15 research outputs found

    Digital and analog TFET circuits: Design and benchmark

    Get PDF
    In this work, we investigate by means of simulations the performance of basic digital, analog, and mixed-signal circuits employing tunnel-FETs (TFETs). The analysis reviews and complements our previous papers on these topics. By considering the same devices for all the analysis, we are able to draw consistent conclusions for a wide variety of circuits. A virtual complementary TFET technology consisting of III-V heterojunction nanowires is considered. Technology Computer Aided Design (TCAD) models are calibrated against the results of advanced full-quantum simulation tools and then used to generate look-up-tables suited for circuit simulations. The virtual complementary TFET technology is benchmarked against predictive technology models (PTM) of complementary silicon FinFETs for the 10 nm node over a wide range of supply voltages (VDD) in the sub-threshold voltage domain considering the same footprint between the vertical TFETs and the lateral FinFETs and the same static power. In spite of the asymmetry between p- and n-type transistors, the results show clear advantages of TFET technology over FinFET for VDDlower than 0.4 V. Moreover, we highlight how differences in the I-V characteristics of FinFETs and TFETs suggest to adapt the circuit topologies used to implement basic digital and analog blocks with respect to the most common CMOS solutions

    Digital and analog TFET circuits: Design and benchmark

    Get PDF
    In this work, we investigate by means of simulations the performance of basic digital, analog, and mixed-signal circuits employing tunnel-FETs (TFETs). The analysis reviews and complements our previous papers on these topics. By considering the same devices for all the analysis, we are able to draw consistent conclusions for a wide variety of circuits. A virtual complementary TFET technology consisting of III-V heterojunction nanowires is considered. Technology Computer Aided Design (TCAD) models are calibrated against the results of advanced full-quantum simulation tools and then used to generate look-up-tables suited for circuit simulations. The virtual complementary TFET technology is benchmarked against predictive technology models (PTM) of complementary silicon FinFETs for the 10 nm node over a wide range of supply voltages (VDD) in the sub-threshold voltage domain considering the same footprint between the vertical TFETs and the lateral FinFETs and the same static power. In spite of the asymmetry between p- and n-type transistors, the results show clear advantages of TFET technology over FinFET for VDDlower than 0.4 V. Moreover, we highlight how differences in the I-V characteristics of FinFETs and TFETs suggest to adapt the circuit topologies used to implement basic digital and analog blocks with respect to the most common CMOS solutions

    Miniaturized Transistors

    Get PDF
    What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications

    Etude de la variabilité en technologie FDSOI : du transistor aux cellules mémoires SRAM

    No full text
    The scaling of bulk MOSFETs transistors is facing various difficulties at the nanometer era. The variability of the electrical characteristics becomes a major challenge which increases as the device dimensions are scaled down. Fully-Depleted Silicon On Insulator (FDSOI) technology, developed as an alternative to bulk transistors, exhibits a better electrostatic immunity which enables higher performances. Moreover, the reduction of the Random Dopant Fluctuation allows excellent variability immunity for the FDSOI technology due to its undoped channel. It leads to a yield enhancement and a reduction of the minimum supply voltage of SRAM circuits. The variability has been analyzed deeply during this thesis in this technology, both on the threshold voltage (VT) and on the ON-state current (ISAT). The correlation between the electrical characteristics of MOSFETs devices (i.e., the threshold voltage and the standard deviation σVT) and SRAM cells (i.e., the SNM and σSNM) has been investigated thanks to an extensive experimental study and modeling. This purpose of this thesis is also to analyze the specific FDSOI variability source: silicon thickness fluctuations. An analytical model has been developed in order to quantify the impact of local TSi variations on the VT variability for 28 and 20nm technology nodes, as well as on a 200Mb SRAM array. This model also enables to evaluate the silicon thickness mean (µTsi) and standard deviation (σTsi) specifications for next technology nodes.La miniaturisation des transistors MOSFETs sur silicium massif présente de nombreux enjeux en raison de l'apparition de phénomènes parasites. Notamment, la réduction de la surface des dispositifs entraîne une dégradation de la variabilité de leurs caractéristiques électriques. La technologie planaire totalement désertée, appelée communément FDSOI (pour Fully Depleted Silicon on Insulator), permet d'améliorer le contrôle électrostatique de la grille sur le canal de conduction et par conséquent d'optimiser les performances. De plus, de par la présence d'un canal non dopé, il est possible de réduire efficacement la variabilité de la tension de seuil des transistors. Cela se traduit par un meilleur rendement et par une diminution de la tension minimale d'alimentation des circuits SRAM (pour Static Random Access Memory). Une étude détaillée de la variabilité intrinsèque à cette technologie a été réalisée durant ce travail de recherche, aussi bien sur la tension de seuil (VT) que sur le courant de drain à l'état passant (ISAT). De plus, le lien existant entre la fluctuation des caractéristiques électriques des transistors et des circuits SRAM a été expérimentalement analysé en détail. Une large partie de cette thèse est enfin dédiée à l'investigation de la source de variabilité spécifique à la technologie FDSOI : les fluctuations de l'épaisseur du film de silicium. Un modèle analytique a été développé durant cette thèse afin d'étudier l'influence des fluctuations locales de TSi sur la variabilité de la tension de seuil des transistors pour les nœuds technologiques 28 et 20nm, ainsi que sur un circuit SRAM de 200Mb. Ce modèle a également pour but de fournir des spécifications en termes d'uniformité σTsi et d'épaisseur moyenne µTsi du film de silicium pour les prochains nœuds technologiques

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Fabrication, characterization, and modeling of silicon multi-gate devices

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Single Ion Impact Detection & Scanning Probe Aligned Ion Implantation for Quantum Bit Formation

    Get PDF
    Daten- und Informationsverarbeitung via Quantencomputer ist ein viel versprechender Ansatz, um die klassische Art und Weise via Digitalrechner, welche sich fundamentalen physikalischen Grenzen annŠhern, zu ersetzen. Anstelle von klassischen Bits werden Quantenbits (Qubits) fŸr Rechenoperationen verwendet. Aufgrund quantenmechanischer PhŠnomene wie Superposition und VerschrŠnkung, wird die Informationsverarbeitung in einer ganz anderen Art und Weise umgesetzt und eine Leistungssteigerung fŸr bestimmte Aufgabenstellungen erreicht. Es gibt verschiedene VorschlŠge zur technischen Umsetzung von Quanten-Bits. Unter ihnen sind Elektronen- oder Kernspins von Defektstellen in Festkšrpern. Zwei solche Kandidaten mit Spinfreiheitsgraden sind einzelne Donatoren in Silizium und Stickstoff Fehlstellen (NV) Zentren in Diamant. Beide Qubit-Kandidaten besitzen aussergewšhnliche Eigenschaften, welche sie zu vielversprechenden Bausteinen machen. Neben gewissen Vorteilen verbindet die beiden Qubits auch die Notwendigkeit, diese prŠzise in ihren TrŠgermaterialien und Bauelementstrukturen zu platzieren. Eine hŠufig verwendete Methode, die Fremdatome in die Substratmaterialien einzubringen, ist die Ionenimplantation. HierfŸr kšnnen fokussierte Ionenstrahl-Systeme verwendet werden, oder Kollimationstechniken, wie in dieser Arbeit. Ein ausgedehnter Ionenstrahl trifft die RŸckseite einer Rastersondenmikroskopspitze mit integrierten …ffnungen. Das Rastersondenmikroskop ermšglichen die zerstšrungsfreie und hochauflšsende Abbildung von Bauteilstrukturen und die Platzierung der Rastersondenmikroskopspitze, und damit des kollimierten Ionenstrahls, um ausgewŠhlte Regionen zu implantieren. In der vorgelegten Arbeit wird diese Technik angewendet und weiterentwickelt, um notwendige PrŠzisionskriterien zu erfŸllen. Die Platzierung des Ionenstrahls auf Bauelementstrukturen, welche empfindsam auf Ionenbombardement reagieren und damit Detektoren darstellen, wurde demonstriert. Die gleiche Technik wird auch zur Anordnung von NV-Zentren in Diamantsubstraten verwendet. Des weiteren werden einzelne IoneneinschlŠge in Siliziumbauteilen erfasst, wodurch das gezielte Dotieren Ion fŸr Ion ermšglicht wird.Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping

    MODELING AND SPICE IMPLEMENTATION OF SILICON-ON-INSULATOR (SOI) FOUR GATE (G4FET) TRANSISTOR

    Get PDF
    As the device dimensions have reduced from micrometer to nanometer range, new bulk silicon devices are now facing many undesirable effects of scaling leading device engineers to look for new process technologies. Silicon-on-insulator (SOI) has emerged as a very promising candidate for resolving the major problems plaguing the bulk silicon technology. G4FET [G4FET] is a SOI transistor with four independent gates. Although G4FET has already shown great potential in different applications, the widespread adoption of a technology in circuit design is heavily dependent upon good SPICE (Simulation Program with Integrated Circuit Emphasis) models. CAD (Computer Aided Design) tools are now ubiquitous in circuit design and a fast, robust and accurate SPICE model is absolutely necessary to transform G4FET into a mainstream technology. The research goal is to develop suitable SPICE models for G4FET to aid circuit designers in designing innovative analog and digital circuits using this new transistor. The first phase of this work is numerical modeling of the G4FET where four different numerical techniques are implemented, each with its merits and demerits. The first two methods are based on multivariate Lagrange interpolation and multidimensional Bernstein polynomial. The third numerical technique is based on multivariate regression polynomial to aid modeling with dense gridded data. Another suitable alternative namely multidimensional linear and cubic spline interpolation is explored as the fourth numerical modeling approach to solve some of the problems resulting from single polynomial approximation. The next phase of modeling involves developing a macromodel combining already existing SPICE models of MOSFET (metal–oxide–semiconductor field-effect transistor) and JFET (junction-gate field-effect transistor). This model is easy to implement in circuit simulators and provides good results compared to already demonstrated experimental works with innovative G4FET circuits. The final phase of this work involves the development of a physics-based compact model of G4FET with some empirical fitting parameters. A model for depletion-all-around operation is implemented in circuit simulator based on previous work. Another simplified model, combining MOS and JFET action, is implemented in circuit simulator to model the accumulation mode operation of G4FET

    Développement de modèles pour l'évaluation des performances circuit des technologies CMOS avancées sub-20nm

    Get PDF
    Depuis la commercialisation du premier circuit intégré en 1971, l'industrie de la microélectronique s'est fixée comme leitmotiv de réduire les dimensions des transistors MOSFETs, en suivant la loi de Moore. Comme indiqué par Dennard, cette miniaturisation améliore automatiquement les performances des transistors. A partir des nœuds 28-22nm, les effets canaux courts sont trop difficiles à contrôler et de nouvelles architectures de transistors sont introduites: FDSOI pour STMicroelectronics, Trigate pour Intel. Dans ce contexte, l'évaluation des performances des technologies CMOS est clé et les travaux de cette thèse proposent de les évaluer au niveau circuit. Des modèles spécifiques d'estimation des paramètres électrostatiques et des capacités parasites sont développés. Ceux-ci sont d'abord utilisés sur des technologies amonts (co-intégration III-V/Ge et intégration 3D) puis sont implémentés en VerilogA pour être utilisés avec les outils conventionnel de CAO. Ceci fournit un modèle compact prédictif et utilisable pour toutes les architectures CMOS, qui est utilisé pour évaluer les performances logiques et SRAM des architectures BULK, FDSOI et Trigate aux nœuds 20nm et 16nm.Since the commercialization of the first integrated circuit in 1971, the microelectronic industry has fixed as an objective to reduce MOSFET transistor dimensions, following Moore's law. As indicated by Dennard, this miniaturization automatically improves device performances. Starting from the 28-22nm technological nodes, short channel effects are to strong and industrial companies choose to introduce new device structure: FDSOI for STMicroelectronics and Trigate for Intel. In such a context, CMOS technology performance evaluation is key and this thesis proposes to evaluate them at circuit level. Specific models for electrostatic parameters and parasitic capacitances for each device structure are developed for each device structure. Those models have first been used to evaluate performances of advanced technologies, such as III-V/Ge co-integration and 3D monolithic integration and have then been implemented in VerilogA to ensure compatibility with conventional CAD tools such as ELDO. This provides a compact model, predictive and usable for each device structure, which has been used to evaluated logic and SRAM performances of BULK, FDSOI and Trigate devices for the 20nm and 16nm technology node.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    corecore