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Abstract. DEM error propagation methodology is extended
to the derivation of vector-based objects (stream networks)
using geostatistical simulations. First, point sampled ele-
vations are used to fit a variogram model. Next 100 DEM
realizations are generated using conditional sequential Gaus-
sian simulation; the stream network map is extracted for each
of these realizations, and the collection of stream networks
is analyzed to quantify the error propagation. At each grid
cell, the probability of the occurrence of a stream and the
propagated error are estimated. The method is illustrated us-
ing two small data sets: Baranja hill (30 m grid cell size;
16 512 pixels; 6367 sampled elevations), and Zlatibor (30 m
grid cell size; 15 000 pixels; 2051 sampled elevations). All
computations are run in the open source software for statis-
tical computingR: packagegeoR is used to fit variogram;
packagegstat is used to run sequential Gaussian simula-
tion; streams are extracted using the open source GISSAGA
via theRSAGA library. The resulting stream error map (In-
formation entropy of a Bernoulli trial) clearly depicts areas
where the extracted stream network is least precise – usually
areas of low local relief and slightly convex (0–10 difference
from the mean value). In both cases, significant parts of the
study area (17.3% for Baranja Hill; 6.2% for Zlatibor) show
high error (H > 0.5) of locating streams. By correlating the
propagated uncertainty of the derived stream network with
various land surface parameters sampling of height measure-
ments can be optimized so that delineated streams satisfy the
required accuracy level. Such error propagation tool should
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become a standard functionality in any modern GIS. Re-
maining issue to be tackled is the computational burden of
geostatistical simulations: this framework is at the moment
limited to small data sets with several hundreds of points.
Scripts and data sets used in this article are available on-line
via thewww.geomorphometry.orgwebsite and can be easily
adopted/adjusted to any similar case study.

1 Introduction

In geomorphometry, Digital Elevation Models (DEM) are
routinely used to extract various continuous (gridded) land
surface parameters, and/or discrete (vector) land surface ob-
jects. Assuming that DEMs are perfectly accurate, extraction
of land surface parameters and objects is a simple one itera-
tion operation (Fig.1a). However, in reality, DEMs are not
perfect representations of reality – DEMs suffer from sys-
tematic and random errors and DEM elevations differ from
what we measure on the field. In fact, errors are inevitable,
even if elevation models are produced using highly accurate
and dense sampling techniques such as LiDAR (Evans and
Hudak, 2007; Bater and Coops, 2009). Errors are inherent
both in measurements of elevations, and in the DEM analy-
sis algorithms, and can possibly have a significant influence
on the reliability of final products. By ignoring errors in the
input layers, analysts often get disappointed when their prod-
ucts are evaluated versus ground truth data. This is true espe-
cially for hydrological applications (Wise, 2000; Wechsler,
2007).

The approach to GIS analysis that takes into account that
GIS input layers are of limited accuracy, and that provides
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Fig. 1. Workflow scheme for stream extraction from elevation data:(a) assuming that elevations carry no uncertainty;(b) the Monte Carlo
error propagation approach withm realizations. In this case, filtering of spurious sinks is specific to the case studies and not a general
operation.

a way to assess the propagated uncertainty associated with
the output of the analysis, is known as “error propagation”
(Heuvelink, 1998). The potential of using error propaga-
tion has been first recognized byBurrough(1986) andEn-
glund(1993). At that time, it seemed unlikely that stochastic
simulations would become routinely available in a GIS en-
vironment. Since then, the world has evolved: computers
are more powerful, statistical tools are more accessible and
more sophisticated. We are slowly reaching a point when er-
ror propagation will become a standard toolbox of any GIS
software (Wechsler, 2007). Examples of using error propa-
gation methods to assess the accuracy of various scalar-type
land surface parameters derived from DEMs can be found
in the work ofFisher(1992); Heuvelink(1998); Dutta and
Herath(2001); Raaflaub and Collins(2006) andOksanen and
Sarjakoski(2005). Brown and Heuvelink(2007) recently
produced a generic library for uncertainty modeling called
“Data Uncertainty Engine” (DUE). A group at Aston Univer-
sity has been developing the Uncertainty Markup Language
(UncertML, http://www.uncertml.org) that could become a
standard for writing metadata for error propagation applica-
tions. However, there are still technical and conceptual issues

that need to be solved before an uncertainty engine becomes
a standard part of any GIS (Heuvelink, 2002; Temme et al.,
2008). One such open issue is that the problem of assess-
ing accuracy of vector-type features (watershed boundaries,
stream networks, break lines, escarpments and similar) has
been under-represented in the literature, and theory to sup-
port applications is in general missing (with few exceptions
e.g.Poggio and Soille, 2008). Most of papers that suggest
ways to model uncertainty of vector-based objects in a GIS
do not specify how to actually compute these using real data.

This article proposes a methodology to assess errors of
stream networks extracted from digital elevation models. It
uses two small case studies to demonstrate how to implement
geostatistical simulations and assess the propagated uncer-
tainty and map the error of locating streams. Our secondary
objective is to promote the geostatistical tools implemented
in the open source environment for computing (R), and ge-
ographical analysis tools implemented in the open source
GIS (SAGA). Scripts and data sets used in this article are
available on-line via thewww.geomorphometry.orgwebsite.
Users and developers are encouraged to adopt, extend and
improve.
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2 Methods and materials

2.1 Error propagation

GIS error propagation can be defined as a set of statistical
procedures that model uncertainties in the input maps, and
for a given GIS operation, estimate the (propagated) error
of mapping a feature of interest. In mathematical terms, the
output map is a result of an operation applied to multiple
spatial layers (Heuvelink, 1998):

U(s) = g
{
A1(s),...,Ap(s)

}
(1)

whereA1(s),...,Ap(s) are the GIS inputs (spatial layers),
U(s) is the output map,p is the number of inputs,s is the
vector of coordinates (spatial locationx,y), andg is the GIS
operation. The main focus of error propagation is determi-
nation of the mean value (Ū (s)) and its standard deviation
(σ 2

U (s)), or ideally the entire probability distribution of the
output mapU for any locations in the area of interestA.
Note that the probability distribution of the output map is
quite involved because it must also capture the spatial sta-
tistical dependencies. In case of GIS output that is a spa-
tial object such as a streamline, the probability distribution
is even more complex. Possibly the easiest way to charac-
terize uncertainty of discrete spatial objects is by generating
a number of those objects (especially for objects that cannot
easily be specified): for example, river network is the output
from numerical algorithm that operates on the terrain data;
although the flow modeling formulas are deterministic, the
consequent uncertainty can not be specified separately from
the terrain on which it was generated. In fact,Tarboton and
Baker(2009) argue that it is close to impossible to integrate
uncertainty in the flow-algebra.

The benefit of running an error propagation analysis is,
first and foremost, that it quantifies the uncertainty in the GIS
result. If the probability distribution of the inputA is narrow,
then we might expect that the propagated uncertainty will be
narrow as well, but this need not always be the case. The sen-
sitivity of model output to small changes in the input is also
important. Also, when there are multiple uncertain inputs it
becomes difficult to predict the impact of error in input maps
on derived products. The situation is even more difficult if
errors in inputs are spatially variable – in some parts of the
study area they can be high, in others low – so that it becomes
difficult to predict where in the study area the uncertainty of
the derived map becomes critical. By ignoring the fact that
errors in input maps exist and that they are significant, we
create a wrong idea about the precision of the derived land
surface objects. Hence the primary benefit of running error
propagation is visual and statistical assessment of errors in
the output maps.

In principle, there are two main approaches to error prop-
agation: (a) the analytical, and (b) the Monte Carlo approach
(Heuvelink, 2002). In the first case, the propagated error
is derived using some mathematical technique such as via

a Taylor series expansion; in the second case, stochastic sim-
ulation is used to samplem times from the input probabil-
ity distribution and the operation is repeatedm times. The
Monte Carlo approach is more suited for cases where the
GIS operationg is so complex that it is practically impossible
to mathematically derive the propagated distribution model.
Since this is the case for many GIS applications, the Monte
Carlo approach has become the dominant approach to error
propagation (Wechsler, 2007; Poggio and Soille, 2008).

In the case of Monte Carlo simulation, the mean value
(Ū (s)) and the standard deviation (σ 2

U (s)) of the output fea-
ture is simply:

Ū (s) =

∑m
j=1USIM

j (s)

m
(2)

σU (s) =

√√√√∑m
j=1

(
USIM

j (s)− Ū (s)
)2

m−1
(3)

In the case of stream network extraction from DEMs, the
error propagation model (Eq.1) is:

USIM
= g

{
zSIM,b1,...,bp

}
(4)

wherezSIM is the simulated elevation map,USIM(s) is the
output value of stream (either 1 or 0, depending on whether
the location is part of the stream or not), andb1,...,bp are
the user-defined, constant, hydrological model parameters,
for example: minimum segment length, initiation grid, initi-
ation threshold etc. These parameters can be uncertain too.
Although this looks like a trivial model, the functiong in-
volves a spatial analysis with respect to flow direction on the
input elevation map, so that small differences in elevation at
some locations can result in completely different stream pat-
terns while large differences at other locations can have no
effect.

Streams have several specific properties that distinguish
them for other land surface parameters and objects. Streams
are discrete objects – a stream is composed of a set of in-
terconnected points (represented as grid cells). These ob-
jects have attributes such as length and curviness, Horton or
Strahler ordering. A grid cell can be part of a stream (value
1) or not (value 0) i.e. it becomes a Bernoulli variable with
probabilityp being part of the stream. The majority of cells
will have a small value forp simply because streams are
by definition rare events. The mean of the Bernoulli vari-
able at some location is simplyp; its variance is given by
p ·(1−p). The uncertainty of detecting streams can be alter-
natively characterized by the Shannon entropy (Shannon and
Weaver, 1949):

H(s) = −p(s) · log(p(s))− [1−p(s)] · log(1−p(s)) (5)

wherep is the probability of a grid cell being part of the
stream estimated by the number of times the model puts a
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Fig. 2. The uncertainty of deriving stream can be best described
using the information entropy (H ) of a Bernoulli trial. This plot
is courtesy of Brona Brejova, Comenius University in Bratislava,
Slovakia.

stream at the cell, divided by the total number of Monte Carlo
realizations. The precision of estimating the propagated un-
certainty is inversely related to the Monte Carlo sample size.
This means that if we run 100 simulations, and then at some
location detect stream 99/100 times (p=0.99), the estimated
error will be 0.056, and we can not map uncertainty with a
finer precision. If the model detects streams with equal prob-
ability of stream and not-stream (p=0.5), this will produce
the highest error of 1 (Fig.2).

2.2 Geostatistical simulations

Monte Carlo analysis of spatial error propagation requires
the generation of realistic simulations of elevation values.
The most common technique in geostatistics used to generate
equiprobable realizations of a spatial feature is the Sequential
Gaussian Simulation (Goovaerts, 1997). To simplify matters,
it is assumed that elevation can be modeled as a stationary
random function (Goovaerts, 1997; Kyriakidis et al., 1999)
with a constant mean:

µ = E{Z(s)} (6)

and a variogram model that only depends on distance be-
tween points:

2·γ (h) = Var{Z(s)−Z(s +h)}

= E

{
[Z(s)−Z(s +h)]2

} (7)

whereh is the separation vector between two locations, and
γ (h) is the semivariance. A capital letterZ is used be-
cause we assume that the model is probabilistic, i.e. there
is a range of equiprobable realizations of the same model. If
the variable of interest (elevation) has been sampled at a set
of point locations (z(s1), z(s2),. . . ,z(sn), wheresi=(xi,yi)),
then these can be used to fit a variogram model. Once we
have estimated the variogram model parameters, we can use

this model to produce simulations ofZ that have the same
spatial structure:

zSIM(s0) = E{Z(si)|z(si),i = 1,...,n} (8)

where zSIM is the simulated value at locations0. In this
case, simulations will be conditioned on the observations at
sampling locationsz(si). Under the assumption of second-
order stationarity, we can use for example a global exponen-
tial variogram with three parameters to produce a simulated
DEM. A slightly more sophisticated variogram is the Matérn
variogram model, which has an additional parameter to de-
scribe the smoothness (Stein, 1999; Minasny and McBrat-
ney, 2005):

γ (h) = C0 ·δ(h)+C1 ·

[
1

2v−1 ·0(v)
·

(
h

R

)v

·Kv ·

(
h

R

)]
(9)

whereC0, is the nugget parameter,C1 the sill parameter,R
the range parameter,δ(h) is the Kronecker delta,Kv is the
modified Bessel function,0 is the gamma function andv is
the smoothness parameter. The Matérn variogram model is
especially suited for elevation data because the smoothness,
common for topographic features, can be nicely represented
with thev-parameter. Note, however, that using the Matérn
variogram is only sensible when the nugget variance is in-
significant i.e. close to zero.

When additional auxiliary maps are available that can be
used to explain the deterministic component in the spatial
distribution of elevation values, more accurate simulations
of topography can be produced using the regression-kriging
model (Hengl et al., 2008). For the purpose of this article, we
will follow a simple case and assume: (a) that the elevation
values are realizations of a second-order stationary random
function with a constant trend; and (b) that the spatial auto-
correlation can be modeled using a Matérn variogram.

In summary, the error propagation approach to extraction
of streams from elevation data can be summarized in five
steps (Fig.1b):

1. calculate an experimental variogram from the data and
fit a Mat́ern variogram model (with parameters:C0, C1,
R andv) to represent the variability of the input DEM;

2. generate multiple realizations of the DEM using condi-
tional simulation and the variogram model fitted previ-
ously (Eq.8);

3. filter spurious sinks; derive stream network for each re-
alization, and save the temporary result (Eq.4);

4. aggregate the derived maps to estimate stream occur-
rence frequency and error of mapping streams (Eq.5);

5. evaluate how the propagated error relates to various to-
pographic parameters; then consider improving quality
of input DEM or filtering elevations where necessary.

Hydrol. Earth Syst. Sci., 14, 1153–1165, 2010 www.hydrol-earth-syst-sci.net/14/1153/2010/
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A disadvantage of the Monte Carlo approach is that it re-
quires a significantly large number of realizations to produce
a reliable estimate of the distribution function. The num-
ber of realizationsm must be sufficiently large to obtain sta-
ble results, but exactly how largem should be depends on
how accurate the results of the uncertainty analysis should
be. Theoretically speaking, the accuracy of the Monte-Carlo
method is proportional to the square root of the number of
runsm (Temme et al., 2008). Therefore, to double the ac-
curacy one must quadruple the number of runs. This means
that although many runs may be needed to reach stable and
accurate results, any degree of precision can be reached by
taking a large enough samplem. As a rule of thumb, we can
take 100 simulations as being large enough, and everything
below 20 as insufficient (Heuvelink, 1998). Consequently,
the Monte-Carlo method is computationally demanding, par-
ticularly when the GIS operation takes much computing time
(Heuvelink, 2002).

2.3 Software tools

In this article we use a combination of statistical and geo-
graphical computing software to assess propagated error of
detecting streams:SAGA GIS for geographical computing,
and R for statistical computing; all operations are in fact
combined in the same script. In this case,R is used to control
both internal add-on packages, but also external GISSAGA
(R “on top”) via a special link libraryRSAGA. A detailed
description ofR+SAGA integration can be can be found in
Brenning(2008).

Because most of the packages used in this article are not
common to majority of GIS users and hydrologists (espe-
cially to users of ESRI-products), we consider worth intro-
ducingSAGA, gstat andgeoR, and reviewing its main func-
tionality. A small guide on how to install, set and make first
steps in the two packages, is also given in the Appendix A.
This should help you reproduce the analysis shown in this ar-
ticle with your own data. Even more detailed instructions on
how to combineR andSAGA using the same data sets can
be found inHengl(2009).

2.3.1 SAGA GIS

SAGA1 (System for Automated Geoscientific Analyses) is
an open source GIS that has been developed since 2001 at
the University of G̈ottingen (the group recently collectively
moved to the Institut f̈ur Geographie, University of Ham-
burg), Germany, with the aim to simplify the implementation
of new algorithms for spatial data analysis (Conrad, 2006,
2007). A point data set of measured elevations can be used
in SAGA to generate a Digital Elevation Model (DEM), that
can then be used to extract a stream network (see scheme in
Fig.1a). For example, you can open the point layer inSAGA

1http://saga-gis.org

GIS, then use the moduleGrid 7→ Gridding 7→ Spline inter-
polation 7→ Thin Plate Splines (local)and generate a smooth
DEM. Then, you can preprocess the DEM to remove spuri-
ous sinks using the method ofPlanchon and Darboux(2001).
SelectTerrain Analysis7→ Preprocessing7→ Fill sinks, and
then set the minimum slope parameter to 0.1.

Once you have prepared a DEM, you can derive stream
networks using theChannel Networkfunction which is avail-
able inSAGA underTerrain Analysis7→ Channels. This im-
plements the original algorithm described inConrad(2007)
and which is based on the FD8 multiple flow direction algo-
rithm by Quinn et al.(1995). As a result, you should get a
map shown in Fig.3. Assuming that the DEM and the stream
extraction model are absolutely accurate, i.e. that they per-
fectly fit the reality, this would then be the end product of the
analysis (which corresponds to the scheme in Fig.1a).

2.3.2 R and packagesgstat and geoR

R is the command-based environment for statistical comput-
ing (R Development Core Team, 2009). Many spatial pack-
ages have been contributed in the past 3–4 years, which allow
R to be also used for spatial analysis. Two important add-
on packages that are used in this article aregstat (Pebesma,
2004) andgeoR (Diggle and Ribeiro Jr., 2007). In principle,
a large part of functionality ofgstat andgeoR overlap. On
the other hand,geoR has many original methods, including
an original format for spatial data (calledgeodata ). geoR
is especially powerful to fit variograms (including interactive
visual fitting), and for dealing with non-normal data;gstat
is somewhat more fit to run predictions and generate simula-
tions, even with large data sets.gstat also uses spatial classes
in R, so that conversion to GIS formats is fairly easy.

Once we have simulatedm DEMs usinggstat, we can
derive stream networks using the “Channel Network” func-
tion, which is available also via the command line – via the
ta channels SAGA library (see further Appendix A). This
means that, through scripting inR, one can automate both
geographical processing and statistical analysis, and imple-
ment the computational scheme shown in Fig.1b to any sim-
ilar data set.

2.4 Study areas and data sets

We use two previously published examples to demonstrate
the method: the “Baranja hill” case study is of mixed low
and high relief, and the “Zlatibor” case study is an area of
high relief. In principle, the only input for both exercises is a
point map showing field-measured elevations (ESRI Shape-
file). These maps are used to generate multiple realizations of
Digital Elevation Model, and then extract drainage network,
as implemented in theSAGA GIS package. Vector maps
showing the actual location of streams are also available for
both study areas.

www.hydrol-earth-syst-sci.net/14/1153/2010/ Hydrol. Earth Syst. Sci., 14, 1153–1165, 2010
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Fig. 3. Stream network generated inSAGA GIS using standard settings. In this case we used 40 (pixels) as the minimum length of streams.
Case study Baranja Hill; viewed from the West side.

The study area “Baranja hill” is located in eastern Croa-
tia (centered at 45◦48′16.4412′′ N, and 18◦39′54.198′′ E); it
has been extensively mapped over years and several GIS lay-
ers are available at various scales (Hengl and Reuter, 2008).
The study area corresponds approximately to the size of a
single 1:20 000 aerial photo. Its main geomorphic features
include hill summits and shoulders, eroded slopes of small
valleys, valley bottoms, a large abandoned river channel, and
river terraces (Fig.3). Elevation of the area ranges from 80
to 240 m with an average of 157.6 m and a standard deviation
of 44.3 m. The data set consists of 6367 points of field mea-
sured heights. The complete data set is available for down-
load from the geomorphometry dataset repository2. A simi-
lar error propagation exercise using the same case study can
be followed inTemme et al.(2008).

The second case study, “Zlatibor”, is located in the
South-western part of Serbia (centered at 43◦43′44.6′′ N and
19◦42′37.8′′ E). The area is mainly hilly plateau, with the ex-
ception of the north-eastern part where the slopes are much
steeper (see further Fig.6b). Elevations range from 850 m to
a maximum of 1174 m; the total size of the area is 13.5 square
kilometers. The data set consists of 2051 height measure-
ments. An additional set of 1020 very precise spot heights
used for error assessment is also available. This data set is
described in detail inHengl et al.(2008) and can be also ob-
tained from the geomorphometry dataset repository3.

2http://geomorphometry.org/content/baranja-hill
3http://geomorphometry.org/content/zlatibor

3 Results

The first result of analysis are the variogram models fitted
in geoR (Fig. 4). These show that the target variable (z) in
general varies equally in all directions in both study areas.
This is especially distinct for shorter distances (<500 m),
which allows us to model the variograms using isotropic
models. For Baranja Hill study areageoR fits a Mat́ern var-
iogram model with nugget parameterC0=0, sill parameter
C1=1831, and range parameterR=1051 m (practical range
is 3.1 km); for Zlatibor case study, the elevation values are
more variable – nugget parameter is stillC0=0, the sill pa-
rameter isC1=2173, range parameter isR=761 m. In both
casesz seems to be a relatively smooth variable – there is
no nugget variation and spatial autocorrelation is effective
(practical range) up to distance of 2–3 km.

Both are in fact typical variograms for elevation data i.e.
representation of a land surface. Note also that, in both cases,
the target variable shows close to normal distribution so no
transformation was necessary. As expected, the confidence
bands (envelopes) are much narrower at smaller distances
(Fig. 4). The relatively wide confidence bands at larger dis-
tances indicate that it might be worthwhile to consider using
local (moving window) geostatistical analysis and adjust the
variogram parameters locally.

In the next step, we look at the dispersion of the stream
lines derived for all simulated DEMs. Once the processing is
finished, we can visualize all derived streams at top of each

Hydrol. Earth Syst. Sci., 14, 1153–1165, 2010 www.hydrol-earth-syst-sci.net/14/1153/2010/
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Fig. 4. Variograms fitted for Baranja hill (above) and Zlatibor case studies (below); left: anisotropy in four directions; right: isotropic Matérn
variogram model fitted using the weighted least squares (WLS) and its confidence bands.

other. The 100 realizations of stream network maps for the
two study areas are shown in Fig.5. The visualization of
density of streams clearly illustrates the concept of propa-
gated uncertainty. If you zoom in into this map, you will
notice several things. First, in some areas streams are iso-
lated and hence seem to be very improbable; in other areas
stream are densely distributed but over a wider area. Note
also that the derived streams follow the gridded-structure of
the DEMs, which explains some artificial breaks in the lines.
Some artifacts in these maps are probably a consequence of
the fact that we have used arbitrary input parameters for the
minimum length of streams (40) and initial grid. These pa-
rameters could have been find-tuned by experts familiar with
the study areas, but this is not relevant for this exercise.

In both cases, significant parts of the study area – 17.3%
for Baranja Hill; 6.2% for Zlatibor – show relatively high er-
ror (H > 0.5) of locating streams (Fig.6). Although high
absolute values of error can be observed in both areas of
high and low relief, the cumulative propagated variability
of detecting a stream is much higher in the terrace region
of the study area Baranja Hill (Fig.7). The errors are, in
fact, a bigger problem than we have anticipated. In addition,
the course of many streams is dramatically different from
where the streamlines are thought to be located on the ba-
sis of DEM-streamline analysis. In the case of the Baranja
Hill study area, this is because many channels are manmade
and hence do not have to follow the topography (Fig.6a). In
the Zlatibor study area only one or two small patches of ter-
rain seem to be problematic: both are at the beginning of the

www.hydrol-earth-syst-sci.net/14/1153/2010/ Hydrol. Earth Syst. Sci., 14, 1153–1165, 2010



1160 T. Hengl et al.: Uncertainty of stream networks derived from DEMs

BaranjaHill

5071000

5072000

5073000

5074000

6552000 6553000 6554000 6555000

80

100

120

140

160

180

200

220

240

zlatibor

4842500

4843000

4843500

4844000

4844500

7395000 7396000 7397000 7398000

850

900

950

1000

1050

1100

1150

Fig. 5. 100 realizations of stream network overlaid on top of each other: left: Baranja hill case study; right: Zlatibor case study. The greyscale
legends indicates elevations in meters.
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Fig. 6. Propagated error of mapping streams estimated using Eq. (5); visualized inSAGA GIS: (a) Baranja hill case study;(b) Zlatibor case
study. The lines indicate thetruestreams – digitized from topo maps.

stream. The results from these two small case studies clearly
demonstrates the usefulness of the error propagation analysis
– by mapping the propagated error we can delineate the most
problematic areas and focus our further efforts.

Now that we have estimated the propagated uncertainty
of extracting channel networks (streams) from DEMs, we
can try to understand how this uncertainty relates to the ge-
omorphology of terrain. It is interesting to derive a map of
channel-slope and/or topographic wetness index, as it largely
controls the hydrological properties, and the difference from
the mean value in 5×5 search radius, as it describes local
variability of shapes.

The results from the two case studies show that some 30–
35% of the variability in the error maps can be explained
with the difference from the mean value in the 5×5 window
(Fig. 7). By knowing this, we could now allocate resources
and collect more accurate, more densely sampled elevations
in the areas that have similar geomorphological properties
(in this case: slightly convex shapes). In fact, one could fur-
ther optimize elevation sampling and improve the accuracy
of extracted streams to reach the required threshold. The al-
ternative is to down-grade the effective scale of the streams
derived using this point data. For example, it is obvious from
Figs.5 (below) and6b that the model has not much problems
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Fig. 7. Bar plots showing relationship between the relative relief (difference from the mean value in the 5×5 search radius) and cumulative
errors. In both cases the highest errors of mapping streams are in slightly convex areas (positive values in range 0–10).

of locating streams in the area of relatively high relief (Zlat-
ibor), however, the spatial accuracy of derived streams does
not get better than±50 m, so that it is reasonable to consider
degrading the scale of the output map e.g. from 1:15 000 to
1:50 000 scale.

The computational burden of this method is also an issue.
The most costly operations are geostatistical simulations and
extraction of stream networks. Geostatistical simulations,
even with a search radius of only 30 closest points, takes
5–10 min to generate 100 simulations for these small study
areas (150×100 pixels). This means that this framework is
at the moment limited to small data sets with few hundreds of
points; it would be probably of limited use for large LiDAR
point data sets.

4 Discussion and conclusions

The two case studies demonstrate that it is worth investing in
error propagation – in both cases we are able to detect some
difficult areas where extracted stream networks will be criti-
cally imprecise. Figures5 and6 show two interesting things:
(1) the dispersion of stream networks is in some areas signif-
icant; (2) streams are especially difficult to map in low-relief
areas where the difference from the mean value is positive –
meaning areas with convex shapes. This largely reflects our
expectation, but it is rewarding to be able to prove these as-
sumptions using hard data. Our results correspond with the
results ofPoggio and Soille(2008) who discovered that un-

certainty of stream segments is in general significant and es-
pecially high for Strahler order one or two. Some remaining
issues and ideas for further research are discussed below.

In the two studies, we have have ignored many aspects of
data analysis and used model parameters that now deserve
justification. For example, for geostatistical simulations, we
have set the kappa parameter for the Máthern variogram rela-
tively high at 1.2 (seeDiggle and Ribeiro Jr., 2007, for more
examples). Following the knowledge about the feature of in-
terest, we assumed that a land surface is inherently smooth
– due to the erosional processes and permanent leveling of
topography. Hence, we wanted to generate realizations of
DEMs that fit our knowledge of the area. Why is the high
kappa parameter necessary? If we run DEM simulations with
e.g. an exponential model, we noticed that realizations will
be much noisier than what we would expect (Hengl et al.,
2008). This will happen even if we set the nugget parameters
at zero (smooth feature). There are several explanations for
this. Having a non-zero grid resolution implies that the cor-
relation between adjacent grid cells is not equal to 1, so that
grids may still appear to have noise (Temme et al., 2008). A
noisy DEMs leads to completely different drainage networks
– the streams will be shorter and more random – which we
know does not fit knowledge about the area. The Matérn
variogram model (Eq.9), on the other hand, allow us to pro-
duce smoother DEMs, while still using objectively estimated
nugget, sill and range parameters. This makes it especially
suitable for modeling of land surface.
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We have also limited the number of simulations to 100.
Perhaps this number should be larger, particularly because
we are dealing with a feature that commonly has a smallp.
It should be feasible to evaluate the increase in accuracy with
an increasing numberm, e.g. by evaluating the change in
derived probability or attribute property such as estimated
stream length or catchment width. If such a parameter or
function does not change anymore below a certain threshold,
no more simulations seem to be required. An elegant alterna-
tive can be to calculate the information content of each addi-
tional realization. With an increasing sample size, the change
in the ultimate probability field becomes less and less. This
is certainly an idea worth further research.

We have also set the grid cell size at 30 m without any
real justification. The next step would be to consider some
statistically sound approach to select a grid cell size based
on the accuracy of the derived stream network. This follows
the idea ofHutchinson(1996), who use an iterative DEM
cell-size optimization algorithm as implemented in theANU-
DEM package. By plotting the error of mapping streams
versus the grid spacing index, one can select the grid cell
size that shows the maximum information content in the fi-
nal map. The optimal grid cell size is the one where further
refinement does not change the accuracy of derived streams.
It would be interesting to see if the optimal detection of the
grid cell size for hydrological objects can be operationalized,
so that the users only need to provide the point data.

Another question that needs to be addressed is how much
of the analysis should be automated? Can and should error
propagation be automated so that it becomes a default opera-
tion of any DEM analysis? If yes, users will not even have to
see the steps behind error propagation (black-box approach),
but simply select a land surface object/parameter of interest
and the software will decide about the reasonable number
of simulations, suitable grid cell size, depict the areas that
are critical etc. The case studies shown in this paper are
fairly small in size, hence it was not expensive to run 100
simulations. How to deal with the computational complexity
of error propagation? These case studies obviously demon-
strated that such analysis provides richer picture of the spatial
variability of propagated errors, but is this always needed?
What if error propagation is useful only for small parts of
the study area; is there then still a need to run such analysis
globally? How would geostatistical simulation + error propa-
gation techniques perform with LiDAR surveys that consists
of millions of points? Are results of error propagation very
dependent on the type of data (field survey, LiDAR, SRTM
DEM etc.) or will the spatial patterns of uncertainty be dif-
ferent?

The two case studies shown in this article consists of pre-
cisely measured elevations over a small and homogenous
area with relatively constant variogram parameters. How
to generate simulated DEMs when a spatial auto-correlation
structure model (variogram) is not available or differs lo-
cally? Traditionally, geostatistical techniques are developed

to work with point-sampled values. For DEMs generated di-
rectly from a scanning device (e.g. SRTM DEM) it is a se-
rious problem to get a reliable estimate of a variogram. In
addition, uncertainty of measured elevations is heavily de-
pendent on the type of land use (local spatial auto-correlation
structure), hence simulated DEMs should reflect this prop-
erty also. A solution to generate simulations of e.g. SRTM
DEM is the co-kriging framework. Separate estimation of
the variogram and cross-variogram parameters for the error
surface and the main signal in the DEM is rather inexpensive,
but simulations using co-kriging are even more computation-
ally intensive.

There is also an issue of how to represent the outputs of
error propagation. Should the land surface object derived us-
ing error propagation represented as fuzzy objects? Should
we abandon concept of absolutely discrete land surface ob-
jects at first place? If yes, which data structure should be used
to save and exchange such objects? Or is the spaghetti rep-
resentation shown in Fig.5 more informative?Tøssebro and
Nygård (2008) provide a probabilistic framework for com-
puting uncertainties for simple geographic objects such as
points and unstructured lines, but how could these be com-
bined with geostatistical simulations?

Floor for discussion is open and everybody is welcome
to contribute. For the beginning, software developers can
try implementing error propagation frameworks as standard
toolboxes to extract information from elevation data. The
users can further consider testing this framework in areas
of variable relief, surface roughness and with elevation mea-
surements from various sources. We anticipate that the mean
challenge of the proposed framework will be processing of
the LiDAR data that is typically very large and requires lo-
calization of analysis. With the further advances of technol-
ogy (computing power) and geostatistics (local variograms),
both operations should become feasible.

Appendix A

Installation and first steps with R+SAGA

The following text provides instructions how to obtain and
install SAGA andR and implement the analysis described
in this article with your own data.R+SAGA can be run on
Windows™ and Linux operating systems. Mac OS™ version
of SAGA is still under development.

Start with installingR and its spatial packages. Visit the
R project homepage4 and obtain the recent installation from
CRAN. After you finish installingR, open the new session
and install the contributed packages: select thePackages7→
Install package(s)from the main menu. Note that, if you
wish to install a package on the fly, you will need to select a
suitable CRAN mirror from where it will download and un-
pack a package. Another quick way to get all packages used

4http://r-project.org
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in R to do spatial analysis5 (as explained inBivand et al.,
2008) is to install thectv package and then execute the com-
mand:

> install.packages("ctv")
> library(ctv)
> install.views("Spatial")

This will allow most of thespatialpackages available forR,
includingmaptools, rgdal, gstat, geoR, andRSAGA.

Next, if you are a Windows™ user, obtain theSAGA bi-
naries from a Source Forge repository.SAGA GIS is a full-
fledged GIS with support for raster and vector data. It in-
cludes a large set of geoscientific algorithms (over 300 mod-
ules), being especially powerful for the analysis of DEMs.
With the release of version 2.0 in 2005,SAGA works un-
der both Windows and Linux operating systems. In addition,
SAGA is an open-source package, which makes it especially
attractive to users that would like extend or improve its exist-
ing functionality. To installSAGA simply unzip the binaries
to your program files directory. Then openSAGA GUI and
test its functionality using point-and-click operations. Now
you can consider switching to the scripting environment. Go
to yourR session and load theRSAGA library:

> library(RSAGA)

First check ifR is able to locateSAGA on your machine:

> rsaga.env()

$workspace
[1] "."

$cmd
[1] "saga_cmd.exe"

$path
[1] "C:/Progra˜1/saga_vc"

$modules
[1] "C:/Progra˜1/saga_vc/modules"

which means that you can now send operations fromR to
SAGA. Open themodules folder under theSAGA directory
and you will notice a large number of DLL libraries. To get
an info what can a certain module do, type:

> rsaga.get.modules("ta_channels")

$ta_channels
code name interactive

1 0 Channel Network FALSE
2 1 Watershed Basins FALSE
3 2 Watershed Basins (extended) FALSE
4 3 Vertical Distance to CN FALSE
5 4 Overland Flow Distance to CN FALSE
6 5 D8 Flow Analysis FALSE
7 6 Strahler Order FALSE
8 NA <NA> FALSE
9 NA <NA> FALSE

5http://cran.r-project.org/web/views/Spatial.html

Next, we need to get the list of parameters needed to extract
channel network from a DEM map:

> rsaga.get.usage("ta_channels", 0)

SAGA CMD 2.0.4
library path: C:/Progra˜1/saga_vc/modules
library name: ta_channels
module name : Channel Network
Usage: 0 -ELEVATION <str> [-SINKROUTE <str>]
-CHNLNTWRK <str> -CHNLROUTE <str>
-SHAPES <str> -INIT_GRID <str>
[-INIT_METHOD <num>] [-INIT_VALUE <str>]
[-DIV_GRID <str>] [-DIV_CELLS <num>]
[-TRACE_WEIGHT <str>] [-MINLEN <num>]

-ELEVATION:<str> Elevation
Grid (input)

-SINKROUTE:<str> Flow Direction
Grid (optional input)

-CHNLNTWRK:<str> Channel Network
Grid (output)

-CHNLROUTE:<str> Channel Direction
Grid (output)

-SHAPES:<str> Channel Network
Shapes (output)

-INIT_GRID:<str> Initiation Grid
Grid (input)

-INIT_METHOD:<num> Initiation Type
Choice
Available Choices:
[0] Less than
[1] Equals
[2] Greater than

-INIT_VALUE:<str> Initiation Threshold
Floating point

-DIV_GRID:<str> Divergence
Grid (optional input)

-DIV_CELLS:<num> Tracing: Max. Divergence
Integer
Minimum: 1.000000

-TRACE_WEIGHT:<str> Tracing: Weight
Grid (optional input)

-MINLEN:<num> Min. Segment Length

Finally, you can generate a stream network shown in Fig.3
using thersaga.geoprocessor :

> rsaga.geoprocessor(lib="ta_channels",
+ module=0, param=list(ELEVATION="DEM.sgrd",
+ CHNLNTWRK="tmp.sgrd",
+ CHNLROUTE="tmp.sgrd",
+ SHAPES="streams.shp",
+ INIT_GRID="DEM.sgrd",
+ DIV_CELLS=3, MINLEN=40))

SAGA CMD 2.0.4
library path: C:/Progra˜1/saga_vc/modules
library name: ta_channels
module name : Channel Network
author : (c) 2001 by O.Conrad
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Load grid: DEM.sgrd...
ready

Load grid: DEM.sgrd...
ready

Parameters

Grid system: 30; 128x 129y;
6551817x 5070464y

Elevation: DEM.sgrd
Flow Direction: [not set]
Channel Network: Channel Network
Channel Direction: Channel Direction
Channel Network: Channel Network
Initiation Grid: DEM.sgrd
Initiation Type: Greater than
Initiation Threshold: 0.000000
Divergence: [not set]
Tracing: Max. Divergence: 3
Tracing: Weight: [not set]
Min. Segment Length: 40

Channel Network: Pass 1
Channel Network: Pass 2
Channel Network: Pass 3
Create index: DEM.sgrd
ready
Channel Network: Pass 4
Channel Network: Pass 5
Channel Network: Pass 6
ready
ready

Save grid: tmp.sgrd...
ready

Save grid: tmp.sgrd...
ready

Save shapes: streams.shp...
ready

Save table: streams.dbf...
ready

More detail on how to produce results shown can be found in
theR script, available viawww.geomorphometry.org.
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