43,662 research outputs found

    Uncertainty in epidemiology and health risk assessment

    Get PDF

    Monte Carlo and spatial sampling effects in regional uncertainty propagation analyses

    Get PDF
    Spatial uncertainty propagation analysis (UPA) aims at analysing how uncertainties in model inputs propagate through spatial models. Monte Carlo methods are often used, which estimate the output uncertainty by repeatedly running the model with inputs that are sampled from their probability distribution. Regional application of UPA usually means that the model output must be aggregated to a larger spatial support. For instance, decision makers may want to know the uncertainty about the annual nitrate leaching averaged over an entire region, whereas a model typically predicts the leaching for small plots. For models without spatial interactions there is no need to run the model at all points within the region of interest. A sufficiently large sample of locations may represent the region sufficiently well. The reduction in computational load can then be used to increase the number of Monte Carlo runs. In this paper we explore how a combination of analytical and numerical methods can be used to evaluate the errors introduced by Monte Carlo and spatial sampling. This is important to be able to correct for the bias inflicted by the spatial sampling, to determine how many model runs are needed to reach accurate results and to determine the optimum ratio of the Monte Carlo and spatial sample sizes

    Bayesian statistical analysis of ground-clutter for the relative calibration of dual polarization weather radars

    Get PDF
    A new data processing methodology, based on the statistical analysis of ground-clutter echoes and aimed at investigating the stability of the weather radar relative calibration, is presented. A Bayesian classification scheme has been used to identify meteorological and/or ground-clutter echoes. The outcome is evaluated on a training dataset using statistical score indexes through the comparison with a deterministic clutter map. After discriminating the ground clutter areas, we have focused on the spatial analysis of robust and stable returns by using an automated region-merging algorithm. The temporal series of the ground-clutter statistical parameters, extracted from the spatial analysis and expressed in terms of percentile and mean values, have been used to estimate the relative clutter calibration and its uncertainty for both co-polar and differential reflectivity. The proposed methodology has been applied to a dataset collected by a C-band weather radar in southern Italy

    On the uncertainty of stream networks derived from elevation data: the error propagation approach

    Get PDF
    DEM error propagation methodology is extended to the derivation of vector-based objects (stream networks) using geostatistical simulations. First, point sampled elevations are used to fit a variogram model. Next 100 DEM realizations are generated using conditional sequential Gaussian simulation; the stream network map is extracted for each of these realizations, and the collection of stream networks is analyzed to quantify the error propagation. At each grid cell, the probability of the occurrence of a stream and the propagated error are estimated. The method is illustrated using two small data sets: Baranja hill (30 m grid cell size; 16 512 pixels; 6367 sampled elevations), and Zlatibor (30 m grid cell size; 15 000 pixels; 2051 sampled elevations). All computations are run in the open source software for statistical computing R: package geoR is used to fit variogram; package gstat is used to run sequential Gaussian simulation; streams are extracted using the open source GIS SAGA via the RSAGA library. The resulting stream error map (Information entropy of a Bernoulli trial) clearly depicts areas where the extracted stream network is least precise – usually areas of low local relief and slightly convex (0–10 difference from the mean value). In both cases, significant parts of the study area (17.3% for Baranja Hill; 6.2% for Zlatibor) show high error (H>0.5) of locating streams. By correlating the propagated uncertainty of the derived stream network with various land surface parameters sampling of height measurements can be optimized so that delineated streams satisfy the required accuracy level. Such error propagation tool should become a standard functionality in any modern GIS. Remaining issue to be tackled is the computational burden of geostatistical simulations: this framework is at the moment limited to small data sets with several hundreds of points. Scripts and data sets used in this article are available on-line via the www.geomorphometry.org website and can be easily adopted/adjusted to any similar case study

    Quantum-inspired computational imaging

    Get PDF
    Computational imaging combines measurement and computational methods with the aim of forming images even when the measurement conditions are weak, few in number, or highly indirect. The recent surge in quantum-inspired imaging sensors, together with a new wave of algorithms allowing on-chip, scalable and robust data processing, has induced an increase of activity with notable results in the domain of low-light flux imaging and sensing. We provide an overview of the major challenges encountered in low-illumination (e.g., ultrafast) imaging and how these problems have recently been addressed for imaging applications in extreme conditions. These methods provide examples of the future imaging solutions to be developed, for which the best results are expected to arise from an efficient codesign of the sensors and data analysis tools.Y.A. acknowledges support from the UK Royal Academy of Engineering under the Research Fellowship Scheme (RF201617/16/31). S.McL. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grant EP/J015180/1). V.G. acknowledges support from the U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office award W911NF-10-1-0404, the U.S. DARPA REVEAL program through contract HR0011-16-C-0030, and U.S. National Science Foundation through grants 1161413 and 1422034. A.H. acknowledges support from U.S. Army Research Office award W911NF-15-1-0479, U.S. Department of the Air Force grant FA8650-15-D-1845, and U.S. Department of Energy National Nuclear Security Administration grant DE-NA0002534. D.F. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grants EP/M006514/1 and EP/M01326X/1). (RF201617/16/31 - UK Royal Academy of Engineering; EP/J015180/1 - UK Engineering and Physical Sciences Research Council; EP/M006514/1 - UK Engineering and Physical Sciences Research Council; EP/M01326X/1 - UK Engineering and Physical Sciences Research Council; W911NF-10-1-0404 - U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office; HR0011-16-C-0030 - U.S. DARPA REVEAL program; 1161413 - U.S. National Science Foundation; 1422034 - U.S. National Science Foundation; W911NF-15-1-0479 - U.S. Army Research Office; FA8650-15-D-1845 - U.S. Department of the Air Force; DE-NA0002534 - U.S. Department of Energy National Nuclear Security Administration)Accepted manuscrip

    Geostatistical simulation of two-dimensional fields of raindrop size distributions at the meso-¿ scale

    Get PDF
    The large variability of the raindrop size distribution (DSD) in space and time must be taken into account to improve remote sensing of precipitation. The ability to simulate a large number of 2-D fields of DSDs sharing the same statistical properties provides a very useful simulation framework that nicely complements experimental approaches based on DSD ground measurements. These simulations can be used to investigate radar beam propagation through rain and to evaluate different radar retrieval techniques. The proposed approach uses geostatistical methods to provide structural analysis and stochastic simulation of DSD fields. First, the DSD is assumed to follow a Gamma distribution with three parameters. As a consequence, 2-D fields of DSDs can be described as a multivariate random function. The parameters are normalized using a Gaussian anamorphosis and simulated by taking advantage of fast Gaussian simulation algorithms. Variograms are used to characterize the spatial structure of the DSD fields. The generated fields have identical spatial structure and are consistent with the observations. Because intermittency cannot be simulated using this technique, the size of the simulation domain is limited to the meso-¿ scale (2-20 km). To assess the proposed approach, the method is applied to data collected during intense Mediterranean rainfall. Taylor's hypothesis is invoked to convert time series into 1-D range profiles. The anisotropy of the fields is derived from radar measurements. Simulated and measured reflectivity fields are in good agreement with respect to the mean, the standard deviation, and the spatial structure, demonstrating the promising potential of the proposed stochastic model of DSD field

    Reduced Scaling Hilbert Space Variational Monte Carlo

    Get PDF
    We show that for both single-Slater-Jastrow and Jastrow geminal power wave functions, the formal cost scaling of Hilbert space variational Monte Carlo can be reduced from fifth to fourth order in the system size, thus bringing it in line with the long-standing scaling of its real space counterpart. While traditional quantum chemistry methods can reduce costs related to the two-electron integral tensor through resolution of the identity and Cholesky decomposition approaches, we show that such approaches are ineffective in the presence of Hilbert space Jastrow factors. Instead, we develop a simple semi-stochastic approach that can take similar advantage of the near-sparsity of this four-index tensor. Through demonstrations on alkanes of increasing length, we show that accuracy and overall statistical uncertainty are not meaningfully affected and that a total cost crossover is reached as early as 50 electrons.Comment: 8 pages, 7 figure

    Thermal Transients in District Heating Systems

    Full text link
    Heat fluxes in a district heating pipeline systems need to be controlled on the scale from minutes to an hour to adjust to evolving demand. There are two principal ways to control the heat flux - keep temperature fixed but adjust velocity of the carrier (typically water) or keep the velocity flow steady but then adjust temperature at the heat producing source (heat plant). We study the latter scenario, commonly used for operations in Russia and Nordic countries, and analyze dynamics of the heat front as it propagates through the system. Steady velocity flows in the district heating pipelines are typically turbulent and incompressible. Changes in the heat, on either consumption or production sides, lead to slow transients which last from tens of minutes to hours. We classify relevant physical phenomena in a single pipe, e.g. turbulent spread of the turbulent front. We then explain how to describe dynamics of temperature and heat flux evolution over a network efficiently and illustrate the network solution on a simple example involving one producer and one consumer of heat connected by "hot" and "cold" pipes. We conclude the manuscript motivating future research directions.Comment: 31 pages, 7 figure
    • …
    corecore