.4: Probability of coverage for uplink cellular user

interference from other co-channel DUEs offsets the improvement of received transmit signal

power, leading to limited SINR improvement for the DUEs. For this reason, it is better

to limit the transmit power of DUEs to reduce the interference to CUEs in the uplink

resource sharing operation mode. Similarly, other parameters such as DUE density, distance

constraint impact the DUE performance in the similar way to the downlink case.

3.5 Summary

In the work, an analytical evaluation of downlink and uplink SINR performance for the

D2D communication underlaying a cellular network is derived. We model the 2-D spacial

location of D2D pairs with a homogeneous PPP. The D2D users are pre-paired with a maxi-

mum communication distance constraint to guarantee the link budget and QoS of D2D user.

The CUEs and DUEs can share the same channels, either on the uplink or on the downlink.

The coverage probability for both DUEs and CUEs is derived based on user distribution

and channel statistics without any knowledge of instantaneous channel information. The
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Fig. 3.5: Probability of coverage for uplink D2D user

analytical results match very well with the simulation work. We investigate the impact of

system parameters such as DUE density, BS transmission power, DUE transmission power

on the DUE and CUE coverage performance. When considering CUEs as the prioritized

users in such a D2D cellular network, intelligent interference coordination through resource

allocation and power control is very critical in achieving satisfactory coverage performance

for both primary CUEs and secondary DUEs. The proposed analytical tools provide con-

venient and accurate studies on the co-channel deployed D2D communications in a cellular

network.
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Chapter 4

Distributed Resource Allocation for D2D Communication -

A Stackelberg Game Model

In this chapter, we discuss a distributed resource allocation and power control scheme

based on Stackelberg game framework to improve network efficiency in D2D communication

networks. The system aims to maximize the number of supportable underlay D2D users

while guaranteeing Quality of Service (QoS) of the prioritized cellular users. D2D users

are supported in an underlay mode by sharing radio resources with the cellular downlink

communications. Network throughput and spectral efficiency can be further improved by

exploiting multiuser diversity in a D2D underlaying cellular communication, in which one

cellular user’s resource can be shared by multiple D2D pairs and one D2D pair can reuse

resources from different cellular users. We formulate the joint optimization on D2D power

control and resource allocation with a distributed Stackelberg game theoretical model and

decompose it into two steps to approach the game equilibrium. In the work, the Stackelberg

game framework [48,49] is used to model the interaction between Base Station (BS), cellular

users and D2D pairs for power allocation on each resource block. Given the cost of resource

block, BS/cellular user can share the resource based on the D2D communication channel

condition and D2D interference to other users and the game equilibrium is reached at the

maximum utility.

The rest of this chapter is organized as following. First, we discuss the system model

of D2D communication underlaying cellular network. Then we propose the resource allo-

cation and power control scheme based on the Stackelberg game model. Next, we present

simulation results and numerical analysis. Finally, conclusions are drawn in the last section.
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4.1 System Model

In this work, we consider underlay D2D communications that share cellular downlink

resources with the prioritized cellular users (CUEs). D2D users (DUEs) come in as pairs.

So each DUE consists of two UEs that form a pair. The system has N CUEs and M

DUEs. All CUEs directly communicate with the BS and each CUE is assigned one downlink

cellular resource. Thus there are in total N downlink cellular resources. We allow each

CUE resource to be shared among multiple DUEs in order to maximize the spectrum

reuse gain and each DUE can be assigned multiple resources from different CUEs. CUEs

have a higher priority than DUEs when they are served as co-channel users so that CUE

QoS will not be compromised by serving underlay DUEs. In order to achieve that, the

resource sharing between CUEs and DUEs should be well coordinated. As part of that

coordination, the maximum transmission power of DUEs is PD and transmission distance

from the transmitter to the receiver of a DUE is constrained to Rd to maintain the link

quality of D2D communication as well as to throttle the DUE interference to CUEs.

Figure 4.1 depicts the system model for D2D communications underlaying the cellular

network. We denote fi as the resource allocated to CUE i. As an illustrative example of

resource allocation in Figure 4.1, CUE1, CUE2 ,CUE3 are allocated orthogonal resources

f1, f2, and f3 , respectively. DUE1, DUE2, DUE3, DUE4 are competing to share these

resources in an underlay mode. There is no intra-cell co-channel interference among CUEs.

One possible D2D underlay resource sharing is as follows. DUE1 shares f3, DUE2 shares

f1, DUE3 shares f1 and f2, DUE4 shares f2 and f3. The following notations are used:

• PBi : Transmission power allocated to CUE i

• P dij : Power allocated to DUE j for transmitting on resource i owned by CUE i

• gci : channel gain from BS to CUE i

• gdij : channel gain from BS to DUE j

• gdijj : channel gain between the two UEs in DUE j on resource i

• gdijj′ : channel gain from the DUE j to DUE j′ D2D pair on resource i
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Fig. 4.1: Illustration of Device-to-Device underlaying cellular network

• gdcji : channel gain from the DUE j to CUE i

• N0: AWGN noise power density

We consider a Rayleigh fast fading, which follows an exponential distribution denoted

as h ∼ exp(µ). The pathloss model is given as PL(d) = PL(d0)d−α. The channel gain is

expressed as g = PL(d0)h · d−α. Based on the proposed underlay resource sharing mode,

the SINR for CUE i and DUE j can be expressed as following.

SINRc
i =

PBi g
c
i∑

j xjiP
dd
ji g

dc
ji +N0

, (4.1)
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SINRd
ji =

P dij g
di
jj∑

j′ 6=j xj′iP
di
j′ g

di
j′j + PBi g

di
j +N0

, (4.2)

where xji represents the allocation status of resource fi to DUE j. If xji = 1, fi is allocated

to DUE j. xji = 0 otherwise. There is no co-channel interference among CUEs within

the cell. The interference to a CUE comes from all the underlay co-channel DUEs while

the interference to a DUE includes the co-channel CUE transmission and other co-channel

DUEs, as illustrated in formula (4.1) and (4.2).

Our objective is to maximize the sum-rate of DUEs while guaranteeing QoS of priori-

tized CUEs. The optimization problem is formulated as:

max
∑
j

∑
i

xji log2(1 + SINRd
ji) (4.3)

s.t.

xji = {0 or 1}, (4.4)

PBi g
c
i∑

j xjiP
di
j g

dc
ji +N0

≥ γi, i = 1 · · ·N ; (4.5)∑
i

xjiP
di
j ≤ P

D, j = 1 · · ·M. (4.6)

Constraint (4.5) denotes the minimum channel quality requirement for each CUE. Condi-

tion in (4.6) is the maximum DUE transmission power constraint. To achieve the maxi-

mum transmission rate, each DUE adapts its transmission power allocation among multiple

shared resources based on the channel quality on each resource. The power allocation prob-

lem is closely tied to interference management, which makes the mixed integer nonlinear

resource and power allocation optimization problem mathematically intractable.

4.2 Resource Allocation and Power Control for D2D User

Although jointly considering DUE resource allocation and power control is highly de-

sirable from network spectral efficiency’s perspective, the joint optimization is usually com-
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putationally complex and mathematically intractable. Furthermore, the power and resource

allocation occurs in a fast manner, e,g, every 1 ms, to exploit diversity gain. Therefore, we

need to pursue a computationally efficient and mathematically tractable scheme. Hence, an

algorithm with a lower complexity is preferred, even though it is suboptimal. We resolve the

problem into a two-step approach, with each step separately addressing resource allocation

and power allocation. In this section, we first discuss a grouping mechanism, in which all the

DUEs that share the same resource of a CUE are deemed as a group. Furthermore, by using

this grouping scheme, power allocation based on Stackelberg game model is developed to

optimally distribute power among resources for each DUE. To make our assumptions more

clear, each CUE takes one resource while each DUE can use multiple resources.

4.2.1 A Sub-optimal CUE-DUE Grouping Scheme

We discuss a sub-optimal CUE-DUE grouping scheme in this section. In observation of

co-channel interference among DUEs sharing the same resource, we group together DUEs

in the way that can boost network capacity most while limit the interference to each other.

Full transmission power is assumed during grouping. To measure cellular network capacity

improvement by sharing resources with DUEs, Cgainji denotes the throughput gain when

DUE j shares the resource with CUE i.

Cgainji = log2(1 +
PBg

c
i

P dij g
dc
ji +N0

)

+ log2(1 +
P dij g

di
jj

PBgdj +N0
)− log2(1 +

PBg
c
i

N0
). (4.7)

We also denote the group of DUEs sharing the same resource with CUE i as group

Ωi, i = 1, ..., N . The grouping algorithm aims to maximize the total throughput gain by

efficiently reusing the cellular resources. A DUE is allowed to share a resource if and only if

the throughout gain is positive. On the other hand, the grouping and resource sharing also

need to consider the co-channel interference among different DUEs. Detailed CUE-DUE

grouping algorithm is described in Table 4.1.
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Table 4.1: Sub-optimal CUE-DUE grouping scheme

1: Initialize Ω
′
i = ∅ Ωi = ∅ for i = 1, 2, · · · , N , and Dj for {j = 1, 2, · · · ,M},

2: Calculate Cgainji for i = 1, 2, · · · , N , j = 1, 2, · · · ,M
3: Step 2: For i = 1 to N ,
4: a) sort out Cgainji in descending order,

5: b) update Ω
′
i = Ω

′
i

⋃
j with Cgainji > 0 for all j = 1, 2, · · · ,M

6:

7: Step 3: For i = 1 to N ,
8:

9: For j ∈ Ωi, j = arg max
j∈Ω

′
i
Cgainji , Ω

′
i = Ω

′
i \ j,

10: evaluate p1 =
g
di
jj

g
di
kj

, p2 =
g
di
kk

g
di
jk

for all k ∈ Ωi

11: if P1 > γ and P2 > γ
12: Ωi = Ωi

⋃
j, Dj = Dj

⋃
i

We allow each resource to be shared among multiple DUEs as long as the sharing can

improve the network capacity. DUEs that are too close to each other may not want to

use the same resource due to the strong interference to each other even if each of them can

boost network efficiency separately. In Step 3 of Table 4.1, gdijk denotes the channel gain from

DUE j to DUE k when sharing resource with CUE i. Threshold γ prevents those proximity

DUEs from sharing resources. Based on the proposed CUE-DUE grouping algorithm, we

can assume that dominant interference to DUEs comes from BS. As each DUE can use

multiple resources, how D2D allocate power among different resources is discussed in the

next section.

4.2.2 Stackelberg Game Model Based Power Allocation

We use Stackelberg game to group DUEs and allocate power distributively. The game

is divided into two levels: CUEs and BS are modeled as buyers, aiming to achieve the

maximum throughput gain by buying powers from the DUEs; DUEs are modeled as sellers

and aim to gain most payment from selling their powers to contribute to the network

throughput. On the buyer side, given a certain price offer, CUEs calculate the amount of

power bought from each DUE. If a seller asks for an overly high price, CUEs would bid

for less power or even give up their bids. On the seller side, each DUE sells its power
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to the CUE who can provide a higher price to achieve the maximum utility. However,

the competition among seller DUEs will make sure each DUE asks for a reasonable price

based on its location and channel condition. From system’s perspective, the price depends

on the nexus between CUEs and DUEs, which influences power allocation. On the other

hand, the power allocation for each DUE in turn determines the price offer given by sellers.

Ultimately, there is a final price concurred by both CUEs and DUEs and this final price

and power allocation are the equilibrium of the game.

Buyer Level Utility

The goal of the power control and resource allocation algorithm is to maximize the

sum rate D2D throughput while guaranteeing CUE QoS. Therefore, the utility function of

buyers is defined as:

Uji = β
N∑
i

∑
j∈Ωi

log2(1 +
P dij g

di
jj

PBgdj + +N0
)− C, (4.8)

where C =
∑N

i

∑
j∈Ωi

rjiP
di
j denotes the total cost paid by CUEs to buy power from DUEs.

rji is the unit price of power sold by DUE j to contribute throughput on CUE i’s resource

and P dij denotes how much power CUE will buy from DUE j given the price. It is worth

noting that β in (4.8) is used to balance the sum rate capacity and total cost. A larger

value of β puts more weight on capacity improvement, thus rendering more power bought

by BS given the same price offer. At the buyer level, the goal of the game is to maximize

the buy utility function under the constraint of D2D transmission power while guaranteeing

QoS of prioritized CUEs. The buyer optimization problem is formulated as:

max Ub =

N∑
i

∑
j∈Ωi

[β log2(1 +
P dij g

di
jj

PBgdj +N0
)− rjiP dij ] (4.9)

s.t.

PBg
c
i∑

j∈Ωi
P dij g

dc
ji +N0

≥ Γi, for i = 1, · · · , N ; (4.10)
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N∑
i=1

P dij ≤ PD, for j = 1, · · · ,M j ∈ Ωi. (4.11)

The first constraint represents SINR requirement for CUEs and the second constraint

states the maximum transmit power for each DUE. For the given price rji, i = 1, · · · , N ; j =

1, · · · ,M offered by DUEs, buyer level objective function Ub is a concave function of power

allocation P dij .

Remark 4.2.1. CUE i can only share its resource to DUE j when the price offered by DUE

j is no greater than
βg
di
jj

ln 2(PBg
d
j+N0)

.

Let’s consider the objective function Ub.

∂Ub

∂P dij
=

α log2eg
di
jj

PBgdj +N0 + gdijjP
di
j

− rji. (4.12)

The first derivative of Ub is a strictly decreasing function of P dij . Without considering the

two constraints (4.10) and (4.11), the maximum objective function value is achieved when

P ddji = α
ln2rji

− PBg
d
j+N0

g
di
jj

. However, when rji ≥
αg
di
jj

ln 2(PBg
d
j+N0)

, we have ∂Ub

∂P
di
j

< 0. Thus the

objective function Ub achieves its maximum value of zero at P dij = 0. Therefore, if DUE j

provides a higher price than that, CUE i would gain no benefit by buying power from DUE

j.

The optimal solution for the buyer level game is not straightforward to solve. We can

transform the original problem into a dual problem by introducing additional variables.

The Lagrange function L(pdij , λi, µj) is defined as :
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L(pdij , λi, µj)

=
∑
i

∑
j∈Ωi

[rjip
di
j − β log2(1 +

pdij g
di
jj

PBgdj +N0
)]

+
∑
i

λi[
∑
j∈Ωi

P dij g
dc
ji −

PBg
c
i

Γi
+N0]+

∑
j

µj [
∑
i

j∈Ωi

P dij − PD]

=
∑
i

∑
j∈Ωi

[rjiP
di
j − β log2(1 +

P dij g
di
jj

PBgdj +N0
) + λiP

di
j g

dc
ji

+ µjP
di
j ] +

∑
i

λi(N0 −
PBg

c
i

Γi
)−

∑
j

µjPD, (4.13)

where the λi and µj are the Lagrange multipliers associated with two inequality constraints

(4.10) and (4.10). By introducing the Lagrange function, the original problem can be solved

through solving the following dual optimization problem. g(λi, µj)

=
∑
i

∑
j∈Ωi

inf
P
di
j

[P dij (rji + λig
dc
ji + µj)− β log2(1 + P dij

×
gdijj

PBgdj +N0
)] +

∑
i

λi(N0 −
PBg

c
i

Γi
)−

∑
j

µjPD

=−
∑
i

∑
j∈Ωi

sup
P
di
j

[P dji(−rji − λigdcji − µj) + β log2(1 + P dij

×
gdijj

PBgdj +N0
)] +

∑
i

λi(N0 −
PBg

c
i

Γi
)−

∑
j

µjPD

=
∑
i

∑
j∈Ωi

[β log2(rji + λig
dc
ji + µj)−

PBg
d
j +N0

gdijj
(rji

+ λig
dc
ji + µj)] +

∑
i

λi(N0 −
PBg

c
i

Γi
)−

∑
j

µjPD +D.

(4.14)

D =
∑

i

∑
j∈Ωi

[β log2(
e ln2(PBg

d
j+N0)

βg
di
jj

)] is a constant. And F ∗(y) is the conjugate function of

F (P dij ) = −β log2(1 + P dij
g
di
jj

PBg
d
j+N0

). F ∗(y) = supx(x ∗ y − F (x)) as defined in [50]. The

conjugate function of F ∗(y) = sup
P
di
j

(P dij ∗ y + β log2(1 + P dij
g
di
jj

PBg
d
j+N0

)) can be evaluated

as follows.
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• When y ≥ 0, F ∗(P dij ) = +∞.

• When y < 0, first order derivation of F ∗(P dij , y) = P dij ∗ y + β log2(1 + P dij
g
di
jj

PBg
d
j+N0

)

is evaluated as
∂F ∗(P dij , y)

∂P dij
= y +

β log2eg
di
jj

PBgdj +N0 + gdijjP
di
j

. (4.15)

By letting
∂F ∗(P

di
j ,y)

∂P
di
j

= 0, we get P dij = −β log2e
y − PBg

d
j+N0

g
di
jj

. Replacing this P dij into

F ∗(y), we have

F ∗(y) = β log2

β log2eg
di
jj

−y(PBgdj +N0)
− β log2 e

−
y(PBg

d
j +N0)

gdijj
, y < 0. (4.16)

Thus the dual optimization problem can be formulated as

max g(λi, µj) (4.17)

s.t.

λi ≥ 0, i = 1 · · ·N ; (4.18)

µj ≥ 0, j = 1 · · ·M. (4.19)

By checking Slater’s condition [50], the duality gap between the Lagrange dual problem and

the original problem is zero and optimal solution to dual optimization problem is equal to

the solution to the original problem. It should be noted that the above dual problem is a

function of λi and µj and it is always concave according to the property of dual function.

For the above convex optimization problem, the following gradient based search algorithm
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can be applied to find the optimal solution.

∇λig(λi, µj) =
∑
j∈Ωi

[
β log2eg

dc
ji

rji + λigdcji + µj
−
PBg

d
j +N0

gdijj
gdcji ]

+ N0 −
PBg

c
i

Γi
, (4.20)

∇µjg(λi, µj) =
N∑
i=1

(j∈Ωi)

[
β log2e

rji + λigdcji + µj
−
PBg

d
j +N0

gdijj
].

− PD (4.21)

Update for dual variable along with gradient direction is provided as:

λi(t+ 1) = λi(t) + δ∇λig(λi, µj), i = 1 · · ·N. (4.22)

µj(t+ 1) = µj(t) + δ∇µjg(λi, µj), j = 1 · · ·M. (4.23)

δ is the update step size.

KKT Conditions for Optimality

For the original constrained convex optimization problem, the KKT conditions are

sufficient and necessary for both primary and dual optimality. Let p̃dij , and λ̃i, µ̃j be the

optimal solutions to the original and dual problems respectively.

∇
p
di
j

L(p̃dij , λ̃i, µ̃j) = rji −
βgdijj

ln 2(p̃dij g
di
jj + PBgdj +N0)

+ λ̃ig
dc
ji + µ̃j = 0, (4.24)

λ̃i[
∑
j∈Ωi

(p̃dij g
dc
ji )−

PBg
c
i

Γi
+N0] = 0, (4.25)
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µ̃j [

N∑
i=1
j∈Ωi

(p̃dij )− PD] = 0, (4.26)

∑
j∈Ωi

p̃dij g
dc
ji −

PBg
c
i

Γi
+N0 ≤ 0, (4.27)

∑
i

j∈Ωi

p̃dij − PD ≤ 0, (4.28)

λ̃i ≥ 0, i = 1 · · ·N, (4.29)

µ̃j ≥ 0, j = 1 · · ·M. (4.30)

By evaluating (4.24), the optimal power allocation p̃dij is

p̃dij =
β

ln 2(rji + µ̃j + λ̃igdcji )
−
PBg

d
j +N0

gdijj
. (4.31)

Till now, given the price offer rji, the optimal power allocation p̃dij can be indirectly gained

by first evaluating dual optimality λ̃i and µ̃j , and then substituting λ̃i and µ̃j into equation

(4.31).

Seller Level Utility

At the seller level, DUE j aims to maximize the utility by selling power to CUE i given

price rji, ∀i, j. The utility function for DUE j can be defined as follows:

max Ub =

N∑
i

j∈Ωi

(rji − cji)(pdij −K), j = 1, · · · ,M, (4.32)

where cji denotes the cost of DUE j by sharing resource with CUE i. K is the power

allocation threshold. The tradeoff between buyers and sellers can be understood in the
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following. On each resource, a DUE sells power to the CUE at a proper price to make the

maximum profit. Based on the given price, the CUE determines the DUE’s power allocation

on the resource. If the price offered by the DUE for a given resource is low, the DUE power

allocated to the resource is low. Therefore, the total utility gained by DUE from the trade

is low. With the increase of price, the total utility gained by DUEs will increase at the

beginning. But if DUEs offer an overly high price for the power on the allocated resource

block, CUEs will buy much less power, the total utility gained by DUEs will decrease.

Therefore, there exists a maximum utility that can be achieved for each DUE.

By substituting the optimal power allocation at the buyer level into seller problem,

we can solve the optimal price rji as the function of µ̃j and λ̃i. The proposed iterative

algorithm to find the optimal power allocation is detailed in table 7.1.

rji =

√√√√√β log2e(cji + µ̃j + λ̃igdcji )

K +
PBg

d
j+N0

g
di
jj

− (µ̃j + λ̃ig
dc
ji ). (4.33)

4.3 Performance Evaluation

We consider D2D communications underlaying downlink cellular network. CUEs are

uniformly distributed in a single cell. DUEs are uniformly distributed. Since DUEs come

in as pairs, the distance between two D2D users forming a pair has to be less than Rd. We

set the BS and maximum DUE transmit power to be 46 dBm and 24 dBm. The channel

model parameters include unit mean for the Rayleigh fading process, a pathloss coefficient

of 4, and a standard deviation of 8 dBm for the log-normal shadowing. Number of CUEs

N is fixed at 100, and the number of DUEs varies from 20 to 150 to simulate different D2D

density. The value of Γi,∀i follows a uniform distribution between 7 to 13 dB with a mean

of 10 dB. Threshold γ is set to be 30 dB.

We first show the performance of the proposed distributed power allocation algorithm.

Fig. 4.2 presents the convergence of the buyer (CUE) utility function. Three utility curves

are presented, each corresponding to a different D2D density. At each iteration, the buyer

level updates its power allocation based on the price offered from each DUE. Based on the
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Table 4.2: Distributed-resource-and-power-allocation-ALGORITHM FLOW

1: Step 1: proceed the CUE-DUE grouping scheme from table4.1,
2: Step 2: Initialize µ̃j , λ̃i and rji for i = 1, 2, · · · , N , {j = 1, 2, · · · ,M},
3: Step 3: Initialize the step size parameter δ
4: repeat
5: Update the µ̃j , λ̃i in (4.22) and (4.22)

6: calculate power allocation pdij in (4.31)

7: if pdij < K then
8: Delete j, i from set Ωi and Dj and return to Step 2.
9: else

10: Update rji in (4.33)
11: end if
12: until solution for rji converge
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Fig. 4.2: Convergence of power allocation algorithm for different number of D2D users,
where D2D cluster radius r = 30m, cell radius R = 1km

new power allocation result, the seller level calculates the new price that can achieve the

maximum seller (D2D) utility. The iteration continues till both buyers and sellers achieve

the equilibrium. The algorithm converge very fast at 40 to 50 iteration steps. It is obvious

that a higher capacity gain can be achieved at a higher D2D density. However, the increase
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rate is becoming less when more and more D2D users join the network, which indicates that

the network can only support up to a certain D2D density level in order to guarantee the

QoS requirement of CUEs.

Fig. 4.3 shows the average accessible ratio of DUEs to the network with respect to

the D2D cluster radius. The accessible ratio is defined as the percentage of DUEs that

are selected for underlay resource sharing. Since each cellular resource can be shared by

multiple DUEs, the number of supported underlay DUEs is higher than that of the primary

CUEs. The DUE accessible ratio is significantly influenced by D2D communication distance,

which is the distance between the transmitter and the receiver of a DUE. The higher the

transmission distance, the lower the accessible ratio and more DUEs will be excluded from

underlay sharing due to their lower link quality and higher interference to CUEs. Thus from

the system’s perspective, it encourages short range D2D communications. Furthermore,

when the D2D communication distance is fixed, the number of DUEs barely influences the

accessible ratio.

Fig. 4.4 shows the net system capacity gain. With the increase of DUE density, the

system capacity gain also improves, especially when the D2D communication distance is

short. However, the capacity improvement becomes less effective when the D2D communi-

cation distance becomes large. This has been already explained in Fig. 4.3, which shows

the DUE access ratio is limited significantly due to poor link quality. A large number of

DUEs can be accepted to network as long as the co-channel interference to the prioritized

cellular user is under control and its QoS is guaranteed.

4.4 Summary

This chapter studied the resource and power allocation problem in a cellular network

with underlaid D2D communications. A distributed power and resource allocation algorithm

based on Stackelberg game model was proposed. To maximally improve system capacity

while not comprising cellular user’s QoS, we allow each cellular downlink resource to be

shared by multiple D2D users and every D2D user can use multiple resources from different

cellular users. We formulate an optimization problem on joint power control and resource
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Fig. 4.3: Illustration of D2D user access ratio

allocation and further decompose the problem into a two-step approach to obtain a sub-

optimal solution to reduce computational complexity. The simulation results show that our

proposed algorithm can converge very fast and the system capacity is improved significantly

by supporting underlay D2D users.
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Chapter 5

Joint Resource Allocation and Mode Selection Scheme for

D2D Communication

In this chapter, we consider the device-to-device (D2D) communications underlaying

cellular networks to support local communication needs. In particular, we focus our at-

tention on the design of an optimal resource allocation and mode selection algorithm for

both cellular and D2D users. In the design, communication mode selection for D2D users

is taken into account so that a D2D source-destination pair has an option to either directly

communicate or indirectly communicate through the base station (BS). On the other hand,

it is necessary and important to provide a certain level of Quality of Service (QoS) to users.

The users can be further differentiated by assigning different weighting factors and QoS

requirements. To this end, we formulate a problem of maximizing the weighed sum rate

of all users constrained by their power and QoS requirements. The tool that we use to

handle this problem is the primal-dual technique which transforms the original problem

into the equivalent problem showing lower computational complexity. We present our sim-

ulation results to show our proposed scheme outperforms the previous heuristic scheme by

jointly optimizing the power and resource allocation along with mode selection for D2D

communications.

5.1 System Model and Problem Formulation

5.1.1 System Model

This chapter studies an optimal power control and resource allocation problem in a

cellular network with underlaying D2D communications. More particularly, the study fo-

cuses on a downlink cellular network so the D2D communication reuses cellular downlink
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resources. There are two types of user equipments (UE) defined in the system, namely

cellular UE (CUE) and D2D UE (DUE). CUE is defined as a UE that communicates with

another UE located in a different cell while DUE is defined as a UE that communicates

with another UE located in the same cell. The two communicating UEs in the same cell

together are called a DUE in order to facilitate the mathematical expressions and analysis

in following. The system in total has K resources blocks (RBs), indexed by the set RB

K = {1, ..., k, ...K}. RB is the scheduling and channel feedback granularity in this study.

There are in total L UEs, indexed by the set L = {1, ...,M,M+1, ...M+N}. Among L UEs,

there are M CUEs, indexed by M = {1, ...,M}, and N DUEs, indexed by N = {1, ..., N}.

L =M
⋃
N . Furthermore, the system supports three communication modes, namely CUE

cellular mode or C-C mode, D2D cellular mode or D-C mode, and D2D mode or D-D mode.

In the D-C mode, the communication consists of two hops, first uplink from one D2D UE

to BS and then downlink from BS to another D2D UE. In the D-D mode, communication

between two D2D UEs (together as one DUE) in a close proximity can be directly carried

out between each other in one hop. Consequently, a DUE needs to do mode selection be-

fore the real communication starts and mode selection is an essential part of the problem

formulation in this study. We further use τ to numerically represent different communi-

cation mode, i.e., τ = 0 represents the C-C mode, τ = 1 represents the D-C mode, and

τ = 2 represents the D-D mode. Illustrations for three communication modes are shown in

Fig.5.1.

Extensive studies have shown that inter-cell interference can be effectively mitigated

with inter-cell interference control mechanisms such as power control or radio resource man-

agement. Joint resource and power allocation can be performed to achieve the most efficient

spectral usage and power saving in a cellular network by fully exploiting the knowledge of

channel state information (CSI). In a network with underlay DUEs, radio resources can be

shared among CUEs and DUEs in a non-orthogonal mode or DUE and CUE are allocated

resources in an orthogonal mode. In this work, our study assumes an orthogonal resource

sharing mode. The channel model between any two communication parties. i.e. between
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Fig. 5.1: Cellular network with D2D communication in OFDMA downlink system

BS and UE or between two UEs) consists of path loss, shadowing and fast fading. The

channel gain for CUE i on kth RB can be expressed as

gτ=0
i,k = g0µ

k
i,Bφ

k
i,Bd

−α
i,B, (5.1)

where g0 is a system dependent constant, µki,B is the fast fading channel gain with an

exponential distribution, φki,B is the slow fading gain with a log-normal distribution, α is

the path loss exponent, and di,B is the distance between CUE i and the BS. Similarly, the

channel gain for DUE j can be expressed as gτj,k, τ = 1 or 2.

5.1.2 Problem Formulation

In this work we study the mode selection, resource allocation and power control al-

together in one problem to realize the maximum system spectral efficiency. As primary
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users, CUEs are guaranteed with a minimum QoS. Let pl,k and rl,k denote the transmission

power and rate of user l on RB k, respectively. We have the following expressions for the

achievable rate at each RB for different UEs supported in different communication modes.

In our study, the size of one RB is normalized into 1, which makes the rate of each RB the

same as spectral efficiency.

Rate of UE l in the C-C mode:

rτ=0
l,k = log2(1 +

pτ=0
l,k gτ=0

l,k

Γσ2
), ∀l ∈M. (5.2)

Rate of UE l in the D-C mode:

rτ=1
l,k =

1

2
log2(1 +

pτ=1
l,k gτ=1

l,k

Γσ2
), ∀l ∈ N . (5.3)

Rate of UE l operating in the D-D mode:

rτ=2
l,k = log2(1 +

pτ=2
l,k gτ=2

l,k

Γσ2
), ∀l ∈ N . (5.4)

Obviously the combination of τ and UE l is only valid for certain values. For examples,

τ = 1 and l ∈M or τ = 0 and l ∈ N can not be valid combinations. These constraints will

be considered in the problem formulation. For the D-D communication mode, we assume its

uplink channel and downlink channel are symmetric. It takes 2 RBs of the serving cell, one

for uplink and one for downlink, to deliver one-round communication. Thus in one RB the

supported rate is cut by half, as shown in Equation (5.3). As a comparison, communication

modes 0 and 2 take only one RB in the serving cell to deliver one-round communication. σ2

is the additive white Gaussian noise on each RB, Γ defines the SNR gap between the ideal

Shannon channel rate and a more practical rate based on a selected modulation and coding

scheme. For example, if the M-ary quadrature amplitude modulation (QAM) applied in the

system, Γ = [Q−1(BER4 )]2/3, where Q−1(x) is the inverse Q-function. The overall system
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optimization problem (P1) can be formulated as follows.

P1 : max
pτl,k

∑
l∈L

ωl
∑
k∈K

∑
τ∈{0,1,2}

rτl,kx
τ
l,k

 , (5.5)

subject to ∑
k∈K

∑
τ∈{0,1,2}

rτl,kx
τ
l,k ≥ Rc, ∀l ∈M, (5.6)

∑
k∈K

∑
τ∈{0,1,2}

rτl,kx
τ
l,k ≥ Rd, ∀l ∈ N , (5.7)

∑
k∈K

∑
τ∈{1,2}

pτl,kx
τ
l,k ≤ P lD, ∀l ∈ N , (5.8)

∑
l∈L

∑
k∈K

∑
τ∈{0,1}

pτl,kx
τ
l,k ≤ PB, (5.9)

∑
l∈L

∑
τ∈{0,1,2}

xτl,k ≤ 1, ∀k ∈ K, (5.10)

xτl,k =


0 or 1 τ = 0, ∀l ∈M, ∀k ∈ K,

0 or 1 τ = 1 or 2, ∀l ∈ N , ∀k ∈ K,

0 otherwise.

(5.11)

The above problem aims to maximize the sum of a weighted system spectral efficiency

by assigning a set of weighting factors ωl, {l ∈ L}, to each UE. ωm > ωn gives CUEs a

higher weight thus a higher priority service than DUEs. Constraints (5.6) and (5.7) enforce

the minimum QoS requirements for CUEs and DUEs, respectively. The total DUE power

consumption, including modes 1 and 2, is constrained to a maximum amount PnD in (5.8).

In constraint (5.9), the total base station power consumption, including transmission power

to CUEs in mode 0 and transmission power to DUEs in mode 1, is limited to PB. PnD and

PB are defined as overall energy consumption caps. It should be noted that we assume a

symmetric channels for uplink and downlink in mode 1 and thus the same rate is transmitted

on the uplink and downlink channels. Constraint (5.10) denotes an exclusive RB assignment



67

rule, i.e., a single RB can be assigned to only one UE, either CUE or DUE. Constraint (5.11)

ensures the right combination of mode τ and UE l.

5.2 An Optimal Power Allocation and Mode Selection Algorithm

A multi-user resource allocation problem is normally formulated as a mixed-integer

nonlinear programming (MINLP) problem, which is NP-complete [51]. It implies that there

is no known polynomial-time algorithm to find the optimal solution, which renders it very

difficult and complex to solve. Consequently, a heuristic method or sub-optimal solution

is normally pursued. (P1) is a typical MINLP, for which we propose a dual optimization

framework in this work to solve it.

5.2.1 Dual Optimization Framework

we first get rid of all binary variables xτl,k in the original problem of (P1). The converted

problem will be incorporated into the Lagrangian dual function to form a new dual problem.

The Lagrangian function is defined over a domain D as:

L

(
λ̄, {pτl,k}, {rτl,k}

)

=
∑
l∈L

∑
k∈K

∑
τ∈{0,1,2}

ωlr
τ
l,k+

∑
l∈L

λA,l

∑
k∈K

∑
τ∈{0,1,2}

rτl,k−R{d,c}


+
∑
l∈N

λB1,l

P lD −∑
k∈K

∑
τ∈{1,2}

pτl,k


+λB2

PB −∑
l∈L

∑
k∈K

∑
τ∈{0,1}

pτl,k

, (5.12)

where domain D is defined as the set of all non-negative pτl,k’s ∀l ∈ L, k ∈ K and τ ∈ {0, 1, 2}

such that for each k, only one pτl,k is positive ∀l ∈ L and τ ∈ {0, 1, 2}, from constraint

(5.10). λ̄ = [λA λB1 λB2] is the vector consisting of all Lagrangian multipliers derived
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from constraints (5.6)-(5.9). Then, the Lagrangian dual function is formed as:

g(λ̄) = max
{pτl,k},{r

τ
l,k}∈D

L

(
λ̄, {pτl,k}, {rτl,k}

)
. (5.13)

It is observed that the dual function g(λ̄) is a pointwise maximum of a family of affine

functions of λ̄. Thus g(λ̄) is a convex function of λ̄. Hence the original problem can be

solved from the dual problem (P2).

P2 : min
λ̄�0

g(λ̄), (5.14)

where � denotes the element-wise greater than or equal to symbol in above constraint. By

letting g
′
(λ̄) defined in (5.15) be the function of λ̄, we have the following expression:

g
′
(λ̄) = max

{pτl,k},{r
τ
l,k}∈D

∑
l∈L

∑
k∈K

∑
τ∈{0,1,2}

(
ωlr

τ
l,k + λA,lr

τ
l,k

)

−
∑
l∈N

∑
k∈K

∑
τ∈{1,2}

λB1,lp
τ
l,k−

∑
l∈L

∑
k∈K

∑
τ∈{0,1}

λB2p
τ
l,k

 , (5.15)

=
∑
k∈K

max
{pτl,k},{r

τ
l,k}∈D

∑
l∈L

∑
τ∈{0,1,2}

(
ωlr

τ
l,k + λA,lr

τ
l,k

)

−
∑
l∈N

∑
τ∈{1,2}

λB1,lp
τ
l,k−

∑
l∈L

∑
τ∈{0,1}

λB2p
τ
l,k

 , (5.16)

=
∑
k∈K

max
τ∈{0,1,2}
l∈L

 max
{pτl,k},
{rτl,k}∈D

{
f1(pτ=0

l,k ), f2(pτ=1
l,k ), f3(pτ=2

l,k )
} .

(5.17)

Functions f1, f2, and f3 are respectively defined as:

f1(pτ=0
l,k ) = (ωl + λA,l)r

τ=0
l,k − λB2p

τ=0
l,k ,

∀k ∈ K, ∀l ∈M. (5.18)
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f2(pτ=1
l,k ) = (ωl + λA,l)r

τ=1
l,k − (λB1,l + λB2)pτ=1

l,k ,

∀k ∈ K, ∀l ∈ N . (5.19)

f3(pτ=2
l,k ) = (ωl + λA,l)r

τ=2
l,k − λB1,lp

τ=2
n,k ,

∀k ∈ K, ∀l ∈ N . (5.20)

Equation (5.16) is derived since power and rate variables can be separable across different

RBs and Equation (5.17) is satisfied because an RB is exclusively assigned to a UE with

the selected mode. Thus the original problem can be decomposed into the K independent

optimization problems, each of which is a per-RB optimization problem and computation

complexity is prominently decreased.

Also we have

g(λ̄) = g
′
(λ̄)−

∑
l∈L

λA,lR{d,c} +
∑
l∈N

λB1,lP
l
D + λB2PB. (5.21)

It is not difficult to verify that f1(pτ=0
l,k ), f2(pτ=1

l,k ),f3(pτ=2
l,k ) are all concave functions of pτ=0

l,k ,

pτ=1
l,k , pτ=2

l,k , respectively. By evaluating the first derivative of each of them, we can attain

the optimal power allocation for each user with the best mode selection.

pτ=0
l,k
∗

=

[
1

ln 2

ωl + λ∗A,l
λ∗B2

− Γσ2

gτ=0
l,k

]+

, ∀k ∈ K, ∀l ∈M. (5.22)

pτ=1
l,k
∗

=

[
1

2 ln 2

ωl + λ∗A,l
λ∗B1,l + λ∗B2

− Γσ2

gτ=1
l,k

]+

, ∀k ∈ K, ∀l ∈ N . (5.23)

pτ=2
l,k
∗

=

[
1

ln 2

ωl + λ∗A,l
λ∗B1,l

− Γσ2

gτ=2
l,k

]+

, ∀k ∈ K, ∀l ∈ N . (5.24)
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[·]+ denotes the nonnegative value function. The optimal mode selection for UE l on RB k

is:

[l, τ ]∗k = arg max
m∈M,n∈N
τ∈{0,1,2}

{
f∗1 (pτ=0

m,k ), f∗2 (pτ=1
n,k ), f∗3 (pτ=2

n,k )
}
, (5.25)

The optimal values for binary variables can be determined in the following.

(xτl,k)
∗ =


1 {l, τ} = [l, τ ]∗k, ∀k ∈ K;

0 otherwise.

(5.26)

Corresponding optimal rate allocations rτ=0
l,k
∗
, rτ=1
l,k
∗
, and rτ=2

l,k
∗

can be evaluated by inserting

above optimal power expressions and best mode selection to Equations (5.2)-(5.4).

Proposition 5.2.1. For the dual optimization problem (P2) with a Lagrangian dual function

g(λ̄) defined in (5.13), the following vector S is a subgradient for g(λ̄):

S =

S1 S2 PB −
∑
l∈L

∑
k∈K

∑
τ∈{0,1}

pτ∗l,k

, (5.27)

where

S1,l =
∑
k∈K

∑
τ=0

rτ∗l,k −Rc, if l ∈M, (5.28)

S1,l =
∑
k∈K

∑
τ∈{1,2}

rτ∗l,k −Rd, if l ∈ N , (5.29)

S2,l = PnD −
∑
k∈K

∑
τ∈{1,2}

pτ∗l,k, ∀l ∈ N . (5.30)

pτ∗l,k and rτ∗l,k optimize the maximization.
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Proof. For any ν̄ = [νA νB1 νB2] � 0, we have the following.

g(ν̄) = max
{pτl,k},{r

τ
l,k}∈D

L

(
ν̄, {pτl,k}, {rτl,k}

)
≥L
(
ν̄, {pτ∗l,k}, {rτ∗l,k}

)

= g(λ̄) +
∑
l∈L

(νA,l − λA,l) ·

(∑
k∈K

∑
τ∈{0,1,2}

rτ∗l,k −Rl

)

+
∑
l∈N

(νB1,l − λB1,l) ·

(
P lD −

∑
k∈K

∑
τ∈{1,2}

pτ∗l,k

)

+ (νB2 − λB2) ·

(
PB −

∑
l∈L

∑
k∈K

∑
τ∈{0,1}

pτ∗l,k

)
= g(λ̄) + S · (ν̄ − λ̄)T . (5.31)

5.2.2 Ellipsoid Method Based Optimal Search

Theoretically, the solution for the dual problem P2 just provides an upper bound for

the original primary problem if the primary problem is not a convex problem, which is

the case for the primary problem P1. However, it has been proved in [52] that when the

total number of users is becoming large enough (> 8) as in our case, the duality gap is

approaching zero. Thus we can solve the dual problem and find the optimal dual variables

λ
∗
. Then by substituting them back into the primary problem, the optimal values for the

primary variables pτl,k
∗ and rτl,k

∗ can be found. Through the above analysis, a joint optimal

resource allocation and mode selection based on a dual framework is developed and the

detailed algorithm flow is illustrated in Table 5.1.

The search for dual variables λ is done by using the ellipsoid method, which has a better

performance compared with the subgradient method [50]. Ellipsoid method converges in

O(n2) steps where n is the number of variables. In our problem, overall optimization needs

O((L + N + 1)2) runs of an optimization problem with a complexity of O((L + N)K).

Hence, O(K(L + N)3) executions are required to find the optimal solutions by using the

proposed algorithm. As an example of one constraint parameter setting, convergence of
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Table 5.1: Optimal Resource Allocation and Mode Selection Algorithm

Input: Rm, Rn, PnD, PB and ωl, ∀m ∈M, ∀n ∈ N
Output: pτl,k

∗, rτl,k
∗, xτl,k

∗, ∀l ∈ L, ∀k ∈ K, ∀τ ∈ {0, 1, 2}
1: Initialize λA,l, λB1,n and λB2, ∀l ∈ L, ∀n ∈ N
2: Initialize parameter for Ellipsoid search
3: while g(λ̄) has not converge do
4: for all l ∈ L, k ∈ K, τ ∈ {0, 1, 2} do
5: calculate optimal power pτ=0

m,k
∗
,pτ=1
n,k
∗
,pτ=2
n,k
∗

from (6.19)–(5.24), and

rτ=0
m,k
∗
,rτ=1
n,k
∗
,rτ=2
n,k
∗

correspondingly.
6: end for
7: for all k ∈ K do
8: Calculate function f1, f2,f3 in (5.18) – (5.20), respectively.
9: Update RB allocation index xτl,k

∗ by (5.26).
10: end for
11: Evaluate subgradient S in (5.27).
12: Update λA,l, λB1,n and λB2 using ellipsoid method.
13: Evaluate Lagrangian function g(λ̄) in (5.21).
14: end while

some of the Lagrangian multipliers and the dual objective function is shown in Fig. 5.2.

Here the convergence of λB2 and λA,m in the figure implies the rate constraint (5.6) and

power constraint (5.9) are all satisfied in our algorithm.

5.3 Numerical Analysis

In this section, performance of the proposed algorithm is evaluated in simulations

by considering a single cell network with a radius R = 1 Km, where regular CUEs are

uniformly distributed in the cell. The two UEs of a DUE are randomly located in a circle

with a radius of Rd = 100 m and DUEs are uniformly distributed in the cell. In total 64 RBs

are considered in the system. The wireless channels are modeled by using path loss, shadow

fading and Rayleigh fading. A distance-based path loss of each wireless link is modeled

as PL = 128 + 40 log10(d), where d is the distance of the link in kilometer. The variance

for log-normal shadow fading is 8 dB. The noise power spectral density is set to be −174

dBm/Hz. Transmission power limit for DUEs is PnD = 24 dBm and the peak transmission

power for a BS is set as PB = 46 dBm.

In Fig. 5.2, we first show the convergence of the proposed optimization algorithm. 5
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Fig. 5.2: Convergence of dual objective function

CUEs and 5 DUEs are uniformly distributed around the cell. QoS requirements for CUEs

and DUEs are set to be Rm = 10 bits/s/Hz and Rn = 5 bits/s/Hz, respectively. The

convergence of the Lagrangian dual function is shown in Fig. 5.2. To further verify the

performance of the algorithm, we compare our dual optimization approach with a heuristic

scheme based on the greedy water-filling approach proposed in [25] in a similar system

environment. We set ω = [1 1 · · · 1], so that weighting factors for all CUEs and DUEs

are the same. The system objective is to maximize the total system spectral efficiency.

In the approach defined in [25], exclusive RB allocation is done by greedy water-filling for

each user, assuming all DUEs operate in the cellular mode. The ultimate operation mode

for a DUE is fixed according to transmission power increment at each given RB and mode

selection. Although the system objective in work [25] is different from the one defined in this

work, it is not hard to derive a very similar heuristic approach in our system for comparison

purpose. In the simulation, 5 CUEs and 15 DUEs are dropped uniformly in the cell. QoS

requirements for CUEs and DUEs are set to be Rc = 20 bits/s/Hz and Rd = 10 bits/s/Hz,
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Fig. 5.3: Total downlink system throughput vs average distance between D2D pair

respectively. From Fig. 5.3, it can be seen that our approach achieves significantly higher

system throughput than the chosen heuristic method which performs RB, power allocation

and mode selection in a heuristic way. This is because more RBs are allocated to the D-D

mode in our case, which provides a higher spectral efficiency than the D-C mode. But the

rate allocated to DUEs decrease when increasing the average distance between the two UEs

within a DUE, while the rate for CUEs almost keeps unchanged. Thus, the total system

rate decreases when the average distance between D2D users in a pair increases.

In Fig. 5.4, we investigate the average rates for CUEs and DUEs under different weight-

ing factors. The average distance between D2D UEs is set to 100 m. QoS requirements

for CUEs and DUEs are set to be Rc = 20 bits/s/Hz and Rd = 10 bits/s/Hz, respectively.

The weighting factor for CUE m is ωm and it is ωn for DUE n. All the CUEs have the

same weighting factors. All The DUEs have the same weighting factor as well. The ratio ro

between a CUE weighting factor and a DUE weighting factor, i.e.,, ro = ωm : ωn, changes

from 1 : 8 to 8 : 1. When the value of the weighting factor for CUEs increases, more RBs
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Fig. 5.4: Average cellular and D2D user data rate under different weighting factor

will be assigned to CUEs and less RBs to DUEs, so that the total weighted system through-

put increases. Similarly, when the weighting factor for DUEs increases, more RBs would

be assigned to DUEs and less to CUEs. It should be noted that when the weighting factor

become favorable to DUE or CUE, their rate increment or decrement is diminishing. This is

because both cellular user and D2D users are constrained by BS or their own transmission

power and QoS requirement.

5.4 Summary

In this chapter, a joint optimal resource/power allocation and mode selection scheme

is proposed in a cellular network with underlay D2D commutation. The problem is a NP-

complete mixed integer nonlinear programming problem. We develop a dual optimization

framework to solve the problem with a reasonable computational complexity of O(K(L +

N)3). Simulation results show that the D2D users can intelligently select the transmission

mode, either through D2D direct transmission or through two-top transmission via base
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station depending on the channel condition and resource constraint. The comparison with

other schemes show that the proposed scheme can achieve a much higher total system

throughput.
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Chapter 6

Energy Efficient Resource Allocation for D2D

Communication

In this chapter, we discuss the topic of energy efficient resource allocation for D2D

communication underlaying cellular network. Energy efficiency of each user is defined as

the achievable rate normalized by the power consumption, which is in [bits/sec/Joule]. We

formulate the problem a non-cooperative game, where mobile users, either legacy cellular

users or D2D users, decide their respective transmission power over available resource blocks

(RBs) with the goal of maximizing their own utility function. Such a utility function well

reflects the users’ satisfaction in reality when users are mobile and subject to the availability

of energy due to the finite battery capacity and limited recharging facility. The scenario

where the cellular and the D2D connections share the same resources is considered, in

which the interference management between cellular and D2D communications is of great

importance to guarantee the performance of high-priority cellular users. The most energy

efficient strategy turns out that a CUE allocates optimal power on its assigned channel for

maximum energy efficiency, while a DUE should allocate the least amount of power on the

channel which has the best channel gain-to-interference-noise-ratio (CINR). Yet the DUE

still achieves the highest data rate on that channel.

6.1 System Model

We consider a network consisting of a single cell with one BS in the center and a plu-

rality of UEs distributed in the cell. In the system, two types of UEs are supported, namely

CUE and DUE. CUEs directly communicate with the BS, whereas DUEs communicate with

each other over direct D2D links while remain under the control of the BS. Since CUEs are

generally considered as high-priority primary users, the performance guarantee of CUEs
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is of the main concern in designing cellular networks with underlay D2D communication.

D2D communication can be established when two UEs are in a close proximity.

To further enhance efficient utilization of radio resources, D2D communication is al-

lowed to share the resources used by the cellular communications in an underlay mode.

This is possible since D2D communications are usually short-range communications so that

interference to CUEs is rather low. Extensive research have shown that the inter-cell inter-

ference can be controlled at an acceptable level via proper radio resource management in

the overlay cellular networks. Thus in this work, we confine the interference problem in the

intra-cell level and focus on the intra-cell interference coordination between cellular and the

D2D communications.

An illustration of the network model is shown in Figure 6.1, where D2D communication

reuses cellular radio spectrum in an underlay mode, i.e., D2D communication shall control

the interference to the cellular users by sharing the same resources. This is in line with

the current discussion on the D2D communication in Long Term Evolution (LTE) Release-

12 [7]. A example of D2D underlay resource sharing is as follows: DUE1 shares f3, DUE2

shares f1, DUE3 shares f1 and f2, DUE4 shares f2 and f3 when CUE1, CUE2, CUE3 take

up orthogonal resources f1, f2, and f3, respectively, as shown in Figure 6.1. In a later

section, we will elaborate on how power allocation and rate distribution are dependent on

the channel CINR if the objective is to achieve the maximum energy efficiency.

The notations used in this work are as follows. Total frequency resources are divided

into K orthogonal channels, or interchangeably resource blocks (RBs) in LTE terminology.

There are M active CUEs, each of which would be assigned one RB, assuming K ≥M . N

denotes the number of D2D communication pairs, each of which can be assigned multiple

RBs as long as the interference to the cellular communication is kept below an acceptable

level and the total power constraint of a device, which is denoted by Pdd, is not violated.

The channel with pathloss, Rayleigh fading and log-normal shadowing is considered. The

channel gain from CUE m to the BS over channel k is gkm = |hkm|2 = gk0 ∗ ςkm ∗ µkm ∗ d−αm ,

where gk0 is the path-loss at the reference distance, ςkm is the shadowing, µkm is the squared
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Fig. 6.1: Illustration of Device-to-Device underlaying cellular network.

magnitude of the Rayleigh fading coefficient that follows an exponential distribution with

unit mean, dm is the distance between CUE m and BS, and α is the path-loss exponent.

A DUE denotes the pair of UEs that form a D2D connection. The channel gain from DUE

i to DUE j over channel k is gkij = |hkij |2 = gk0 ∗ ςkij ∗ µkij ∗ d
−α
ij . If DUEs operate in the

uplink underlay mode, i.e., DUEs reuse cellular uplink resources, the received signal-to-

interference-plus-noise-ratio (SINR) of CUE m at the BS is given by1

SINRk
m =

pkmg
k
m∑N

n=1 p
k
ng

k
n + σ2

, (6.1)

where pkm is the transmit power of CUE m over channel k, pkn is the transmit power of the

1For simplicity of exposition, the subscript indicating the receiver is omitted when the receiver is the
BS.
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source of the DUE n over channel k, gkn is the channel gain between DUE n and BS, and σ2

is the noise power. Due to the exclusive channel assignment among CUEs, the interference

to the cellular link only comes from DUEs using the same uplink channel. However, the

interference at DUE is from both the CUE operating on that channel, and other co-channel

DUEs. Therefore, the received SINR of DUE n is given by

SINRk
n =

pkng
k
nn∑N

i=1i 6=n p
k
i g
k
in + pkmg

k
mn + σ2

, (6.2)

where gknn is the channel gain on channel k between the two UEs that form DUE n, gkin is

the channel gain between DUE i and DUE n; gkmn is the channel gain between CUE m and

DUE n. Here the corresponding CINR is

Γkn = CINRk
n =

gknn∑N
i=1i 6=n p

k
i g
k
in + pkmg

k
mn + σ2

. (6.3)

Based on Shannon capacity, the achievable rate of UE, either a CUE m or a DUE n, over

channel k is given by

rk(n or m) = w log2 (1 + pk(n or m)Γ
k
(n or m)). (6.4)

w is the bandwidth of each channel. We will show later Γk(n or m) is a critical decision

parameter in the Nash equilibrium. In the downlink underlay mode, all the expressions are

similar and will not be elaborated here. In the following, we will use index n to denote

DUE, m to denote CUE. l to denote either a CUE or a DUE. Thus we have n = 1, · · · , N ,

m = 1, · · · , M , l = 1, · · · , N +M .

6.2 Non-cooperative Resource Allocation Game in D2D Network

The objective of our game is to achieve an energy efficient resource allocation for D2D

communication, which is different from the one maximizing the spectral efficiency [53].

As explained earlier, each CUE is assigned one channel, or equivalently one RB. RBs are

assigned exclusively among CUEs. Each DUE, on the other hand, can be assigned multiple
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RBs. Furthermore, one RB can be shared among one CUE and multiple DUEs. Fig. 6.1

exemplifies such an allocation. All the UEs that share the same channel will interfere with

each other. The study here assumes a perfect knowledge on the instantaneous channel

conditions at the transmitter side.

6.2.1 Energy Efficiency Based Utility Function

The following power consumption model is considered, which captures not only the

transmission power at the RF front-end but also the power consumption along the entire

circuitry including mixer, analog-to-digital converter (ADC), digital-to-analog converter

(DAC), filters, and digital signal processing (DSP) blocks [54]. The circuit power consump-

tion can be divided into the static background power consumption and the dynamic one

that is dependent on the communication data rate εR+Ps, where ε is the power consump-

tion per unit rate, R is the data rate, and Ps is the static background power consumption.

By taking into account the transmission power P at the RF front-end, the total power

consumption can be expressed as

Ptotal = ζP + εR+ Ps, (6.5)

where ζ is a factor reflecting the compensation for the power amplifier loss. We now define

the utility of UE l, either CUE or DUE, in terms of the rate per unit power as

Ul(Pl,P−l) =
Rl

ζPl + εRl + Ps
, (6.6)

where Pl =
{
p1
l , · · · , pKl

}
is the transmission power vector of UE l over K RBs,

P−l = {P1, · · · ,Pl−1,Pl+1, · · · ,PN+M} (6.7)

is the collection of the transmission power vector of all the UEs including both CUEs and

DUEs except UE l. Pl =
∑K

k=1 p
k
l , and Rl =

∑K
k=1 r

k
l , representing the total consumed

power and total transmission rate for UE l, respectively. It should be noted that the power
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allocation vector P−l, {l = N + 1, · · · , N + M} for a CUE can only have no more than

one non-zero element as each CUE is only assigned one channel.

Given the knowledge on the power allocation of all other UEs, P−l, the optimal power

allocation by UE l is to maximize its own utility, i.e.,

P∗l (P−l) = arg max
Pl

Ul(Pl,P−l). (6.8)

Proposition 6.2.1. The utility function Ul(Pl,P−l) is a strict quasi-concave function of

transmission rate rkl for all k ∈ 1, · · · , K.

Proof. From the definition of quasi-concavity [50], it suffices to show that the sub-level set{
rkl |Ul(Pl,P−l) ≥ α

}
is a convex set for all possible values of α. When α ≤ 0, the sub-level

set is the set of real numbers, which is obviously a convex set. When α > 0, it is straightfor-

ward to see that the sub-level set is written as
{
rkl |αζ

∑K
k=1 p

k
l + (αε− 1)

∑K
k=1 r

k
l + αPs ≤ 0

}
.

Note that from Eq. 6.4 the transmission power of UE l over channel k can be expressed as

pkl =
2r
k
l /w − 1

Γkl
, (6.9)

which is a strictly convex function of rkl . Since a summation of convex functions and linear

functions is still convex, the corresponding sub-level set is also a convex set, which proves

the proposition.

A Nash equilibrium of non-cooperative games is achieved if no UE can increase its

utility by unilaterally altering its power allocation strategy. In our game model in Eq. (6.8),

each UE selects its transmission power vector to maximize its own utility. Thus, at Nash

equilibrium (if exists), all the UEs achieve their own maximum utility by non-cooperatively

choosing the transmission power vector.

Proposition 6.2.2. In the game model in (6.8), there exists at least one Nash equilibrium.

When the non-cooperative game reaches Nash equilibrium, power allocation and transmission

rate for the UE l on channel k must satisfy one of the following two conditions: 1) if
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ζ
∑K

i=1i 6=k p
i
l +Ps− (

∑K
i=1,i 6=k r

i
l)ζ

ln 2
Γkl w
≤ 0, then the optimal power and rate allocation must

be pkl = rkl = 0 2) if ζ
∑K

i=1,i 6=k p
i
l + Ps − (

∑K
i=1i 6=k r

i
l)ζ

ln 2
Γkl w

> 0, then the power allocation

must satisfy ζPl + Ps −Rlζ ∂Pl∂rkl
= 0.

Proof. As proved before, 1) the utility function Ul is a continuous and strictly quasi-concave

function on Rl = [r1
l , r

2
l · · · , rKl ], ∀l, and 2) the set Rl is a nonempty, convex subset of the

real number. These two properties guarantee the existence of a Nash equilibrium [55]. Next,

let’s consider the first-order partial derivatives of the utility function and express it as

Ul
′ =

∂Ul

∂rkl
, ∀k ∈ 1, . . . ,K. (6.10)

Given other UE’s transmit power and channel gain, transmit rate rkl of UE l over RB k is

only dependent on the power allocation pkl on this RB, thus we have

∂Ul

∂rkl
=
ζPl + Ps −Rlζ ∂Pl∂rkl

(ζPl + εRl + Ps)2
.

Define F (rkl ) , ζPl + Ps −Rlζ ∂Pl∂rkl
. We then find that F

′
(rkl ) = −Rlζ ∂

2Pl
∂rkl

2 .

We have ∂Pl
∂rkl

= 2r
k
l /w ln 2
Γkl w

and ∂2Pl
∂rkl

2 = 2r
k
l /w(ln 2)2

Γkl w
2 , both of which are positive. Thus, F

′
(rkl )

is always non-positive and F (rkl ) is a non-increasing function of rkl , for all k ∈ 1, . . . , K. We

further evaluate the function F (rkl ) at rkl = 0, which is given by F (rkl )|rkl =0 = ζ
∑K

i=1,i 6=k p
i
l+

Ps − (
∑K

i=1,i 6=k r
i
l)ζ

ln 2
Γkkw

.

1. If F (rkl )|rkl =0 ≤ 0, the optimal transmit power and the corresponding rate over channel

k is zero. Thus, the utility over that channel is also zero.
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2. If F (rkl )|rkl =0 > 0, the optimal transmit power on the channel satisfies the equation

ζP + Ps −Rζ ∂P∂rkl
= 0, which is equivalent to

ζP + Ps
R

= ζ
∂P

∂rkl
|r∗kl ,

=
ζ2r

∗k
l /w ln 2

Γkl w
,

= ζ
ln 2(1 + p∗kl Γkl )

Γkl w
. (6.11)

From the second condition, we can observe that the right side of equation (6.11) is the power

increase rate while the left side is not related to channel index k. So if multiple channels

are allocated to user l, they must have the same power increase rate on each channel at

Nash equilibrium. Next, we consider the system operating in flat fading channel scenario,

in which we assume the UE experiences the same channel fading over all RBs. Thus the

channel gain is the same on all RBs for UE. We will study how the proposed game in the

flat channel environment works.

6.2.2 Power Allocation in Flat-fading Channel

In a flat fading system, a UE experiences the same statistical channel gain on all RBs.

Based on the proposed non-cooperative game model, CUE can only be assigned a single

RB. DUEs can use multiple RBs and they will need to allocate their power on different

RBs.

Proposition 6.2.3. With flat fading channels, there exists a unique equilibrium for the non-

cooperative game. The best action taken by CUE m is P∗m(P−m) = arg maxPm Un(Pm,P−m),

which is a standard function [56] and has the following properties.

1. Positivity: P∗m(P−m) > 0.

2. Concavity: P∗m(P−m) is strictly concave of P−m.
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3. Monotonicity: if P−m � Q−m, then P∗m(P−m) > P∗m(Q−m), where � denotes the

vector inequality.

4. Scalability: If β > 1, then βP∗m(P−m) > P∗m(βP−m).

Proof. We prove the following properties for CUEs. The conclusions can be extended to

DUEs as well.

From P∗m(P−m) = arg maxPm Um(Pm,P−m), one can see that Um(Pm,P−m) ≥ 0

and Um(Pm,P−m) = 0 only when Pm = 0. Thus P∗m(P−m) > 0.

We further prove monotonicity and concavity. Each CUE can transmit on any single

RB. Thus, the sufficient and necessary condition for equilibrium from equation (6.11) must

be satisfied:

∂Um
∂rkm

= 0. (6.12)

By applying chain rule ∂Um
∂pkm

= ∂Um
∂rkm
· ∂r

k
m

∂pkm
, above condition is equivalent to ∂Um

∂pkm
= 0, as ∂r

k
m

∂pkm
=

wΓkm
ln 2(1+pkmΓkm)

6= 0. Then Nash equilibrium condition becomes:

R
′
(P ∗m) =

ζR

ζP + Ps
. (6.13)

R(pkm) = rkm and P = pkm for CUE m. Denote Γkm = gkmm
I+σ2 . Here I =

∑N
i=1 p

k
i g
k
im denotes

the sum interference, which is a linear combination of P−m. By substituting R
′
(pkm) =

wΓkm
ln 2(1+pkmΓkm)

, we can get

gkmm(P ∗m +
Ps
ζ

)=(I + σ2 + gkmmP
∗
m)×

ln(1 + gkmm
P ∗m

I + σ2
) (6.14)
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By evaluating the derivative of P ∗m as a function of I on both sides, the first order derivative

is expressed as

∂P ∗m
∂I

=
pkmΓkm − ln(1 + gkmmΓkm)

gkmm ln(1 + gkmmΓkm)
. (6.15)

We can find that ∂P ∗m
∂I > 0 for all pkmΓkm > 0, as x− ln(1 + x) > 0 for all x > 0. Thus P ∗m is

a strictly increasing function of I. monotonicity is proved.

Furthermore, we can evaluate the second order derivative of ∂P ∗m as

∂2P ∗m
∂I2

= − [(1 + pkmΓkm) ln(1 + pkmΓkm)− pkmΓkm]2

gkmm
2
(1 + pkmΓkm)[ln(1 + pkmΓkm)]3

. (6.16)

∂2P ∗m
∂I2 < 0, thus P ∗m is a strictly concave function of I. As interference I is a linear combi-

nation of P−m, then P ∗m is strictly concave in P−m. Concavity is proved.

Last we prove scalability. We define a function G(β) = βP∗m(P−m) − P∗m(βP−m).

Then G(1) = 0 and G
′′
(β) > 0. It has been proved that the P∗m(P−m) is always positive

and concave. We have G
′
(β)|β=1 = P∗m(P−m)−P−mP

′∗
m(P−m) > 0. Thus G(β) > 0 for all

β > 1. Scalability is proved.

The best strategy function P∗m is a standard function, thus guarantees the uniqueness

of Nash equilibrium [56].

For the DUE case, multiple RBs may be employed for power allocation and transmis-

sion, a similar approach can be applied for proof. We will not detail the proof here.

Next, we investigate the impact of channel CINR on power and rate distribution when

this energy efficient game arrives at Nash equilibrium. Above proposition suggests that the

power allocation on each RB either has the same power increase rate ∂P
∂rkn
|r∗kn for k = 1 · · ·K

or has value zero. Thus for DUE n, we have
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Umax
n =

ζ(p1
n + p2

n + · · ·+ pKn ) + Ps
(r1
n + r2

n + · · ·+ rKn )ζ

=
2r

1
n/w ln 2

Γ1
nw

=
2r

2
n/w ln 2

Γ2
nw

= · · ·2
rKn /w ln 2

ΓKn w
. (6.17)

We rank the channels 1, · · · , K in the increasing order of CINR Γkn, and assume

p1
n > 0, r1

n > 0. By incorporating eq. (6.4) and eq. (6.9), power and rate distribution on

any two channels k1 and k2 is related as

rk1
n = rk2

n − w(log2 Γk2
n − log2 Γk1

n ), (6.18)

pk1
n = pk2

n − (
1

Γk1
n

− 1

Γk2
n

). (6.19)

From the above expression, for DUEs, we can observe that the optimal power and

rate allocations on each RB are directly related to the channel CINR. For example, when

Γk2
n > Γk1

n , we will have rk2
n > rk1

n and pk2
n < pk1

n at the Nash equilibrium.

6.2.3 A Special Case: D2D Power Allocation in Downlink Underlay Mode

To further study the properties of the game model, we investigate DUE downlink

underlay mode. We continue to assume the system operate in flat-fading scenario. In this

case, DUEs still work under the non-cooperative game framework to compete for RBs. BSs

transmit at a fixed power on each RB. This is aligned with the understanding that LTE

uses rate control instead of power control on the downlink. This study aims to discover the

relationship among D2D energy efficiency, BS transmit power, and CINR. We can prove

in the same way as in the previous section that there exists a unique Nash equilibrium for

DUEs in this case.

With flat fading channels on the downlink, CUEs experience the same channel gain and

also the same co-channel interference on all RBs. According to the analysis in the previous

section, each DUE would choose to allocate its power uniformly on all RBs to achieve the
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maximum utility. Power allocation and transmission rate will be the same on all K RBs.

Thus we have P = K ∗ pkn, R = K ∗ rkn, Γ1
n = Γ2

n = · · ·Γkn = · · ·ΓKn and substitute this into

equation (6.11), we have

ζpk∗n + Ps
w log2(1 + pk∗n Γkn)

=
ζ(1 + pk∗n Γkn) ln 2

Γknw
. (6.20)

Denote the receiving SINR as γ∗n = pk∗n Γkn,

ζγ∗n +
PsΓ

k
n

K
= ζ(1 + γ∗n) ln(1 + γ∗n). (6.21)

Remark: as a function of γ∗n, the left side of the above equation is a linear function

with a slope of ζ, which intersects the vertical axis at PsΓkn
K > 0, while the right side is a

convex function intersecting the vertical axis at 0. Hence there exists only one solution of

γ∗n > 0. Obviously, γ∗n(Γkn) is a strictly increasing function of Γkn. Expressing Γkn in γ∗n, we

have

Γkn =
Kζ[(1 + γ∗n) ln(1 + γ∗n)− γ∗n]

Ps
, (6.22)

and

ζP + Ps
Rζ

=
ln 2Ps
Kw

· 1

ln(1 + γ∗n) + 1
1+γ∗n

− 1
. (6.23)

From the above equations, we can derive the relationship between user energy efficiency

Un and CINR Γkn. First, we consider the properties of function g(γ∗) = ln(1 + γ∗) + 1
1+γ∗ ,

whose first order derivative g
′
(γ∗) = γ∗

(1+γ∗)2 > 0. Left side of the above equation ζP+Ps
Rζ is

strictly decreasing with the increase of γ∗n. From equation (6.21), we can see that energy

efficiency function Un(γ∗) = R
ζP+εR+Ps

= 1
ζP+Ps
R

+ε
is a strictly increasing function of γ∗n(Γkn)

and also of Γkn.
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Similarly, we can express optimal power allocation pk∗n as a function of γ∗n,

pk∗n (γ∗n) =
γ∗nPs

Kζ[(1 + γ∗n) ln(1 + γ∗n)− γ∗n]
. (6.24)

We find that the optimal power allocation pk∗n (γ∗n) is a strictly decreasing function of γ∗n,

since the first order derivation of pk∗n (γ∗n) is dpk∗n (γ∗n)
dγ∗n

= Ps[ln(1+γ∗n)−γ∗n]
Kζ[(1+γ∗n) ln(1+γ∗n)−γ∗n]2

< 0 for all

γ∗n > 0. Using γ̄n = ln(1 + γ∗n) and with some algebraic operations, we can re-rewrite

equation (6.21) into

exp(γ̄n − 1)(γ̄n − 1) =
PsΓ

k
n −Kζ
eKζ

. (6.25)

Observing that this is the form of Lambert-W function W (x) [57], which is the solution of

W (x) exp(W (x)) = x, we can write equation (6.25) into

W (
PsΓ

k
n −Kζ
eKζ

) = γ̄n − 1, (6.26)

which can be solved and gives γ∗n = exp[W (PsΓ
k
n−Kζ
eKζ )+1]−1. The optimal power allocation

on each channel min(Pdd/K,
γ∗n
Γkn

).

From the above analysis, we can draw the following conclusions. In Nash equilibrium,

each DUE achieves its own maximum energy efficiency by allocating its power uniformly on

each RBs. The UE with a higher channel gain would have a higher energy efficiency and a

higher transmission rate.

6.3 Performance Study

In this section, we simulate the proposed power and resource allocation approach. UEs

are uniformly deployed in a circular cell of radius 500 meters. DUEs are dropped in a pair

with a maximum pair distance Rd, which is set to 40 meters. The adopted path loss model

is PL(d) = PL(d0) + 10α log(d/d0) [dB], where PL(d0) is the path loss at the reference

distance d0 and α is the path loss exponent, which is set to 4 in our simulation. Each RB

has a 15 kHz bandwidth. We assume the number of RBs is equal to the number of CUEs
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in the simulation. The compensation factor for power amplifier loss ζ is set to be 30%, the

power consumption per unit rate is set to 2mW/Kbps, and the static background power

consumption Ps is set to 10dBm. The total number of DUEs is 40 and the number of CUEs

varies from 10 to 50.

With flat-fading channels, there exists a unique Nash equilibrium for both uplink and

downlink underlay modes. Fig. 6.2 shows the optimal transmission power and energy

efficiency with respect to CINR. Obviously, as CINR increases, the optimal transmit power

decreases and the corresponding energy efficiency increases. The figure also shows how

the number of RBs can affect the optimal transmit power and energy efficiency, which is

consistent with our previous analysis in section III. With more RBs, the users tend to

allocate less power on each RB while keeping the energy efficiency unchanged. The reason

for this is because UE always has a higher energy efficiency at a lower transmit power and

rate when the static circuit power consumption is fixed. The Nash equilibrium condition

(2) can exactly explain this point. Actually, increasing the number of available RBs has the

same effect as decreasing the static circuit power Ps, as shown in equation (6.25).

We next investigate the optimal transmit power and the achievable rate at Nash equi-

librium. To study how interference from CUE impacts DUEs, we assume a DUE experiences

the same interference on all its RBs, which is the case in the downlink underlay mode, where

BS transmits to all the CUEs using the same power, thus generating the same interference

to a DUE on different RBs. We denote Pinf as the interference to DUE at a reference dis-

tance of half cell radius. Fig. 6.3 and Fig. 6.4 show the data rate and the transmit power

distribution of CUEs at the Nash equilibrium. Obviously, with the increase of interference

power, DUEs have to increase transmit power at Nash equilibrium, but the transmit rate

still decreases. This is because higher interference from CUE offsets the DUE power increase

and thus decreases DUE’s CINR. By comparing Fig. 6.3 and Fig. 6.4, we can find that

DUEs with higher data rates are also the ones with lower transmit powers in equilibrium,

which means the higher data rate users have better channels (or higher CINRs).
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Fig. 6.2: Optimal power allocation and energy efficiency with respect to CINR

6.4 Summary

In this work, we have studied an game theory based energy efficient resource allocation

for D2D communication underlaying cellular networks. In our non-cooperative game model,

each UE acts selfishly to maximize its own utility function, which is defined as the achievable

rate per unit power. The existence and uniqueness of Nash equilibrium were shown for both

uplink and downlink underlay modes. We also make simulation of power allocation for

proposed game model to find Nash equilibrium. Both theoretical analysis and simulation

results show that UEs always allocate less power to RBs with higher CINR to achieve the

maximum energy efficiency.
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Chapter 7

Tradeoff Between Energy Efficiency and Spectral Efficiency

in a Delay Constrained Wireless System

In this chapter, we study the fundamental tradeoff between Energy Efficiency (EE)

and Spectral Efficiency (SE) in presence of statistical QoS requirement in the wireless

transmission system. Performance with QoS requirement for wireless transmission can be

measured through effective capacity, which is introduced to model the physical layer fading

channel with link layer parameters, such as delay and data rate [5]. Thus SE is defined as

effective capacity per unit bandwidth under QoS requirement, and EE is energy per effective

capacity bit. Both the circuit power and transmission power are considered in the energy

model, based on which we derive the quasi-convex generalized EE formulation. To further

exploit the tradeoff between EE and SE, we propose a generic close-form approximation for

EE-SE formulation by employing a curve fitting approach. The impacts of QoS and circuit

power consumption on EE-SE tradeoff are analyzed. QoS requirement and circuit power

consumption affect the EE-SE tradeoff differently. In the low SNR regime, circuit power

shows more impact on the EE-SE tradeoff while QoS impacts EE-SE tradeoff more in the

high SNR regime.

7.1 Effective Capacity in a Wireless Channel

A transmission in a wireless channel can usually be formulated as

y =
√
phx+ n, (7.1)

where p is the transmission power, n denotes the additive white Gaussian noise (AWGN),

and h is the channel gain, including path loss, shadowing and short term fading. For exam-
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ple, Rayleigh fading model is utilized to capture the fading in a dense urban environment

when there is no line of sight signal between the receiver and the transmitter [58]. In this

work, we characterize the channel statistics by the square amplitude of coefficient z = |h|2

with probability density function p(z).

7.1.1 Shannon Capacity

Shannon capacity provides the theoretic upper bound of the information rate that can

be supported in a wireless channel at a given SNR.

C = WE{log2(1 + ρ|h|2)}, (7.2)

where W denotes the channel bandwidth, ρ = Pt
N0W

is the transmission SNR, and N0 is the

power spectral density of noise.

7.1.2 Effective Capacity

Shannon capacity provides insights into the maximum capacity of a wireless channel

subject to noise and interference. But due to the statistical fluctuations of the wireless

channel, the actual data rate served will be smaller than the Shannon capacity when link

layer queuing delay is considered. Effective capacity incorporates the link layer QoS re-

quirements and captures the decay rate of buffer occupancy violation at the large buffer

size region. It can be characterized by triple parameters: source data rate rs, delay bound

Dmax, delay-violation probability ε. Dmax and ε satisfy:

Pr{D(∞)≥Dmax}≤ε. (7.3)

D(∞) is the steady-state queuing delay experienced by the traffic flow at the link layer. In

large deviation theory, the decay rate of queue occupancy probability with a queue of large

enough buffer size which is infused with a constant source data rate can be approximated

as

Pr(Q ≥ qmax) ≈ e−θqmax . (7.4)
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Q is the steady state queue length at the transmitter and qmax = rsDmax. θ is the

QoS exponent characterizing the delay constraints. A larger value of θ denotes a more

stringent QoS requirement and delay constraint. When θ = 0, there is no delay con-

straint and the source can bear unlimited delay. According to the theorem proposed

in [59], relationship between queue size and delay violation probability is established through

Pr{D(∞)≥Dmax} ≤ m
√
Pr{Q≥qmax} under large queue length assumption, where m is a

positive constant. In a block fading channel, where the channel fading process h(t) is

constant during time T , effective capacity R(θ) is defined as a log-moment generation func-

tion [60]:

R(θ) = − 1

θT
loge{E{e−θTC(t)}}, (7.5)

where C(t) is the instantaneous wireless channel Shannon capacity. Here by re-defining the

system SE based on effective capacity that incorporates statistical QoS requirement, we

substitute C(t) = W log2(1 + ρ|h(t)|2) into the above formula. The SE formulation based

on effective capacity is expressed as:

ηSE(θ, ρ) =
R(θ)

W
= − 1

A
log2(E{(1 + ρ|h(t)|2)−A})bit/s/Hz, (7.6)

A = θTW/ln2. According to this definition, ergodic Shannon capacity C can be considered

as the special case of R(θ) with QoS exponent θ = 0, which can be verified in the following.

Applying L’Hosptital Rule to equation (7.6), we have

R(θ = 0) = lim
A→0
−W
A

log2(E{(1 + ρ|h(t)|2)−A})

= lim
A→0
−log2e

WE{ln(1 + ρ|h(t)|2)−1(1 + ρ|h|2)−A}
E(1 + ρ|h(t)|2)−A

= WE{log2(1 + ρ|h(t)|2)}

= C. (7.7)

7.1.3 Special Case: Effective Capacity Based SE in a Rayleigh Fading Channel

For a Rayleigh fading channel, square of the channel amplitude x = |h|2 obeys an
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exponential distribution with a probability density function p(x) = 1
Ωe
− x

Ω , with parameter

Ω denoting the average channel gain. Substitute p(x) into formula (7.6), the Rayleigh

channel’s SE can be calculated as

ηSE(θ, ρ) = − 1

A
log2(E{(1 + ρ|h|2)−A)})

= − 1

A
log2

∫ ∞
0

(1 + ρx)−A
1

Ω
e−

x
Ωdx

= − 1

A
log2{(ρΩ)−Ae

1
ρΩ

∫ ∞
1
ρΩ

1

xAex
dx}

= log2(ρΩ)− log2e

AρΩ
− 1

A
log2Γ(1−A, 1

ρΩ
).

(7.8)

Γ(p, q) =
∫∞
q

1
x1−pexdx is the upper incomplete gamma function. When considering the

special case with no QoS requirement, i.e., θ = 0, SE can be written as

ηSE(0, ρ) = E{log2(1 + ρ|h|2)}

=

∫ ∞
0

log2(1 + ρx)
1

Ω
e−

x
Ωdx

= log2e · (e
1
ρΩ )

∫ ∞
1
ρΩ

1

xex
dx

= log2e · (e
1
ρΩ )Γ(0,

1

ρΩ
). (7.9)

SE at High SNR

The impact of QoS constraints on performance in the high SNR region can be captured

by two measurements, high-SNR slope S∞ and power offset L∞, which are defined in [61]

as

S∞ = lim
ρ→∞

ηSE(θ, ρ)

log2ρ
, L∞ = lim

ρ→∞
(log2ρ−

ηSE(θ, ρ)

S∞
). (7.10)

Thus at high SNR, system SE can be approximated as

ηSE(θ, ρ) = S∞(log2ρ− L∞) + o(1). (7.11)
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where o(1) denotes a finite constant value when SNR approaches infinity. Substituting the

SE expression (7.8) into formula (7.10),we derive that

S∞ =


1 0 < A ≤ 1,

1
A A > 1.

(7.12)

and

L∞ =


log2

Γ(1−A)
1
A

Ω , 0 < A ≤ 1,

log2
Γ(A−1)
Γ(A)Ω , A > 1.

(7.13)

The approximated SE at high-SNR can be expressed in the work as:

ηSE(θ, ρ) ≈


log2

ρΩ

Γ(1−A)
1
A

+ o(1), 0 < A ≤ 1,

1
A log2

ρΩΓ(A)
Γ(A−1) + o(1), A > 1.

(7.14)

Proof. See Appendix.

For the case when θ = 0 or A = 0, SE approximation in the high-SNR regime can be

expressed as ηSE(0, ρ) = log2(ρΩ)− γlog2e+ o(1). The high-SNR slope S∞ is calculated as

S∞|θ=0 = lim
ρ→∞

log2e(e
1
ρΩ )Γ(0, 1

ρΩ)

log2ρ

= −log2e lim
z→0

ez
∫∞
z

1
xexdx

log2z + log2Ω

= −log2e lim
z→0

−1
zez

1
z log2e

= 1. (7.15)
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In the above expression, we replace 1
ρΩ with z in the second equation. The power offset L∞

is equal to

L∞|θ=0 =
1

A
log2E{(|h|2)−A}

= lim
A→0

log2

[
∫∞

0
1

xAex
dx]

1
A

Ω

= lim
A→0

log2

e
ln

∫∞
0

1
xAex

dx

A

Ω

= log2

eγ

Ω
, (7.16)

where γ = −
∫∞

0 lnxe−xdx ≈ 0.5772156649 is Euler-Mascheroni constant [62].

SE at low SNR

At low-SNR, we can approximate system SE with the second order Taylor expansion

as

ηSE(θ, ρ) = ˙ηSE(θ, ρ)ρ+ ¨ηSE(θ, ρ)
ρ2

2
+ o(ρ2), (7.17)

where

˙ηSE(θ, ρ) = log2e
E{(1 + ρ|h|2)(−A−1)|h|2}

E{(1 + ρ|h|2)−A}
|ρ=0

= log2eE{|h|2}

= log2eΩ, (7.18)

and

¨ηSE(θ, ρ) = log2e{A(
E{(1 + ρ|h|2)−A−1|h|2}

E2{(1 + ρ|h|2)−A
)2

− (A+ 1)
E{(1 + ρ|h|2)−A−2|h|4}

E{(1 + ρ|h|2)−A}
}|ρ=0

= log2e(AE2{|h|2} − (A+ 1)E{|h|4})

= −log2e(A+ 2)Ω2. (7.19)
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7.1.4 Numerical Analysis and Discussion

Throughout the work, we set channel block length to T = 1ms and system bandwidth

to W = 1MHz in the numerical study. In Figures 7.1 and 7.2, we have plotted the approx-

imation curves for the SE with different QoS requirements in a Rayleigh fading channel

in the low-SNR and high-SNR regimes. For the comparison purpose, we also plot the ac-

curate expressions correspondingly. As illustrated in the graphs, in the low-SNR region

below -10dB and high-SNR region above 20dB, approximate expressions (7.11) and (7.17)

accurately represent the system EE under statistical QoS requirement.

Note that when A = 0 or equivalently θ = 0, there is no delay constraint and the

corresponding effective capacity is equal to the ergodic Shannon capacity. As expected, QoS

constraint decreases the SE, which means a lower data rate can be supported at the physical

link layer when data link layer queuing delay is considered. As observed in Figure 7.1, in the

low-SNR regime, SE is better approximated by equation (7.17) when A is smaller or QoS is

less demanding. But in the high-SNR regime, a better approximation can be achieved using

equation (7.11) with a more stringent QoS, as shown in Figure 7.2. Besides, in the low-SNR

regime, all the curves have the same slope at zero SNR ˙ηSE(θ, 0) = log2eE{|h|2} regardless

of the QoS parameter. This could be explained in the following way. Because in low SNR,

low transmission rate causes diminishing arrival rate supported by the channel, hence buffer

violation probability is also decreased no matter of the QoS. However, a strict QoS always

decreases the increase rate of system SE especially in the low SNR regime as illustrated in

the figure and formula (7.19). In the High-SNR regime, curve slope S∞ inversely increases

with QoS parameter A. But QoS parameter has less impact on the increase rate of the

curve. Obviously, system transmission rate can always be satisfied when the transmission

SNR is high enough.

7.2 Optimal Energy Efficiency with QoS

In this section we study the EE of a wireless channel with QoS consideration. Here we

define EE or ηEE as power consumption per information bit transmission under a link layer

delay constraint. In our model, energy consumption includes both transmission power Pt
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Fig. 7.1: SE approximation in low SNR

and the circuit power consumption Pc. The transmission power can be adapted in order to

achieve a desirable SNR and thus a target transmission rate. Without loss of generality, we

normalize Eb with N0 for simplification. Hence, the system EE function based on effective

capacity can be expressed as

ηEE(θ, ρ) =
Pt + Pc

ηSE(θ, ρ)N0W
=

ρ+ Pc
N0W

− 1
A log2(E{(1 + ρ|h|2)−A})

, (7.20)

where A has been defined earlier as A = θTW/ln2.

Proposition 7.2.1. Energy efficiency function defined in (7.20) is a strictly quasi-convex

function with respect to transmission SNR ρ.

Proof. We first prove the denominator in (7.20), which denotes the system SE, is a concave

function of ρ. Define function g(ρ) = (1 + ρz)−A.

ġ = −A(1 + ρz)−A−1z, g̈ = A(A+ 1)(1 + ρz)−A−2z2 > 0.
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ġ and g̈ denote the first and second order derivation of g(ρ) with respect to ρ. Since

z = |h|2 > 0, then g̈ > 0. So g(ρ) is a strictly convex function of ρ. E{(1 + ρz)−A} =∫
(1 + ρz)−Ap(z)dz is also a convex function of ρ because

∫
f(z, v)dv is convex if f(z, v) is

convex with respect to z for each v in the domain [50]. As function − 1
A log2(z) is a strictly

decreasing function of z, ηSE(θ, ρ) = − 1
A log2(E{(1 + ρ|h|2)−A}) is a concave function of ρ.

We further prove in the following ηEE is a strictly quasi-convex function. If sub-level

set ηEE = {ρ|
ρ+ Pc

N0W

− 1
A

log2(E{(1+ρ|h|2)−A}) ≤ α, ρ ≥ 0} is a convex set for any α, then ηEE(ρ) is a

quasi-convex function with respect to ρ.

• when α ≤ 0, there is no feasible ρ.

• when α > 0, according to the conclusion derived above, α
A log2(E{(1+ρ|h|2)−A})+ρ+

Pc
N0W

is a convex function of ρ, so set{ρ| αA log2(E{(1+ρ|h|2)−A})+ρ+ Pc
N0W

≤ 0, ρ ≥ 0}

is also convex. Therefore, {ρ|
ρ+ Pc

N0W

− 1
A

log2(E{(1+ρ|h|2)−A}) ≤ α, ρ ≥ 0} is a convex set.

So the energy efficiency function is a strictly quasi-convex function.
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Proposition 7.2.2. There exists a unique minimum value for the energy efficiency func-

tion. The optimal SNR is achieved at ρ0 > 0, with η̇EE |ρ=ρ0 = 0. η̇EE denotes the first

order derivation of ηEE with respect to ρ.

Proof. As a first step, we check the asymptotic bounds for ηEE .

• When ρ→ 0, ηSE(θ, ρ)→ 0, so ηEE |ρ=0 → +∞;

• When ρ→ +∞, as

ηEE =
ρ+ Pc

N0W

− 1
A log2(E{(1 + ρ|h|2)−A})

≥
ρ+ Pc

N0W
1
AE{−log2((1 + ρ|h|2)−A)}

=
ρ+ Pc

N0W

E{log2((1 + ρ|h|2))}

≥
ρ+ Pc

N0W

log2(1 + ρE{|h|2})
. (7.21)

The two inequalities in the above formula are derived from Jensen’s inequality by applying

it to the concave function log2(·) twice. Obviously, the last expression in (7.21) approaches

+∞ when ρ → +∞, thus energy efficiency function ηEE also approaches +∞. Therefore,

the optimal SNR for minimum energy efficiency function must be achieved between 0 and

+∞ if it exists.

Next, we prove that the optimal SNR exists and is uniquely achieved at η̇EE |ρ=ρ0 = 0.

The first order derivation for energy efficiency function can be expressed as

η̇EE =
ηSE(θ, ρ)− (ρ+ Pc

N0W
)η̇SE(θ, ρ)

η2
SE(θ, ρ)

=
f(ρ)

η2
SE(θ, ρ)

, (7.22)

where function f(ρ) is defined as f(ρ) = ηSE(θ)− (ρ+ Pc
N0W

) ˙ηSE(θ, ρ) and

η̇SE(θ) = log2e
E{(1 + ρ|h|2)(−A−1)|h|2}

E{(1 + ρ|h|2)−A}
. (7.23)

Further calculation shows



103

• when ρ = 0, f(ρ) = −log2e
Pc
N0W

E{|h|2} < 0;

• when ρ = +∞, f(ρ) = − 1
A log2(E{(1 + ρ|h|2)−A})− log2e→ +∞.

The derivation of function f(ρ) can be expressed as

ḟ(ρ) = −(ρ+
Pc
N0W

)η̈SE(θ, ρ) ≥ 0. (7.24)

ḟ(ρ) is always positive since we have proved that ηSE(θ, ρ) is a concave function of ρ and

thus η̈SE(θ, ρ) ≤ 0. f(ρ) is an increasing function of ρ. Therefore, there exists an ρ0 > 0,

for which f(ρ) < 0 when ρ < ρ0 and f(ρ) > 0 when ρ > ρ0, and the zero-crossing point

is uniquely achieved at ρ0. From (7.22), we can conclude that η̇EE < 0 when ρ < ρ0 and

η̇EE > 0 when ρ > ρ0. That means ηEE first monotonically decreases when ρ < ρ0 and

then monotonically increases when ρ > ρ0. Therefore, minimum value of energy efficiency

function is unique and is only achieved at ρo, where η̇EE |ρ0 = 0.

7.3 Binary Search for Optimal ρ0

By setting η̇EE |ρ=ρ0 = 0, we get:

− 1

A
ln(E{(1 + ρ|h|2)−A}) = (ρ+

Pc
N0W

)
E{(1 + ρ|h|2)(−A−1)|h|2}

E{(1 + ρ|h|2)−A}
. (7.25)

The close-form expression for optimal ρ0 is very difficult to derive from above formulation.

We propose a two-step binary search algorithm to find the optimal solution for the quasi-

convex function ηEE . For the optimal energy efficiency problem, we introduce a new variable

t and convert the quasi-convex optimization problem into a convex problem, whose optimal

solution can be searched using the two step binary search algorithm. The primary quasi-

convex optimization problem is

min ηEE =
ρ+ Pc

N0W

− 1
A log2(E{(1 + ρ‖ h ‖2)−A})

(7.26)
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subject to

ρ ≥ 0.

By letting t = ηEE , the primary optimization problem can be reformulated as

min t

subject to

ρ+
t

A
log2(E{(1 + ρ‖ h ‖2)−A}) +

Pc
N0W

≤ 0,

ρ ≥ 0. (7.27)

The binary search algorithm is detailed in Table 7.1.
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7.3.1 Numerical Results and Discussion

In the conventional analytical results, the best EE is achieved at zero SNR when no

delay or circuit power is considered [63]. In this section, we numerically given out the

optimal operation point for EE and SNR when both circuit power consumption and link

layer delay constraint are taken into considerations.

Figure 7.3 plots the EE function with respect to ρ under different delay requirements.

EE with and without circuit power consumptions are compared. Curves with QoS parameter

A = 9, 7, 5, 0 are plotted from top to bottom in the two separate cases. As expected, ηEE is

a quasi-convex function, which first decreases and then increases with ρ when circuit power

is considered. In the case with no circuit power, ηEE monotonically increases with ρ and

the best ηEE is always achieved at ρ = 0, i.e., min ηEE = 1
log2eE{|h|2}

, irrespective of the

QoS requirement. With the increase of A value, EE gets worse in both cases, which means

more power is required to achieve a better QoS with the same data rate delivery.

In Figure 7.4, we illustrate the impact of circuit power on EE. Obviously, adding

circuit power will lower down system EE. The higher the circuit power, the less the EE will

be. Figure 7.5 illustrates the optimal EE under various QoS constraints and circuit power

consumptions. Figure 7.6 presents the transmission SNR ρ that achieves the optimal EE

under different QoS constraints and circuit power consumptions. Again, as shown in Figure

7.5, both QoS parameter and circuit power will increase the minimum energy needed for

per bit transmission. In Figure 7.6, circuit power increases the SNR value that can achieve

the best EE while a more strict QoS constraint actually decreases the SNR value in order

to achieve the best EE.

7.4 EE-SE Tradeoff with QoS Consideration in Rayleigh Fading Channel

SE, EE and QoS have been consistently considered as the most important metrics for

the wireless system performance evaluation. However, the close-form expression between

EE with respect to SE or EE-SE tradeoff with statistical QoS provision has not yet been

derived due to its complexity [64]. In this section, we would exploit the relationship between

EE and SE under delay constraint through a curve fitting method.
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Table 7.1: TWO-STEP-BINARY-SEARCH-ALGORITHM FLOW

1: Step 1: Initialize t = t1 = t2 = t0 > 0,
2: if the solution for constraint (7.27) is feasible then
3: repeat
4: t = t1 = t1/2;
5: Using gradient descent method to search the minimum value of (7.27)
6: until solution for ρ becomes infeasible
7: t2=t1*2;
8: else
9: repeat

10: t = t2 = t2 ∗ 2;
11: Using gradient descent method to search the minimum value of (7.27)
12: until solution for ρ becomes feasible
13: t1=t2/2;
14: end if
15: Step2: Initialize ε = 1e− 4;
16: while |t1− t2| ≥ ε do
17: t = (t1 + t2)/2;
18: gradient descent search the minimum value of (7.27)
19: if solution for ρ is feasible then
20: t1=t;
21: else
22: t2=t;
23: end if
24: end while
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Fig. 7.3: Impact of QoS parameter on energy efficiency

7.4.1 Close-form Approximation for EE-SE Tradeoff

We derive the close-form expression for EE-SE tradeoff over the Rayleigh fading channel

through a heuristic curve fitting method. In observation of EE expression in (7.20), if we

can express SNR ρ in terms of SE, the EE-SE relationship can then be defined. Inspired

from approximation curve in Figures 7.1 and 7.2, we find that inverse function for the

item containing ρ in SE function (7.8) can be tightly approximated by using a group of

logarithmic barrier functions zi(x) = Alog2
1

1−xmi . Thus we use the logarithmic barrier

function zi(x) = Alog2
1

1−xmi as the basis function and express ρ with respect to ηSE in a

Rayleigh fading channel in the following form.

ρ =
−1

A · Ω
∑
i=1

αilog2[1− (1
2)miAηSE ]

, (7.28)

where αi’s are the parameters solved from curve fitting. Parameter mi determines the

curvature of the logarithmic barrier function. By inserting the above heuristic ρ expression
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into equation (7.20), a close-form expression of the EE-SE tradeoff with QoS requirement

over Rayleigh fading channel can be formulated as

ηEE =

Pc
N0W

A · Ω
∑
i
αilog2[1− (1

2)A·ηSE ·mi ]− 1

Ω
∑
i
αilog2[1− (1

2)A·ηSE ·mi ]A·ηSE
. (7.29)

The basis function zi(x) used for approximation has the following property: Domx =

(0, 1] → (0,+∞) and is monotonically increasing over Dx, which just resembles the re-

quired property. To determine the parameters αi, mi and solve the curve fitting problem,

a desirable fitting criterion needs to be established. Usually, curve fitting problems are

formulated as minimizing a least square error over a given data set. A linear combination

of a group of basis functions are used to approximate the inverse function. And a larger

number of basis functions will have a higher accuracy for approximation. A direct way is

to solve the problem
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tion

min

N∑
i=1

(Z(ui)−
1

ρi
)2, (7.30)

where Z(x) =
∑
αizi(x) and ρi is known from the sample set. N in the sum expression

denotes number of samples from the original function. Another way is to find sparse de-

scriptions [50], where fewer basis functions are used to approximate the objective function.

The curve fitting problem is decomposed into and completed in two steps. In the first step,

an optimal subset of basis functions are selected from the entire set and then the ratio for

this optimal group is determined from the least square problem. This curve fitting problem

can be formulated as

min

N∑
i=1

(Z(ui)−
1

ρi
)2 + λ||α||1, (7.31)

where ||α||1 denotes the norm-1 of coefficient vector [α1α2 · · ·αK ], K is the number of basis
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Fig. 7.6: Optimal SNR under different QoS parameter and circuit power combination

functions. λ > 0 is a parameter used to trade off the quality of the fitting and the sparsity of

the coefficient vector. The solution to the above problem is denoted as set Ψ, which includes

all the α′is, αi 6= 0. The second step solves the least-squares problem min
N∑
i=1

(Z(ui)− 1
ρi

)2

with variables αi ∈ Ψ. It is noticed that the curve fitting problem can be easily solved from

some well-developed convex optimization algorithm or toolbox.

7.4.2 Numerical Results and Discussions

To verify that expression (7.29) accurately establishes the relationship between EE and

SE in a Rayleigh fading channel under statistical QoS requirement, Figure 7.7 and Figure

7.8 are plotted for EE approximation error against each SE under different QoS parameter

A and Pc
N0W

. In a wide range of QoS and Pc
N0W

, the approximated EE well reflect the real

value, just as shown in Figure 7.9 and Figure 7.10 that the approximated EE tightly fit

with the nearly-exact EE-SE curve.

In Figures 7.9 and 7.10, we plot the EE-SE tradeoff in the Rayleigh fading channel
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under different QoS and circuit power consumption values. In the two figures, we compare

our curve fitting results from equations (7.29) and (7.28), with the accurate expressions of

ηEE and ηSE that can be derived from equations (7.20) and (7.8). As what has been proven

before, ηEE is a non-monotonic and quasi-convex function of SNR ρ, two possible SNR values

might be derived from the inverse function ρ = f−1(ηEE), which correspond to two separate

spectral efficiency values. However, one can easily attain the SNR ρ = f−1(ηSE) from

spectral efficiency function through simple line search algorithm due to its monotonicity.

Then, inserting this value in (7.20), we can plot the relationship of ηEE with respect to

ηSE . The derived close-form approximation for the EE-SE tradeoff has been plotted for

comparison to verify the accuracy in Figure 7.9 and Figure 7.10.

In Figure 7.9, the EE-SE tradeoff has been plotted for different QoS requirements, i.e.,

A = 9, 7, 5, 3, 1, over Rayleigh fading channel. In this scenario, circuit power consumption

is assumed to be fixed at Pc
N0W

= 17dB. Note that the curve for A = 0 corresponds to
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the Shannon capacity. Obviously, a more stringent QoS will lower down both EE and SE,

especially at high SNR.

In Figure 7.10, the impact of circuit power consumption on EE-SE tradeoff has been

studied in a Rayleigh fading channel. In the scenario, QoS parameter is fixed at A = 5 and

we adjust the circuit power in the range of Pc
N0W

= 45, 35, 25, 15, 5. A higher circuit power

consumption always lowers down EE, as shown in Figure 7.10. However, opposite to the

impact of QoS requirement, circuit power has a greater impact in the low SNR regime than

the high SNR regime. This is because circuit power is dominant and contributes more to

the EE in the low SNR regime. In the high SNR regime, transmission power is dominant,

making EE and SE less relevant to the circuit power consumption.

7.5 Summary

In this study, we investigate the energy efficiency and spectrum efficiency performance
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Fig. 7.9: EE-SE tradeoff under different QoS

in a wireless fading channel under the delay constraint. Effective capacity is used to measure

the wireless system throughput under a delay constraint. We define the energy efficiency

function as the total energy consumption, including both circuit power and transmission

power consumptions, per information bit transmission. We have proved that the energy

efficiency function is a quasi-convex function of transmission SNR. In order to find the best

energy efficiency operation and optimal transmission SNR, we have proposed a two-step

binary search algorithm to solve the quasi-convex problem. We further discuss the effective

capacity in a Rayleigh fading channel case, and derive the approximate expressions for the

effective capacity in the high-SNR and low-SNR regimes. To further exploit the tradeoff

between EE and SE tradeoff under QoS and circuit power constraints, we develop a generic

close-form approximation for EE-SE by employing a curve fitting approach. Numerical re-

sults clearly illustrate the impact of QoS and circuit power consumption on EE-SE tradeoff.
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Chapter 8

Conclusions

In this dissertation, we investigate various resource allocation and interference manage-

ment algorithms to improve user experience, system spectral efficiency, and energy efficiency

for D2D communication underlaying heterogeneous networks. A multiple range of math-

ematical tools, from stochastic geometry, optimization, to game theory, are employed to

design and analyze the algorithms. The main contributions are summarized as follows.

First, we study the heterogeneous network by introducing a mobile association scheme

which jointly optimizes the downlink and uplink resource to improve total network spectral

and energy efficiency. The optimization problem is discussed in two scenarios: full frequency

reuse and partial frequency reuse. A gradient descent search algorithm is developed to

search for the optimal mobile association that can maximize the system capacity and also

minimize mobile uplink transmission power consumption. Simulation results show that with

joint consideration of downlink and uplink during the mobile association, more MSs would

be offloaded from M-BSs to RNs due to shrinking coverage of M-BSs and expansion of RNs,

which enhances the resource utilization rate on RNs. That also means improvement on

total system spectral efficiency.

Second, we study the uplink and downlink coverage for both cellular users and D2D

users in D2D communications by using stochastic geometry. Statistical channel informa-

tion and user distribution are utilized to evaluated network performance such as coverage,

outage probability, throughput. The analytical results match very well with the simulated

SINR distribution curve in our work. In the downlink resource sharing scenario, selection

of maximum D2D transmission power and D2D communication distance is very delicate,

as higher D2D user density, a lower transmission power and larger distance always degrade

D2D SINR distribution. In the uplink resource scenario, it is obvious to see that a guard
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area around BS can effectively protect cellular users from interference caused by D2D trans-

mission and link quality of cellular users can be guaranteed. Actually, high transmission

does not necessary bring significant performance gain for D2D user due to increased co-

channel interference and it also causes more interference to cellular users, thus degrades

cellular user SINR distribution, especially for the case without a guard area.

Third, we propose a sub-optimal distributed algorithm based on game model for D2D

communication underlaying cellular network, aiming to improve system spectral efficiency

and energy efficiency. In the distributed resource allocation and power control scheme, a

Stackelberg game framework is used to formulate the resource allocation process between

two parties, where BS and CUEs are modeled as buyers, aiming to achieve the maximum

throughout gain; DUEs are modeled as sellers and aim to gain payment from selling re-

sources. The price mechanism adjusts the system to reach system equilibrium. A two-step

approach is proposed to obtain a sub-optimal solution to reduce computational complexity,

in which the first step is to group DUEs that share the same radio resource of a CUE, and

then allocate resources to them distributively through the pricing mechanism. The amount

of power allocated to each user mostly depends on the channel gain of that resource block.

Besides, we consider a joint resource/power allocation and mode selection for D2D commu-

nications in OFDMA based cellular network and develop a dual optimization framework to

solve the mixed integer nonlinear programming problem with a reasonable computational

complexity. Analytical results show that our scheme can achieve a much higher system

throughput compared with other schemes.

Fourth, we develop an energy efficient resource allocation scheme for D2D communi-

cations. Resource allocations between CUEs and DUEs are modeled as a non-cooperative

game, where cellular users or D2D users determine which resource blocks to select and how

much power they will transmit correspondingly so as to maximize the utility function. The

utility function in the work is defined as the achievable rate normalized by power consump-

tion. When using a flat fading channel, the most energy efficient strategy turns out that a

CUE allocates the optimal power on its assigned channel for the maximum energy efficiency,
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while a DUE should allocate the least amount of power on the channel that has the best

channel gain-to-interference-noise-ratio (CINR). Yet the DUE still achieves the highest data

rate on that channel.

Last but not least, we address the general tradeoff between energy efficiency and spec-

tral efficiency in a delay constrained wireless system. System QoS requirement is incor-

porated and measured through the effective capacity. The spectral efficiency is defined as

effective capacity per unit bandwidth and energy efficiency is defined as energy consumed

per effective capacity bit. Through our analysis, we find that QoS requirements and circuit

power consumption affect the EE-SE tradeoff differently. In the low SNR regime, circuit

power shows more impact on the EE-SE tradeoff while QoS impacts EE-SE tradeoff more

in the high SNR regime. Other aspects are discussed to improve both spectral and energy

efficiency.
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Appendix A

PDF of the Distance between Two DUEs Forming a Pair

As illustrated in Figure A.1, one D2D user is located ri away from the circle center.

Another D2D user randomly lies within the circle and is rj away from the circle center.

Thus 0 < ri, rj < Rd. Let ∆R = |~ri − ~rj | denote the distance of D2D pair. The two D2D

users are uniformly distributed in the circle. Both of them have the same distribution:

fri(r) = frj (r) =


2r
Rd

2 0 ≤ r ≤ Rd,

0 otherwise.

(A.1)

The conditional cumulative distribution function of ∆R is calculated by P(∆R < r|Ri =

ri) = 

P1(r, ri), 0 < r < Rd − ri,

P2(r, ri), Rd − ri < r <
√
Rd

2 − ri2,

P3(r, ri),
√
Rd

2 − ri2 < r <
√
Rd

2 + ri2,

P4(r, ri),
√
Rd

2 + ri2 < r < Rd + ri,

P5(r, ri), Rd + ri < r,

(A.2)

where P1(r, ri), P2(r, ri), P3(r, ri), P4(r, ri), P5(r, ri) are evaluated as following:

P1(r, ri) =
πr2

πRd
2 , (A.3)

P2(r, ri)=
r2[π − arctan( y0

x0−ri )] +Rd
2 arctan( y0

x0
)− y0 · ri

πRd
2 , (A.4)

P3(r, ri) =
r2 arctan( y0

ri−x0
) +Rd

2 arctan( y0

x0
)− y0 · ri

πRd
2 , (A.5)
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Fig. A.1: Two D2D user randomly located in a circle with a constraint radius of Rd

P4(r, ri)=
r2 arctan( y0

ri−x0
) +Rd

2[π + arctan( y0

x0
)]− y0 · ri

πRd
2 , (A.6)

P5(r, ri) = 1. (A.7)

In the above probability expression, (x0, y0) is the intersection co-ordinate of the circle cen-

tered around the ith user with radius r. So we have x0 = ri
2+Rd

2−r2

2ri
, y0 =

√
[(r+Rd)2−ri2][ri2−(Rd−r)2]

2ri

from 
x2 + y2 = Rd

2,

(x− ri)2 + y2 = r2.

By conditional probability function of D2D distance, we can evaluate the distance CDF

of D2D pair according to
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P(∆R < r) =



∫ Rd−r
0 P1(r, ri)fRi(ri)dri+

∫√Rd2−r2

Rd−r P2(r, ri)fRi(ri)dri

+
∫ Rd√

Rd
2−r2

P3(r, ri)fRi(ri)dri, 0 < r < Rd,∫ r−Rd
0 P5(r, ri)fRi(ri)dri+

∫√r2−Rd2

r−Rd P4(r, ri)fRi(ri)dri

+
∫ Rd√

r2−Rd2
P3(r, ri)fRi(ri)dri, Rd < r <

√
2Rd,∫ r−Rd

0 P5(r, ri)fRi(ri)dri+
∫ Rd
r−Rd P4(r, ri)fRi(ri)dri,

√
2Rd < r < 2Rd.

(A.8)

By evaluating the derivation of CDF with respect to r, we can obtain the PDF for ∆R. For

clarity, we only provide derivation for the case when
√

2Rd < r < Rd. Similar derivations

can be applied for the other two cases. When
√

2Rd < r < 2Rd, f∆R|
√

2Rd<r<2Rd
(r) is equal

to

=
dP (∆R < r)

dr

=
d

dr
[

∫ Rd

r−Rd
P4(r, ri)fRi(ri)dri+

∫ r−Rd

0
P5(r, ri)fRi(ri)dri]

=

Part 1︷ ︸︸ ︷∫ Rd

r−Rd

∂P4(r, ri)

∂r
fRi(ri)dri−

Part 2︷ ︸︸ ︷
P4(r, r −Rd)fRi(r −Rd)

+
2(r −Rd)
Rd

2

= − 4r2

πRd
3G(arccos(

r

2Rd
)). (A.9)

And part 1 and part 2 in the above equation are further elaborated in the following:
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Part 1

=

∫ Rd

r−Rd

2r arctan( y0

ri−x0
)

πRd
2 · 2πri

πRd
2dri

= C

∫ Rd

r−Rd

arctan(

√
[(r +Rd)2 − ri2][ri2 − (Rd − r)2]

ri2 + r2 −Rd2 )2ridri

(a)
= C

∫ r2

2r(r−Rd)
arctan(

√
(2rRd)2 − (2r2 − t)2

t
)dt

= C

∫ r2

2r(r−Rd)
arctan(

2rRd
t

√
1− (

r

Rd
− t

2rRd
)2)dt

(b)
= C

∫ arccos( r
2Rd

)

0
arctan(

sin(y)
r
Rd
− cos(y)

)2rRd sin(y)dy

= − 4r2

πRd
3

∫ arccos( r
2Rd

)

0
arctan(

sin(y)

cos(y)− r
Rd

) sin(y)dy

= − 4r2

πRd
3G(arccos(

r

2Rd
)), (A.10)

where C = 2πr
(πRd

2)2 . We use t = ri
2 + r2 − Rd2 in (a) and cos(y) = r

Rd
− t

2rRd
in (b) in the

above expressions. The G(·) function defined here can be calculated as

G(y)

=

∫
arctan(

sin(y)

cos(y)− r
Rd

) sin(y)dy

=
[( r
Rd

)2 − 1]y − 2[( r
Rd

)2 + 1] arctan(
(r+Rd) tan( y

2
)

r−Rd )

4 r
Rd

+
2 r
Rd

sin(y) + 4 r
Rd

cos(y) arctan( sin(y)
r
Rd
−cos(y))

4 r
Rd

. (A.11)
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Part 2

= [

≡ 0︷ ︸︸ ︷
r2 arctan(

y0

r −Rd − x0
) +πRd

2 +

≡ 0︷ ︸︸ ︷
Rd

2 arctan(
y0

x0
)

πRd
2

−

≡ 0︷ ︸︸ ︷
y0 · (r −Rd)

πRd
2 ] · 2π(r −Rd)

πRd
2

=
2(r −Rd)
Rd

2 . (A.12)
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Appendix B

Proof of Approximated SE at High-SNR

First, we denote z = 1
ρΩ . As [57]

Γ(a, z) =
zae−z

Γ(1− a)

∫ ∞
0

t−ae−t

z + t
dt, |arg(z)| < π,Re(a) < 1, (B.1)

where Γ(x) is the gamma function .

Thus when 0 < A ≤ 1,

S∞ = lim
ρ→∞

ηSE(θ, ρ)

log2ρ

= − 1

A
lim
ρ→∞

ln{( 1
ρΩ)Ae

1
ρΩ
∫∞

1
ρΩ

1
xAxx

dx}

lnρ

=
1

A
lim
z→0

Alnz + ln{ezΓ(1−A, z)}
lnz + lnΩ

= 1, (B.2)

and

L∞ = lim
ρ→∞

[log2ρ− ηSE(θ, ρ)]

=
1

A
lim
ρ→∞

E{ ρA

(1 + ρ|h|2)A
}

=
1

A
log2{(|h|2)−A}

= log2

Γ(1−A)
1
A

Ω
. (B.3)

Therefore, when the delay requirement is not stringent, the results coincide with the con-

clusion made in the theorem 6 in [2].
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When A > 1,

S∞ = lim
ρ→∞

ηSE(θ, ρ)

log2ρ

=
1

A
lim
z→0

ln{zAezΓ(1−A, z)}
lnz + lnΩ

=
1

A
lim
z→0

lnz + ln
∫∞

0
tA−1e−t

z+t dt− lnΓ(A)

lnz + lnΩ

=
1

A
, (B.4)

and

L∞ = lim
ρ→∞

[log2ρ−AηSE(θ, ρ)]

= lim
ρ→∞

[log2ρ+ log2(E{(1 + ρ|h|2)−A})]

= lim
ρ→∞
{log2ρ+ log2

ze−z

Γ(A)

∫ ∞
0

tA−1e−t

z + t
dt}

= lim
z→0
{log2

1

Γ(A)Ω

∫ ∞
0

tA−1e−t

z + t
dt}

= log2

Γ(A− 1)

Γ(A)Ω
. (B.5)
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