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[1] The large variability of the raindrop size distribution (DSD) in space and time must be
taken into account to improve remote sensing of precipitation. The ability to simulate
a large number of 2-D fields of DSDs sharing the same statistical properties provides a
very useful simulation framework that nicely complements experimental approaches
based on DSD ground measurements. These simulations can be used to investigate radar
beam propagation through rain and to evaluate different radar retrieval techniques. The
proposed approach uses geostatistical methods to provide structural analysis and
stochastic simulation of DSD fields. First, the DSD is assumed to follow a Gamma
distribution with three parameters. As a consequence, 2-D fields of DSDs can be described
as a multivariate random function. The parameters are normalized using a Gaussian
anamorphosis and simulated by taking advantage of fast Gaussian simulation algorithms.
Variograms are used to characterize the spatial structure of the DSD fields. The generated
fields have identical spatial structure and are consistent with the observations. Because
intermittency cannot be simulated using this technique, the size of the simulation domain
is limited to the meso-g scale (2-20 km). To assess the proposed approach, the method
is applied to data collected during intense Mediterranean rainfall. Taylor’s hypothesis is
invoked to convert time series into 1-D range profiles. The anisotropy of the fields is
derived from radar measurements. Simulated and measured reflectivity fields are in good
agreement with respect to the mean, the standard deviation, and the spatial structure,
demonstrating the promising potential of the proposed stochastic model of DSD fields.
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1. Introduction

[2] Because of the complex interactions between atmo-
spheric dynamics and cloud microphysics, precipitation is
highly variable over a large range of space and time scales
[e.g., Berndtsson and Niemczynowicz, 1988; Groisman and
Easterling, 1994; Xie and Arkin, 1997]. This variability is a
significant source of uncertainty for the measurement, the
simulation and the forecasting of precipitation as well as of
the environmental processes influenced by it. For example,
the variability of land surface hydrology is strongly con-
trolled by the variability of precipitation [Syed et al., 2004].
[3] To investigate aspects of the large space-time vari-

ability of precipitation, a simulation approach is able to
provide known reference data from which a variety of
sources of uncertainty can be studied quantitatively. Hence
a lot of attention has been devoted to the development of
techniques to simulate 2-D or 3-D precipitation fields
[Foufoula-Georgiou and Krajewski, 1995; Pegram and
Clothier, 2001]. These techniques can be divided in two
main categories: (1) physical approaches that aim at simu-

lating the physical processes involved in precipitation (e.g.,
ARPSO [Xue et al., 2000]) and (2) statistical approaches
that consider precipitation as a random variable in space and
time. Within the latter category, different techniques have
been applied: point processes and clustering [e.g., Waymire
et al., 1984; Onof et al., 2000], self-similarity [e.g., Gupta
and Waymire, 1993;Menabde et al., 1997], and geostatistics
[e.g., Guillot, 1999; Bouvier et al., 2003]. The proposed
methods focus solely on the simulation of rain rate values.
[4] Remote sensors do not directly measure the rain rate

but rather some observables which are related to the
electromagnetic properties of the ensemble of drops within
the considered sampling volume. In the case of weather
radars, the conversion of radar reflectivity values into rain
rate values is strongly influenced by the microstructure of
rainfall (mainly by the size, the shape and the fall velocity
of individual raindrops). The fall velocity and the shape of
raindrops are closely related to their equivolumetric diameter
[Beard, 1976; Andsager et al., 1999]. Therefore the raindrop
size distribution (DSD) is of critical importance for the
quantitative interpretation of radar measurements. Similarly
to rain rates, the DSD is highly variable in space and time
[Tokay and Short, 1996; Jameson and Kostinski, 2001;
Uijlenhoet et al., 2003]. This variability must be taken into
account to improve radar rain rate estimates.
[5] To analyze the different sources of uncertainty in

radar rain rate estimates using a simulation approach, it is
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necessary to include information about the spatial variability
of the DSD. Simulation methods based on point processes
have been developed [e.g., Lavergnat and Golé, 2006] but
so far cannot provide 2-D or 3-D fields of DSDs. Condi-
tional simulation methods have also been proposed. Starting
from simulated rain rate fields, [Krajewski et al., 1993]
derived a consistent Gamma DSD assuming uniform and
uncorrelated distributions of the DSD parameters. These are
strong assumptions, not supported by the data used in this
paper. More recently, Lee et al. [2007] proposed to use
measured radar reflectivity fields in combination with
ground-based DSD measurements to generate DSD fields.
In this case, the highest spatial resolution is imposed by the
radar resolution, which is usually of the order of 1 km2.
Hence this approach does not allow to investigate the radar
subgrid variability of the DSD. Simulations of correlated
DSD fields based on point DSD measurements do not have
this limitation. However, to date such techniques have only
been proposed to simulate time series or 1-D range profiles
[Berne and Uijlenhoet, 2005; Montopoli et al., 2008].
[6] The main objective of this paper is to develop a

stochastic simulation framework allowing for conditional
as well as nonconditional simulation of 2-D fields of DSDs
using point DSD measurements. Geostatistics provides
useful tools for the analysis and the simulation of random
fields with complex spatial structures [Chilés and Delfiner,
1999; Lantuéjoul, 2002]. The ability to generate a large
number of statistically homogeneous fields can be used to
obtain reliable statistical characterizations of a variety of
issues related to radar beam propagation through rain as
well as radar retrieval techniques. It is worth mentioning
that such a simulation framework may also be useful for
other domains dealing with the propagation of radio waves
in the atmosphere. Satellite or ground-based microwave
communication is a relevant illustration [Dissanayake et
al., 1997; Fong et al., 2003].
[7] The paper is organized as follows: section 2 describes

the modeling of the DSD. The simulation framework is
detailed in section 3. The simulator is applied and evaluated
using data collected during an intense Mediterranean rain
event in section 4. Finally, the conclusions and perspectives
are given in section 5.

2. Modeling the DSD

2.1. Gamma Model

[8] The DSD describes the number of drops per unit
volume and per unit size interval of equivolumetric spher-
ical drop diameter. It is supposed to be adequately described
by a Gamma distribution [Ulbrich, 1983; Willis, 1984]
given by the following expression:

N Dð Þ ¼ aNtD
mexp �LDð Þ; ð1Þ

where N(D) (m�3 mm�1) denotes the number of drops per
unit volume with diameters between D (mm) and D + dD
and a = (

RDmax

Dmin
Dme�LD dD)�1 is a normalization factor

taking into account the finite range of possible drop sizes
between Dmin and Dmax. The Gamma DSD depends on three
parameters: the shape m > �1 (dimensionless), the rate L >
0 (mm�1) and the concentration Nt > 0 (m�3).

2.2. Gaussian Anamorphosis of DSD Parameters

[9] DSD parameters (m, L, Nt) can be interpreted as
correlated random functions in space and time with a
theoretical multivariate distribution function F. Simulating
realistic DSD fields means generating independent realiza-
tions of (m, L, Nt) according to F. In theory, this requires the
complete knowledge of all the finite dimensional distribu-
tions of F, which is rarely the case in practical applications.
Furthermore, finding a simulation algorithm for any given
distribution function F is known to be a very difficult
problem, as pointed out by Lantuéjoul [2002].
[10] A possible solution is to transform the original

distribution F into a Gaussian distribution for which a
variety of simulation algorithms have been developed
(e.g., sequential simulation, turning bands, spectral decom-
position). Such a transformation is called a Gaussian ana-
morphosis [Journel and Huijbregts, 1978; Guillot, 1999].
At the end of the simulation, the inverse transformation is
applied to retrieve the original parameters.
[11] For multivariate continuous distributions, a possible

Gaussian anamorphosis is given by the stepwise conditional
transformation [Leuangthong and Deutsch, 2003]. The
advantage of stepwise conditional transformation is that it
creates independent jointly Gaussian variables that can be
simulated separately. The relations between the original
variables (e.g., the correlations and higher-order moments)
are preserved in the back transformation process.
[12] For n variate problems, the nth variable is trans-

formed conditionally to the first n � 1 variables, as follows:

Yn ¼ F�1 Fnj1;...;n�1 znjz1; . . . ; zn�1ð Þ
� �

; ð2Þ

where Fnj1,. . .,n�1 is the conditional distribution function of
the nth component given z1,. . .,zn�1 and Fis the cumulative
distribution function of a standardized Gaussian random
variable. For n = 1, this reduces to Y1 = F�1 [F1(z1)]. If
it exists, the inverse transformation is given by Zn =
Fnj1,. . .,n�1
�1 [F(yn)|y1,. . ., yn�1].
[13] In practical applications where Fnj1,. . ., n�1 is

unknown, the conditional distributions must be estimated
from the sample. This can be done empirically by discretizing
the space of parameters or by applying more complex
methods [e.g., Diciccio et al., 1993; Hall et al., 1999]. In
each case, the inverse transformation is approximated using
a correspondence table between the original and the trans-
formed variables, which implies that simulated fields will in
the end be composed of measured values only. Inversion
problems may arise when many data share the same value.
This is unlikely with continuous distributions but may
happen for mixed distributions like those produced by
intermittent rain fields where the marginal distribution of
Nt has an atom at zero. Therefore the presented simulator is
limited to nonintermittent rainfall fields, which is a reason-
able assumption up to scales of the order of 20 km, also
referred as the meso-g scale [Orlanski, 1975].

3. Geostatistical Simulation of DSD Fields

3.1. Modeling the Spatial Structure of DSD Fields

[14] Previous studies have shown that the 3 parameters,
m, L and Nt that describe the Gamma DSD model are highly
variable in space and time [e.g., Tokay and Short, 1996;
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Ulbrich and Atlas, 1998]. This must be taken into account
for accurate radar rain rate estimation. Because of their
variability, m, L and Nt can be seen as realizations of
random variables. In theory, rainfall is an intrinsically
discrete process consisting of individual drops. Neverthe-
less, it can be seen as a continuous quantity when consid-
ering bulk variables like the rain rate or the radar reflectivity
factor integrated over scales larger than a few cubic meters.
At these scales, DSD parameters can also be considered
continuous in space and time and the values of (m, L, Nt)
can be interpreted as realizations of a multivariate random
function [Yaglom, 2004]. Geostatistics has been developed
to provide a mathematical framework for the analysis of
such random functions [Matheron, 1965].
[15] The fundamental tool for the analysis of the spatial

structure of a random function Z(x) is the semivariogram
(called variogram in the following):

g hð Þ ¼ 1

2
E Z xþ hð Þ � Z xð Þð Þ2
h i

; ð3Þ

where E denotes the expectation, x 2 R2 is a position vector
and h 2 R2 is a separation vector. The variogram is only
defined if Z(x) is an intrinsic random function, meaning that
its increments Z(x + h) � Z(x) must be second-order
stationary [Chilés and Delfiner, 1999, pp. 16–17]. This
assumption, however, is less restrictive than second-order
stationarity of the variable Z(x) itself.
[16] If g(h) only depends on the norm of h, the random

function is said to be isotropic. In general, however, random
functions are anisotropic, meaning that g(h) depends both
on the norm of h and on its direction. Finally, a variogram
must satisfy some mathematical properties: in particular,
�g(h) must be an even, nonnegative positive definite
function with g(0) = 0 [Chilés and Delfiner, 1999,
pp. 57–63]. In general, variograms are preferred to cova-
riances for two reasons: (1) they are more general than
covariances because they do not assume finite variance of
the random function and (2) they do not require any
knowledge about the mean of the sample.
[17] In practice, variograms must be estimated from the

sample. This can be done by using the following standard
expression:

ĝ hð Þ ¼ 1

2N hð Þ
X

xk�xl�h

z xkð Þ � z xlð Þ½ 
2; ð4Þ

where N(h) represents the number of observations separated
by a vector h. This estimate is known to be asymptotically
unbiased. However, it is sensitive to the presence of outliers
and measurement errors in the sample. Therefore, more
robust alternatives to the standard variogram estimate have
been proposed [e.g., Cressie and Hawkins, 1990].
[18] Note that in general �ĝ(h) is not a positive definite

function and hence does not verify the mathematical prop-
erties of a variogram. Therefore, a common approach is to
fit a theoretical model on the sample variogram. Popular
variogram models are exponential, spherical or Gaussian
functions [Chilés and Delfiner, 1999, pp. 80–93]. Several
variograms can be combined to create nested structures. In
particular, the sum of two variograms (of the same type) is
still a valid variogram.

3.2. Simulation of the DSD Fields

[19] This section explains how to generate realistic 2-D
fields of DSDs by using the geostatistical tools introduced
in section 3.1.
[20] First, the DSD parameters (m, L, Nt) are fitted on

measured DSD spectra and normalized using a Gaussian
anamorphosis (see section 2.2) to obtain a new set (~m; ~L; ~Nt)
of independent and centered parameters. Sample variograms
are computed on the transformed parameters and fitted
using a theoretical variogram model. A Gaussian simulation
algorithm is used to generate independent fields of
(~m; ~L; ~Nt) with spatial structure given by the fitted vario-
gram models. At the end of the simulation, the inverse
anamorphosis is applied to retrieve the original DSD
parameters. Bulk variables characterizing rainfall such as
the radar reflectivity factor Z (mm6 m�3) can be derived
from the fields at both horizontal and vertical polarization
using the following expression:

ZH jV ¼ 106l4

p5jKj2
Z Dmax

Dmin

sBH jV Dð ÞN Dð ÞdD; ð5Þ

where sBH jV (D) (cm
2) is the backscattering cross section of a

drop with diameter D (mm) at the given polarization, l (cm)
is the wavelength, and K is the dielectric factor of liquid
water, a function of the complex relative permittivity.
[21] The simulation method described above can be

applied to produce both conditional and nonconditional
simulations. Conditional simulations are particular realiza-
tions which honor observed values at some specified
locations within the considered domain, whereas noncondi-
tional simulations are just independent realizations of the
same random function. Since nonconditional simulations
can be easily transformed into conditional ones [e.g., Chilés
and Delfiner, 1999, p. 465], the following application will
focus solely on the simulation of nonconditional fields.

4. Application

[22] This section presents an application of the proposed
DSD simulator using the statistical software package ‘‘R’’
(http://www.r-project.org) together with the ‘‘Gstat’’ package
by Pebesma [2004].

4.1. Data

[23] In theory, the description of the spatial and temporal
variability of DSD fields requires large data sets of DSD
measurements in space and time. As far as the authors
know, such data sets are not yet available at a resolution that
is sufficient to capture the variability of DSD fields over a
large range of scales. Therefore, the following application
has been parameterized using time series of DSD measure-
ments instead of spatial measurements. The considered time
series was collected on 11 September 1998 during the
HIRE’98 experiment that took place in Marseille, southern
France (R. Uijlenhoet et al., HYDROMET Integrated Radar
Experiment (HIRE): Experimental setup and first results,
paper presented at 29th Conference on Radar Meteorology,
American Meteorological Society, Montreal, Canada,
1999). A rain event of about 2 h and representative of
intense Mediterranean precipitation was simultaneously
observed by an optical disdrometer and by an S band
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weather radar (10 cm wavelength) operated by Météo
France and located at about 100 km from Marseille. The
optical disdrometer was operated at a 20-s time resolution
and collected 415 DSD measurements during the event. The
total rain amount seen by the disdrometer over the 2 h was
27 mm for a maximum intensity of 80 mm h�1. The choice
of the 20-s time resolution is a tradeoff between availability
of enough data for the structural analysis and limitation of
the sampling effects due to high temporal resolution.

4.2. DSD Fitting

[24] For each of the 415 DSD spectra recorded by the
disdrometer, a three-parameter Gamma DSD was fitted
using the maximum likelihood method. This method has
already been employed in previous investigations including
Haddad et al. [1997] and Kliche et al. [2008]. Maximum
likelihood estimators are known to be asymptotically unbi-
ased, efficient and Gaussian distributed [e.g., van der Vaart,
1998]. For small samples, however, they must be handled
with care since significant uncertainty can be introduced in
the estimates [Uijlenhoet et al., 2006]. Figure 1 shows the
time series of the fitted DSD parameters together with their

empirical marginal distributions. The average number of
drops per fit is 242. Only 7 DSD spectra contained less than
30 drops and could not be fitted properly. Note the large
correlation (0.99) between and m and L the negative
correlation (�0.40) between m and Nt, respectively, between
L and Nt (�0.37).

4.3. Gaussian Anamorphosis of DSD Parameters

[25] Clearly, the marginal distributions of the DSD
parameters are not Gaussian. Therefore, a Gaussian ana-
morphosis (see section 2.2) is performed to obtain a new set
of independent parameters (~m; ~L; ~Nt) with joint Gaussian
distribution. The conditional distributions needed for the
transformation are approximated by discretizing the space
of parameters into 30 regularly spaced bins. Here we can
take advantage of the strong correlation (0.99) between m
and L, which makes it particularly easy to estimate their
conditional distributions. The number of discretization bins
has been chosen after testing several alternative possibilities
and is a tradeoff between availability of enough points for
the estimation and limitation of the bias. The normality of
the joint distribution is confirmed by performing a Mardia

Figure 1. Time series and empirical distributions of the DSD parameters (m, L, Nt) before the
anamorphosis.
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test [Mardia, 1970] and a multivariate version of the
Shapiro-Wilk test [Srivastava and Hui, 1987]. The inde-
pendence assumption is confirmed by performing a standard
t test on the correlations. Figure 2 shows the transformed
DSD parameters together with their empirical marginal
distributions. A correspondence table between original and
transformed variables is used to approximate the inverse
transformation.

4.4. Testing Taylor’s Hypothesis

[26] According to Berne et al. [2004], the average rain-
storm movement velocity during the described event was
about 12.5 m s�1 in the NE direction (i.e., azimuth of 50�).
Time series of (~m; ~L; ~Nt) can thus be converted into a 1-D
range profile along the direction of advection by assuming
Taylor’s hypothesis of frozen turbulence. The spatial resolu-
tion (250m) of this profile is determined by the time resolution
(20 s) and the average advection speed (12.5 m s�1).
[27] Note that Taylor’s hypothesis is a strong assumption

that is not required by the simulator but necessary in
absence of spatial DSD data. Reflectivity measurements
taken by the radar can be used to quantify the quality of
Taylor’s hypothesis. The method consists in shifting the
fields in time and space for a given advection speed and
direction (in this case 12.5 m s�1 and 50� with respect to the

North). If the fields result from pure advection by a constant
wind, the shifted pixels should overlap on average, meaning
that in the (Z, Zshift) space, Taylor’s hypothesis is repre-
sented by a straight line with slope 1 and intercept 0. The
quality of Taylor’s hypothesis can thus be verified by
looking at the correlation between Z and Zshif and at the
ratio of their means. Figure 3 represents these values for

Figure 3. Verification of Taylor’s hypothesis for time
shifts of 5–20 min. Under the hypothesis of pure advection,
both the correlation and the ratio of means should be equal
to 1.

Figure 2. Time series and empirical distributions of the DSD parameters (~m; ~L; ~Nt) after the
anamorphosis.
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time shifts from 5 to 20 min. It can be seen that for a time
shift of 5 min, both the correlation (0.95) and the ratio of
means (0.98) stay close to 1, indicating that Taylor’s
hypothesis is a good approximation over short time periods.
For time shifts of 10–20 min, the correlation (0.80, 0.63,
0.50) decreases rapidly. The ratio of means (0.96, 0.94,
0.91) also decreases slightly. The conclusion is that Taylor’s

hypothesis is not a good approximation for time shifts larger
than 20 min and implies that consistent structural analysis is
limited to time shifts less or equal to 20 min, corresponding
to 15 km in the spatial domain.

4.5. Fitting a Variogram Model

[28] Using Taylor’s hypothesis with 12.5 m s�1 advection
speed, the DSD time series (~m; ~L; ~Nt) are converted into
range profiles and their sample variograms are computed.
The sample variograms are fitted by combining two spher-
ical variogram models, one for the short–range variability

Figure 4. Sample variograms of (~m; ~L; ~Nt ) after Gaussian
anamorphosis. The values of the parameters are given in
Table 1.

Table 1. Nugget, Range, and Partial Sill Values of Two Nested

Spherical Models Fitted to the Sample Variograms of (~m; ~L; ~Nt)
a

Nugget Range 1 Partial Sill 1 Range 2 Partial Sill 2

~m 0.03 7 0.63 18 0.26
~L 0.67 4 0.25 14 0.04
~Nt 0.29 3 0.35 12 0.21

aAll ranges are given in km. The sills for ~L and ~Nt are given in mm�2 and
m�6, respectively.

Figure 5. Observed radar reflectivity field at 0935 UT
over the considered 32 � 32 km2 domain together with its
corresponding 2-D variogram map. Grey pixels correspond
to ground echoes. Areas without rain are represented in
white. The location of the disdrometer is indicated by the
black cross in the bottom left-hand corner. The anisotropy
direction is given by an azimuth of 315. The anisotropy
ratio is about 0.5.
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and one for the long-range variability. A spherical vario-
gram model is given by

gsph hð Þ ¼
C0 þ C1

3

2

h

a
� 1

2

h3

a3

� 	
h < a

C0 þ C1 h � a;

8><
>: ð6Þ

where C0 denotes the nugget, C1 the partial sill, h the
interdistance and a the range. The values of the fitted
parameters are given in Table 1. Figure 4 shows the fitted
variograms for each DSD parameter. The total variogram

for each DSD parameter is simply the sum of the two
spherical models.

4.6. Estimation of the Anisotropy

[29] The variograms defined in Table 1 only describe the
spatial structure along the average direction of advection.
The complete two-dimensional structure of the fields can be
expressed in terms of the 1-D variograms by adding
information on anisotropy derived from radar reflectivity
measurements. For the considered event, 28 reflectivity
measurements were collected by an S band weather radar
from 0835 to 1050 UT at 5-min time resolution over the

Figure 6. Example of a simulated DSD field (m, L, Nt) together with its corresponding rain rate and
horizontal and differential reflectivity fields.

W07415 SCHLEISS ET AL.: SIMULATION OF 2-D FIELDS

7 of 10

W07415



considered area. The analysis of these reflectivity fields as
well as their corresponding 2-D variograms indicates that
the fields have geometric anisotropy (i.e., the 2-D vario-
grams exhibit elliptic structure). The average azimuth of
smallest variability (the major axis of the ellipse) is 320�.
The average anisotropy ratio (the ratio between the minor
and the major axis of the ellipse) is about 0.7. As an
example, Figure 5 shows the radar reflectivity field and
the corresponding 2-D variogram map at 0935 UT. The
major axis of the anisotropy ellipse is approximatively in the
NW direction (azimuth of 315�). The ratio between the minor
and the major axis of the ellipse is about 0.5. In the rest of the
application, the average anisotropy values (azimuth of 320�
and anisotropy ratio of 0.7) are used to characterize the 2-D
variograms.

4.7. Simulation of DSD Fields

[30] Using the variogram model described in Table 1
together with the average geometrical anisotropy described
above, 200 Gaussian DSD fields have been simulated on
a 32 � 32 km2 domain consisting of 160384 pixels of size
250 � 250 m2. Such an area adequately represents the
meso-g scale and is large enough to contain all the mea-
sured variability in the DSD without being too large to
avoid problems related to intermittency. Using inverse
anamorphosis, the Gaussian fields are back transformed
into the original DSD fields. The backscattering cross
sections sHjV(D) are computed at both horizontal and
vertical polarization using the T matrix code [Mishchenko
and Travis, 1998] and used in equation (5) to derive
the corresponding reflectivity fields at S band (negligible
attenuation).
[31] Figure 6 shows an example of a simulated DSD field

together with the corresponding rain rate (R), horizontal
reflectivity Zh and differential reflectivity Zdr = Zh � Zv
(in dB).

4.8. Comparison With Radar Measurements

[32] In order to assess the quality of the simulation, the
simulated reflectivity fields Zh derived using equation (5)
are compared to the observations taken by the radar. Since
the radar resolution is 1 � 1 km 2 and the simulation
resolution is 250 � 250 m2, the simulations are averaged
over blocks of 4 � 4 pixels before comparison. Moreover,

all ground echoes have been removed from the data before
the comparison. To avoid issues due to intermittency, the
comparison is restricted to radar measurements taken from
0915 to 0955 UT (10 measurements), for which intermit-
tency is negligible. The selected fields have mean values
ranging from 30.5 to 34.2 dBZ, with an average of 33.8 dBZ.
The standard deviation of the observed fields is between
4.6 dBZ and 7.6 dBZ, with an average of 5.6 dBZ. Figure 7
shows that these values are in good agreement with the
simulated fields. Indeed, the simulated reflectivity fields
have mean values between 29.3 dBZ and 36.4 dBZ, with an
average of 32.9 dBZ and their standard deviations are
between 5.3 dBZ and 7.9 dBZ, with an average of
6.3 dBZ. This shows that the simulated fields adequately
reproduce the first-order moments (mean and standard
deviation) of the observed reflectivity fields. Furthermore,
the simulations also exhibit a similar asymmetry in the
distributions as shown in Figure 7.
[33] Figure 8 shows a comparison between the spatial

structure of the simulations and the spatial structure of the
observations. In order to keep Figure 8 readable, an average

Figure 8. Average radar reflectivity variogram (in red with
vertical bars) and average simulated reflectivity variogram
(in black). The lower and upper bounds represent the 10%
and 90% variogram quantiles for each distance class
computed on 28 radar pictures and 200 simulations.

Figure 7. Histogram of the mean and of the standard deviation of 200 simulated reflectivity fields.
Simulated values are represented by grey bars. The red cross represents the minimum, mean, and
maximum values observed by the S band radar during the event.
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variogram has been plotted for both simulated and observed
reflectivity fields. The dispersion about the average vario-
gram is represented (for each distance class) by the 10% and
90% quantiles. It can be seen that the simulated and
observed variograms are in good agreement except for the
first 2–3 km where the simulations exhibit slightly too
much variability. Different explanations can be given for
this. (1) There is a smoothing effect in the observed
reflectivity fields due to the power distribution in the radar
beam. Hence, radar pixels that are far away from the
antenna are averaged over large overlapping volumes and
exhibit more correlation. This implies a smaller slope in the
variograms computed using radar observations, especially at
small interdistances where the averaging effect is the
strongest. (2) The Gaussian anamorphosis described in
section 2.2 was computed on a small sample of 415 DSD
observations. The inverse transformation was approximated
using a correspondence table between the original and
transformed variables. The discretization introduced by this
technique may explain the rather strong variability at short
ranges in the simulations. (3) Taylor’s hypothesis of frozen
turbulence was shown to be acceptable but not perfect.
Furthermore, parameters like the advection speed, the
anisotropy direction and anisotropy ratio were estimated
using radar data and supposed constant over the entire
event, which is not exactly true.
[34] Despite the above mentioned problems, the proposed

simulator produces very encouraging results that are con-
sistent with the observations. The simulated 2-D fields are
in good agreement in terms of first- and second-order
moments. The spatial structure is also in good agreement
with the observations.

5. Conclusions

[35] DSD fields are highly variable in space and time. To
investigate issues related to this variability in radar rain rate
estimation, a stochastic simulation framework has been
proposed in the present paper. It is based on a geostatistical
approach that considers the Gamma DSD parameters (m, L,
Nt) as realizations of a multivariate random function.
[36] To take advantage of simple and fast Gaussian field

simulation algorithms, the distribution of the three DSD
parameters is normalized using a Gaussian anamorphosis
technique. The spatial structure of the fields is quantified
using variograms. Gaussian fields with identical spatial
structure are generated and back transformed into the
original distributions. In this way, realistic conditional or
nonconditional 2-D fields of DSDs can be generated.
[37] The proposed approach is applied to DSD measure-

ments collected during an intense Mediterranean rainfall
event. As only DSD time series are available, Taylor’s
hypothesis is invoked to convert time series into range
profiles. The anisotropy direction and anisotropy ratio of
the fields are derived from measurements taken by an S band
weather radar. Reflectivity fields derived from the simula-
tions are compared to radar measurements. Both the mean
and the standard deviation are in very good agreement. The
spatial structure is also coherent with the observations,
indicating that the proposed simulator can reproduce real-
istic 2-D fields of DSDs.
[38] The main limitation of the proposed simulator is its

inability to simulate intermittent DSD fields. This limits the

size of the simulated domains to the meso-g scale (about
20 km) at which nonintermittent rain fields are plausible.
Taylor’s hypothesis is not required to run the simulator, but
is used because of the lack of spatial DSD measurements.
Better results can even be expected when spatial DSD data
will be available. Future work will mainly focus on the
intermittency problem and on alternatives to the anamor-
phosis technique.
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