2,101 research outputs found

    Indutivo: Contact-Based, Object-Driven Interactions with Inductive Sensing

    Get PDF
    We present Indutivo, a contact-based inductive sensing technique for contextual interactions. Our technique recognizes conductive objects (metallic primarily) that are commonly found in households and daily environments, as well as their individual movements when placed against the sensor. These movements include sliding, hinging, and rotation. We describe our sensing principle and how we designed the size, shape, and layout of our sensor coils to optimize sensitivity, sensing range, recognition and tracking accuracy. Through several studies, we also demonstrated the performance of our proposed sensing technique in environments with varying levels of noise and interference conditions. We conclude by presenting demo applications on a smartwatch, as well as insights and lessons we learned from our experience

    Real-time Immersive human-computer interaction based on tracking and recognition of dynamic hand gestures

    Get PDF
    With fast developing and ever growing use of computer based technologies, human-computer interaction (HCI) plays an increasingly pivotal role. In virtual reality (VR), HCI technologies provide not only a better understanding of three-dimensional shapes and spaces, but also sensory immersion and physical interaction. With the hand based HCI being a key HCI modality for object manipulation and gesture based communication, challenges are presented to provide users a natural, intuitive, effortless, precise, and real-time method for HCI based on dynamic hand gestures, due to the complexity of hand postures formed by multiple joints with high degrees-of-freedom, the speed of hand movements with highly variable trajectories and rapid direction changes, and the precision required for interaction between hands and objects in the virtual world. Presented in this thesis is the design and development of a novel real-time HCI system based on a unique combination of a pair of data gloves based on fibre-optic curvature sensors to acquire finger joint angles, a hybrid tracking system based on inertia and ultrasound to capture hand position and orientation, and a stereoscopic display system to provide an immersive visual feedback. The potential and effectiveness of the proposed system is demonstrated through a number of applications, namely, hand gesture based virtual object manipulation and visualisation, hand gesture based direct sign writing, and hand gesture based finger spelling. For virtual object manipulation and visualisation, the system is shown to allow a user to select, translate, rotate, scale, release and visualise virtual objects (presented using graphics and volume data) in three-dimensional space using natural hand gestures in real-time. For direct sign writing, the system is shown to be able to display immediately the corresponding SignWriting symbols signed by a user using three different signing sequences and a range of complex hand gestures, which consist of various combinations of hand postures (with each finger open, half-bent, closed, adduction and abduction), eight hand orientations in horizontal/vertical plans, three palm facing directions, and various hand movements (which can have eight directions in horizontal/vertical plans, and can be repetitive, straight/curve, clockwise/anti-clockwise). The development includes a special visual interface to give not only a stereoscopic view of hand gestures and movements, but also a structured visual feedback for each stage of the signing sequence. An excellent basis is therefore formed to develop a full HCI based on all human gestures by integrating the proposed system with facial expression and body posture recognition methods. Furthermore, for finger spelling, the system is shown to be able to recognise five vowels signed by two hands using the British Sign Language in real-time

    Impact of end effector technology on telemanipulation performance

    Get PDF
    Generic requirements for end effector design are briefly summarized as derived from generic functional and operational requirements. Included is a brief summary of terms and definitions related to end effector technology. The second part contains a brief overview of end effector technology work as JPL during the past ten years, with emphasis on the evolution of new mechanical, sensing and control capabilities of end effectors. The third and major part is devoted to the description of current end effector technology. The ongoing work addresses mechanical, sensing and control details with emphasis on mechanical ruggedness, increased resolution in sensing, and close electronic and control integration with overall telemanipulator control system

    Hand gesture recognition based on signals cross-correlation

    Get PDF

    Automated Tracking of Hand Hygiene Stages

    Get PDF
    The European Centre for Disease Prevention and Control (ECDC) estimates that 2.5 millioncases of Hospital Acquired Infections (HAIs) occur each year in the European Union. Handhygiene is regarded as one of the most important preventive measures for HAIs. If it is implemented properly, hand hygiene can reduce the risk of cross-transmission of an infection in the healthcare environment. Good hand hygiene is not only important for healthcare settings. Therecent ongoing coronavirus pandemic has highlighted the importance of hand hygiene practices in our daily lives, with governments and health authorities around the world promoting goodhand hygiene practices. The WHO has published guidelines of hand hygiene stages to promotegood hand washing practices. A significant amount of existing research has focused on theproblem of tracking hands to enable hand gesture recognition. In this work, gesture trackingdevices and image processing are explored in the context of the hand washing environment.Hand washing videos of professional healthcare workers were carefully observed and analyzedin order to recognize hand features associated with hand hygiene stages that could be extractedautomatically. Selected hand features such as palm shape (flat or curved); palm orientation(palms facing or not); hand trajectory (linear or circular movement) were then extracted andtracked with the help of a 3D gesture tracking device - the Leap Motion Controller. These fea-tures were further coupled together to detect the execution of a required WHO - hand hygienestage,Rub hands palm to palm, with the help of the Leap sensor in real time. In certain conditions, the Leap Motion Controller enables a clear distinction to be made between the left andright hands. However, whenever the two hands came into contact with each other, sensor data from the Leap, such as palm position and palm orientation was lost for one of the two hands.Hand occlusion was found to be a major drawback with the application of the device to this usecase. Therefore, RGB digital cameras were selected for further processing and tracking of the hands. An image processing technique, using a skin detection algorithm, was applied to extractinstantaneous hand positions for further processing, to enable various hand hygiene poses to be detected. Contour and centroid detection algorithms were further applied to track the handtrajectory in hand hygiene video recordings. In addition, feature detection algorithms wereapplied to a hand hygiene pose to extract the useful hand features. The video recordings did not suffer from occlusion as is the case for the Leap sensor, but the segmentation of one handfrom another was identified as a major challenge with images because the contour detectionresulted in a continuous mass when the two hands were in contact. For future work, the datafrom gesture trackers, such as the Leap Motion Controller and cameras (with image processing)could be combined to make a robust hand hygiene gesture classification system

    Interactive exploration of historic information via gesture recognition

    Get PDF
    Developers of interactive exhibits often struggle to �nd appropriate input devices that enable intuitive control, permitting the visitors to engage e�ectively with the content. Recently motion sensing input devices like the Microsoft Kinect or Panasonic D-Imager have become available enabling gesture based control of computer systems. These devices present an attractive input device for exhibits since the user can interact with their hands and they are not required to physically touch any part of the system. In this thesis we investigate techniques to enable the raw data coming from these types of devices to be used to control an interactive exhibit. Object recognition and tracking techniques are used to analyse the user's hand where movement and clicks are processed. To show the e�ectiveness of the techniques the gesture system is used to control an interactive system designed to inform the public about iconic buildings in the centre of Norwich, UK. We evaluate two methods of making selections in the test environment. At the time of experimentation the technologies were relatively new to the image processing environment. As a result of the research presented in this thesis, the techniques and methods used have been detailed and published [3] at the VSMM (Virtual Systems and Multimedia 2012) conference with the intention of further forwarding the area
    • …
    corecore