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Summary

Segmentation of moving^and deformable structures in medical image processing has be­ 

come an increasingly important research field in recent years. Fast and high-resolution 

image acquisition methods such as Magnetic Resonance (MR) imaging produce very 

detailed cross-sectional images of the human body. Segmentation of anatomically rel­ 

evant objects is then a subsequent operation, performed in order to visualise and/or 

measure shapes and motions of interest. The segmentation task is usually performed by 

clinicians and other experts. High demand on expert time and inter- and intra-observer 

variability impose a clinical and scientific need of automating this process.

This thesis presents a novel approach for segmenting and tracking of anatomical 

objects in 2D medical image sequences, which enables quantitative studies of relevant 

structures even under the presence of distortions introduced by the image formation 

process.

The underlying premise of the work presented, is based upon the observation that 

a robust and precise image segmentation requires a priori knowledge on both image 

formation and the objects to be detected. Such knowledge is often vague or uncertain 

and may only be acquired from experts in natural-language terms.

In combining active contours with fuzzy logic a novel contour segmentation method 

is developed which is capable of exploiting uncertain knowledge in both syntactical and 

linguistic terms. Unlike other approaches the contour description is fully integrated into 

the segmentation process, with the additional advantage that many existing image 

processing operators can also smoothly be integrated into the fuzzy framework.

Specific applications addressed are motion analysis of carpal bones in MR image 

sequences and the analysis of the vocal tract in X-ray image sequences. Traditional so­ 

lutions for both applications have been developed. The new framework is fully validated 

in comparison to these solutions as well as on synthetic image material.
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Chapter 1

Introduction

1.1 Background

Research interest in medical image processing has grown continuously over the last 

three decades. Imaging devices such as digital X-ray, Computer Tomography (CT) 

and Magnetic Resonance Imaging (MRI) are now widespread applications of what 

was once considered advanced research. These devices add digital visual enhancement 

technologies to the everyday practice of medical experts, improving the reliability of 

the diagnostic process. In more recent years, computer vision research has focused on 

the challenge of automatically extracting anatomical structures from image sequences, 

leading medical applications from predominantly qualitative to quantitative analysis.

First results in image processing dating back to the early 1970s, initiated a conti- 

nous cycle of improvements in computer technology, advances in image processing and 

algorithmic research and the medical application of more powerful computer assisted 

methods and tools.

With the digitisation of analogue X-ray images it became possible to enhance single 

images in a more advanced way than was possible with analogue signal processing 

techniques. The medical expert's eye was assisted by imaging devices which afforded 

histogram-based contrast enhancement and pseudo-colour display to name just two of
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the advances. The visual diagnosis of diseases such as tumours through the detection 

of static anatomical structures became easier and more reliable.

Lower radiation doses and higher image resolutions were introduced by digital X- 

ray devices which made use of charge coupled devices (CCD) rather than traditional 

celluloid film. Together with improved computing capacity, visual enhancements be­ 

came possible in real-time, leading to the application of new innovative devices during 

surgical procedures. Still more sophisticated image processing methods were required 

however that could automatically detect structures such as blocked blood vessels.

Another research strand, parallel to imaging and visual enhancements, provided a 

new and exciting dimension to medicine: the quantitative analysis of image sequences. 

Medical experts have always had a need to measure particular anatomical structures. 

Applications ranged from using single radiographs to measure lung areas for the diag­ 

nosis of related diseases, and the measurement of size and distance of finger bones to 

calculate the growth of children.

With analogue images, the measurement was performed manually by medical ex­ 

perts applying pen and ruler. When images became available in digital form, "electronic 

rulers" were used, to measure the distances between anatomically relevant landmarks, 

such as the ends of finger bones. Similarly areas of the lung, for example, could be 

measured by applying a drawing tool.

These manual techniques however, are both time-consuming and subject to indi­ 

vidual variations of the experts' capabilities. It is therefore highly desirable to let a 

computer identify the relevant anatomical structures, outline their contours and mea­ 

sure the significant landmarks automatically. The benefits of such a system include 

more precise results in less time, making diagnostics more reliable and cost efficient. 

As measurement results will be based upon a repeatable, objective method, new areas 

of medical research will be possible, as well as being able also to evaluate the success 

of a therapy over time.

Such sophisticated techniques are particularly relevant in medical areas where the
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analysis of image sequences is desired. Together with radiation-free imaging such as 

MRI, it will be possible to acquire mass data for research purposes and hence investigate 

new medical phenomena, creating statistically sound reference data for normal and 

pathologic cases. An example for such innovative research is the analysis of carpal 

bones, detailed in this thesis.

Despite the scientific and technological advances in recent years, the task of au­ 

tomatically identifying meaningful structures in medical images still poses a number 

of major challenges. Rather than classifying pixels based on local image features it 

is necessary to include a priori knowledge about the shape of anatomical structures. 

Furthermore, a quantitative analysis requires more precise detection results than was 

previously deemed sufficient for a qualitative analysis.

In addition to obtaining static images, novel imaging technologies are able to create 

image sequences. It is now possible to analyse two-dimensional motion (frequently 

referred to in the literature as 2D+t), three-dimensional structures (3D) or even three- 

dimensional motion (3D+t). As with two-dimensional image analysis there is a strong 

demand in medicine to automatically process these kinds of image sequences, example 

applications include the analysis of the vocal tract (2D+t), detection of brain tumours 

(3D) and the diagnosis of heart-related diseases (3D+t).

This demand results in an evolution in research from single images to image se­ 

quences, from static shape to motion and deformation, from pixel processing to scene 

interpretation and hence from signal or image processing to high-level computer vision.

There is no doubt that the long term future techniques in automatic medical image 

processing will reliably handle three-dimensional image sequences. These 3D and 3D+t 

cases, however will continue to pose very high demands on both computing resources 

and theoretic concepts for the foreseeable future.

High-level processing of two-dimensional image sequences on the other hand will 

have a big impact on a wide range of today's medical questions. Even when three- 

dimensional techniques become more mature and applied, 2D+t techniques will still
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be attractive since they will adequately cover many medical applications and research 

areas. Furthermore the resources required by 2D+t techniques will be considerably less 

and their user interfaces inherently easier to handle than three-dimensional techniques.

1.2 Objectives

With the prediction that the analysis of two-dimensional image sequences will play a 

major role in future medical image processing and that related systems will coexist 

with three-dimensional techniques, today's systems still need to be improved to meet 

the requirements of quantitative medical image analysis. From an application point of 

view, these requirements embrace the automatic analysis and subsequent measurement 

of moving anatomical structures, applying a wide range of different imaging devices, 

such as X-ray or MRI. From a technical and scientific perspective the most crucial 

requirement is the precise segmentation of object outlines and their tracking over a 

sequence of frames, even under the presence of distortions introduced by the image 

formation process.

The demand to handle anatomical structures both rigid and deformable, requires 

a detection of a wide range of shapes which cannot be defined exactly. This degree of 

uncertainty in the problem definition is increased further by the fact that devices such as 

X-ray scanners involve an imaging process where relevant and irrelevant structures are 

superimposed. It was expressly to address the problem of these uncertainties, which are 

involved in both image formation and the characteristics of the objects to be detected, 

that this research project has its roots. A system was formulated with the clear objective 

of providing a framework for quantitative medical image analysis that would afford an 

exploitation of such uncertainties.

Figure 1.1 provides a conceptual insight into the system which forms the framework 

for the research. It involves the design of a novel feature extraction component (block 

2), while providing a simple yet effective interface, decoupling the image analysis com­ 

ponent (block 3) from a particular imaging device (block 1). An effective adaption of
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this interface to a particular imaging situation is required. To achieve this, the low-level 

feature extraction will be able to exploit the many operators that exist as a result of 

traditional image processing research.

imaging

imaging 
devices

high-lev*!
expert knowledge
on image features
and object shape

i
20 image 1 
sequence J
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Figure 1.1: Block diagram of the presented system.

The subsequent innovative high-level image analysis is responsible for the actual 

identification and tracking of an object's contour. A key philosophy of the proposed 

system is that this task cannot be performed without a priori knowledge on both 

the object itself and its appearance in the image sequence. This primary idea was 

investigated by MOWING et al. in [1] and developed further by ROWING et al. in [2]. The 

final component (block 4) performs application specific measurements, usually through 

generic geometric algorithms, although this is not primary focus of the research.

Another key component of the proposed system is the way uncertainties are handled. 

The high-level analysis explicitly exploits medical expert knowledge. As this knowledge 

is often qualitative, vague and may only be acquired in natural-language terms rather 

than precise parameters, a framework based on fuzzy logic is incorporated in the high- 

level component (block 3). To perform the actual contour segmentation this novel 

building block provides a seamless combination of a modified active contour with the 

fuzzy framework, introducing the original concept of fuzzy active contours, presented 

by MOWING et al. in [3] and detailed by MOWING et al. in [4].

Specific a priori knowledge is excluded from the low-level processing stage to main­ 

tain its effectiveness. Furthermore all uncertainties introduced by the image formation
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process (block 1) must be propagated to the higher level (block 3). The actual decision 

on the segmentation of a pixel is deliberately delayed, so as not to bias any decision, 

based on general assumptions until the higher level, at which point a much more reliable 

decision can be made which takes specific object knowledge into account.

The main objectives of this research are listed below:

  Investigating and classifying the sources of uncertainties and variation introduced 

by various imaging devices, deformable and moving objects as well as imprecise 

object descriptions;

  Investigating the usability of active contour model as a segmentation method 

within the problem domain;

  Investigating the possibilities of fuzzy logic as a generic framework for both knowl­ 

edge representation and contour segmentation;

  Establishing a novel theoretical framework combining both active contours and 

fuzzy logic;

  Considering existing image processing operators to provide image features that 

can be integrated into the proposed fuzzy active contour;

  Establishing a novel framework for such an integration;

  Development of an innovative knowledge representation that allows for a de­ 

scription of both object and image properties, taking into account the identified 

uncertainties and variations.

In conclusion, the objectives of the work presented in this thesis recognise the novel 

philosophies of the previously identified innovative building blocks within the proposed 

system framework shown in Figure 1.1. Verification of the proposed principles are 

performed on two complementary applications. The underlying methodology of this 

verification approach is detailed in the following section.
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1.3 Methodology

Computer vision is a wide area were no general purpose solution to even moderately 

complex problems exists. Many decades of research have demonstrated that it is nec­ 

essary to define the outline of a vision problem, preferably by formalising a target 

application. In order to obtain a more general solution an area of similar applications 

can be defined. If this is envisaged, many characteristics of both images and objects 

have to be considered carefully.

In this thesis, the area of application considered are firstly surveyed theoretically. 

These theoretical issues are substantiated by two representative applications presented 

by ROWING et al. in [2] and [5] respectively.

There is no valid test data or quality assessment criterion for the considered domain, 

which could allow for a validation of the theoretical properties of the proposed new 

approach. Hence in a first step, solutions for the example applications are realised 

using several well-referenced traditional image processing techniques. These solutions 

demonstrate both the potential and certain limitations of the existing methods.

During the realisation of the example applications, a certain view on image pro­ 

cessing systems is adopted which is based on a classification of KASTURI and JAIN and 

which is introduced in section 2.1.1. It is shown that the realisations of some of the 

processing stages identified by KASTURI and JAIN are useful. For other stages however, 

a novel approach is presented, so both the new and the traditional solutions are based 

on the same system structure. Hence it is possible to compare both traditional and 

novel approaches when applied to the example applications. This forms the basis for 

an application-based validation of the new approach and at the same time allows for a 

demonstration of its benefits over traditional solutions.

1.4 Overview

Chapter 1: Introduces the background and goals of this research.
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Chapter 2: Sets the scope of the project by placing it into a theoretical computer 

vision context as well as defining an area of application. Two example 

applications are presented.

Chapter 3: Summarises the results of literature surveys for the two major scientific 

areas that are combined in this research: active contours and fuzzy 

logic. Relevant foundations of both subjects are summarised, making 

this thesis self-contained.

Chapter 4: Within this part of the thesis the theoretical analysis of the aforemen­ 

tioned novel approach is given.

Chapter 5: Validates the theoretical properties of the thesis' main contribution 

through an experimental analysis of both synthetic and medical image 

data.

Firstly, many of the major traditional image processing methods are 

evaluated by elaborating different solutions for the example applica­ 

tions. Subsequently the more recent approach of active contours is 

adapted and applied. Having analysed the capabilities and deficiencies 

of existing image processing methods in practice, the novel approach 

is applied to the example image data.

Chapter 6: Conclusion and further work.

Appendix A: A brief introduction into the notation of the Structured Analysis and 

Design Technique.

Appendix B: Selected papers published during this research.



Chapter 2

Quantitative Analysis of Medical 

Image Sequences

In this chapter the research is positioned theoretically within the diverse area of com­ 

puter vision. The scope is then set through an application-centred perspective, defining 

the central terms of the research: quantitative analysis, medical, and image sequences.

The second section provides a brief survey of image and scene properties as relevant 

to medical image processing. Uncertainty and variation which play an important role 

in the outlined domain are also investigated.

The third section substantiates what was described in the preceding sections by in­ 

troducing two complementary applications, which together form a representative basis 

to verify the validity of the proposed approach.

2.1 Scope of the Project 

2.1.1 Computer Vision Context

The ultimate goal of computer vision is the development of an artificial system with 

scene-interpretation capabilities comparable or even superior to that of humans.
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Since the human visual system is not fully understood in detail there is an ongoing 

discussion on the various aspects of vision, cognition and models of scene structure 

[6]. Some of the current paradigms are strongly influenced by the more philosophical 

aspects of perception. An interesting interdisciplinary approach has been proposed by 

WECHSLER [7] who states that

computational vision

= parallel distributed computation

= parallel distributed representation + parallel distributed processing

+ parallel distributed strategies 

= parallel distributed representation + parallel distributed processing

+ active perception 

= parallel distributed representation + parallel distributed processing

+ (functional active perception -f- exploratory active perception)

It is clear and emphasised by the use of the term computational vision rather than 

computer vision that this approach cannot be realised with today's technology.

During the development of image processing and computer vision research over the 

past two decades, several more realistic and hence limited models have been proposed 

in the literature. There are several possible ways to look at the structure of a computer 

vision system, that is to describe a system model depending on the purpose of the 

system, the background and intention of the author.

BALLARD, for example, states that "Visual perception is the relation of visual in­ 

put to previously existing models of the world." [8] He focuses on four categories of 

representation that are necessary to connect the input to the output.

RADIG puts an emphasis on image understanding, by proposing a four-layer struc­ 

ture going from the raw image to a scene interpretation [9]. The model focuses on 

declarative knowledge and sets aside control.

As with BALLARD and RADIG, the system structure of PINZ possesses several
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levels of representation, but in addition processes (algorithms) and control structures 

are given equivalent importance within the model [10].

Prom a more practical view point, KASTURI and JAIN give an overview of computer 

vision [11,12] and propose the following main subjects of the field:

1. Image formation

2. Segmentation

3. Feature extraction and matching

4. Constraint exploitation and shape recovery

5. Three-dimensional object recognition

6. Dynamic vision

7. Knowledge-based vision

Many text books on computer vision refer to similar subjects [8,13-21]. This view 

is adopted in this thesis as it is appropriate for the application area considered and 

also because it is fully congruent with the methodology described in section 1.3.

2.1.2 Application Area

The following items briefly characterise the area of application within which the con­ 

tributions of this thesis are validated:

  A quantitative analysis of images requires

- the measurement of anatomically relevant parameters, typically points on 

or relative to object boundaries, as well as

- the determination of an anatomically relevant co-ordinate system.

The alternative is a qualitative analysis where the contents of scenes are described 

(for example in robot vision) or where whole images are classified (for example 

in image retrieval systems).
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  MedicaJ images in this thesis involve

- known anatomic structures with

- inter-individual variations in these structures.

Another important characteristic of medical images is the presence of a high 

amount of distortions, for example blurry or superimposing structures.

  Imaging sequences lead to

- global motion of whole objects relative to their surroundings, and

- local object deformation, that is intra-individual variations.

Imaging sequences in the context of this research are sequences of two-dimensional 

images taken at discrete time intervals, commonly referred to in the literature 

as the 2D+t case. Motion and deformation are assumed to only take place in or 

parallel to the image plane. If this requirement is not upheld then the processing 

of the third dimension of objects were required, which is beyond the scope of this 

research as already mentioned in section 1.1

Within this application area, the ultimate goal of an image processing solution is 

a precise determination of anatomically relevant parameters, in the presence of distor­ 

tions and variation influences, sources of which are analysed in the next section.

2.2 Sources of Uncertainty and Variation

The problem of relating image structures to the real-world objects they originate from 

is that there is no unequivocal one-to-one mapping. The image formation process nor­ 

mally involves a loss of information and the introduction of noise. Models on imaging 

and objects that are used to compensate for these effects are often incomplete or im­ 

precise.



CHAPTER 2. QUANTITATIVE ANALYSIS OF MEDICAL SEQUENCES 27

Characteristics or distortions which cannot be addressed through a systematic anal­ 

ysis or their deliberate exclusion from the process introduce a factor of uncertainty to 

the system. Examples include a vague definition of the objects to be measured as well 

as unknown parameters of the imaging device.

Natural variations within or between individuals pose another class of problems, 

which have to be analysed in order to develop a solution that is flexible enough to cover 

the class variations.

Both uncertainty and variation are particularly relevant, hence this section briefly 

surveys the main sources of uncertainty resulting from image formation and object 

models in general. It then delimits the actual image formation characteristics considered 

in this thesis. Subsequently, the variations introduced by objects in medical imaging 

sequences, which are especially relevant to this project are surveyed.

2.2.1 Uncertainty in Image Processing

Processing grey-level images involves different kinds of uncertainty at different process­ 

ing levels. TiZHOOSH identifies uncertainties that stem from the grey-levels themselves, 

from their relationships and from expert knowledge [22]. For this purpose TIZHOOSH 

classifies image processing steps similar to those identified by KASTURI and JAIN (cf. 

section 2.1.1) into three levels:

  low level: image formation and preprocessing

  intermediate level: segmentation, visualisation, description

  high level: analysis, interpretation, recognition

In the literature, intermediate-level methods are not usually described as a separate 

stage in image processing. Instead they are assigned to either the low or high level, 

an example of which is the structure proposed by LIEDTKE (cf. Figure 2.1). Here
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however, a separation into three levels is performed to identify an additional source of 

uncertainty.
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Figure 2.1: Levels of processing in an image analysis system. Adapted from [23].

In explaining the procedure in image understanding, the diagram delimits low-level 

from high-level processing. It also shows where one may draw the line between the 

lower iconic and the higher symbolic level of representation.
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Greyness Ambiguity

The first source of uncertainty is the image formation process (block 1 in Figure 1.1) 

as the initial stage of an image processing system. This normally involves a loss of 

information. An example is the loss of depth information in a 3D to 2D projection. 

Another example is the blurring of edges during X-ray imaging. This effect can only 

be compensated for if a precise model of the imaging device is known, which may 

not always be the case. Similarly the introduction of noise cannot be compensated for 

completely, leading to further uncertainty at this stage.

Subsequent low-level processing involves the manipulation of the pixels' intensities. 

Common operations at this level are contrast enhancement, noise reduction, threshold­ 

ing and most other local operators. To find optimal parameters for these operations is 

often difficult and usually there is not a unique solution. When determining a thresh­ 

old value to binarise an image for example, the optimal value depends on the actual 

histogram as well as on the task that is to be performed.

The intermediate level of processing is concerned with geometrical relations within 

images and commonly involves local operations. The main concern of intermediate 

operations is to find object boundaries, trace contours or edges. Questions arise on 

where the edge or boundary of an object segment actually is.

Indeed, does the object have an edge at all? And if it does, is the edge sharp and 

well-defined: If the boundary of objects or segments are blurry and ill-defined a crisp 

decision on segmentation, for example, would result in a loss of information similar to 

the application of inadequate low-level operations.

Uncertain Knowledge

A priori expert knowledge is normally used at the last, high-level stage of an image 

processing system. Generally it aids in object recognition, image interpretation, and 

scene analysis. The basis of these processes is formed by the results of the lower-level
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stages. Consequently uncertainty at the high level can occur if uncertainties were not 

properly handled at the lower-level stages.

In the high-level stage, the expert knowledge itself may be a source of uncertainty. 

Often an object's model is not known completely resulting in a vagueness of object 

(class) definitions. A similar uncertainty is introduced by a knowledge representation 

which is not unique or vague, particularly when knowledge is available in linguistic 

terms the uncertainty of language leads to uncertain knowledge.

Systematic Uncertainties

The actual implementation of an image processing or computer vision system may 

introduce further uncertainties. These are usually discretisation problems, hardware or 

software errors resulting in incorrect or imprecise calculations.

The lack of absolute quantitative measures in image processing is another reason 

for uncertainties. There exists no absolute measure to assess the image quality after 

preprocessing for example. This is application dependent and based on subjective as­ 

sessment of experts or empirical methods.

2.2.2 Image Formation

In general an image is formed when a sensor records a received signal, usually elec­ 

tromagnetic waves, as a two-dimensional function I(x,y), where x and y represent the 

co-ordinates of the image intensities /. In digital images x, y and / are discrete and a 

picture element at (x, y) is called a pixel (or pel).

Depending on the sensor, the brightness or intensity values / represent for example, 

the reflectance of light from object surfaces, the temperature of objects or their dis­ 

tance. In this thesis, medical magnetic resonance (MR) and X-ray imaging is considered 

in particular. Here the image intensities represent structural properties of anatomical 

objects, that is the distribution of hydrogen and their absorbtion coefficient respec-
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tively. X-ray images are characterised by the transparent projection of object densities, 

while MR images are formed from a local atomic response, allowing slices of objects to 

be scanned. These particular imaging methods are described in detail in sections 2.3.1 

and 2.3.2 respectively. More information on medical imaging in particular can be found 

in [24].

While a single image is represented by the two-dimensional function I(x,y), image 

formation may result in more dimensions, obtaining image sequences. These can be 

devided into

2D A single two-dimensional image is acquired.

21 D Additional information, interpreting /, is available.

2D+t A sequence of two-dimensional images is acquired over time.

3D Depth information may be obtained directly, calculated from 

the combination of two or more 2D-images or by taking 

a spatial sequence of two-dimensional image slices.

3D+t A sequence of SD-images is acquired over time.

This research project considers the 2D+t case in particular. This means that rather 

than static scenes dynamic processes involving motion are investigated. What is intu­ 

itively regarded as motion may have a number of causes in image sequences. Motion 

results in a change of image intensities over time. Intensity changes however, may be 

due to camera motion or object motion, as well as to illumination changes, or changes 

in object structure, size or shape. As not all of these influences may be considered to 

be motion, it is important to identify them in an image processing system. In this sec­ 

tion changes due to the image formation process are considered, while the next section 

explores object-induced changes.

As to motion caused by camera (or imaging device in general) or objects the fol­ 

lowing cases represent the four possibilities for such a dynamic camera/world setup: 

[11,12]
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1. Stationary camera, stationary objects (SCSO);

2. Stationary camera, moving objects (SCMO);

3. Moving camera, stationary objects (MCSO); and

4. Moving camera, moving objects (MCMO).

The first case involves only static image processing, while the SCMO case allows 

an analysis of object motion. The MCMO case is the most challenging and usually 

requires additional information about the motion of either the camera or the object to 

fulfil computer vision tasks. This research project primarily considers the SCMO case 

which is most common in medical applications, where motion is involved.

2.2.3 Object Characteristics

Regarding objects within image sequences the following variations are possible:

• Intra-individual Variations occur within the same individual over the course 

of an image sequence (over time and/or space that is).

• Inter-individual Variations of the same anatomical object that occur over dif­ 

ferent individuals.

• Motion Global change in position of an object, relative to the image co-ordinate 

system. Motion can be divided into translation and rotation.

• Shape variation Local changes in the 2D contour of an object lead to defor­ 

mation.

It is important to emphasise that the terms used relate to the appearance of a 

two-dimensional object boundary in an image sequence, which may lead to a different 

classification than a look at the physical object in three dimensions would give. In the 

real world a bone for example, would be classified as a rigid object, because it cannot 

be deformed. In a sliced MR image sequence however, the 2D contour of that bone may
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undergo deformations from one slice to another as the position of the slice changes (see 

section 2.3.1). Similarly in an X-ray image sequence the projection of a rotating bone 

may lead to a deformation of its outline, when the rotation is not restricted to the axis 

perpendicular to the view plane.

Tables 2.1 to 2.3 survey a number of object classes, derived from the possible com­ 

binations of the above variations. For each class a medical example is provided.

Object class

artificial 
reference 
structure

0

Intra-in 
Motion

Trans­ 
lation

0

Rotation

o

aject characteristi

dividual 
Shape variation
Rigid

X

Deform­ 
able

cs

Inter-individual 
Shape variation
Rigid

X

Deform­ 
able

Medical 
example

fiducial 
marker

Table 2.1: Rigid objects. Definitions of object variations and resulting object class. 
Legend: x Yes, - No, o Yes or No

Object class

fixed 
anatomical 
reference 
structure
anatomical 
reference 
structure, 
moving in the 
view plane
fixed object 
(rigid in 3D)

object 
(rigid in 3D), 
moving in the 
view plane

Mo
Trans­ 
lation

X 

X

X 

X

O

Intra-in 
;ion

Rotation

X 

X

X 

X

bject cha

dividual 
Shape v
Rigid

X

X 

X 

X

X

X 

X 

X

racteristi

ariation
Deform­ 
able

-

-

cs

Inter-in 
Shape v

Rigid

-

-

dividual 
ariation

Deform­ 
able

X

X 

X 

X

X

X 

X 

X

Medical 
example

bone, 
fixed relative 
to imaging 
device
bone, 
restricted to 
move only 
parallel to 
view plane
bone, 
fixed relative 
to reference 
structure
bone, 
restricted to 
move only 
parallel to 
view plane

Table 2.2: Inter-individually deformable objects. Definitions of object variations and 
resulting object classes. Legend: x Yes, - No
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Object class

object 
(rigid in 3D), 
rotating 
around x- 
and/or y-axis
soft objects, 
connected to 
reference 
structure
soft object, 
not connected 
to reference 
structure

Mol
Trans­ 
lation

X 

X

X 
X

Ol

Intra-in 
;ien

Rotation

X

X

X 

X

jject cha

dividual 
Shape v

Rigid

-

-

racteristi

ariation
Deform- 
able

X 

X 

X

X

X 
X 
X

cs

Inter-in) 
Shape v

Rigid

-

-

dividual 
ariation

Deform- 
able

X 

X 

X

X

X 
X 
X

Medical 
example

bone, 
moving out 
of the view 
plane

tissue, 
attached to 
reference 
bone

Table 2.3: Intra-individually deformable objects. Definitions of object variations and 
resulting object classes. Legend: x Yes, - No

2.3 Example Applications

This section substantiates the discussions of the preceding sections by introducing two 

applications from different imaging as well as application domains. Together the appli­ 

cations address all of the subjects mentioned above and are regarded as a representative 

basis to verify the validity of the proposed approach.

2.3.1 Analysis of Carpal Bones in Magnetic Resonance 

Imaging Sequences

2.3.1.1 Clinical Motivation

To date the diagnosis of ligament lesions of carpal bones relies on a qualitative exami­ 

nation of the patient's wrist. This section presents a novel system where sequences of 

magnetic resonance images are automatically analysed to measure the motion of seven 

wrist bones. Resulting motion graphs provide a quantitative basis for diagnostic as
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well as scientific purposes. As the imaging method is non-invasive up to twelve wrist 

positions can be measured giving a detailed insight into the bone's motion.

In many cases articular damage cannot be diagnosed through an examination of 

a single image. A motion analysis of a joint's bones might be necessary to make a 

reliable diagnosis [25,26]. Examples are lesions of the ligaments and cartilage of the 

knee or in the cervical and lumbar regions of the vertebra. The developed system 

enables the diagnosis of lesions of the ligaments of the wrist (carpal instabilities [27]), 

and is particularly well-suited to aid in the diagnosis of the scapho-lunate instability. 

This damage is a common injury after accidents involving the wrist. The lesion occurs 

when the ligaments between the Scaphoid and the Lunate are torn [28].

Availability of Nuclear Magnetic Resonance Imaging allows scanning of entire se­ 

quences of images of bones and joints without harmful dosage of radiation. Analysis 

of such sequences allow a much more reliable diagnosis of lesions of the ligaments 

compared to methods in use today, such as single X-ray images [25-27]. However, a 

necessary scanning procedure with a sufficient number of positions requires approxi­ 

mately 100 2D images for every patient. The manual evaluation of such a large number 

of images in the daily medical diagnostic is not feasible.

The aim of the developed solution is the automatic processing of these images 

in order to obtain motion graphs which allow an easier medical diagnosis. For the 

recognition of lesions of the ligaments, the representation of translation and rotation of 

the carpal bones with respect to a co-ordinate system defined by the radius proved to 

be most suitable. Using cadaveric specimens such investigations have been carried out 

by implantation of markers [28]. Because of the considerable exposure to radiation, in 

vivo analysis of such movements has been carried out only with very coarse resolution. 

The method proposed here allows for a much finer resolution of the bone movement.

For the measurement of translation and rotation for each bone its major axis and 

centroid is determined. The measurement is performed relative to an anatomic co­ 

ordinate system defined by the distal end of the Radius bone (cf. Figure 2.2).
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Figure 2.2: a) X-ray image of the wrist, identifying the bones, b) Parameter definition: 

P: centroid position, a: angle of rotation, S\: image co-ordinate system, S2 : target 

co-ordinate system, x\ and x%: reference points (landmarks) defining 62

2.3.1.2 Image Formation

There are many system parameters in an MRI device [24]. For automated image pro­ 

cessing, it eases the design of a solution considerably if image formation parameters do 

not change. Hence together with the MR operators, useful settings were determined and 

fixed, guaranteeing a constant appearance of bones and surrounding tissue. Examples 

are shown in Figure 2.3.

Figure 2.3: MR images of the left and right hand. Relevant bones are identified.



CHAPTER 2. QUANTITATIVE ANALYSIS OF MEDICAL SEQUENCES 37

Apart from the imaging device, the test person's hand also has to be fixed to 

guarantee reproducible results. A restriction of the movement to a plane is achieved by 

fixing the test person's lower arm and hand in a device especially developed for this 

examination, as shown in Figure 2.4.

Figure 2.4: Fixation device to restrict the movement of the hand to a plane.

Depending on the flexibility of each patient up to 10 different positions of the 

wrist will be scanned. For each wrist position 12 layers of the hand are acquired (cf. 

Figure 2.5 and 2.6). The images are Tl-weighted, the distance between layers is 1.5mm. 

The resulting grey-level images consist of 512 by 512 pixels, with a depth of 10 bit.

2.3.1.3 Object Characteristics

Compared to other applications involving for example the analysis of the knee or spine, 

a motion analysis of wrist bones is more difficult because there are many bones with 

a similar shape which complicates their identification. Furthermore, some of the bones 

may tilt, that is they may rotate about an axis that is not perpendicular to the view­ 

ing plane. This results in a variable appearance of the bones in the sliced magnetic 

resonance images. The variations and the resulting object classes are summarised in 

Table 2.4.
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Figure 2.5: All slices of one hand in the neutral (straight) position.
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Figure 2.6: All slices of one hand in a radial (inward) position.
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Object class

anatomical 
reference
structure,
moving in 
the view
plane
object 
(rigid in 3D),
moving in 
the view
plane

Object characteristics

Intra- individual
Motion

Trans­ 
lation

X

X

Rotation

X

X

Shape variation

Rigid

X

 

Deform- 
able

 

X

Inter-individual
Shape variation

Rigid

 

 

Deform- 
able

X

X

Wrist 
bones

Radius bone

carpal bones

Table 2.4: Variations of the wrist bones. Legend: x Yes, - No

2.3.2 Analysis of the Vocal Tract in X-ray Imaging Sequences 

2.3.2.1 Scientific Motivation

Articulatory phonetics is a branch of linguistic science that is concerned with the very 

complex dynamic characteristics of the organs of the human vocal tract (cf. Figure 2.7).

'The probability that an articulator will move parallel or anti-parallel to 

the preferred direction during speech sound production is dependent on the 

movements' orientation of the production of his neighbouring sound which 

in turn is influenced by the production of the neighbouring sound and so 

on. This chain of effects develops because the vocal tract is a dynamic net­ 

work system in which different articulatory parts effect each other through 

interaction. '[29]

Understanding this complex motion and interrelation of articulatory organs is an 

important basis for understanding human speech production. Apart from being a con­ 

tribution to basic linguistic research, this knowledge is valuable for example to speech
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therapy and speech recognition [30-32].

To analyse the articulatory organs it is necessary to determine the position of 

12 characteristic parameters of the vocal tract defined on the midsagittal plane (cf. 

Figure 2.8). For this purpose X-ray image sequences have been taken from different 

speakers while uttering certain (arabic) syllables. Figure 2.10 shows two examples.

Figure 2.7: Anatomy of the vocal tract. From [33]

For a statistically reliable analysis a very large number of images have to be pro­ 

cessed. A manual measurement would be prohibitively time-consuming. Furthermore, 

an automated processing eliminates inter- and intra-observer variabilities from the 

measuring process.
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1 Lip positions

2 Lip opening

3 Front teeth

4 Tip of tongue

5 Front tongue

6 Middle tongue

7 Back tongue

8 Velum

9 Epiglottis

10 Hyoid bone

11 Glottal narrowing

12 Glottis

Figure 2.8: Characteristic parameters of the vocal tract.

2.3.2.2 Image Formation

With the MR imaging-based application presented in section 2.3.1 it was possible to 

tailor the imaging conditions in order to ease the subsequent image processing. The 

X-ray image sequences of the vocal tract however, were taken in the early eighties in 

France and supplied to the author by linguists. Initially the sequences existed only on 

35mm celluloid films. Neither the precise set-up of the experiments nor details about 

the imaging device is known. Nowadays it would be ethically unacceptable to expose 

test persons to radiation solely for speech scientific purposes. It is therefore not possible 

to create new image sequences with known parameters.

At the time the image sequences were taken it was already envisaged to analyse 

the movements of the articulators. The upper part of the head was fixed, but this 

fixation was not perfect. In some sequences the test person's head moves. Consequently 

intensities of the resulting images vary considerably in those sections.

To facilitate measurement small leaden markers were attached to the lips (upper 

lip, lower lip and in the corner of the mouth) of the test persons. These markers are
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visible as dark circles. Unfortunately the markers were not always fixed properly so 

they might change position or visible shape and so hinder the image processing more 

than they are of use.

The particular X-ray imaging leads to further challenging images properties. Gen­ 

erally all edges are blurry and have a low local contrast. To make soft tissue visible a 

contrast agent was given orally. Salivation however, causes an inhomogeneous and con­ 

stantly changing distribution of the contrast agent. This in turn affects the appearance 

of soft objects such as the tongue. Edges and textures of such objects are therefore not 

constant.

Digital image processing required the original 35mm films to be scanned and digi­ 

tised. In addition to inherent visual artefacts such as scratches and dirt on the films, 

this largely analog process turned out to be another source of distortion. The signal 

dynamic range was low resulting in a further reduced contrast and a relatively high 

signal noise. As a high-quality digitisation was not available at the time, the celluloid 

was first scanned using a professional film-to-video scanner (cf. Figure 2.9a).

Figure 2.9: a) 35mm film-to-video scanner, b) 2-inch magnetic tape recorder.

The analog video signal was stored on 2-inch magnetic tapes (cf. Figure 2.9b) from 

which it was subsequently digitised in full CCITT PAL resolution (720x568 pixels). 

Two examples of the resulting digital images are shown in Figure 2.10.
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Figure 2.10: Digitised X-ray images of the vocal tract from two different test persons. 

2.3.2.3 Object Characteristics

The objects in this application are defined by the parameter points that have to be 

measured rather than solely through anatomical knowledge. In theory some of the 

points could be detected directly, that is without identifying the object boundaries first. 

This approach depends on the particular image processing method and section 5.2.2.1 

will evaluate such methods.

Other points however are defined by the minimal Euclidean distance between op­ 

posite sections of two articulators, rather than by a single characteristic point on the 

object (cf. Table 2.5 and Figure 2.11). Consequently to measure the above mentioned 12 

parameters the precise location of 22 relevant boundary points have to be determined.

Parameter Articulator(-sections) involved

Upper and lower lips 
Front tongue and alveolus 

Middle tongue and palate 

Back tongue and velum 
Velum and pharynx wall 
Epiglottis and pharynx wall 

11 Glottal narrowing Glottal walls

Table 2.5: Boundary points in the vocal tract defined by a minimal distance.

2 Lip opening

5 Front tongue
6 Middle tongue

7 Back tongue

8 Velum
9 Epiglottis

A set of midsaggital sketches in Figure 2.12 for arabic consonants provide an exam-
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pie for the variability of the articulators, in particular of the lips, the tongue and the 

velum. A complete classification of the vocal tract's objects is provided in Table 2.6.

Figure 2.11: Complete object boundaries as necessary to determine the measurement 

points.

V

Figure 2.12: Sketches of the vocal tract for some arabic consonants.
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Object class

artificial 
reference
structure
fixed 
anatomical 
reference
structure
fixed object 
(rigid in 3D)

object 
(rigid in 3D), 
moving in 
the view
plane
soft objects, 
connected to 
reference 
structure
soft object, 
not connected 
to reference
structure

Object characteristics

Intra-in 
Motion

Trans­ 
lation

X

X

X

Rotation

X

X

X

dividual 
Shape variation

Rigid

X

X

X

X

Deform- 
able

-

"

X

X

Inter-individual 
Shape variation

Rigid

X

"

Deform- 
able

-

X

X

X

X

X

Articulators

lip marker

upper front 
tooth

alveolus, 
palate, 
pharynx
lower front 
tooth, 
hyoid bone

velum, 
upper lip, 
epiglottis

lower lip, 
tongue, 
glottis

Table 2.6: Variations of objects in the vocal tract. Legend: x Yes, - No

2.3.3 Summary of Example Applications

The preceding sections presented two example applications that lie within the scope of 

this work as detailed in section 2.1.

The clinical analysis of MR image sequences and the scentific measurement of X-­ 

ray sequences are complementary with respect to the variation classes identified in 

section 2.2.2 (image formation) and section 2.2.3 (object characteristics).

While MRI produces image slices with good contrast and edge quality, analog X-ray 

imaging results in low-contrasted blurry edges, with superimposing structures.
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The objects to be analysed are both rigid and deformable. While the MR application 

focuses on inter-individual deformation (carpal bones), the X-ray analysis is mainly 

concerned with intra-individual deformation of, for example, the tongue.

Both applications involve the challenging properties investigated in section 2.2 and 

provide a basis for both the evaluation of traditional image processing methods and 

the validation of the novel approach proposed in this work.
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Chapter 3

Related Activities and Literature 

Surveys

While the analysis of medical images and image sequences dates back to the early 

1970's, it is still an active field of research and has led to various medical applica­ 

tions, the most prominent being the analysis of the heart. In particular volumetric 

and dynamic analysis of the left ventricle has led to numerous publications over the 

last three decades [34-38]. A similarly relevant application is the assessment of the 

state of coronary arteries [39-42], whilst among the first anatomic structures to be 

processed digitally were the lungs [8,43]. Other applications have been concerned with 

rigid structures of the head [44] and the non-rigid tongue [45,46].

In all these medical image analysis applications, the main task has been the seg­ 

mentation of anatomically relevant structures [47-55]. There currently exists no single 

segmentation method that yields acceptable results for every type of medical image 

material and application. Multiple techniques are frequently combined to improve the 

results. Methods do exist that can be applied to a variety of data, however, those 

that are specialized to particular applications achieve better performance by taking 

into account a priori knowledge. Some of these existing methods are referenced in this 

section.
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Existing approaches can be divided into two categories. The first group contains 

pixel classification methods such as thresholding, region growing, classifiers and clus­ 

tering algorithms. The second group includes methods based on deformation such as 

atlas warping as well as a number of important deformable models.

Early approaches were very much application specific and low-level oriented [34,35, 

39,45]. Typically methods such as thresholding and region growing were used together 

with other local operators. For medical segmentation variations on classical threshold­ 

ing have recently been proposed that incorporate information based on local intensities 

[56] and connectivity [57]. Region growing is mainly used for detection of small simple 

structures such as tumors and lesions [58].

Supervised classifiers require a manually segmented training set which is used for 

automatically segmenting new data. Here statistical methods such as the maximum 

likelihood classifier play an important role. Examples for improving and applying such 

classifiers for medical image analysis include [59] and [60]. Also artificial neural networks 

(ANNs) can be applied as supervised classifiers [61].

When no training data is available, unsupervised clustering methods may be used for 

pixel classification. Markov random fields (MRF) are often incorporated into clustering 

algorithms such as the k-means algorithm under a Bayesian prior model [62,63]. MRF 

modeling itself is not a segmentation method but a statistical model, with segmentation 

obtained by maximising the a posteriori probability of the segmentation given the 

image data using iterative methods [64]. Other non-statistic clustering methods such 

as unsupervised ANNs and fuzzy clustering [65], are also available.

In contrast to pixel classification methods, atlas-guided approaches treat segmen­ 

tation as a registration problem. Here a pre-segmented template image is warped to a 

target image using either a linear or non-linear transformation. This method has been 

applied mainly to MR brain images [66], though accurate segmentation of complex 

structures is difficult due to anatomical variations. Using probabilistic atlases can help 

to model these variations [67].
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It was recognised that models could improve segmentation results [50], particularly 

with often noisy medical images [51]. The exploitation of a priori knowledge includes 

specific models concerning the image formation process of the object to be analysed 

[36,40,41,43,68], and also expert systems were developed to provide explicit knowledge 

representation schemes [42,69].

More general approaches which attempt to model boundary or shape properties [34, 

70,71] have provided a rich research area in medical image analysis. The representation 

and detection of deformable anatomic structures has recently attracted much research 

interest [38,72,73]. An extensive analysis of current research in this area is given in 

[53], and other relevant contributions may be found in [52,54,55].

An influential deformable boundary model, the so-called active contour was pro­ 

posed by KASS et al. [74] (cf. section 3.1). Later approaches include deformable tem­ 

plates where size and relationships of object subparts are represented in parametrized 

templates [38,75-77].

STAIB and DUNCAN [78,79] augmented the boundary finding process with a priori 

probability information representing the mean shape and natural variation of the ob­ 

ject to be segmented. Fourier descriptors were used as model parameters to represent 

boundaries. SZEKELY et al. [80] also developed Fourier parametrized models.

COOTES et al. [81] combined deformable shape descriptors with statistical modal 

analysis. Their active shape model obtains characteristic shape variations from a train­ 

ing set of boundary points. An example medical application published in [82] trains 

active shapes with the outlines of finger bones in single X-ray images for age assessment.

The novel approach presented in this thesis is partially based on principles of active 

contour models, which are discussed in depth in section 3.1. Other important aspects of 

this thesis are related to representing and processing uncertainties. Many methods have 

been developed in this field [83], the most relevant of them being Bayesian probability 

theory and fuzzy set theory.

In Bayesian statistics all uncertainties are represented by probabilities. Probability
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is regarded as a subjective measure, representing a degree of belief that something will 

occur. Probabilistic methods play an important role in medical image segmentation, 

where stochastic uncertainties are handled. Soft segmentations for example can be ob­ 

tained in statistics through the use of probability functions [60,84]. Particularly in cases 

where training data is available probabilistic methods have been applied successfully. 

Some important approaches were developed in the areas of classifiers, clustering and 

deformable models, as mentioned earlier in this section. In [78-81] uncertain knowledge 

of shape is included by incorporating prior probability distributions obtained from a 

training set. Other relevant references include [59,85-94]. For a comprehensive survey 

of the field consider [53,95,96].

In this thesis an explicit, linguistic representation is pursued, while training data 

is considered unavailable. In these circumstances fuzzy logic is adequate and will be 

discussed fully in section 3.2.

3.1 Survey of Active Contour Models

Active contour models were first introduced by KASS, WITKIN and TERZOPOULOS 

[74], and are often referred to as the classic snake or deformable contour model. Active 

contours are energy-minimising splines or polygons guided by internal and external 

forces that pull them towards image features during an optimisation process. They 

dynamically segment an object contour by locking onto nearby edges and localising 

them accurately.

Applications of active contour models include line and edge detection, detection of 

subjective contours, motion tracking, stereo matching, and interactive interpretation of 

image scenes with user-imposed constraints, in the area of computer vision, computer 

graphics, and computer-aided geometric design [52,97-101]. More recently active con­ 

tour models were applied in computer-assisted medical image analysis [46,72,102-107].
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3.1.1 General Concept

The traditional model is based on a spline with controlled continuity, providing piece- 

wise smoothness constraints as internal spline forces and thus regularising the defor­ 

mation of the model in terms of its elasticity and bending. The representation of the 

traditional active contour model however, is not spline-based during the deformation 

process, but only for the final interpolation of the result. The external image forces 

push the model towards salient features such as lines or edges. External constraint 

forces are responsible for pulling the model near a desired local energy minimum using 

appropriate automatic attentional mechanisms, or high-level interpretation. In the ab­ 

sence of such mechanisms, interactive approaches like the snake pit [74] can be used, 

providing an interactive approach for defining pushing and pulling forces in the image 

scene via spring and volcano forces.

The key point of active contour models is the design and optimisation of suitable 

energy functions whose local minima comprise a set of alternative solutions which can 

be based on a priori knowledge of the approximate shape, size, location, and motion 

of the object under investigation, and on a user-defined initial estimate of the object's 

contour.

During an optimisation process which was originally formulated within a Euler- 

Lagrangian setting for the traditional model, the internal and external image and 

constraint forces are adjusted to find the desired local optimum causing a suitable 

deformation of the active contour model.

3.1.1.1 Continuous Spline Representation

An active contour is based on a parameterised contour v(s), s e [0,1]. Closed contours 

are obtained by making the contour periodic, for example by setting v(0) = v(l). An 

energy function esnake is formulated to obtain an estimate of the quality of the model 

in terms of its internal forces e int and external forces, such as underlying images forces 

eimage and user-constrained forces scon . The energy function integrates a weighted linear
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combination of the internal and external forces over the spline contour:

/• 
/»/ 0

i
(s)) + wimage£image (v(s)) + w cons ̂ (v -(a)) ds (3.1)

As there is no consistency in the literature as to what kind of forces are to be 

designated as internal, external or constraint forces, the following definition is used 

throughout this thesis. The snake's overall energy function comprises an internal as 

well as an external component:

£snake = I wint£int(v(s)) + wexte ext (v(s)) ds (3.2) 
Jo

Internal forces are formulated through £m<(v(s)) which represents all general char­ 

acteristics that an arbitrary object might have, such as smoothness. Image features as 

well as object-specific constraints are regarded as being external to the spline and are 

hence grouped into eez<(v(s)):

Eext(v(s)) = Wimage £image (v(s)) + Wcon £ con (v(s}) (3.3)

This is conform with the view that an energy function can also be regarded as the 

compromise between internal and external contour shape quality. In this compromise 

the weighting parameters Wjnt , wext , Wimage, and wcon control the relative influence of 

the energy components and are generally determined by a process of trial-and-error.

Moving the vertices of an active contour leads to a change in energy, which trans­ 

forms the segmentation problem into an optimisation problem.

3.1.1.2 Discrete Polygonal Representation

The continuous energy function £ snake is usually discretised by replacing the integral 

by summation, leading to a discrete energy function Esnake . In the following a dis­ 

crete formulation of the active contour model is used, which is based on a polygonal
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representation of a contour, as shown in Figure 3.1.

For each image, the algorithm requires an initial polygon P = (PO,PI,     . , 

consisting of N vertices Pi = (zi,yi), where x{ and T/J are the spatial co-ordinates of 

Pi. The detected boundary is represented by the polygon Q = (q0 , qi,..., qw-i), with 

Qi = (%i,yi)- Each qj is selected from a set of candidates Q = (c^o, c^i,... , C^M-I)- 

In many applications the candidates Cy = (xj,yj) are uniformly sampled along a 

search line normal to the initial polygon and intersecting PJ. Tracking of the contour 

is achieved by processing a sequence frame by frame and taking the resulting Qt as 

the initial estimated contour Pt+1 for the next frame. A closed contour is obtained by 

setting q0 = q^ and hence p0 = PN and C0 = CN .

R

Figure 3.1: Polygonal contour representation.

From this polygonal representation, it is possible to formulate an appropriate dis­ 

crete energy function Esnake for the object, which can subsequently be minimised in 

order to obtain the desired contour Q. This minimisation is achieved by selecting an 

optimal set of vertices from the candidates which have been sampled in a region R, 

around an initial contour.

Analogous to eq. (3.2) Esnake is decomposed into two components:

AT-l

Esnake(Q,} = W ext Eext (3.4)
71=0

with the external energy being
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Eext (qn) = wimage Eimage (qn ) + Wcon Econ (qn). (3.5) 

where Eimage and Econ are the discrete equivalents of the analogue components

£ image and £con .

3.1.2 Modelling Object Characteristics

The classic formulations as well as some modifications and extensions of internal and 

external active contour forces used to model object characteristics will be summarised 

in the following.

3.1.2.1 General Characteristics (Internal Energy Terms)

The classical active contour models general elastic deformation as well as bending 

characteristics through Eq. (3.6) and (3.7) respectively.

|| 2 (3.6) 

|| 2 (3.7)

Here the elastic energy e eiast of the contour is modelled by the first order derivative 

term v'(s) which makes the snake behave like a membrane. The second order derivative 

term v"(s) represents the contour's bending energy e^nd-, leading to a thin-plate like 

behaviour of the active contour.

Both properties are integrated in the internal energy e int through a weighted sum:

£mt(v(s)) = WeiastEelast(v(s)) + W bend £ bend(v(s)) (3.8)

With this model an object's general characteristics can be parameterised through 

the weights welast and wbend . Increasing w e[ast forces contour vertices to move closer
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together, while decreasing the parameter allows the contour to develop gaps. The 

smoothness of an object is parameterised through Wbend where higher values decrease 

the model's flexibility resulting in a contour with less corners and vice versa.

Discrete approximations of Eq. (3.6) and (3.7) were suggested by [74,108]:

||qn-qn-l|| 2 (3.9)

= ||qB_! - 2qn + qn+1 || 2 (3.10)

An alternative to the backward difference is a forward difference:

(3.11) 

or a centered difference is also possible:

7? (~ \ rc- n /«, 10 xEelast(<ln) = —————— ̂  —————— (3.12)

In [109] it was pointed out that Eq. (3.9) is made under the assumption that the 

vertices of the active contour model are evenly spaced. As this may not always be 

the case, it was proposed to subtract the elasticity term from the vertices' average 

distance ||d||. Unlike Eq. (3.9) the proposed energy expression Eq. (3.13) is not larger 

for more distant vertices, resulting in a more evenly spaced vertex distribution avoiding 

a possible contraction of the snake.

||q,-qn-il! 2 (3-13)

When the above elasticity and bending measures are calculated relative to the initial 

hypothesis contour v0 (corresponding to the discrete polygon P) a similarity constraint 

is introduced [110]:

(3.14)
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e iend (v(s)) = (v"(S)-v2(S)) 2 (3.15)

The similarity constraint is flexible in that it implicitly models the properties of the 
hypothesis. If the hypothesis was constant in its local properties then the similarity 

favours contours with the same constancy. This is why the similarity constraint results 
in a smooth contour without explicitly modelling smoothness: through a smooth initial 
hypothesis.

To explicitly model the smoothness of a contour WILLIAMS suggested a restriction 
of the local curvature [109]:

!„ \ _ __-1 qn ~ qn-ln+l ~ Qn /„ i c\ smoothness ((In) - COS 77-———-———r-——————77 (6.lb)

A smoothness constraint that is based on the direction of the image gradient rather 
than on the contour's geometry is presented in the following section (Eq. 3.25).

3.1.2.2 Image Based Characteristics (External Image Energy Terms)

The external image energy of the classic active contour model [74] involves forces due 
to image intensities, edges and terminations of line segments, the first of which being 

the simplest useful image functional:

(3-17) 

A simple, discrete edge functional is the intensity gradient (cf. section 5.2.2.1):

r (3-18)

where the negative sign produces low energy values for high gradient values. Squar­ 

ing the gradient narrows the edge response.



CHAPTER 3. RELATED ACTIVITIES AND LITERATURE SURVEYS ____ 59

In order to find terminations of line segments the curvature of level lines in a slightly 

smoothed image Ia can be used to formulate an

To form the image energy the terms were integrated using a weighted sum:

») = wintensEintens (qn ) + wedgeEedge (qn) + wtermEterm (qn ) (3. 19)

Depending on the sign of wintens the snake is attracted to either dark or bright pixel 

intensities. The absolute values of all three coefficients control the relative influences 

of the energy terms, modelling the predominant image characteristics of the object.

As an alternative to the intensity functional of eq. (3.17), a simple "event detector" 

was suggested in [111] using a threshold operator with a user defined threshold value 

6:

(3-20) 
7(qn ) - B : /(qn ) > d

The extensive body of research upon image edges has led to the application of a 

number of different edge detectors in active contours. In addition to the simple gradient 

operator in Eq. 3.18, gradients with a specified direction are applied [99, 110], with one 

specific form being the gradient perpendicular to the contour [81]. Among the applied 

standard edge detectors are the Sobel [72, 100, 105], Canny [105, 108] and Deriche [103] 

operators. A combination of different 2D Gabor filter responses is proposed in [107].

Of particular relevance to the processing of image sequences is the exploitation of 

image motion. It seems however, that the results of the extensive research in related 

subjects such as optical flow have not been integrated into active contours. A motion 

detector based on the gradient of a difference image Dt was presented in [100]:

£motion(qn) = |VA(qn )| (3-21) 

where



CHAPTER 3. RELATED ACTIVITIES AND LITERATURE SURVEYS 60

A(q») = |^(qn) - /o(q») - /| (3.22)

Here Jt is the current image, /o the start image and 7 the mean intensity difference 

within a reference region to compensate for global intensity variations.

In [112,113], an inflation or balloon force for (closed) active contours was suggested:

E balloon (<ln) = Wballoon^n (3.23)

Where n^ is a normal unitary vector at qn enforcing an expansion of the contour 

point in direction of its normal. Depending on the sign of the weighting factor Wbaiioon 

the active contours expands or contracts.

This expansion force, like the classic active contour model in general, is based only 

on the boundary characteristics of a shape, disregarding the enclosed region pixels even 

when the contour is closed. Several approaches have been developed to constrain the 

model's shape to its enclosed region homogeneity, some involving a philosophy similar 

to that on which template matching is based upon (cf. sections 5.2.1.1 and 5.2.2.1). The 

most important approach of statistical snakes or active region models was developed by 

IviNS and PORILL [114]. Active region models start from a user-defined homogenous 

template region (or seed region) whose mean ^ and variance a are computed. The 

contour then grows with the help of an inflation or pressure force until it encounters 

pixels whose intensities change the variance of the regions intensity significantly. The 

pressure force is defined by

pressure

where k is the constant defining the significance of a change in variance. The pressure 

force is normalised by the scaling term (her) 2 . This scheme is equivalent to weighting 

the balloon force by the mean pixel intensity at each boundary pixel. [115]

A similar approach has been developed in [116] where a normalised correlation
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criterion was proposed, measuring the differences of grey-levels in the current region 

and the template region.

The above section introduced a general smoothness constraint based on local angles 

of the contour. GEIGER conversely modelled smoothness based on the direction of the 

image gradient:

Esmoothness (On) = \<t>n ~ 0n-l| (3.25)

<& = tan" 1 —^-=i (3.26)

3.1.2.3 Specific Characteristics (External Constraint Energy Terms)

Specific object characteristics in the classic snake model can only be introduced by 

allowing the user to attach springs between vertices of the contour and fixed positions 

in the image plane:

Egprmgfan) = -Wiprinyfan ~ *)2 (3-27)

With a positive value of the spring constant wspring this term attracts the vertex qn 

to a point x = (x, y) in the image. A negative sign repels the vertex from x in which 

case the constraint is called volcano force.

However, the need for more specific knowledge particularly on shape has been recog­ 

nised [117] and led to several inclusions of active contour models.

In [100,118] the local angle <pn in the 3-vertex polygon of qn_i, qn , qn+i was used as 

a measure of local shape. Together with specific shape constraints such as (pn = ^^TT 

to model a circle the possible shapes of the active contour were restricted to specific 

shapes.

The local angle was also used in [118,119] to attract two closed snakes towards an 

object boundary. One active contour was initialised on the outside of the object and 

one on the inside. This set-up improved the evolution of the active contour and helped 

in finding the optimal solution.
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Several other papers address the ability of the active contour to change its shape 

during the usually iterative optimisation process. BERGER et al. in [102] addressed the 

snake's size which can grow by inserting vertices dynamically. The so-called geodesic 

active contour presented in [120-122] is even capable of changing its topology, allowing 

for a rough initialisation.

These approaches reduce the active contour's selectivity with respect to the shape 

to make it more flexible during the optimisation. Consequently the desired shape of 

an object cannot be specified precisely which is a drawback where challenging image 

material is involved.

An approach to detail the desired shape was presented in [97]. Human heads were 

modelled by using different sets of snake weights on different sections of the contour, 

corresponding to chin, ears, and hair.

The most complex approach to include not only geometric constraints but to gen­ 

erally represent explicit a priori knowledge about specific objects is the grammatical 

active contour. The novel approach presented in this thesis is partially based on this 

approach, the details of which are presented in the following.

In [123,124] OLSTAD proposes a grammatical framework for encoding structural 

information on the object to be detected. The grammatical object description is inte­ 

grated into the energy minimising procedures of an active contour model.

Normally syntactic approaches are applied to decompose or classify contours (cf. 

section 3.2.2.2) after they have been segmented. The image information is not utilised 

in the structural processing of the contour. Incorporating syntactic processing into an 

active contour affords the possibility of combining both image features and detailed 

structural constraints in contour segmentation.

One fundamental idea of the grammatical active contour is to specify local prop­ 

erties of an object's contour, that is to use a different energy function for each vertex 

instead of just one global function. The grammatical description of a contour can then 

be performed through a string (concatenation) of characters (terminals), such as
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aaaaaabbbbbbcbbb

Table 3.1: Example grammatical contour description

where each character stands for one vertex. The letters represent the different, usually 

external, energy functions E*xt , Elxt , and E\^.

A hard specification of a characteristic's location such as, "vertex 5 has an angle of 

60 degrees" , however contradicts the active contour's ability to account for variabilities. 

A formal grammar offers a representation where the exact location does not have to 

be specified, but can be left as an additional dimension in the optimisation process.

Formally a (context-free) grammar is defined as a quad-tuple

where

• N is a finite set of non-terminals,

• E a finite set of terminals,

• Pa finite set of production rules, and

• S the starting symbol of the grammar.

A grammar G = (TV, E,P, S) generates a formal language L(G] which is a set of 

all strings that can be produced by G. In restricting L(G] to languages that can be 

described by regular expressions R, OLSTAD introduces a flexibility to the contour 

description. The basic production rule of concatenation of two regular expressions RI 

and Pi2

R1 R2 = {st\s is accepted by RI and t is accepted by #2}
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ultimately allows for a concatenation of terminals resulting in rigid expressions (cf. 

Table 3.1). Additional rules however, allow for variation through the union, defined as

RI U R2 = {s\s is accepted by RI or R2 } 

as well as the KLEENE closure

1=1

allowing for an arbitrary repetition of patterns. Applying the closure operator to the 

example in Table 3.1 yields

a = a*b*c*b*

This regular expression does not specify the exact location of each vertex property 

anymore. Contours which are segmented based on this description can comply with 

any of the possible strings as for example

abbbbbbbbbbbcbbb 

aaaaaabbbbbbcbbb 

aaabbbcccccbbbbb

Unlike active contours with only one global energy function (corresponding to the 

expression a*), each vertex can obtain up to |E| different states. To find the optimal 

contour in the resulting state space is the task of the optimisation procedure. Olstad 

integrates a finite-state machine based pattern-matching algorithm into a dynamic 

programming optimisation (cf. section 3.1.3.2). Effectively this algorithm parses the 

regular expression, generates a state space containing all possible strings and calculates 

the overall energy for each of these alternatives.
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While the terminals of the grammar could in theory represent any internal or exter­ 

nal energy function, Olstad proposes a set of constraint functions which are combined 

to form a particular external energy function. Image-based constraints are

(3.28)

EMerAVg(<ln) = ^(/(q», Qn+l) - Vfl) (3.29)

where /(qn , qn+i) is the average pixel intensity of all pixels connecting qn and qn+i on 

a straight line. VQ is a user defined threshold parameter.

Constraints based on the geometry of a contour are

(3.30)

(3.31)

= /(l|q»-pB ||) (3-32)

Some of the above functions include weighting functions v(x) affording an uncer­ 

tainty by smoothing the function arguments:

vs (x) = 1 - e~*/x , a = - In ~Vx (3.33)

ve (x) = e^ (3.34) 

where j3 controls the growth of the exponential function.
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3.1.3 Optimisation

Active contour models are considered to be active because the usually iterative min­ 

imisation of its energy function causes the model to change dynamically. The slithering 

movement of the contour during the iterations has lead to the nickname snakes. The de­ 

formation of the active contour from the initial estimate to its final shape is performed 

by an energy minimising optimisation process. In the following the classic optimisation 

technique as well as other techniques applied for active contour models are reviewed.

3.1.3.1 Variational Approach

The classic model is embedded in an Euler-Lagrangian setting, using variational cal­ 

culus in order to derive a differential equation solved by an iterative minimisation 

technique using sparse matrix methods.

However, this variational approach does not guarantee global optimality of the so­ 

lution and requires estimates of higher order derivatives of the discrete data. Moreover, 

hard constraints cannot be directly enforced unless the constraints are differentiable, 

in which case higher-dimensional spaces are required for more unknowns. Given a de­ 

sired constraint term such as a minimum inter-vertex distance, it can only be enforced 

by increasing the associated weighting, which will force more effect on this constraint, 

but on the cost of other terms. Further disadvantages of the variational approach are 

the numerical instability and the tendency for vertices to bunch up on strong image 

features. [115]

3.1.3.2 Dynamic Programming

To overcome the problems related to the variational optimisation approach presented 

in the previous section, in [108] AMINI et al. have proposed dynamic programming as 

an approach to minimise the energy of active contour models. Their approach allows 

the introduction of hard constraints directly and in a straightforward manner while at 

the same time ensuring a globally optimal solution with respect to the search space. 

Numerical stability is ensured by moving the contour vertices on a discrete grid without 

any approximation requirements.
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In general dynamic programming [125] is an optimisation tool with applications 

beyond the segmentation of contour points for which it has been applied in various 

contexts [16,20,126-128]. The optimisation problem is viewed as a multi-stage decision 

process, the basic steps of which can be identified as

1. decompose an optimisation problem into smaller sub-problems,

2. find and store the optimal solution for each of the sub-problems,

3. select the solution for a sub-problem, if the sub-problem becomes part of the 

overall solution

Through this strategy the dynamic programming bypasses local minima as it is 

embedding the minimisation problem in a family of related problems. With the ac­ 

tive contour model this is achieved by replacing the minimisation of the total energy 

measure by the problem of minimising a number of sub-energies in the form:

Emake(Q) = min Esnake (C0 , Ci, . . . , CN_!) (3.35)
dp

(3.36)

(3.37)

where each variable is allowed to take only TO possible values and

Ei(Ci) = Wint Eint (Ci) + wext(wimage Eimage (Ci) + wcon Econ (C{)} (3.38)

In other words, the problem of segmenting the complete contour is decomposed into 

finding a number of smaller optimal contour segments. As it is not known a priori which 

of the possible contour segments will be part of the globally optimal solution, for each 

contour candidate its optimal contour segment has to be determined and stored until
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in a final backtracking step the optimal segments are connected to form the optimal 
contour.

The complete dynamic programming algorithm shown in Table 3.2 is based on 

[108] and [72]. It is used throughout this thesis wherever traditional active contours are 
applied and forms a basis for the presented novel approach of fuzzy active contours. 
The central element of the algorithm is the recurrance relation

Si(Q) = wMEM (Cl)+w^(wia^Ei^e (Ci)+wemEem (Cl))+^Si-i(Ci-i) (3.39)
Ci_i

realising the determination of optimal contour segments. Its realisation 5(n, m) in 

Table 3.2 represents the minimal energy level that is possible for the vertices 0,..., n if 

the nth vertex is the candidate cn ,m . T(ra, m) in the algorithm holds the index k (k = 

0... M — 1) that minimises the expression and thus points to the optimal predecessor 

of the candidate cn>m . After all vertices have been processed, the new boundary is 

obtained by tracing back the pointers, beginning with the candidate that has a minimal 

S(N — 1, m) value. In most applications the algorithm is repeated until the change of 

the total active contour's energy /\Esnake is smaller than a prescribed threshold 9.

Typically Eint is calculated over the vertices i and i — 1 while Econ requires infor­ 

mation from the vertices i, i — 1 and i — 2. Consequently in an open contour for the first 

vertex only Eimage can be calculated and pointers to preceding candidates do not exist 

(cf. Table 3.2, lines 1 and 2). The optimisation of the second vertex involves Eimage 

as well as Eint (lines 3 to 5). The remaining vertices of an open contour as well as all 

vertices of a closed, periodic contour operate on all energy terms (lines 6 to 9).

As an example Figure 3.2 visualises the segmentation of a contour using dynamic 

programming. Circles denote the candidates of the active contour. The arrows indicate 

the pointers calculated during the first phase of the dynamic programming algorithm. 

Starting at the upper right candidate, which is assumed to have the minimal energy 

value, backtracking follows the red arrows, connecting optimal candidates (grey circles) 

for each vertex. Optionally interpolating these vertex positions results in a smooth 

contour (blue line).
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1.
2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

for all m
5(0, m) = Wext

for all m

5(1, m) = mm[wintEint (c1:m) + wext wimageEimage (Cl ,m ) + 5(0,

forn = 2... N - 1 

for m = 0... M — 1
i^l n Tn\ —— 1Y11TI 71J • jP?- *lf* \ -4~ 1/1 t ( 111 • /•*?• (f* \*^^/t, uii) — il^u ^ uy m£-f-:'m£V l~n,mJ i^ ^ercfv^zma^e-^zma^e^n^/

+u;con £'con (cn,m)) + S(n - 1, fc)] 
T(n, m) = fcmin

= min5(A^- l,m)

mmin = T(N- l,mmin ) 

forn = N - 1 . . . 1

mmin = T(n, 

repeat from 1. until AEsnake < 0

Table 3.2: Dynamic programming algorithm for a non-cyclic active contour.

Figure 3.2: Backtracing optimal pointers (red) result in a contour made up of optimal 

vertices (grey). These may subsequently be used to interpolate a smooth contour (blue).
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3.1.3.3 Other Optimisation Strategies

Another optimisation strategy allowing for hard constraints is the greedy algorithm 

[109], which is regarded as being stable and efficient. The algorithm however does not 

guarantee to find the global optimum. Also the selection of appropriate thresholds and 

weights introduces problems in the application of the approach.

Simulated annealing is a stochastic relaxation technique which is based on the 

physical process of annealing a metal. At high temperatures the atoms are randomly 

distributed. With decreasing temperatures they arrange in a crystalline state minimis­ 

ing their energy. In [104] this technique was applied to active contours, though the 

computational demands proved to be very high.

3.2 Survey of Fuzzy Logic in Image Processing

Where uncertainties originate from sources such as the vagueness of linguistic expert 

knowledge (cf. section 2.2) fuzzy logic is an appropriate approach to both represent 

and process such uncertainties.

3.2.1 Relevant Basics of Fuzzy Logic

The basics of fuzzy logic is the fuzzy set theory founded by ZADEH [129,130]. Fuzzy 

set theory 'in the last two decades has developed along two lines:

1. As a formal theory which, when maturing, became more sophisticated and spec­ 

ified and was enlarged by original ideas and concepts as well as by 'embracing' 

classical mathematical areas such as algebra, graph theory, topology, and so on by 

generalizing (fuzzifying) them.

2. As a very powerful modeling language, that can cope with a large fraction of 

uncertainties of real-life situations. Because of its generality it can be well adapted 

to different circumstances and contexts. (.. J'[131]
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The basic element of fuzzy set theory is the extension of classic or crisp sets to fuzzy 

sets while at the same time providing appropriate operations on these continuous sets.

This concept provides the basis for an extension of the traditional Boolean logic 

to a continuous or fuzzy logic. Here logic variables are defined as fuzzy sets while the 

operations defined for fuzzy sets allow for a definition of fuzzy logic operations such 

as logical AND and OR. Now it is possible to formulate fuzzy logic rules and to draw 

conclusions.

While the continuous representation of input variables is closer to the real world 

than the binary logic it is still not close enough to the human representation of vague 

information. Here the key point is language, which is integrated into fuzzy logic through 

linguistic variables. This concept allows for the mapping of linguistic terms to fuzzy sets, 

consequently allowing for a formulation of logic rules in a linguistic form as linguistic 

rules.

As the next more complex application of fuzzy rules fuzzy inference systems can 

process an input through a collection of fuzzy rules, the rule or knowledge base. Unlike 

such systems in Boolean logic an initial fuzzification step is needed to relate the usually 

crisp input values to fuzzy sets which can be handled by the system. By definition the 

result of the subsequent inference of the fuzzy rules is a fuzzy conclusion. Should a non- 

fuzzy output be required, a defuzzification is performed to translate the fuzzy result 

back to a crisp value.

In the following the above mentioned elements of fuzzy set theory and fuzzy logic 

are briefly summarised to define a notation and to make this thesis reasonably self- 

contained. For details consider the many available text books such as [131-140].

3.2.1.1 Fuzzy Sets

Sets in general can be regarded as mathematical abstractions of objects in the real 

world. Set theory provides such abstractions as well as operations to process these sets.
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A classical or crisp set Ac can be defined as a collection of objects, or elements, 

x e X where Ac C X, The definition of Ac can be performed by either listing its 

elements, for example

Ac = {1,2,3,4,5}, (3.40) 

by stating conditions for membership

Ac = {x\x<5,xtM} (3.41)

or by using the characteristic function f^., in which 1 indicates membership and 0 

non-membership respectively:

1 : x < 5, x e IN
(3-42) 

0 : £ > 5, x €. IN

This dual membership is characteristic for a crisp set. A fuzzy set A however, is 

characterised by a membership function HA, which assigns to each element x e X a 

degree of membership where (J,A(X) 6 [0,1], HA(X] € 'R ;

(3.43)

An application for a fuzzy set is the definition of a fuzzy number. Figure 3.3 illus­ 

trates such a (discrete) fuzzy number /, with mean value 10 and spread s, defined by 

fj,(l) > 0 V / 6 {/o - s,... , /o + s}. An example "approximately 3" can be defined by

A = {(1,0.3), (2,0.6), (3,1.0), (4,0.6), (5,0.3)} (3.44) 

Note that for convenience those elements with /^(rc) = 0 are normally not listed.
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Figure 3.3: A triangular fuzzy number.

3.2.1.2 Fuzzy Rules

Logics can be characterised by their truth values, operators and reasoning procedures. 
In Boolean logic, truth values can be either 0 (false) or 1 (true). Based on these truth 
values operators are defined via truth tables. Two familiar examples for two statements 

A and B being

A

0

0

1

1

B

0

1

0

1

A

0

0

0

1

V

0

1
1
1

defining the operators AND (A) and OR (V). There are situations however, where 
two truth values are not sufficient and where truth tables cannot easily be assigned 
a name to reflect its function [131]. As a solution fuzzy logic regards both the truth 
values and the statements as fuzzy sets (or more precisely as linguistic variables which 

are presented below).

Let v(A) be a fuzzy set representing the truth value of the statement A with

(3.45)
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then the truth value TRUE can be defined as a fuzzy set

u(TRUE) = {(0.5, 0.6), (0.6, 0.7), (0.7, 0.8), (0.8, 0.9), (0.9, 1.0), (1.0, 1.0)} (3.46) 

With the negation operation defined as

= u(NOT A) = 1 - v(A) = {(I - x, ^(x}\x e [0, 1]}, (3.47) 

the truth value FALSE becomes

i;(FALSE) = {(0.0, 1.0), (0.1, 1.0), (0.2, 0.9), (0.3, 0.8), (0.4, 0.7), (0.5, 0.6)} (3.48) 

The logical operations AND and OR are normally defined as

v(A) A v(B) = v(A AND B) = {(x, min[//A (a;), /IB («)])} (3.49) 

and

v(A) V v(B) = v(A OR B} = {(x, max[//A (x), HB(X)])} (3.50) 

respectively. Similarly the operator => (implies) is defined as

v(A) => v(B) = v(A =>B) = -^v(A) V v(B) = {(x, max[l - HA (X), ^B(X)})} (3.51) 

providing the basis for reasoning procedures such as the common modus ponens
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It is applied in reasoning to come from a premise (A is TRUE) and an implication 

(IF A THEN B) to a conclusion (B is TRUE). Using fuzzy logic allows approximate 

reasoning where

1. the statements as well as

2. the conclusion may be fuzzy.

The elements of fuzzy logic described so far provide the formal basis for an intuitive 

interface to human reasoning by introducing fuzzy inputs (statements) and output 

(conclusions).

To make the transition from formal rules such as

IF A is 0.6 AND B is 0.8 THEN C is 0.9

to a more intuitive representation of knowledge in the form of linguistic rules such 

as

If the pixel is bright then noise is very likely

it is necessary to integrate elements from the human language into fuzzy logic. 

The concept of linguistic variables provides this integration and is summarised in the 

following.

3.2.1.3 Linguistic Variables

The first step in the integration of linguistic terms into fuzzy logic is an analysis of the 

possible interpretations the concept of the fuzzy membership allows. The membership 

plays a central role in fuzzy systems as it represents the connecting element between 

the real world and the numerical world of mathematics and logic. Each application 

may require a different view on this relation. TlZHOOSH gives an overview about the 

different interpretations of the membership in the literature:
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• Membership as similarity When classifying objects through the definition of 

a prototype, memberships reflect the degree of similarity between an object an 

the prototype. The feature space is used to determine this degree of similarity. 

Assigning a membership of 0.9 to an object could for example represent the 

numerical mapping of the linguistic terms "very similar" or "nearly identical".

• Membership as probability Membership can also be interpreted as an object's 

probability of belonging to a certain class. The terms "very likely", "likely" and 

so on can be represented as fuzzy sets. When stochastic processes cannot be 

handled by probability theory, these terms may be determined subjectively. In 

this case using fuzzy sets may be useful to describe such processes. However, 

fuzzy membership itself must not be confused with probability (on the differences 

consider for example [131]).

• Membership as approximation In some applications the membership degree 

reflects the quality of an approximation of a measured value and the real or 

reference value.

• Membership as intensity A different interpretation of membership is the in­ 

tensity with which the property of a set X is true for an element x £ X. A good 

example is the brightness for which terms such as "very bright", "dark" and so 

on can be found.

These interpretations illustrate the usefulness of a linguistic representation of mem­ 

bership degrees. ZADEH formulated the motivation as follows:

'In retreating from precision in the face of overpowering complexity, it is 

natural to explore the use of what might be called linguistic variables, that is, 

variables whose values are not numbers but words or sentences in a natural 

or artificial language. The motivation for the use of words or sentences 

rather than numbers is that linguistic characterizations are, in general, less 

specific than numerical ones.'[130]
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The concepts of a linguistic variable formalises the relation between linguistic and 
numerical values as follows. A linguistic variable is defined by a quintuple

(x,T(x),U,G,M) 

in which

• x is the name of the variable,

• T(x) is a set of its terms or linguistic values,

• U the universe of discourse for x, with the base variable u,

• G is a (syntactic) rule generating the term names X, and

• M is a (semantic) rule for associating with each X its "meaning" M(X) which is 

a fuzzy set on U.

Figure 3.4 illustrates the transition from the linguistic level to the numerical level 

for the following example. Note that in this example the rules G and M are not formally 

defined. Both the generation of term names and the definition of associating fuzzy sets 

are performed subjectively by a human expert. This is the case in many applications 

and shows where subjectivity is introduced in the otherwise precise definition of a 

linguistic variable.

Consider a linguistic variable with

x = pixel brightness 

T(x) = {very dark, dark, grey, bright, very bright}

With U = [0,255] the base variable u is the pixel brightness in grey levels. An 

example for the assignment of a fuzzy set to the term X = dark is

M(dark) = {(u
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where

[64,126]

0 : u > 126

linguistic domain

linguistic variable

syntactic rules

{very dark, dark, grey, bright, very bright} terms

semantic rules

membership 
functions

numerical domain

Figure 3.4: Transition from the linguistic domain to the numerical domain through a 

linguistic variable. (Adapted from [22])

3.2.1.4 Linguistic Rules

Applying the concept of linguistic variables to fuzzy logic rules is straightforward. For 
each input and output statement a linguistic variable is applied. In the example rule

IF the pixel is bright THEN noise is very likely

for the input statement the pixel the linguistic variable pixel brightness is applied, 
while for the output statement noise a linguistic variable probability with T(x) = 

{not likely, ..., very likely} is defined and applied.
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The way such linguistic rules are applied in an inference system is summarised in 

the following section.

3.2.1.5 Fuzzy Inference Systems

Applying the above elements of fuzzy logic to a practical problem requires an appro­ 

priate tool. Fuzzy inference systems (FIS) provide such a tool which is powerful and 

flexible enough to solve different problems.

Although historically applied mainly to control problems, fuzzy inference systems 

have proved to be useful in a variety of application areas. The main motivation being 

the possibility to model systems by exploiting expert knowledge when they cannot be 

modelled mathematically.

To apply a fuzzy inference system to problems based on numerical rather than 

fuzzy values, it is necessary to transform or code the numerical input values to the 

fuzzy domain. They are then processed by inferencing a rule base which holds expert 

knowledge represented through a collection of (linguistic) fuzzy rules. Finally, the re­ 

sult in the fuzzy domain is transformed back to a crisp numerical value. The coding 

(fuzzyfication) and decoding (defuzzyfication) are normally necessary as fuzzy inference 

systems are usually only one component in an otherwise crisp information process.

Figure 3.5 shows the general structure of a fuzzy inference system, the components 

of which are detailed in the following.

inputs
— N 
—/

coding

xxxx
xxxx
fuzzification

=*

knowledge base

rule 1 
rule 2

rule k

V J

inference

=*

decoding

V J

defuzzification
j

outputs

Figure 3.5: General structure of a fuzzy inference system. (Adapted from [22])
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Fuzzification — Coding of Inputs

The input of a fuzzy inference system is defined by its numerical (crisp) input variables 

Ui € Ui,i € [I,/]. For each input, a linguistic variable xt is defined upon creation of 

the fuzzy inference system. When the system executes the fuzzification procedure, for 

each input value its memberships to all the linguistic terms of the associated linguistic 

variable are determined:

As an example consider the above defined linguistic variable x = pixel brightness. 

If an input grey level is u\ = 150 then the following memberships are calculated as 

(cf. Figure 3.6): /A,ery dark(150) = 0, ^dark (150) = 0, /Vey(150) = 0.6, //bright(150) = 

0.4, /jvery bright (150) = 0. The whole of these memberships represent the fuzzified pixel 

brightness value 150.

pixel brightness

255

Figure 3.6: Fuzzification example for the linguistic variable pixel brightness. (Adapted 

from [22])

Rule Base — Representing Expert Knowledge

The relation between the inputs of a fuzzy inference system and its outputs is described 

through a collection of linguistic rules — the rule base, or more general the knowledge 

base. Upon creation of the FIS, the rules Rk , k e [1, K] are set up to represent an 

expert's knowledge of the problem to be solved by the FIS. The formal specification
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as well as the complexity of a rule depends on the functionality of the actual imple­ 

mentation of the FIS which is applied. In general simple IF-premise-THEN-conclusion 

rules are applied in the form

Rk : IF Pk THEN Ck 

A simple example rule base follows:

RI : IF pixel brightness is dark THEN noise is not likely 

RI : IF pixel brightness is grey THEN noise is likely 

R3 : IF pixel brightness is bright THEN noise is very likely

Where multiple input variables are involved their dependencies are accounted for 

through premises composed of sub-premises PM connected by fuzzy logical operators

Pk = Pkl Qkl Pfc2 0fc2 ' ' '

Inference — Reaching a Conclusion

For simple rules such as in the above example it is sufficient to execute an implication 

operation to come from a premise to a conclusion. A rule base consisting of a number 

of rules however which may also contain multiple sub-premises, for example

R! : IF Pu V Pi2 THEN Ci 

R2 : IF P21 A P22 THEN C2

requires an inference procedure involving the three stages aggregation, implication and 

accumulation.
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Aggregation. For each sub-premise Pki its truth value is calculated. Operators then 

aggregate these in order to obtain a single truth value vj, for the whole premise Pk . The 

aggregation operators correspond to the fuzzy logical operators Qki specified in the rule. 

Normally fuzzy logical AND and OR are applied where the corresponding aggregation 

operators are min and max respectively. For the above example the following operations 

are performed:

vi = v(Pn V P12 ) 

v2 = v(P2i A P22 )

Implication. The task of this stage is to determine the degree of fulfillment of a 

conclusion based on the truth values of the premise. For each rule Rk of the same 

output variable, the truth value of its premise vk is used to weight the membership 

function of the linguistic term given in the conclusion Ck . The result is a fuzzy set Zk . 

Normally the minimum or the product operator is applied.

For example with

Vi = v(pixel brightness is dark) = 0

v2 = v(pixel brightness is grey) = 0.6

u3 = v(pixel brightness is bright) = 0.4

an implication applying a minimum operator yields

Zl = {(u,nZl (u))} = {(u,mmvi,iJ.ntA | ike |y 

Z2 = {(u^Z2 (u)}} = {(
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Accumulation. The accumulation stage integrates the fuzzy result of Z\. of each 

rule's implication into a single fuzzy result Z for all rules involving the same output. 

Normally the maximum operator is applied in the accumulation:

Defuzzification — Decoding of outputs

To transform the fuzzy result of the inference back to the numerical domain, that is to 

a crisp output value, defuzzification is performed.

The design of a fuzzy inferences system includes the definition of output variables 

u0 6 U0 , o e [1,0]. Analogous to the fuzzification, for each u0 a linguistic variable z0 is 

defined. To obtain a crisp value u0 from the fuzzy result Z several different methods 

exist, and selecting the most appropriate depends on the particular application. From 

a philosophical viewpoint as this stage requires an interpretation of the meaning of all 

possible fuzzy sets Z this choice is not always straightforward. Consequently devising 

new interpretations (that is, defuzzification methods) is subject to continuous research. 

One practically relevant method is presented here as it is used in this thesis.

The centre-of-area (COA) method, also called centre-of-gravity (COG) method, 

interprets the centre of the area spanned by the fuzzy set Z as the best crisp interpre­ 

tation of this set. The COA is defined as

£ u/4z(«)
u£U. /o co\u = —^——r^r- (3.52)

To visualise this method consider the example provided in Figure 3.7
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Figure 3.7: Defuzzification example applying the centre-of-area method.

3.2.2 Fuzzy Image Processing

Fuzzy image processing as an independent area of research is a relatively young disci­ 
pline. It seems that there are no comprehensive text books. A first attempt to integrate 

the many separate theoretical approaches developed over the last two decades is [22]. 
This book of TIZHOOSH as well as most of the literature surveyed in this project mainly 
covers low-level methods and local operations such as image filtering. Practically ev­ 

ery well-referenced operator developed in (crisp) image processing research has a fuzzy 

counterpart.

TIZHOOSH defines fuzzy image processing as follows:

'Fuzzy image processing includes all approaches of digital image processing, 

where the images, their segments or features of images and their segments 

are interpreted, described and processed as fuzzy sets. In which way this is 

performed, depends both on the problem and the particular fuzzy approach.'

Of particular relevance to this thesis is the question of how fuzzy logic can be utilised 

to improve the segmentation of vaguely describable objects. Most existing approaches
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apply fuzzy logic in low or intermediate levels of image processing with either little or 

no relation to complete objects. There does not seem to exist a method to describe an 

object on a high level of abstraction, preferably linguistic, while at the same time using 

this description in a segmentation procedure. Some relevant approaches are summarised 

in the following.

3.2.2.1 Object-independent processing

Amongst the few recent medical image processing applications where fuzzy logic is 

applied are [141,142] where tumors are to be segmented in MR images. Both arti­ 

cles present a low-level pixel-based segmentation where pixels are classified into tissue 

classes. The classifiers are trained in a preceding supervised or unsupervised learning 

stage.

When concerned with segmenting images the subject of (object independent) edge 

detection has long since attracted the attention of many researchers. An early example 

for an edge detection method applying fuzzy set theoretic methods is [143]. PAL and 

KING present the segmentation of wrist bones in X-ray images, where in a first stage 

fuzzy contrast enhancement and smoothing are applied. To perform these fuzzy oper­ 

ations the grey-level image is transformed to the fuzzy domain by interpreting each 

pixel as a fuzzy set. The membership values denote the degree of having a brightness 

level relative to some brightness level. After the fuzzy enhancement operations are per­ 

formed the image is transformed back to the spatial image domain. The actual edge 

detection is performed as a local operation in this crisp domain.

Consequently this approach does not fully integrate fuzzy set theoretic operations 

into an edge detection algorithm. In [144] a fully integrated pixel-based edge detection is 

presented based on a model of an edge. The model is described explicitly and processed 

using a fuzzy reasoning approach. An implicit representation of an edge is used in [145], 

where fuzzy edges are learnt from 6 x 6-pixel templates.

The concept of a fuzzy image utilised in [143] was refined in [132] in that the mem-
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bership values of the pixel's corresponding fuzzy sets can be related to any property, 

depending on the application. This notion was applied in [146] for example. Here the 

fuzzy property relates to uniform surfaces. Applying fuzzy image processing operations 

such as smoothing leads to a manipulation of the image with respect to the modelled 

property, such as smoothing surfaces. While this approach does not merely look at 

local edges it still defines a general object property and as such it is still independent 

from a specific object.

3.2.2.2 Object-related processing

The description of object contours utilising fuzzy methods has mainly been studied 

in the context of analysing previously segmented contours. Here shape analysis and 

contour decomposition are the main subjects to facilitate feature selection and primitive 

extraction in that context.

PAL et al. have presented a measure of the fuzzy "arcness" of a curved line segment 

x:

(x) = (l - ^^ (3.53)

where a is the Euclidean distance between the two endpoints of x and I is the actual 

length of the arc segment. As this measure is applied in the fuzzy domain, the formalism 

contains a fuzzification parameter Fe (cf. [132] or details).

A segmented, binary contour is chain coded and analysed using this arcness mea­ 

sure to distinguish three primitives: a straight line LI, with / being the line length, a 

clockwise arc A^ with the degree of arcness //, and a couter-clockwise arc A^ respec­ 

tively.

A typical description of a contour resembles for example

-^11^0.86^4^0.272-^1^0.662-^4^0.598-^7^0.272 ̂ 0.765^0.816^0.272-^1^0.765
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This intermediate-level representation is a preceding stage in utilising high-level 

knowledge to recognise the contour, that is the underlying object. PAL suggests to 

apply a set of application specific thresholds to the above basic primitives to select a 

specific set of primitives. These are then used to develop a grammar to recognise the 

contour, that is its resulting string, syntactically [147].

It is desirable to perform such a syntactic processing with a continuous version of 

formal grammars. Such fuzzy grammars exist [22,132] as well as their related mech­ 

anisms such as fuzzy automata. A comprehensive bibliography is given in [148]. A 

recent application example is the recognition of hand-written script [149]. Previously 

segmented contours are decomposed into sequences of segments of constant curvature. 

Using a fuzzy syntactical approach these segments are assigned to sub-allographs, which 

in turn are related to allographs, which is when the recognition is reached. Both sub- 

allographs and allographs are defined by a fuzzy grammar. Each sub-allograph is a 

sequence of primitives, each primitive possessing a starting point, an end point as well 

as one or more characteristic points in between. Features can be derived from these 

primitives, such as curveness, discontinuity and tilt.

Using fuzzy grammars to incorporate a priori knowledge into the actual segmen­ 

tation process, similar to OLSTADS approach utilising traditional grammars (cf. sec­ 

tion 3.1.2.3), does not seem to exist.

RALESCU et al. [150] defines fuzzy primitives not to analyse previously segmented 

contours but to actually perform a segmentation step. This approach is based on a 

group-and-delete technique where an image is binarised into a large number of short 

line segments. These lines are then linked or erased depending on some criterion. With 

RALESCU et al. the grouping is based on perceptual organisation. Basic human visual 

properties are mimicked by the model in recognising straight lines or L-junctions (and 

the way we distinguish one from the other). The related primitive consists of two 

straight line segments LI and L2 as well as two constraints on the endpoint distance 

and the inner angle between these lines (cf. Figure 3.8a). Both constraints are modelled 

through fuzzy sets reflecting the opinions of an expert on when to consider two lines
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near enough to belong to a common line or junction (cf. Figure 3.8b), as well as when 

the inner angle represents a straight line or a junction (cf. Figure 3.8c).

Endpoint ^ A
Distance.___LI

3.
\ Euclidean 

^distance

(b)

straight lin<\ / L-junction \ /straight line

„ _____, ^_____t Degrees 
* 0" 30 50 140 I60

(c)

Figure 3.8: Modelling L-junctions: a) example of L-junction (endpoint distance and in­ 

ner angle); b) proximity membership function; c) L-junction angle membership function 

(dashed membership functions are for proximity of colinear segments, (from [150])



Chapter 4

A Fuzzy Active Contour

This chapter introduces the concept and presents the theoretical basis of the fuzzy 

active contour. Experimental results are presented in chapter 5 to demonstrate the 

validity of the theoretical properties of the fuzzy snake approach and to illustrate the 

application of the technique to medical imaging sequences.

4.1 Introduction to Fuzzy Active Contours

A new method for representing and tracking of object boundaries is presented in this 

chapter. The novel concept of fuzzy active contours or fuzzy snakes is developed to 

allow for the integration of uncertain a priori knowledge into an active contour model.

The fuzzy active contour combines the concept of active contours with elements of 

fuzzy logic where the following benefits of each approach are exploited.

Active contours

• provide a segmentation method which is capable of handling variations in image 

features and object shape,

• integrate low-level constraints to utilise general object knowledge,
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• allow for the integration of high-level constraints to utilise specific object knowl­ 

edge.

Fuzzy logic offers

• a formal theory which provides tools to handle uncertainties, such as

• linguistic rules which can provide an intuitive, verbal specification of the proper­ 

ties of an object's boundary to utilise high-level expert knowledge;

• appropriate algorithms and interfaces to process linguistic rules and integrate 

this fuzzy concept into a crisp numerical context.

Analogous to the image energy Eimage of an active contour, the fuzzy active contour 

is capable of representing the appearance of an object in the image. Further properties 

of the object's boundary segments, such as shape, may be represented in a similar way 

to the function Econ in an active contour.

This is achieved by introducing fuzzy energy functions and establishing a linguistic 

rule base, which describes each of the fuzzy snake's segments. The contour candidate's 

external energy Eext is then evaluated through fuzzy inference and subsequent defuzzi- 

fication (cf. section 3.2.1.5).

In [151] deformable models are combined with fuzzy image processing operators to 

exploit uncertain knowledge on a low level. The proposed fuzzy active contour goes 

beyond that in providing an interface to high-level uncertain knowledge.

Figure 4.3 1 shows the principal structure of the calculation of the fuzzy energy 

function with integrated linguistic rules. Similar to traditional active contours (cf. Fig­ 

ure 4.1) salient image-based features are extracted. Geometric features are also calcu­ 

lated providing a basis for the exploitation of a priori shape knowledge. Note that in 

principle any additional constraints may be integrated into the fuzzy active contour.

J For a brief introduction to the Structured Analysis and Design Technique (SADT) refer to Ap­ 

pendix A.
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Image as well as constraint features are fuzzified to allow for their processing in a 

fuzzy inference machine. This stage evaluates a set of rules which specify the desired 

properties of the currently processed contour candidate. After defuzzification an ex­ 

ternal energy value is output. It is compatible with traditional active contours in that 

low values represent a good compliance of the candidate with the model. Unlike active 

contours the fuzzy snake's model is partially represented by a set of linguistic rules.

The traditional active contour approach was investigated during this research (cf. 

chapter 5). One of the findings is that the results can be improved considerably by ex­ 

tracting image features through multiple methods, obtaining multiple image evidences. 

Consequently the active contour was extended by a weighted sum of edge-, region-, and 

motion-based operators (cf. Figure 4.2, modules A1-A3).

The fuzzy active contour also exploits multiple image evidences. They are not simply 

added however, but fully integrated into the overall fuzzy concept (cf. Figure 4.4, 

modules A1-A3).
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Figure 4.1: Principle structure of external energy calculation for traditional active con­ 

tours.
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*• 01

Figure 4.2: Principle structure of external energy calculation for traditional active con­ 

tours using multiple image evidences.

Figure 4.3: Principle structure of external energy calculation for the fuzzy active con­ 

tour.
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Figure 4.4: Principle structure of external energy calculation for the fuzzy active con­ 

tour. This diagram also details the use of multiple image evidences.
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Also unlike traditional snakes for each segment of an object's boundary a differ­ 

ent set of rules may be applied. Furthermore the approximate length of each contour 

segment may be specified to both improve the segmentation process and to reduce 

computational complexity.

This approach allows for a formal specification of an object which is very similar 

to a human verbal description such as

"A medium length dark arc, bending right, followed by a medium length grey line, 

a right bending flexible corner and a short rigid line."

The formal description is easily derived from the above, simplifying knowledge 

engineering as well as the application of the fuzzy active contour. A global set of 

linguistic rule bases is defined for each application, defining what features make for 

example a "dark arc" or a "rigid line". As these fuzzy primitives may consist of a 

variable number of contour vertices, a particular selection method determines which 

rule base has to be applied for a given contour candidate.

4.2 Fuzzy Contour Model

4.2.1 Multiple Segments

Despite the advances in the development of traditional active contours a fundamen­ 

tal limitation remained in terms of representing a priori knowledge concerning more 

complex objects which were to be detected. Namely that all vertices of the active con­ 

tour were characterised by the same local energy function, resulting in a single, global 

description of the object.

In order to overcome this problem, OLSTAD introduced a grammatical descrip­ 

tion of the snake's energy function (cf. section 3.1.2.3). Figure 4.5 shows an example 

of a contour, which can be described as a sequence of four different external energy 

functions E*xt , E*xt , Ecext and E*xt , represented by the respective terminals a, b, c
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and d. The grammatical expression describing such a segmented boundary would be 

a = a*b*c*d*, where * is the closure operator which allows parts of a pattern to be 

arbitrarily repeated. A pattern-matching algorithm is incorporated within the active 

contour's energy minimisation process which constrains the resulting contours to only 

those that comply with the grammatical expression. Three fundamental drawbacks in 

this algorithm can be identified:

1. The different energy functions do not intrinsically consider inexact a priori knowl­ 

edge.

2. The length of a contour segment cannot be specified, although an approximate 

value may be known in advance.

3. The algorithm is computationally expensive, since the closure operation gener­ 

ates a large number of possible states in the finite-state-machine based pattern 

matching.

The fuzzy active contour solves these problems. It retains only the basic principle of 

such a multi-segment contour model while the philosophy of both its high-level contour 

description and its algorithmic details are substantially different.

Figure 4.5: Example object. This synthetic boundary demonstrates a multi-segment 

object contour. The boundary segments have a different shape (local curvature) as 

well as a different appearance in the image (edge contrast), while all vertices within 

a segment share similar properties. The contour's vertices pn are visualised by lines 

perpendicular to the contour. Thick lines illustrate the segment boundaries.
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While OLSTAD'S contour description is solely grammatical, the fuzzy snake repre­ 

sents object boundaries in a form closer to natural language (cf. section 4.2.2). Also 

unlike OLSTAD'S approach, a (fuzzy) segment length can be specified for each contour 

segment (cf. section 4.2.3), with the fuzzy contour describing the segment properties 

through fuzzy rule bases rather than algebraic functions (cf. section 4.2.4). The de­ 

tailed realisation of these features, original to the fuzzy active contour, are described 

in section 4.3.

4.2.2 Contour Description

The grammatical approach described in the previous section extends the representa­ 

tional power of the traditional active contour. It allows for a more detailed exploitation 

of a priori knowledge by using different energy functions for subsequent segments of 

an object's boundary. This conversely may considerably increase the number of energy 

functions, their parameters and the weighting parameters between them, and often 

these numerical parameters are obscure and their refinement time consuming.

This is especially true in situations where the a priori knowledge is imprecise or 

uncertain, or where it is only available in the form of verbal expressions. It then becomes 

much more desirable to use a more intuitive, verbal contour description. The fuzzy snake 

allows for a description that is close to a natural language description of an object's 

boundary.

To illustrate this approach consider the local shape of the example object in Fig­ 

ure 4.5 again. The boundary may be decomposed into four segments. With OLSTAD'S 

model, a grammatical expression to describe this contour could be

a = a*b*c*b*

where a represents an energy function favouring local angles of 160°, while b and c 

favour angles of 180° and 110° respectively. A much more intuitive description would 

be
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"A medium length arc, bending right, followed by a medium straight line,

a right bending corner and a short straight line."

This description can be formalised, where each contour segment is characterised by 

both its length and a property label. Table 4.1 provides the resulting linguistic contour 

description.

D = medium right arc, medium straight line, 

very short right corner, short straight line

Table 4.1: Specification of fuzzy contour description in terms of each segment's length 

and property.

Syntactically a fuzzy contour description D is a concatenation of segment descrip­ 

tions dz , where z 6 [0, Z[ with Z being the number of boundary segments. Each dz is 

decomposed into a fuzzy segment length lz and a segment property zz .

Z 2, (4.1)

The details of these major components of the fuzzy snake's contour model are 

presented in the following sections.

4.2.3 Fuzzy Segment Length

The first element of the fuzzy snake representation is the specification of a segment's 

length \z . To integrate linguistic values such as medium, short, and very short into 

an algorithm, they are translated into a number of snake vertices. In this way the 

fuzzy snake approach permits the specification of a number of subsequent vertices that 

share a common energy function, a parameter constraint which dramatically reduces 

the search space. A crisp length specification however, would not be able to consider
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uncertain information. A new method to specify the length of a snake segment by a 

fuzzy number is therefore presented.

With OLSTAD'S grammatical representation snake segments normally are of arbi­ 

trary length, for example a = a*b*c*b*. Only a crisp length of each segment could 

be given by concatenating the appropriate number of terminals as in the expression 

a = aaaaaabbbbbbcbbb. The fuzzy snake introduces a different notation, where the 

length is expressed as a fuzzy number (cf. section 3.2.1.1).

In the first segment of the contour in Figure 4.5, for a fuzzy length of IQ = 6 and 

a spread of s = 2, the segment specification (6 a) denotes a segment consisting of 

between 4 and 8 vertices, sharing a common property defined by an energy function 

E*ext .

Using the analogy of a grammatical description, the fuzzy snake can now be specified 

as an expression, for example D=(£a) (£b) Uc) (5b).

The absolute number of vertices, however depends on the sampling distance and 

is not a direct measure for the length of a segment. While the actual fuzzy snake 

algorithm uses the absolute length (cf. section 4.3.2), the user-level contour description 

must allow for a length measure relative to the overall length of the contour:

Vz = round(Z2 /./V) (4.2)

With the segment length expressed as a percentage, the above example can be writ­ 

ten as D=(0.^a)(0.^b)(0.05c)(0J5b). These relative lengths can now be mapped 

to linguistic labels as shown in Table 4.2 to realise a contour description as proposed 

in Table 4.1.

4.2.4 Fuzzy Segment Properties

A linguistic representation of a segment's properties is the second kernel element of the 

fuzzy snake model. Property labels such as right arc, straight line, and right
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Linguistic label \z

very short
short

medium

Relative length l*z

5%

15%

40%

Absolute fuzzy

1

3
6

length lz

Table 4.2: Mapping of linguistic labels to fuzzy numbers. Example for the fuzzy contour 

description in Table 4.1 with N = 16.

corner may be used instead of terminal characters such as a,b, and c of the grammat­ 

ical model. This however, is only a replacement of arbitrary labels. The fuzzy snake 

conversely, uses linguistic fuzzy rules to describe all the features a contour may exhibit.

For this objective, a linguistic variable is created for each feature. To describe a 

local shape for example, the local angle at each vertex is measured and mapped to a 

linguistic variable curvature. Fuzzy sets are created and linguistic values assigned to 

characterise the curvature as for example acute right or flat. Taken together with an 

output variable quality, it is then possible to describe each segment's curvature by a 

fuzzy rule base. An example is given in Table 4.3.

The calculation of the active contour's external energy is performed by a fuzzy 

inference, the defuzzified output of which is a crisp quality measure for each contour 

candidate. The details of this approach are presented in section 4.3.3.5.

4.3 Realisation of the Fuzzy Active Contour

4.3.1 Processing a Multi-Segment Active Contour

Multiple external energy functions imply that a number of different calculations have to 

be performed for each vertex. Since the segment length is now variable, several energy 

functions may be calculated simultaneously for vertices either on or near a segment 

boundary. When back-tracking takes place in the dynamic programming optimisation,
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Segment property label Shortcut label Fuzzy rule base

right arc

straight line

right corner

IF curvature medium right 

THEN quality very good 

IF curvature flat left 

OR curvature flat right 

THEN quality very good 

IF curvature strong right 

THEN quality very good

Table 4.3: Property labels defined by linguistic rules. Example for the fuzzy contour 

description in Table 4.1

only one energy function for each vertex succeeds. The selected function thereby de­ 

termines the final state of that vertex.

With the fuzzy active contour each segment's length is specified as a fuzzy number. 

The realisation of this approach requires two separate operations to be performed:

1. The mean and the spread of lz defines the possible states each vertex can be in. 

It hence defines which external energy functions have to be calculated for each 

vertex. With the fuzzy active contour an external energy function is determined 

by its specific rule base. Consequently when calculating the external energy of 

a particular candidate, the appropriate rule base has to be choosen. This oper­ 

ation is performed in module A6 (cf. Figure 4.6) and described in the following 

subsections.

2. The fuzzy membership degrees of lz are taken into account by a modification of the 

dynamic programming optimisation algorithm and is described in section 4.3.2.
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current vertex
calculate 
geometric 
contra inla 

5

local 
curvature

Figure 4.6: Principle structure of external energy calculation for the fuzzy active con­ 

tour. Marked is the module to select the local rule base (A6).

4.3.1.1 Unspecified Segment Length

For a contour specification where the segment length is not specified as for example 

with OLSTAD'S grammatical expression (cf. section 3.1.2.3) many alternative contours 

are valid. Consequently for most vertices all the properties' energy functions used in 

an expression a have to be calculated. This can be visualised in a function table. For 

the example used in the previous sections the expression a = a*b*c*b* leads to the 

function table shown in Table 4.4.

A resulting contour can comply with any pattern that can be generated through 

a, such as aaaaaaaaaaaabcb. An alternative formalism showing this are state graphs 

of finite state machines (FSMs) designed to generate or recognise all possible patterns 

for o? (cf. Figure 4.7).

2 The state graphs used in this thesis follow the MOORE definition. A double circle denotes the 

start state. The state name corresponds to the name of the terminal characters used in the regular 

expression. A state transition occurs when the state machine is in a state and sees the character given 

at the arrow pointing to the target state.
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Vertex

Proper­ 

ties

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

aaaaaaaaaaaaa 

bbbbbbbbbbbbb 

ccccccccccccc 

bbbbbbbbbbbbb

Table 4.4: Energy functions which have to be considered in the Figure 4.5 example, 
when the segment length is not specified.

Figure 4.7: State graph for a finite state machine to generate the patterns defined by 
ex — a*b*c*b*.

In theory the patterns generated by this FSM are of infinite length. In practice 

contours have a finite number of vertices (JV), so that a FSM will perform only a finite 

number of state transitions. Consequently an FSM can be resolved, or expanded, using 

a state graph with no backward referencing links as shown in Figure 4.8.

Figure 4.8: Expanded state graph for a = a*b*c*b*.
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This graph however was simplified to show the formal background of the function 

table, their relation now being obvious: a column of states relates to the possible states 

a vertex may be in. A correct expansion has to assign different state names each time 

a transition is made, as the states do not reflect a vertex' state but the state of the 

whole system. The system state here relates to the state of the active contour.

Figure 4.9: First nodes of a completely resolved state graph.

The first nodes of a completely resolved FSM are shown in Figure 4.9. Here the 

b state in the third column is split into two alternative states b22i and b222- This 

demonstrates an important aspect of active contour optimisation: all possible paths 

have to be evaluated before the optimal pattern can be found, each vertex' final state 

is known and hence the contour is detected.

In the above example the overall energy of the first three vertices may be different 

when either the energy function sequences aab or abb are evaluated. Hence the active 

contour will either be in state b22i or b222-

4.3.1.2 Specified Segment Length

With the absolute fuzzy segment length lz (cf. section 4.2.3) the function table for the 

example contour description D = IQZQ li^i li^i l&z — (6a.) (£b) (1 c) (5b) is shown in 

Table 4.5.
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Vertex

Proper­ 

ties

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

aaaaaaaa

bbbbbbbbbb

c c c c c c c 

b b b b b b b

Table 4.5: Energy functions which have to be considered in the Figure 4.5 example, 

when the segment length is specified as a fuzzy number.

The related state graph is given in Figure 4.10.

a) 2^' 1 -4*

a|5+2 b|5+2 c|0+2 b|2+2

Figure 4.10: State graph for a contour description based on fuzzy active contours, a) 

general form for D = /O z0 /izi I2 z2 ^323, b) example for D = (6a.)(6b)(l c)(5b).

Unlike traditional state graphs the maximum number of state transitions is specified 

using the absolute fuzzy length lz and its spread s. In practice some restrictions apply 

in extreme cases, such as that lz — I ± s > 0, of course.

The resolved and simplified state graph is given in Figure 4.11.
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Figure 4.11: Expanded state graph for D =

Incorporating the segment length reduces the computational complexity consider­ 

ably. An example presented in [4] required only 2% of the number of states that were 

needed without the length constraint. It must be stated however that the actual com­ 

putational complexity is very much application-specific and depends on /z , s and the 

complexities O(Elxt ), where Z e {a, b, c, . . .}.

With respect to module A6 of Figure 4.6 the global rule base is the complete set of 

rule bases defined for a given application (a, b and c in the example). The local rule 

base is selected by the described algorithm. The object definition is D.

4.3.2 Integration of a Fuzzy Segment Length

The actual implementation of the fuzzy part of the fuzzy segment length is achieved by 

an extension to the expression in line 8 of Table 3.2. The new expression is rewritten in 

line 3 of Table 4.6. The length is regarded as an additional constraint, where lz (n — 1, k) 

is analogous to Sz (n — 1, k) and denotes the number of preceding vertices which would 

fall into state z if candidate cn ,m was selected. Consequently, candidates which assist 

in constructing a chain of the specified length are favoured.

As the dynamic programming algorithm integrates (accumulates) local energy val­ 

ues, the length constraint must be based on the derivative (difference function) of the 

fuzzy number's membership function, shown in Figure 4.12.
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Line 4 of Table 4.6 updates the length information. Tz in line 5 points to that 

predecessor of cn>m which would be optimal if the final state of vertex n was z.

1. for n = 2 . . . N - I

2. for m = 0 ... M - 1

3. 5,(n, m) = mh

4. Zz (n,m) = Jz (

5. Tz (n,m) = fc mi

wext Ezext (cn ,m} + Sz (n -l, - A/*(/,(n -

Table 4.6: Extended dynamic programming algorithm.

i -

(n-so

Figure 4.12: A/^(/), as used in the length constraint of the extended dynamic program­ 

ming algorithm.

4.3.3 Integration of Fuzzy Segment Properties

Snake applications are often insufficient. This is not a principle problem of active 

contours. The reason is rather that it is necessary to fully exploit the potential of the 

approach by formulating the energy function according to the characteristics of image 

and object. In the proposed system, this has been achieved by:

• introducing multiple image evidences from several sources to form Eimage ,

• introducing an object specific constraint (Econ ), that restricts the possible shapes 

of the active contour beyond a mere, general demand for smoothness.
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Sections 4.3.3.1 and 4.3.3.2 introduce this framework and formulate appropriate 
energy functions that were applied successfully to medical image sequences (cf. sec­ 
tion 5.2) using a traditional active contour. It is also shown where these functions are 
integrated into the fuzzy snake. Section 4.3.3.3 demonstrates how such energy functions 
are fuzzified in order to be processed in the fuzzy domain of the fuzzy active contour. 
As the fuzzy snake is generally capable of modelling arbitrary properties the described 
functions represent examples.

4.3.3.1 Algebraic Integration of Multiple Image Features

To exploit the benefits of the many existing image processing operators and at the 
same time compensate for their individual deficiencies, a structure is introduced that 
combines several edge-, region-, and motion-based low-level operators. With the fuzzy 
snake these operators are integrated according to Figure 4.13.

Initial 
parameters

contour 
hypothi

currant vertex
calculate 
geometric
contracts 

5

local 
curvature

Figure 4.13: Principle structure of external energy calculation for the fuzzy active con­ 
tour. Marked is the module to obtain edge-, region-, and motion-based image features 

(Al).
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With the traditional active contour which is applied in chapter 5, the operators are 

combined in a computationally efficient manner by a normalised weighted sum (eq. 

4.3).

| (4.4)

The result of each operator, normalised to the range [0, 1] through the norm || ||, is 

regarded as an indication of to what degree a certain pixel c may belong to the object's 

contour. This local feature value is therefore referred to as image evidence e. It is also 

possible to incorporate operators that are able to deliberately detect structures which 

do not belong to the desired contour.

Each operator may wrongly lead to low evidence values for contour pixels and/or 

high values for non-contour pixels. The weighted combination of all evidences for a 

certain pixel compensates for the effect and leads to an attenuation of evidences of 

most contour pixels.

The individual evidence functions are very much application dependent. The fol­ 

lowing definitions in equations (4.5) to (4.7) have successfully been applied to the 

applications presented in this thesis.

The edge-based evidence is given by

= Vj_(Cn , Cn ,m)6 (4.5)

where Vj. is the gradient normal to the initial contour hypothesis. The factor 8 

specifies either a rising (6 = 1) or falling edge (8 = -1) respectively.

The region-based evidence given in equation (4.6) weakens the influence of occluding 

objects with grey levels below a prescribed threshold 9. Pixels within these objects are
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not influenced.

' (46) 
0 : R(Xi , yj )>6

Here R(xi,yj] denotes a pixel from the region of interest R around the contour 

hypothesis (cf. Figure 3.1). 9 depends on a priori knowledge.

To exploit information from motion in the image sequence the third evidence value 

in equation (4.7) is applied.

emotion(Cn,m) = £med(cn,m), Smed = )/V (|Rt-dl - Rt|))/V (|Rt - Rt+d2 |) (4.7)

This moving edge detector which is indicated by the subscript med [7], gives high 

evidence values for moving edges by multiplying the gradient of two difference images 

[152,153]. The operation is performed on the same region of interest Rz extracted from 

images at instances i = t, i = t — d\, and i = t + d<2, where d\ and di are constants.

4.3.3.2 Algebraic Integration of Object Features

For the traditional active contour a geometrical constraint presented in [1] is applied, 

which explicitly introduces knowledge on the expected shape of the contour and which 

can be easily incorporated into the dynamic programming algorithm. Equation (4.8) 

favours convex or concave contours by weighting the angle 7 which is measured in the 

open polygon consisting of the current candidate vertex cn)7n , its possible predecessor 

cn-i >k , and the optimal predecessor of the latter, cn_2,r(n-i,jfc) (cf. eq. (4.9)). By always 

measuring 7 in the same direction, setting the possible range [7min , 7max], the expected 

angle 7 and the standard deviation a, the resulting contour can be forced to bend in 

a desired direction (cf. eq. (4.10)).

(4.8)
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7(cn,m) = (4.9)

/y ~> /v

(4.10)

The use of a Gaussian weighting function (again normalised to the range [0,1] 

through a normalisation function || ||) allows exploitation of uncertain knowledge con­ 

cerning the actual shape of the object. For instance if a is small then the tolerance 

range around 7 where Econ gives a good assessment is narrower than for higher values 

of a. In theory, the weighting function ^(7) applied in equation 4.10 could be replaced 

by any mathematical distribution which exhibited the appropriate properties.

With the fuzzy snake the weighting function is not used to realise a shape constraint. 

Only the shape feature 7 is calculated in module A5 (cf. Figure 4.14).

Figure 4.14: Principle structure of external energy calculation for the fuzzy active 

contour. Marked is the module calculating a shape feature (A5).
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4.3.3.3 Fuzzification

With the fuzzy snake, the components of the external energy function (in equations (4.3) 

and (4.8)) are separately represented by linguistic variables and fuzzy sets. The trans­ 

formation from the numeric to the fuzzy domain (the fuzzification) is performed in 

module A4 of the fuzzy active contour's external energy calculation (cf. Figure 4.15).

With Eimage the calculation of image evidences (equation (4.5) to (4.7)) is retained, 

but they become linguistic variables.

Initial 
parameters

current vertex
calculate 
geometric 
oontraints 

5

local 
curvature

Figure 4.15: Principle structure of external energy calculation for the fuzzy active 

contour. Marked is the fuzzification module (A4).

The following example illustrates how an evidence function can be extended by an 

intuitive interface using elements of fuzzy logic. For e edge , a linguistic variable edge is 

created. Fuzzy sets with linguistic values, for instance falling very strong, ..., rising very 

strong are defined to cover the value range of equation (4.5). 3 In this example, the 

values of the term VL (Cn ,cri)m) are mapped to adjectives which cover the range from

3Note for simplicity, that the adjectives are regarded as a part of the primary term of the linguistic 

value, rather than as a linguistic hedge with an associated operator in the sense of [16].
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very weak to very strong. The factor 5 which specifies the edge direction, is accounted 

for by the adjectives rising and falling respectively.

The formal definition for this linguistic variable is

= [-1, 1], = edge

Ti(edge) = { falling very strong, falling strong, falling medium, falling weak, 

falling very weak, rising very weak, rising weak, rising medium, 

rising strong, rising very strong}

The definitions of the related membership functions are shown in Figure 4.16.

n(edge)

edge

0.5 edge

Figure 4.16: Fuzzy representation of edge-based image evidences.

In an analogous manner, the definition of linguistic variables and fuzzy sets for the 

region and motion-based evidences (equations (4.6) and (4.7) respectively) are similarly 

given.
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= [-1, 1], X2 =

Tz(region) = { negative very strong, negative strong, negative medium, negative weak, 

negative very weak, positive very weak, positive weak, positive medium, 

positive strong, positive very strong}

«3 = emotion, W3 = [-1,1], x3 = motion

^(motion) = { negative very strong, negative strong, negative medium, negative weak, 

negative very weak, positive very weak, positive weak, positive medium, 

positive strong, positive very strong}

The definitions of the related membership functions are identical to those shown in 

Figure 4.16.

To illustrate how a constraint energy function is integrated into the fuzzy snake, 

the fuzzification of equation (4.8) is demonstrated. The geometrical constraint becomes 

a linguistic variable curvature which is calculated using equation (4.9) and represents 

the actual measure for the constraint.

The weighting function v in equation (4.10) however, is now replaced by a number 

of fuzzy sets. The membership functions of the fuzzy sets acute to flat have been 

determined empirically to relate to the human perception of the different degrees of 

curvature. Prototype polygons such as those shown in Figure 4.17 were classified by 

a number of test persons. The statistical distribution of these classifications are the 

basis for the membership functions of the linguistic variable curvature and are shown 

in Figure 4.18.
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a) O •O b)

'flat medium

c) d)
strong acute

Figure 4.17: Examples for the 3-vertex polygons that were used in empirically deter­ 

mining the membership functions

It(curvature)
strong medium 
right right flat

90 180
curvature / o

^(curvature)

180 270 360
curvature / o

Figure 4.18: Fuzzy representation of curvature constraint.

Due to the fuzzification of the curvature measure the desired curvature no longer 

has to be expressed through the parameters 7, 7min , 7max and a, but instead more 

intuitive linguistic values may be used.

The formal definition of curvature is
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t/4 = 7, 24 = [0,360], £4 = curvature

^(curvature) = { acute right, strong right, medium right, flat, 

medium left, strong left, acute left}

Many other alternative constraints may also be included, for example the orientation 

of a contour segment (by using the angle of the major axis of a segment) or the relative 

position of different contour segments.

The entire membership degrees /i(edge), ^(region) and ^(motion) for a given can­ 

didate cn>m can be regarded as its fuzzy image energy,4 and membership degrees for 

constraints such as fjL(curvature) correspondingly as its fuzzy constraint energy.

To complete the fuzzification an output linguistic variable is defined. It allows for 

the definition of linguistic rules which specify the quality of a vertex:

Eext = 1-M0 , Ho - [0,1], z0 = quality 

To(quality) = {very bad, bad, medium, good, very good}

The membership functions are defined as shown in Figure 4.19.

/j,(quality)

quality

Figure 4.19: Output variable of the fuzzy system.

4 It should be recalled that high membership values relate to low energy values (see definition of 

equation (4.3)).
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4.3.3.4 Linguistic Rules

Algebraic equations (4.3) and (4.8) can now be replaced by a fuzzy inference process 

using formal linguistic rules instead of trial-and-error weights.

As previously described, each energy function for a boundary segment exhibiting 

constant properties consists of a rule base, which inputs a number of different evidences 

or features from the image, as well as constraints on for example, the geometry of an 

object. The output from the inference process using this rule base, is a quality measure 

(cf. Figure 4.19), describing the compliance with the rule base for each vertex. 

Normally rules will have the conclusion quality very good to describe a known desired 

result, while negative linguistic values for quality may be used for those properties 

which a contour segment must not exhibit.

Considering the edge and curvature properties of the example shown in Figure 4.5, 

the contour can now be described by the four rule bases labelled a, b, c and d re­ 

spectively in Table 4.7. In this simple example each rule base consists of only one rule

a:

RI : IF edge falling very weak 

AND curvature medium right 

THEN quality very good

b:

RI : IF edge falling weak 

AND (curvature flat left 

OR curvature flat right) 

THEN quality very good

.RI : IF edge falling medium 

AND curvature strong right 

THEN quality very good

d:

RI : IF edge falling medium 

AND (curvature flat left 

OR curvature flat right) 

THEN quality very good

Table 4.7: Rule bases for the example in Figure reffig:ex3.
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4.3.3.5 Fuzzy Inference

For each calculation of an external energy one rule base is inferenced according to the 

procedures described in section 3.2.1.5.

4.3.3.6 Defuzzification

The defuzzification procedure converts the result of the inference process which is a 

fuzzy quality measure, into a crisp value Elxt (cntm). Here the centre-of-gravity method 

is used for defuzzification.

4.4 Calculation Example

This section summarises the calculations performed to obtain the external energy func­ 

tion Eext of a fuzzy snake and gives example values. The calculations are performed for 

one candidate vertex cn>m .

Evidence calculation

e edge (cn ,m } = IIV^C^c^)!!.!..! = -0.65 (4.11) 

e re9um(cn ,m ) = HVCe.Cn.JII-i..! = -0.1 (4.12)

e motion(Cn,m) = | \£med(cn ,m ) \ |-l..l = 0.8 (4.13) 

7(Cn,m) = |U(cn_2,r(ra-l,fc), Cn-l,k, Cn ,m)|| 0°..360° = 120° (4.14)

Rule base selection

The actual selection of a rule base to be applied to one candidate is done within the 

overall algorithm, as described in section 4.3.1. Here we assume the following example 

rule base a:
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RI : IF motion positive strong THEN quality very good

#2 : IF edge falling weak THEN quality good 

R$ : IF curvature strong right THEN quality good 

R* : IF region negative strong

OR region negative very strong THEN quality bad

#5 : IF edge falling medium

OR edge falling strong THEN quality bad

With RI the motion evidence is modeled as a strong indicator for the desired object. 

RI and R3 are less confident. _R4 models a distracting dark object, while R5 models 

unwanted structures which have slightly stronger edges than the wanted object (cf.

Fuzzification

The fuzzy inference processes the rules in several steps. The first step is to fuzzify the 

input values, that is the evidence values obtained in equations (4.11) to (4.14).

Each value is input to its related linguistic variable edge, region, motion and curva­ 

ture (cf. Fig. 4.16 and 4.18). For each of the fuzzy sets defined for a linguistic variable, 

the membership value is calculated. In practise, only fuzzy sets that are actually used 

in the rule base are calculated, for example:

{•„ D . ..motion I „ (r* \\ — ,, motion l(\ o\ _ n qtor HI . /^pOSitive strong (emotwn(Cn,m)) — /^positive strong vu '°' ~ u ' y

for fl3 :

for #4 : /^g°antjve strong(ereffion(cn,m)) = /^negative strong^" 0 ' 1 ) = °'°

,, region ( . (c \\ _ region /_Q 1 ^ _ Q n
^negative very strong (eregion(.^n,m)) ^negative very strong^ U ' A ' 

for R5 : /*gfjj ng medjum (e ed9e (cn ,m)) = /*gfjj ng medium (-0.65) = 0.2

filing strong(e^(cn ,m)) = ^ng strong(-°-65) = °'°
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Aggregation

The next step is to obtain truth values v for the premises P. Where rules consist of 

more than one premise an aggregation is required.

vl ~ /^positive Strong (emotion(Cn,m)) = 0.9

v* = Rafting (e c m = 0.8

= u(P41 OR P42 ) 

= max Str0ng 
= max [0.0, 0.0] 

v4 - 0.0

v5 = w(P51 OR P52 )

= max ' strong 

= max [0.2, 0.0] 

v5 = 0.2

Implication

Each rule's conclusion is now weighted by the related truth value, resulting in a fuzzy 

set 2 for each rule.

= {(u,min ^, 

= {(u,min \V2, 

= {(«, min «,, /) )} = {(«, min o.7,

= {(M) min «5 ,
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Accumulation and Defuzzification

The accumulation of the above fuzzy sets results in a single fuzzy set, that reflects the 

fuzzy quality of the calculated candidate:

K — i . .o

As the contour optimisation is performed in the crisp domain, a defuzzification is 

performed, to obtain a single crisp value from the resulting fuzy set:

E

u&t

High membership values correspond to a low contour energy, hence the crisp output 

value is inverted to obtain the external energy value for the calculated candidate:

4.5 Summary

This chapter has introduced the concepts and presented the theoretical basis of the 

fuzzy active contour.

This novel approach for the segmentation of deformable structures affords a seam­ 

less integration of traditional image processing operators, active contours and a fuzzy 

reasoning component. In summary, the main features of this concept are:

• Uncertainties immanent in linguistic a priori knowledge are exploited through 

an original contour description method.

• The description allows for the inclusion of both image- and object-related char­ 

acteristics.

• Furthermore the linguistic description method eliminates the need for obscure 

numerical system parameters.
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• Immanent uncertainties are propagated through most of the processing blocks 
of the system. This way, the necessary crisp segmentation decision is made at a 
very late stage, reducing segmentation errors considerably.

This chapter has also presented a computationally efficient realisation of the fuzzy 
active contour, based on a finite state machine and a dynamic programming optimi­ 
sation algorithm. The principle concept however is independent of a particular imple­ 
mentation.
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Chapter 5

Experimental Results

5.1 Application to Synthetic Images

5.1.1 Detection of Multi-Segment Object Contours

The refined model representation presented in this research improves contour detection 

in comparison to traditional active contours. To validate this characteristic synthetic 

images were created which allow for an experimental analysis. For clarity the only 

property considered was shape.

Without specific a priori knowledge an active contour cannot detect a specific 

object. To demonstrate this, Figure 5.la shows two symmetrical objects with a constant 

local angle. An active contour with only a similarity constraint would normally detect 

the object most similar to the initial hypothesis. To detect the lower object, for example 

the hypothesis would have to be bend downwards as well.

In this example however, the hypothesis was placed on the axis of symmetry between 

both objects. As now both contours share the same similarity relative to the hypothesis, 

it depends on the implementation which contour is detected. Here the lower object was 

found (Figure 5.1b).
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An active contour with a global shape constraint can represent more specific knowl­ 

edge about the object. Hence it is possible to detect the lower object by setting the 

desired local angle 7 to 170 degrees as shown in Figure 5.1c. Note that in this case the 

result is identical to that obtained by the similarity constraint, but that it was desired 

and does not depend on the particular implementation of the optimisation algorithm. 

Setting 7 to 190 degrees detects the upper object (Figure 5.Id).

a) b)

X

d)!

Figure 5.1: Detecting a specific object, a) two symmetric objects with constant local 

angles, b) implementation-dependent detection through a similarity constraint, c) and 

d) deliberate selection of either object through a global shape constraint. Figs, b, c and 

d also contain the initial contour hypothesis P (horizontal line) as well as the search 

lines Ci (vertical lines).

In the above example the global shape constraint was advantageous. To demonstrate 

its limits different local properties are introduced in parts of a contour (Figure 5.2a).

The similarity constraint chooses the constant contour (Figure 5.2b) because the hy­ 

pothesis was constant. Unlike the example in Figure 5.1b this result is not implementation-
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dependent. A hypothesis similar to the upper object had resulted in the detection of 

that contour.

The same constant contour was detected with a global shape constraint (Fig­ 

ure 5.2c). In these synthetic images without noise or distortions there are only a few 

alternative results possible so that the explicit formulation of a specific shape can be 

equivalent to the implicit model of the similarity constraint.

The traditional active contour cannot detect the upper inconstant object. This 

object requires a more detailed model which can be provided by the proposed fuzzy 
contour model.

\
a) b)

\ I

\

c)

Figure 5.2: Detecting an object with inconstant local shape, a) two example objects, 

b) the similarity constraint detects the constant contour because it is relatively similar 

to the initial hypothesis, c) a global shape constraint detects the same contour because 

it matches absolutely, d) the more detailed model of the fuzzy snake can detect the 

inconstant object.

It was demonstrated that the proposed model is generally capable of selecting ob­ 

jects with a specific shape. An important aspect in a model which exploits uncertain
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knowledge is its selectivity. The model should be flexible enough to cover uncertainty 

in both the object description and the image features. If this flexibility is too large 

however, the model cannot separate the desired object from unwanted distortions or 

a partially similar unwanted object. To demonstrate the sufficient ability of the fuzzy 

contour model to separate similar objects, two contours were superimposed in Fig­ 

ure 5.3a). Both contours have the same local angles, except for the middle section of 
one of the objects.

The similarity-sensitive active contour is not able to detect what a human observer 

would consider as one of two possible objects. The resulting contour merely is similar 

to the initial hypothesis (Figure 5.3b). The reason is that in this case the similarity 

constraint does not coincide with the general object model of the human visual system. 

We see two objects: a bowl and a flat inconstant contour. The fact that the bowl-shaped 

object was already presented in the above examples accentuates our perception of it 

(priming). Consequently the remaining contour is perceived as the second object. Such 

models are not included within the simple snake.

a) b)

c)

Figure 5.3: Distinguishing between perceptible objects having the same local shape.

Figure 5.3c demonstrates that a global constraint results in a detection of the con­ 

stant object as was the case in the preceding examples. Although 10 out of 12 vertices 

have the same local angle the active contour finds the global optimum.

The inconstant object again requires a more detailed model which can be incorpo­ 

rated by the proposed fuzzy snake.
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5.1.2 Fuzziness of Boundary Features

This section validates that fuzzy snakes are tolerant and flexible, with the limits of this 

flexibility explored.

The fuzzy snake model constrains the possible shapes the resulting contour might 

have, while concomitantly allowing for a certain deviation from an optimal prototype 

of the object that is to be detected. The variable segment length is one element which 

affords this flexibility. Another is the fuzziness in the description of desired boundary 

features. This is demonstrated on a synthetic object which is introduced in Figure 5.4.

Figure 5.4: Example object. This synthetic boundary demonstrates a multi-segment 

object contour. The boundary segments have a different shape (local curvature), while 

all vertices within a segment share similar properties. The search lines used by the 

(fuzzy) active contour are visualised by grey lines perpendicular to the contour and 

intersecting the contour's vertices pn .

Figure 5.5 presents an example similar to those used in the preceding section, which 

illustrates how by using a more sophisticated model detection of the example object 

can be successfully achieved.

To illustrate how the proposed fuzzy snake is capable of favouring desired features 

using the fuzzification described above, the following example visualises the member­ 

ship degrees of the fuzzy sets over the linguistic variable curvature.
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b)

a)

c)

Figure 5.5: Two objects with different curvature properties (a). The lower constant 

contour can be detected by a traditional active contour (b), while the upper multi- 

segment contour requires a better model. Figs, b and c also contain the initial contour 

hypothesis P (upper arc) as well as the search lines Q (straight lines).

For each vertex of the example contour in Figure 4.5, all membership degrees for 

the fuzzy sets in Figure 4.18 are calculated. The highest and second highest value (if 

any), for each vertex are recorded in the graph in Figure 5.6. The graph shows that the 

analysed contour is very similar to the description given in Tables 4.1 and 4.3, which 

demand curvatures of medium right, flat left OR flat right, strong right, flat left OR flat 

right.

These relations become more evident when a different visualisation is applied as 

demonstrated in Figure 5.7.
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Figure 5.6: Significant membership degrees for each vertex of a contour.

Here the fuzzy sets are colour coded and superimposed as circles over the contour 

image. The circle diameter is proportional to the mean degree of membership within a 

consecutive sequence of equal fuzzy sets.

a) b)

Figure 5.7: Visualisation of membership degrees for boundary features. The fuzzy sets 

are colour coded, a) maximum membership degrees of each vertex, b) second highest 

values.
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a)

c)

e)

b)

d)

f)

Figure 5.8: Demonstration of the shape feature's fuzziness through a visualisation of 

the mean maximum membership degrees for the curvature of different non-rigid defor­ 

mations of a prototype.
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As both the representation and detection of non-rigid objects are of particular in­ 

terest, a sequence of deformations of the example contour is shown in Figure 5.8. This 

sequence demonstrates to what degree the fuzziness of a contour description favours 

certain deviations from the prototype while placing less emphasis on others. In Fig­ 

ure 5.8a) to c) a local distortion was introduced in the longer straight segment, bending 

the contour to the left. With the deformations 5.8a) and b) the local curvature at the 

distorted vertices results in a high value for ^m^um \ eft(curvature), while the desired 

A*flat \eft(curvature) is verv small or zero (not shown). This means that the overall en­ 

ergy Esnake is significantly smaller for 5.8a) and b) than it is for 5.8c). In other words 

the deformation 5.8c) is more similar to the prototype than either 5.8a) or b).

5.1.3 Summary of Application to Synthetic Images

Traditional active contours are capable of representing object characteristics, such as 

shape, through a global similarity constraint. It was demonstrated that this approach 

is insufficient to detect complex contours.

While an extension of an active contour to represent local constraints would in 

theory be possible, this would require too many numerical parameters. Conversely the 

fuzzy active contour representation allows for the intuitive, linguistic representation of 

local characteristics, while being more compact than a mere numerical representation. 

It was shown, that contours with locally inconstant characteristics can be detected.

Furthermore the fuzzy active contour's selectivity in the presence of local defor­ 

mations was explored. It was shown, that the linguistic terms used in a fuzzy contour 

description are in fact related to perceptible changes in an object's shape.

Synthetic images were also used in [4] to evaluate the fuzzy active contour's prop­ 

erties.
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5.2 Application to Medical Images

Each of the two applications involving medical image sequences cover some of the 

challenging properties investigated in section 2.2. Together, the presented MR and 

X-ray images provide a basis for both the evaluation of traditional image processing 
methods and the validation of the novel approach proposed in this work.

In the first section for each example application, solutions based on traditional image 

processing methods are investigated. The selected methods are low-level, intermediate- 

level, model-free as well as model-based. This selection covers different approaches 

and hence investigates the potentials and limitations of traditional methods. The con­ 

clusions drawn from these image processing solutions give a justification for a new 

approach and build a basis for comparison between the traditional and the novel ap­ 
proach.

5.2.1 Application to Carpal Bone MRI Sequences 

5.2.1.1 Traditional Image Processing Approach

This section presents an image processing solution to the MRI application. The solution 

is based on classical methods to explore their potential and deficiencies. From a scientific 

point of view the development of a solution principle was comparatively easy, due to 

the restrictions that were imposed on the image formation process. These conditions 

allowed for an enhancement of the robustness and applicability of the solution and its 

implementation.

The SADT diagram in Figure 5.9 gives an overview of the overall system, which 

according to the structure presented in section 2.1.1 has been designed as a sequence 

of modules performing the following principle functions: image acquisition (Al), pre­ 

processing (A2), and segmentation (A3) through feature extraction and matching. The 

measuring procedure has been divided into the measurement of the reference structure 

(A4) and also the objects of which the motion is to be determined (A5). A subsequent
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module processes the measured parameter values to obtain motion graphs required to 

make a diagnosis.

Images

Figure 5.9: System structure of the traditional image processing solution to the analysis 

of carpal bones in MRI sequences.

Preprocessing

Due to the fixed parameter settings the MR image quality is good and almost constant, 

so that no noise reduction or contrast enhancement is necessary. The only preprocessing 

step that affects the pixel data is a grey-level normalisation that normalises the pixel 

values to a 10 bit range of [0,1023] since the grey-level range of the MR imaging device 

could not be fixed. 10 bits was empirically established as more than adequate for these 

images.

The two most important preprocessing steps involve the selection of a region of 

interest as well as the selection of a suitable MRI layer and are described in detail in 

the following subsections.

Automatic Selection of a Region of Interest

To allow for a histogram-based segmentation, a preselection of the area where the 

carpal bones are to be found is necessary (cf. Figure 5.10). This excludes metacarpals
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and tissue which could be mistaken for carpal bones from the subsequent processing 

blocks. Furthermore, a major portion of the image is discarded considerably speeding 

up the pixel-based processing operations.

The region of interest (ROI) is found automatically through a simplified model of 

the hand based on anatomic a priori knowledge [156].

Figure 5.10: Example for the selection of a region of interest.

Layer selection

An approach based on the Fourier-Mellin transform [157] allows for the selection of 

the MR layer which is most suitable for the measurement. This involves comparing the 

set of MR input layers with a reference image, and a correlation measure is computed 

between a reference template selected by a medical expert and all slices of a hand 

position. The layer with the highest correlation factor is selected. [158]
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Segmentation

An adaptive threshold is applied to the automatically selected region of interest. To 

obtain a higher precision the algorithm is applied in two stages to the ROI of the wrist 

and to smaller ROIs of the individual bones.

Firstly, a global threshold for all objects is found through an adaptive threshold 

algorithm based on the histogram of the ROI (cf. Fig 5.1 la). The morphological oper­ 

ator erosion is applied subsequently to separate touching bone regions (cf. Fig 5.lib). 

The erosion which gives an unprecise object border is not critical, because the second 

segmentation step results in a more precise segmentation.

An identification (see next processing block) using an anatomic model removes all 

segmented regions that are not carpal bones, which allows the improvement of the 

segmentation of the carpals: for each bone an individual ROI is built within which a 

local adaptive threshold is determined.

Figure 5.11: First-stage adaptive threshold a) before and b) after erosion to divide 

joined regions.
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Identification

Apart from discarding unwanted regions from the subsequent local segmentation pro­ 

cess the identification step is necessary to relate the measured parameters of all hand 

positions to the correct bones. As the reference co-ordinate system (cf. Figure 2.2) is 

based on landmarks of the Radius bone, this bone is output separately.

Constrained by their possible motion the relevant bones are identified through an 

analysis of the size and position of a set of candidate bones (cf. Figure 5.12).[159]

Figure 5.12: Identification stages, a) candidate regions, numbered randomly as found 

by the threshold stage, b) identified regions, numbered according to their anatomical 

meaning (cf. Figures 2.2 and 2.3).

Measurement

For the measurement of translation and rotation for each bone its major axis and 

centroid is determined. The measurement is performed relative to an anatomic co­ 

ordinate system defined by the distal end of the Radius bone (cf. Figure 2.2).
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Results

From an image processing point-of-view, successful segmentation is the most relevant 

factor to consider. The performance of the system is demonstrated by automatically 

measuring the motions of the bones of all together 158 wrist positions of 20 patients. 

A resulting number of 1106 bones were segmented. Figure 5.13 shows an example for 

the segmentation and measurement of all positions of a test person.

Figure 5.13: Segmentation and measurement results for all positions of one test person's 

hand. Images a) to i) correspond to hand positions of -34, -30, -20, -10, 0, 10, 20, 30, 

40, and 48 degrees respectively.
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Segmentation results were assessed by scientific and medical experts. Bone outlines 
were judged as being correct if the outlines included most of a bone's region and no 
extraneous tissue.

The segmentation was very successful for the most relevant bones os scaphoideum, 
os lunatum and the Radius (cf. Table 5.1). A good segmentation was also obtained for 
other carpal bones, allowing the system to be applied to the diagnosis of other carpal 
instabilities as well.

Bone

os hamatum
os capitatum

os trapezoideum

os triquetrum

os lunatum

os scaphoideum
radius

Correct segmentation [%]

77,8

94,9

90,5

89,2

94,3

96,8

97,5

Table 5.1: Correct segmentation rate.

Of particular importance for the overall goal of the application is to determine 
which of the measured parameters are significant to facilitate diagnosis.

Together with medical experts, motion graphs were developed, with the measure­ 
ment results of usually 7 different positions of the wrist collected (cf. Figure 5.14). To 
ease comparison between normal and pathological bone motion, the rotation of each 
bone was normalised to the neutral position (an angle of 0 degrees) of the hand.

The bones' rotation was found to be particularly significant to aid in the diagnosis 
of carpal instabilities. In a healthy wrist there are two independent rows of bones, 
where the bones within each row are connected by ligaments: the distal row consisting 
of the os hamatum, os capitatum and os trapezoideum, and the proximal row including 

the 05 triquetrum, os lunatum and os scaphoideum.
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30,0

•30,0
-40,0 -30,0 -20,0 -10,0 0,0 10,0

Angle of deviation
20,0 30,0

os hamtum 
-os triquetrum

os capitatum 
- os lunatum

-os trapezoideum
-os scaphoideum

Figure 5.14: Motion graph — Collection of measurement results for several wrist posi­ 

tions (x-axis). This graph shows the rotation of the wrist bones (y-axis) for a healthy 

patient.
30,0

-30,0
-40,0 -30,0 -20,0 -10,0 0,0 10,0 20,0 30,0

Angle of deviation

-os triquetrum -A-os lunatum -»-os scaphoideum

Figure 5.15: Motion graph, demonstrating the diagnosis of the scapho-lunate carpal 

instability.

Figure 5.14 reflects this normal state: It can be seen that the bones within each 

row move together over the full range of the wrist positions, while the rows themselves 

move independently for positive angles of the wrist.
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The common lesion of the ligament between os scaphoideum and os lunatum (scapho- 

lunate instability) can be diagnosed with the aid of the motion graphs as demonstrated 

in Figure 5.15. For clarity the graph shows only the proximal row. Encircled is the range, 

where the motion of the os scaphoideum no longer follows the motion of the proximal 

row, indicating that the bone is no longer connected to the os lunatum.

The deficiencies of the traditional image segmentation approach are most evident 

with the os hamatum, which is the right bone of the distal row. It frequently touches 

neighboring bones or tissue. The bone also may have dents that are darker than the 

rest of the bone.

Figure 5.16: Segmentation results for the os hamatum with the traditional image pro­ 

cessing approach.

A representative set of images was selected, where the traditional approach fails. 

Figure 5.16 shows nine images of five patients — three left and five right hands. For
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comparison, the same set of images is used in the following sections, where an active 
contour and the proposed fuzzy snake are validated.

To detail the segmentation results outlined in Figure 5.16, the bone contour was 

divided into eight sections. The result of the assessment is given in Table 5.2.

Correct contours Correct sections

0/9 39/72 = 54%

Table 5.2: Correct segmentation rate for the 05 hamatum with the traditional image 
processing approach.

5.2.1.2 Traditional Active Contour Approach

This section summarizes an application based on an active contour as described in 

section 3.1. The particular energy functions applied in this solution were introduced in 
sections 4.3.3 and 4.3.3.2.

Traditional active contours use only global constraints, which improve the segmen­ 

tation but this is not sufficient in certain cases. In Figure 5.17(e) for example, the 

global shape constraint is able to create a smooth contour resulting in the exclusion of 

most of the false tissue. The right-hand area of the result however, is still incorrect as 

the active contour is attracted to strong image features that could not be overridden 

by the moderate global shape constraint. A stronger influence of the constraint in this 

critical area is necessary.

As in the preceding section an assessment of the segmentation results (cf. Fig­ 

ure 5.17) was performed by both scientific and medical experts. The result of the 

assessment is given in Table 5.3.

Correct contours Correct sections

1/9 47/72 = 65% 

Table 5.3: Correct segmentation rate using a traditional active contour.
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Figure 5.17: Segmentation results using a traditional active contour with global shape 

constraint.

5.2.1.3 Fuzzy Active Contour Approach

Fuzzy snakes allow for a more detailed modelling of the object, resulting in a correct 

segmentation. The results in Figure 5.18 were obtained with the description (using rela­ 

tive fuzzy lengths) (0.2d) (0Jb) (0.05c) (0.1 e) (0.15f ) (0.05c) (0.05f) (0.3a) begin­ 

ning at the upper left vertex and following the contour clockwise. The characters are 

shortcut labels for the rule bases given in Table 5.5.

The fuzzy snake is able to handle a certain variability in the object's contour, 

which allows for the segmentation of a bone over a patient's MRI sequence as shown
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in Figure 5.19. Furthermore the inter-individual variations are moderate, so the bones 

of other patients can be segmented successfully using the same contour description, 

or prototype [4]. The segmentation results were assessed in the same way as in the 

preceding sections. The result of the assessment is given in Table 5.4.

Correct contours Correct sections

8/9 71/72 = 98%

Table 5.4: Correct segmentation rate using fuzzy snakes.

g) BT ^^-JBBi h) *- -^F'^JMM i)

Figure 5.18: Segmentation results using fuzzy snakes.
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a:

IF edge rising medium
AND (curvature flat left
OR curvature flat right)
THEN quality very good

b:

IF edge rising medium
AND curvature medium right
THEN quality very good

c:

IF edge rising medium
AND curvature strong right
THEN quality very good

d:

IF edge rising strong
AND (curvature flat left
OR curvature flat right)
THEN quality very good

e:

IF edge rising strong
AND curvature medium left
THEN quality very good

f:

IF edge rising strong
AND curvature medium right
THEN quality very good

Table 5.5: Rule bases modelling the boundary segments of a wrist bone (os hamatum) 

in MRI sequences.

Figure 5.19: Fuzzy snake detection of two different positions with superimposed mean 

membership degrees for the curvature fuzzy sets. a)+c) highest and b)+d) second 

highest values.
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5.2.1.4 Summary of Application to MRI Sequences

In this section three image processing and computer vision approaches were applied to 

medical MRI sequences introduced in section 2.3.1.

Histogram-based thresholding as well as morphological operators form the basis of 

a solution, which was presented to validate the potential of low-level methods. This 

approach produced satisfactory results detecting a number of medically relevant wrist 

bones. Where bones were touching soft tissue with a similar appearance however, the 

low-level approach failed.

Active contours employing simple shape constraints improved results but were also 

found to be incapable of producing a correct segmentation in many cases.

Only the improved representational power of the fuzzy active contour leads to a 

correct separation of bone and tissue.

Table 5.6 summarizes the performance of the validated approaches. The segmenta­ 

tion rates were obtained from an assessment by scientific and medical experts.

Approach Correct contours Correct sections

low-level

active contour

fuzzy snake

0/9

1/9

8/9

39/72 = 54%

47/72 = 65%

71/72 = 98%

Table 5.6: Correct segmentation rates of different approaches.

Different aspects of the traditional image processing solution were published in [2,4, 

5,160-164]. The active contour approach was covered in [2,4,160,163]. Additionally the 

application of the fuzzy active contour to the MR images was presented in [4,160,163].
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5.2.2 Application to Vocal Tract X-ray Sequences 

5.2.2.1 Traditional Image Processing Approach

In this section traditional image processing methods are investigated to analyse the 

human articulatory organs. This application is particularly well-suited to process dif­ 

ferent organs through different approaches from model-free low-level to intermediate 

model-based methods.

Preprocessing

The noise introduced by the scanning and digitisation process can be filtered out 

through low-level image processing. As the image formation has already produced 

blurry edges, the main concern with filtering is the preservation of edges. The lit­ 

erature recommends a median filter [21], the effects of which are shown in Figure 5.20. 

A median kernel size of 11x11 was empirically established as being able to reduce 

noise sufficiently (cf. Figure 5.20c). This family of nonlinear filters also have the added 

advantage of being able to remove small visible distortions due to scratches on the film.

Figure 5.20: Application of a median filter with different kernel sizes to a region of 

an X-ray image: a) original, b) median filtered (3x3 kernel), c) median filtered (11x11 

kernel)
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Segmentation of rigid objects

A low-level image segmentation method based on intensity statistics demonstrates the 

principle of such an approach and the results which can be obtained with the presented 

X-ray sequences. As an example for a rigid object with a relatively good contrast the 

front teeth (cf. Figure 2.8) were selected.

Generally a local edge detecting operator based on gradient approximation attenu­ 

ates not only edges of the object under investigation but also any other structures in 

the image (cf. Figure 5.22a). Hence the gradient value VI(x,y) of a pixel represents its 

probability of being a contour pixel (edge probability), but it does not state which ob­ 

ject the pixel belongs to. The basic concept of the approach is to multiply the gradient 

value with a transformed intensity value which represents the probability of a pixel to 

belong to the object contour under investigation (object probability). The result of this 

operation is a pixel's probability of being a contour pixel of the desired object. [17,165]

With blurred edges there is no sharp transition between object and background. 

Hence object contours cover a relatively wide area of pixels and a range of intensity 

values rather than a single pixel with only one intensity. Consequently it is possible 

to calculate a histogram for contour pixels of a reference object to obtain information 

about the intensity characteristics of that contour (cf. Figure 5.21).

While the edge probability is a monotonic function of the gradient value this does 

not hold for object probability and contour histogram. Thus an intensity transformation 

is necessary to obtain a similar relationship. The enclosing hull of the discrete histogram 

Pc(i) can be approximated by the Gaussian

where the intensity values i € [0, Q — 1].
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Figure 5.21: Intensity distribution pc(i) of a reference contour. Superimposed is the 

Gaussian approximation, characterised by /^ and <r2 which were obtained from pc(i)-

The parameters variance a2 and mean fj, can be obtained from the histogram pc(i) 

through

A* =
z=0

(5.2)

(5.3)
i=0

After sampling and normalising the Gaussian fG (i) to /Gn(0 so that /G(^) = 1, 

the intensities of the input image / are transformed (cf. Figure 5.22b):

Multiplying the gradient image VI with the intensity transformed IT results in a 

feature matrix (cf. Figure 5.22c) from which the contour pixels can be obtained using 

a threshold (cf. Figure 5.22d).
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Figure 5.22: Tooth segmentation: a) gradient VI, b) intensity transformed input image 

IT, c) resulting feature matrix, d) contour after thresholding.

The above method is an example for a low-level segmentation approach based on 

local grey-levels as well as on a statistical model of the object contour's intensity values. 

Example results are shown in Figure 5.23. They demonstrate some of the deficiencies 

of the approach, which are:

• As the grey-levels of reference contour points are used to classify the pixels, the 

method is not robust against intensity changes that differ from the reference.

• Unwanted objects whose contour intensity range is similar to the reference are 

also segmented. Examples are leaden markers, other teeth, fillings or dirt on the 

celluloid.

• The resulting contour is not always continuous and closed.

Figure 5.23: Results for tooth segmentation.
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A different low-level image processing method is template matching. Here a tem­ 

plate image containing a reference object image (cf. Figure 5.24b) is successively cor­ 

related with all areas of the larger source image (cf. Figure 5.24a). The maximum cor­ 

relation value indicates the best matching location of the template within the source.

Figure 5.24: a) Hyoid bone ROI after preprocessing, b) template (enlarged).

An advantage over the previously investigated method is that a normalised corre­ 

lation measure may be used. This is invariant against moderate changes in intensities. 

Furthermore the detection of false objects is less likely, as the template contains not 

only intensities but also their position in the image.

The hyoid bone is an object where this approach can be applied (for more details 

see [166]). It is rigid and mostly free from superimposing objects. Figure 5.25 shows 

some examples for a successful location of the hyoid bone.

Figure 5.25: Successful detection of the hyoid bone.
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Although the template matching approach was highly successful for the location of 

the hyoid bone, it cannot be applied to the other articulators for the following reasons:

• The applied correlation is not invariant against scaling and rotation. Two invari­ 

ant template matching approaches [157,167] have been investigated in [158,168] 

and proved to be promising. An in-depth exploration however, is beyond the 

scope of this thesis.

• The image correlation approach directly outputs the co-ordinate of an object 

point rather than a contour. It is therefore not suitable for the determination of 

the parameters listed in Table 2.5.

• Template matching is not robust against occlusion and deformation.

Segmentation of deformable objects

An intermediate-level approach is investigated next to detect deformable objects such 

as the lips and the tongue. The method uses a priori knowledge about the object to 

be detected on a higher level than the intensity-based approaches presented above. It 

allows for the exploitation of simple geometrical constraints and guarantees an unin­ 

terrupted one-pixel wide contour. The approach developed by [51] and implemented 

in [165] involves a constrained search algorithm which traces a contour pixel by pixel 

within a region of interest (ROI) close to the actual object contour.

Initially the ROI is determined by manually marking the desired object contour 

in the first image of a sequence (cf. Figure 5.26a). This contour is referred to as the 

initial contour hypothesis, as it represents an initial estimate for the actual position of 

the contour in the subsequent image. The width of the ROI is a system parameter and 

depends on the maximal distance the object might travel from one frame to another. 

When the object has been segmented, the resulting contour serves as initial estimate 

for the next frame, hence tracking a moving or deforming object.
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Such a region of interest leads to a significant reduction of the search space and 
hence improves the computational complexity of the segmentation. More importantly 
it introduces implicit knowledge to the system about where the object is to be found. 
Consequently distortions such as other objects do not impair the segmentation as long 
as they are outside the ROI. Furthermore knowledge about the approximate shape is 
also introduced.

To simplify the segmentation algorithm, the ROI is transformed into a straight 
matrix (cf. Figure 5.26b). Assuming that the initial contour hypothesis is approximately 
parallel to the object contour and that parts of the ROI do not overlap, the straight 

matrix contains exactly one contour point per row. The contour tracing algorithm now 

processes each row to find the optimal horizontal position of each contour point. After 
all rows have been processed the detected contour points are transformed back into the 

original image to obtain the final contour.

t=L

Figure 5.26: a) Initial contour hypothesis with ROI in the source image, b) straight 

matrix after geometrical transformation of the ROI. From [51].

To find the optimal contour point in each row a dynamic programming algorithm is 

applied. Dynamic programming in general is described in [125]. Other contour segmen­ 

tation methods based on this optimisation principle are presented in [16,20,126,127]. 

As dynamic programming is also used in the novel approach presented in this thesis it 

is investigated thoroughly in section 3.1.3.2.
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Of more relevance to the current section is the image feature that is used to segment 

the contour. With the segmentation of rigid objects the use of the image gradient was 

presented as a method to detect edges. With the transformed ROI the gradient can 

be used more effectively. As in each row the detection of the optimal contour point is 

reduced to a one-dimensional problem, the (horizontal) gradient can be approximated 

by a one-dimensional convolution[18,21], the coefficient matrix of which is

Hh = [-l -2021] (5.5)

Edges parallel to the initial contour hypothesis will be attenuated, while edges perpen­ 

dicular to it will be suppressed. This directional sensitivity represents an edge detection 

based on a priori knowledge. It is an advantage over the two-dimensional edge detection 

which applies a directional insensitive operator to the original image.

As the horizontal edge orientation is parametrised by the sign of the coefficient 

matrix, the number of possible contour points can be reduced further. Applying Hh 

denotes a transition from dark to bright intensities (when viewed from left to right), 

while — Hh = [120 — 2 — 1] will detect bright-to-dark transitions. This allows 

for an implicit inclusion of knowledge about the inside or outside of objects which do 

not change their brightness relative to the background.

Figure 5.27 shows an example sequence where the lower lip was successfully seg­ 

mented using the contour tracing approach. Due to the local and geometric restrictions 

the segmentation is robust against distortions that occur within the shown image re­ 

gion but outside the ROI around the contour. The directional gradient ensures that 

the contour is not attracted by for example the upper lip. Finally the algorithm follows 

small deformations of the lip.

When applied to the tongue the limits of the approach become evident. In Fig­ 

ure 5.28 the contour roughly follows the tongue in most parts. Particular difficulties 

arise in the front part, where the contrast and hence the gradient is very low. Conse­ 

quently the contour locally deviates from the optimum. This deviation becomes larger 

over the course of a sequence and eventually affects other parts of the contour, as the 

initial contour hypothesis becomes more and more inaccurate.
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Figure 5.27: Results of a dynamic-programming based contour tracing system using a 

minimum of a priori knowledge about the object. The images show the region of the 

lower lip in successive frames (from left to right and top to bottom), with the identified 

contour superimposed.

Figure 5.28: Insufficient tongue segmentation by local contour tracing.

The most important deficiency of the algorithm is its lack of robustness against oc­ 

clusion and varying texture1 . When the tongue moves near teeth or fillings, the contour

1 A deeper investigation of texture-based segmentation methods is beyond the scope of this thesis. 

General information is provided by image processing text books [8,13-21]. In addition [169] presents 

a texture-based approach to find ill-defined objects.
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locks to their strong gradient values. Furthermore the resulting contour is not smooth 

while the tongue is, as the flowing contrast agent is not distributed homogeneously.

5.2.2.2 Traditional Active Contour Approach

This section describes an application based on an active contour as described in sec­ 

tion 3.1. The particular energy functions applied in this solution were introduced in 

sections 4.3.3 and 4.3.3.2.

Contour Identification and Measurement System

Figure 5.29 shows the overall structure of the proposed modularised contour identifi­ 

cation and tracking system.

knowledge about 
image formation, objects 
and operators

digitised 
X-ray image 
sequence

Figure 5.29: System structure.

The system's characteristics are:

• A sequence is processed frame by frame. Currently all objects are processed in­ 

dependently.
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Except for the first image of the sequence, where the relevant contours have to 

be marked by a human expert, the system is fully automatic.

Multiple image evidences from different image operators are integrated.

The detected contour is fed back into the system to improve detection in the next 
frame.

Feature Extraction

The task of this module is to extract image features eimage that form the basis for 

the subsequent contour identification module. Unlike other approaches the proposed 

module does not segment tokens [10], such as geometric objects like lines or polygons, 

and either group or delete them afterwards based on their individual features. Instead, 

the features remain pixel-related in order to be able to identify a precise contour, as 

outlined in section 4.3.3.1.

Figure 5.30 shows the tongue's search space R as defined in Figure 3.1. The feature 

extraction is applied to this search space, or region of interest, according to equa­ 

tions (4.4) to (4.7) (cf. Figure 5.31).

Figure 5.30: The search space R is derived from an initial contour hypothesis (centre 

line).
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a)

1

i) vl-Jl

Figure 5.31: Sub-components of eima9e . a) e edge , b) 0 (0 = 80), c) engion , d) Rt_rfl 

(di = 5), e) Rt , f) Rt+d2 (dz = 5), g) iRt-^ - Rt |, h) |Rt - Rt+d2 |, i) e motj0n , j) eimage
(Wedge = 0.1, IW^jon = 0.1, tUmoHon = 0.8)

Constraints

A shape constraint was presented in [1] and described in section 4.3.3.2 which improves 

the detection of the tongue considerably (cf. Figure 5.32).

Figure 5.32: Examples of contour detection without constraint (b), and with the pro­ 

posed shape constraint (c).
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Results

Figure 5.33 and 5.34 demonstrate the performance of the proposed system, showing 

some results of identifying the tongue in a number of frames of two X-ray sequences. 

Both sequences of different test persons have been successfully processed using the 

same parameter settings. The weighting factors of the normalised energy components 

were Wimage — 0.6, Wint = 0.15 and wcon = 0.25. The constraint parameters were set 

to 7 = TT - 0.2, a = 0.2, 7min = TT - 0.4 and 7max = IT. These settings were easily 

found since small changes did not affect the results. The parameters of the geometrical 

constraint proved to be particularly robust.

The tongue is partially occluded by teeth, cheek bones and fillings. Due to saliva­ 

tion the distribution of the contrast agent which was applied orally, is not constant. 

Although these influences lead to varying features of the boundary, the tongue is de­ 

tected correctly.

Figure 5.33: Results of the proposed system identifying the tongue. Every second frame 

of a sequence is shown.
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Even when the back tongue touches the velum so there is little distinction to be 

made between the two articulators, the active contour correctly aligns with the bound­ 

ary of the tongue. Figure 5.34 demonstrates the same robustness when the middle 

tongue touches the soft palate. This result is of particular importance to the analysis 

of speech production, as the location and diameter of constrictions constitute important 

parameters to characterise a particular sound.

Figure 5.34: Results of the tongue tracking system on a different probationer. Every 

third frame of a sequence is shown.

The final image in Figure 5.33 shows a concave section in the front tongue, with the 

boundary correctly aligned with salient image features. This demonstrates the ability 

of the system to locally violate the geometrical constraint under the presence of strong 

image evidences.

With the global shape constraint however, it was not possible to segment the tip of 

the tongue, which has a significantly higher curvature than the rest of the tongue.

Further limitations of the global constraint become evident when the front tongue 

bends to a distinct concave shape. The active contour then aligns to false image evi­ 

dences in order to satisfy the shape constraint.

To demonstrate this effect and to compare this approach with the results of the 

proposed fuzzy snake, a characteristic set of images was selected. Figures 5.35 a)- 

d) show four images, where the tongue's shape was adequately modelled with the 

active contour's global constraint. In Figure 5.35 e) the tip of the tongue starts to 

rise, violating the shape constraint in the front section. In the subsequent images in 

Figures 5.35 f)-i) the tip further bends towards the front teeth and alveolus.
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e)

b)

d)

g)

Figure 5.35: Segmentation results using a traditional active contour with global shape 

constraint.
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An assessment of these segmentation results was performed by scientific experts. To 
detail the assessment, the tongue was divided into the four sections tip, front, middle 
and back. The result of the assessment of Figure 5.35 is given in Table 5.7.

Correct contours Correct sections

0/9 18/36 = 50% 

Table 5.7: Correct segmentation rate using a traditional active contour.

5.2.2.3 Fuzzy Active Contour Approach

Satisfactory results for many positions of the tongue were presented (cf. Figures 5.33 
and 5.34), emphasising the need for combined image features as well as a shape con­ 
straint as outlined in sections 4.3.3.1 and 4.3.3.2.

To detect different shapes of the tongue it was necessary to allow for a relatively high 
tolerance in the shape constraint, but this however reduced the robustness of the active 
contour against distortions. Furthermore highly concave sections of the front tongue as 
well as the tip of the tongue were not detected as the locally different curvature could 
not be modelled through the global shape constraint.

These problems were overcome using the more detailed contour description afforded 
by the fuzzy snake. The description in Table 5.8 together with the rule bases in Ta­ 
ble 5.10 allowed for a modelling of the segments of the tongue for characteristic posi­ 

tions.
very short tip, short front, medium bent middle, medium bent back

Table 5.8: Contour description of the tongue.

Locally different curvatures were accounted for, increasing the robustness of the 
segmentation as well as enabling the detection of the tip of the tongue (cf. Figure 5.36). 
Structures that were able to distort the snake were explicitly modelled, increasing the 
correctness of the segmentation. The second rule in the rule base tip for instance,
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accounts for the lower jaw while the IF- region rule in the rule base front reduces the 
influence of a tooth filling located in the upper jaw.

The segmentation results shown in Figure 5.37 were assessed in the same way as 
for the active contour approach. The result of the assessment is given in Table 5.9.

Correct contours Correct sections

8/9 35/36 = 97%

Table 5.9: Correct segmentation rate using using fuzzy snakes.

Figure 5.36: Fuzzy snake detection of two characteristic positions of the tongue with 

superimposed mean membership degrees for the curvature fuzzy sets. a)+c) highest 

and b)+d) second highest values.
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f)

e)

b)

h)

g)

i)

Figure 5.37: Segmentation results using fuzzy snakes.
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tip:

IF edge falling very weak 

AND (motion negative medium 

OR motion positive medium) 

AND curvature strong right 

THEN quality very good

IF edge falling medium 

OR edge falling strong 

THEN quality bad

bent middle:

IF edge falling weak

AND (motion negative strong

OR motion positive strong)

AND (curvature flat right

OR curvature medium right)

THEN quality very good

bent back:

IF edge falling medium

AND (motion negative medium

OR motion positive medium)

AND (curvature flat right

OR curvature medium right)

THEN quality very good

front:

IF (edge falling medium

OR edge falling weak)

AND (motion negative strong

OR motion positive strong)

AND curvature flat right

THEN quality very good

IF (edge falling medium 

OR edge falling weak) 

AND (motion negative strong 

OR motion positive strong 

OR motion negative medium 

OR motion positive medium) 

AND curvature medium right 

THEN quality very good

IF (edge falling medium 

OR edge falling weak) 

AND (motion negative strong 

OR motion positive strong 

OR motion negative medium 

OR motion positive medium) 

AND (curvature flat left 

OR curvature medium left) 

THEN quality very good

IF region negative strong

OR region negative very strong

THEN quality bad

Table 5.10: Rule bases for modelling the boundary segments of the tongue.
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5.2.2.4 Summary of Application to X-ray Sequences

This section has initially presented traditional image processing solutions to validate 

the potential of low-level and intermediate-level methods applied to medical X-ray 

sequences introduced in section 2.3.2.

It was verified that low-level image processing based on intensity statistics and local 

edge detection can detect rigid objects with a high local contrast. Where the contrast 

is low and edges blurry, more advanced low-level techniques such as template matching 

can be successful.

Both model-free low-level techniques fail for partially occluded and deformable ob­ 

jects. It then was shown that such variations require a priori knowledge, which in turn 

requires an at least intermediate-level approach. The investigated contour tracing ap­ 

proach models the objects to be detected through a region-of-interest and a preferred 

edge direction.

This knowledge on shape and appearance is however merely implicitly represented 

by the approach, making its application and extension difficult. Consequently a more 

generic method to represent and detect deformable structures was investigated: active 

contour models. Together with an appropriate preprocessing which was developed in 

this research, active contours outperform the previously investigated approach, while 

at the same time being open for adaptions and extensions.

Approach Correct contours Correct sections

low-level

active contour

fuzzy snake

n/a

0/9

8/9

n/a

18/36 = 50%

35/36 = 97%

Table 5.11: Correct segmentation rates of different approaches.

The representational power of active contours however proved to be limited. Where 

a more detailed piece-wise description of an object is required, the representation of the
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novel fuzzy active contours is superior. More complex contours or objects with a high 
degree of variations and uncertainties were successfully represented and segmented by 
the fuzzy active contour. Table 5.11 summarizes the performance of the investigated 
approaches.

Various parts of the traditional image processing solutions presented in this section 

were published in [4,170-172]. The active contour approach was developed in [1,4,170- 

174]. The fuzzy active contour applied to the vocal tract X-rax images was published 

in [4].
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Conclusions

This thesis has presented both the theoretical basis and empirical analysis of a novel 

solution for segmenting and tracking of anatomical objects in 2D medical image se­ 

quences. An original combination of active contour models and fuzzy logic is employed 

to represent and integrate uncertain knowledge within the segmentation process. Ex­ 

perimental results on both synthetic and medical images validate the overall feasibility 

of the framework.

As a basis for the development of a new approach this research has thoroughly inves­ 

tigated the characteristics of medical image sequences both theoretically and through 

the design of clinical and scientific applications.

The investigations and developments were guided by a separation of the subject 

into image formation and object characteristics which correspond to a separation into 

low-level and high-level processing stages. It has been verified that the challenging 

properties of medical image sequences can be formulated as a set of variations and 

uncertainties in image formation and object characteristics. The observation that un­ 

certainties play a major role in both low-level and high-level stages motivated the 

development of the fuzzy active contour, which provides a framework for integrating 

uncertain knowledge at all stages.
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Existing image processing operators are also accounted for by the novel approach in 

defining an interface for their integration into the fuzzy framework. Traditional image 

processing solutions developed in this research suggested the combination of comple­ 

mentary operators to handle images of poor quality. For the detection and tracking 

of deformable objects in particular active contours were successfully extended with 

combined image processing operators.

Deferred decision making employed in this integration also became a key philos­ 

ophy in the fuzzy active contour. Many existing approaches perform crisp decisions 

at each processing stage. Pixels are classified into possible objects or background 

through thresholded low-level operators and subsequently are grouped or deleted based 

on higher-level constraints. Conversely extended active contours developed in this re­ 

search defer the segmentation decision to the last processing stage. Low-level operators 

are not thresholded early but are summed up to obtain continuous image evidences. 

A dynamic-programming-based snake optimisation further delays the final constraint- 

based segmentation. While this approach proved to be beneficial in a challenging ap­ 

plication, the integration of a priori knowledge had limitations, which were overcome 

through the development of a novel contour representation.

Unlike existing representations the fuzzy contour model affords piece-wise descrip­ 

tion of image and geometric features. Both lengths and properties of each segment can 

be specified through fuzzy terms. These terms can be represented either as linguis­ 

tic variables or grammatical characters, which allows for an exploitation of uncertain 

verbal knowledge as well as more formally defined a priori information.

A full integration of the high-level contour description into all stages of the seg­ 

mentation was achieved through the introduction of fuzzy rules bases, each describing 

the properties of one contour segment. Instead of algebraic external energy functions 

with obscure numerical parameters, the fuzzy active contour calculates fuzzy external 

energies from linguistic rule bases.

The research has led to publications in the areas of image processing [1-5,173], 

medical image analysis [162,163,170,174], medical engineering [161,164,172] and fuzzy
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logic [160,175]. Early results were presented in [176] and also published in [171].

Points for further research

• Other object constraints than shape could be integrated into the framework to 

increase the representational power. Examples are velocity and direction of con­ 

tour segments, their orientation as well as the distance to other segments or to 
landmarks which are not part of the contour.

• Representation schemes could be investigated that allow for a description of 

branched and looped contour topologies.

• The fuzzy snake bears the potential to be used a tool to assess and identify/classify 

previously segmented contours. It could be investigated how this capability can 

be realised using

- Esnake as a crisp quality/classification measure and

— a fuzzy quality measure based on the fuzzy Eext .

• Alternative appearances of a contour segment can be represented within its rule 

base. To specify alternatives on the multi-segment level of the contour description, 

the logical OR could be integrated into the description and into the algorithm 

that selects a local rule base.
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Appendix A

Structured Analysis and Design 

Technique

Throughout the research project the Structured Analysis and Design Technique (SADT) 

has been used as a graphical method to describe system structure and to document 

functional units.

When applying SADT, a system is described in a structured and hierarchical way. 

In a top-down approach the system structure is first designed coarsely. The functional 

units are detailed then in a number of sub-diagrams, until the systems specification is 

complete.

SADT differentiates between activity and data diagrams. With activity diagrams 

an action is shown as a box while data flow follows arrows between the boxes. Data 

diagrams reverse this definition and are not used in this thesis.

Each side of the box may have arrow(s) of the following meanings:

• left: input data (I), will be transformed to output data;

• top: control data (C), influences or controls the transformation;

• right: output data (O), the result of the action;
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• bottom: mechanism (M), the executing element or an aid to the action.

The letters in parenthesis identify the elements of the action's interface at a lower 

level. Each action has a number, which is used to identify its lower-level diagram. The 

top-level diagram is labelled AO, the diagram of action 1 in A0 is called Al, the diagram 

of the third action in Al is marked A13 and so on.

For more information on SADT consider [184-186].
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m
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lo
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l e
ne

rg
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fu
nc
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lti
ng

 in
 a
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gl
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gl
ob

al
 d

es
cr

ip
tio

n 
of

 th
e 

ob
je

ct
. I

n 
or

de
r t

o 
ov

er
co

m
e 

th
is 

pr
ob

le
m

, O
lst
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 [3

,4]
 

in
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gr
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m
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 d
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ig
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ho
ws

 a
n 

ex
am

pl
e 

of
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 c
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ur
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hi
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 c
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r d
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^,
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^,

 E
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E
^,
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 b
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al
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gr
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 p
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at
ch

in
g 

al
go

rit
hm

 is
 i

nc
or

po
ra

te
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 c
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ob
je

ct
 c
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l c
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ra
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 l

in
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 p
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hr

ee
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m
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 c

an
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e 
id
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tif
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 c
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de

r i
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l­ 
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 c
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 b
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lu
e 

m
ay

 b
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tio

na
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at
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 p
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hi
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 b
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m
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 p
ap

er
 fo

cu
se

s 
up

on
 th

es
e 

sp
ec

ifi
c 

di
sa

dv
an

ta
ge

s 
an
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 c
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 o
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e 
ex

pr
es

si
on

 a
aa

aa
ab

bb
bb

bc
dd

d.
 S

in
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 d
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(d
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at
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w
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f a
 s
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hi
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e 
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al
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m
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w
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 l
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 c
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W
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m
en
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le

ng
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 e
xp
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pe
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en
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ge
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e 
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4&
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.^
b)

 (
0.

05
c)
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0J

5d
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at
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 d
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 c
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 d
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 p
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 s
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 C
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 c
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es
en

tin
g 

an
d 

tra
ck

in
g 

of
 o

bj
ec

t b
ou

nd
ar

ie
s 

is 
pr

es
en

te
d,

 w
hi

ch
 a

llo
w

s 
fo

r 
th

e 
in

te
gr

at
io

n 
of

 u
nc

er
ta

in
 a

 p
rio

ri 
kn

ow
le

dg
e 

in
to

 a
n 

ac
tiv

e 
co

nt
ou

r 
m

od
el

.
Th

e 
no

ve
l c

on
ce

pt
 o

f f
uz

zy
 s

na
ke

s 
is 

de
ve

lo
pe

d 
to

 a
llo

w 
fo

r a
n 

in
tu

iti
ve

 s
pe

cif
i­ 

ca
tio

n 
of

 th
e 

pr
op

er
tie

s o
f a

n 
ob

je
ct

's 
bo

un
da

ry
. T

hi
s 

is 
ac

hi
ev

ed
 b

y 
in

tro
du

ci
ng

 
fu

zz
y 

en
er

gy
 f

un
ct

io
ns

 a
nd

 e
sta

bl
ish

in
g 

a 
lin

gu
ist

ic
 r

ul
e 

ba
se

, w
hi

ch
 d

es
cr

ib
es

 
ea

ch
 o

f t
he

 fu
zz

y 
sn

ak
e's

 se
gm

en
ts.

 F
ur

th
er

m
or

e 
th

e 
ap

pr
ox

im
at

e 
le

ng
th

 o
f e

ac
h 

co
nt

ou
r 

se
gm

en
t 

m
ay

 b
e 

sp
ec

ifi
ed

 t
o 

bo
th

 i
m

pr
ov

e 
th

e 
se

gm
en

ta
tio

n 
pr

oc
es

s 
an

d 
to

 re
du

ce
 c

om
pu

ta
tio

na
l c

om
pl

ex
ity

.
Fi

na
lly

, 
a 

co
m

pl
ex

 s
ce

ne
 f

ro
m

 a
 m

ed
ic

al
 im

ag
in

g 
se

qu
en

ce
 h

as
 b

ee
n 

in
cl

ud
ed

 
to

 i
llu

st
ra

te
 th

e 
pe

rfo
rm

an
ce

 o
f t

hi
s 

fu
zz

y 
co

nt
ou

rin
g 

te
ch

ni
qu

e.

1 
In

tr
od

uc
ti

on

A
ct

iv
e 

co
nt

ou
rs

 [1
], 

or
 s

na
ke

s, 
ar

e 
a 

we
ll 

kn
ow

n 
m

et
ho

d 
fo

r m
at

ch
in

g 
an

 o
bj

ec
t's

 c
on

to
ur

 
m

od
el

 to
 fe

at
ur

es
 in

 a
n 

im
ag

e.
 T

he
 a

pp
ro

ac
h,

 w
hi

ch
 u

se
s 

a 
po

ly
go

na
l o

bj
ec

t r
ep

re
se

nt
a­

 
tio

n 
(F

ig
. 1

), 
is 

di
st

in
gu

is
he

d 
by

 it
s 

in
tri

ns
ic

 a
bi

lit
y 

to
 h

an
dl

e 
va

ria
tio

ns
 in

 th
e 

bo
un

da
ry

 
th

at
 is

 to
 b

e 
de

te
ct

ed
. I

t 
is 

th
er

ef
or

e 
ca

pa
bl

e 
of

 id
en

tif
yi

ng
 a

nd
 tr

ac
ki

ng
 d

ef
or

m
ab

le
 o

b­
 

je
ct

s 
in

 i
m

ag
e 

se
qu

en
ce

s.
Fo

r 
ea

ch
 i

m
ag

e,
 t

he
 a

lg
or

ith
m

 r
eq

ui
re

s 
an

 i
ni

tia
l 

po
ly

go
n 

P 
= 

(P
O

.P
I, 

..
.,
 p

w
-i

) 
co

ns
is

tin
g 

of
 N

 v
er

tic
es

 p
< 

= 
(i

i,y
i)

, 
w

he
re

 i
t 

an
d 

yt 
ar

e 
th

e 
sp

at
ia

l 
co

-o
rd

in
at

es
 o

f 
p{

. T
he

 d
et

ec
te

d 
bo

un
da

ry
 is

 r
ep

re
se

nt
ed

 b
y 

th
e 

po
ly

go
n 

Q
 =

 (
q0

, q
i, 

• • 
•, 

q/
v-

i)i
 w

ith
 

q<
 =

 (
EJ

, 3
/0-

 E
ac

n 
If

 is
 s

el
ec

te
d 

fro
m

 a
 s

et
 o

f c
an

di
da

te
s 

C
( =

 (
cjj

0, 
C

j,i
,..

., 
CJ

,M
_I

). 
In

 
m

an
y 

ap
pl

ic
at

io
ns

 t
he

 c
an

di
da

te
s 

c^
- 

= 
(x

j,y
j)

 a
re

 u
ni

fo
rm

ly
 s

am
pl

ed
 a

lo
ng

 a
 s

ea
rc

h 
lin

e 
no

rm
al

 to
 th

e 
in

iti
al

 p
ol

yg
on

 a
nd

 in
te

rs
ec

tin
g 

p;
. T

ra
ck

in
g 

of
 th

e 
co

nt
ou

r i
s a

ch
ie

ve
d 

by
 p

ro
ce

ss
in

g 
a 

se
qu

en
ce

 f
ra

m
e 

by
 f

ra
m

e 
an

d 
ta

ki
ng

 t
he

 r
es

ul
tin

g 
Q

t 
as

 t
he

 i
ni

tia
l 

es
tim

at
ed

 c
on

to
ur

 P
(+1

 f
or

 th
e 

ne
xt

 f
ra

m
e.
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R
Fi

gu
re

 1
: P

ol
yg

on
al

 c
on

to
ur

 re
pr

es
en

ta
tio

n.

Fr
om

 th
is

 p
ol

yg
on

al
 re

pr
es

en
ta

tio
n,

 it
 is

 p
os

sib
le

 to
 fo

rm
ul

at
e 

an
 a

pp
ro

pr
ia

te
 en

er
gy

 
fu

nc
tio

n 
E

ma
i,e 

fo
r 

th
e 

ob
je

ct
, w

hi
ch

 c
an

 s
ub

se
qu

en
tly

 b
e 

m
in

im
is

ed
 in

 o
rd

er
 to

 o
bt

ai
n 

th
e 

de
sir

ed
 c

on
to

ur
 Q

, 
Th

is
 m

in
im

is
at

io
n 

is 
ac

hi
ev

ed
 b

y 
se

le
ct

in
g 

an
 o

pt
im

al
 s

et
 o

f 
ve

rti
ce

s 
fro

m
 th

e 
ca

nd
id

at
es

 w
hi

ch
 h

av
e 

be
en

 s
am

pl
ed

 in
 a

 re
gi

on
 R

, a
ro

un
d 

an
 in

iti
al

 
co

nt
ou

r.
N

or
m

al
ly

 E
sna

ke 
is 

de
co

m
po

se
d 

in
to

 tw
o 

co
m

po
ne

nt
s:

(1
)

£,
nt

, 
th

e 
in

te
rn

al
 e

ne
rg

y 
re

pr
es

en
ts 

ge
ne

ra
l 

co
nt

ou
r 

pr
op

er
tie

s 
su

ch
 a

s 
sti

ffn
es

s, 
w

hi
ch

 a
re

 u
su

al
ly

 r
eq

ui
re

d 
to

 p
ro

du
ce

 a
 s

m
oo

th
 s

ha
pe

. 
Th

e 
ex

te
rn

al
 e

ne
rg

y 
E

at
 i

s 
co

m
po

se
d 

of
 E

im
ag

e 
w

hi
ch

 g
ui

de
s 

th
e 

co
nt

ou
r 

to
w

ar
ds

 p
ar

tic
ul

ar
 f

ea
tu

re
s 

in
 th

e 
im

ag
e 

an
d 

Ea
,n 

w
hi

ch
 a

llo
ws

 f
or

 t
he

 i
nt

eg
ra

tio
n 

of
 a

dd
iti

on
al

 c
on

st
ra

in
ts

 (
cf

. 
eq

ua
tio

n 
(2

)).
 

W
ei

gh
tin

g 
pa

ra
m

et
er

s 
w

int
, w

^.,
, -

u!i
ma

ge
, a

nd
 t

u^
n 

co
nt

ro
l 

th
e 

re
la

tiv
e 

in
flu

en
ce

 o
f t

he
 

en
er

gy
 c

om
po

ne
nt

s 
an

d 
ar

e 
ge

ne
ra

lly
 d

et
er

m
in

ed
 b

y 
a 

pr
oc

es
s 

of
 tr

ia
l-a

nd
-e

rr
or

.

Ea
t (

qn
) 

= 
w

im
ag

eE
im

ag
e (

qn
) +

 w
^
E

^
 (q

n)
 

(2
)

Th
e 

or
ig

in
al

 a
ct

iv
e 

co
nt

ou
r 

al
go

rit
hm

 p
re

se
nt

ed
 in

 [1
] h

ad
 s

om
e 

in
he

re
nt

 c
om

pu
ta

­ 
tio

na
l 

pr
ob

le
m

s 
in

 e
va

lu
at

in
g 

th
e 

en
er

gy
 f

un
ct

io
n,

 w
hi

ch
 w

er
e 

su
bs

eq
ue

nt
ly

 s
ol

ve
d 

by
 

A
m

in
i 

et
 a

l. 
[2]

. 
Th

e 
en

er
gy

 m
in

im
is

at
io

n 
of

 t
he

 s
na

ke
 w

as
 p

er
fo

rm
ed

 b
y 

a 
di

sc
re

te
 

dy
na

m
ic

 p
ro

gr
am

m
in

g 
al

go
rit

hm
 w

hi
ch

 a
llo

w
ed

 fo
r t

he
 in

te
gr

at
io

n 
of

 h
ar

d 
co

ns
tra

in
ts

, 
su

ch
 a

s 
a 

m
in

im
um

 d
is

ta
nc

e 
be

tw
ee

n 
th

e 
sn

ak
e's

 v
er

tic
es

.

2 
A

ct
iv

e 
C

on
to

ur
s 

w
it

h 
M

ul
ti

pl
e 

Se
gm

en
ts

A 
fu

nd
am

en
ta

l 
lim

ita
tio

n 
re

m
ai

ne
d 

in
 t

er
m

s 
of

 r
ep

re
se

nt
in

g 
a 

pr
io

ri 
kn

ow
le

dg
e 

co
n­

 
ce

rn
in

g 
m

or
e 

co
m

pl
ex

 o
bj

ec
ts

 w
hi

ch
 w

er
e 

to
 b

e 
de

te
ct

ed
, 

na
m

el
y 

th
at

 a
ll 

ve
rti

ce
s 

of
 

th
e 

ac
tiv

e 
co

nt
ou

r w
er

e 
ch

ar
ac

te
ris

ed
 b

y 
th

e 
sa

m
e 

lo
ca

l e
ne

rg
y 

fu
nc

tio
n,

 r
es

ul
tin

g 
in

 a
 

sin
gl

e, 
gl

ob
al

 d
es

cr
ip

tio
n 

of
 th

e 
ob

je
ct

. I
n 

or
de

r 
to

 o
ve

rc
om

e 
th

is
 p

ro
bl

em
, O

ls
ta

d 
[3

,4]
 

in
tro

du
ce

d 
a 

gr
am

m
at

ic
al

 d
es

cr
ip

tio
n 

of
 th

e 
sn

ak
e's

 e
ne

rg
y 

fu
nc

tio
n.

 F
ig

. 
2 

sh
ow

s 
an

 
ex

am
pl

e 
of

 a
 c

on
to

ur
, w

hi
ch

 c
an

 b
e 

de
sc

rib
ed

 a
s 

a 
se

qu
en

ce
 o

f f
ou

r 
di

ffe
re

nt
 e

xt
er

na
l 

en
er

gy
 f

un
ct

io
ns

 £
£.

,, 
E*

*,
 E

^.
, 

an
d 

£^
,, 

re
pr

es
en

te
d 

by
 t

he
 r

es
pe

ct
iv

e 
te

rm
in

al
s 

a, 
b,

 c
 a

nd
 d

. T
he

 g
ra

m
m

at
ic

al
 e

xp
re

ss
io

n 
de

sc
rib

in
g 

su
ch

 a
 s

eg
m

en
te

d 
bo

un
da

ry
 w

ou
ld

 
be

 a
*b

*c
*d

+,
 w

he
re

 *
 i

s 
th

e 
cl

os
ur

e 
op

er
at

or
 w

hi
ch

 a
llo

ws
 p

ar
ts

 o
f 

a 
pa

tte
rn

 t
o 

be
 

ar
bi

tra
ril

y 
re

pe
at

ed
. 

A
 p

at
te

rn
-m

at
ch

in
g 

al
go

rit
hm

 i
s 

in
co

rp
or

at
ed

 w
ith

in
 t

he
 a

ct
iv

e 
co

nt
ou

r's
 e

ne
rg

y 
m

in
im

is
at

io
n 

pr
oc

es
s 

w
hi

ch
 c

on
st

ra
in

ts
 th

e 
re

su
lti

ng
 c

on
to

ur
s 

to
 o

nl
y 

th
os

e 
th

at
 c

om
pl

y 
w

ith
 th

e 
gr

am
m

at
ic

al
 e

xp
re

ss
io

n.
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F.
 R

ow
in

g 
et

 a
t. 

/L
in

gu
is

tic
 C

on
to

ur
 M

od
el

lin
g

V,
Fi

gu
re

 2
: 

Ex
am

pl
e 

ob
je

ct
. 

Th
is 

sy
nt

he
tic

 b
ou

nd
ar

y 
de

m
on

str
at

es
 a

 m
ul

ti-
se

gm
en

t 
ob

je
ct

 c
on

to
ur

. 
Th

e 
bo

un
da

ry
 s

eg
m

en
ts 

ha
ve

 a
 d

iff
er

en
t s

ha
pe

 (
lo

ca
l c

ur
va

tu
re

) 
as

 w
ell

 a
s 

a 
di

ffe
re

nt
 a

pp
ea

ra
nc

e 
in

 
th

e 
im

ag
e 

(e
dg

e 
co

nt
ra

st
), 

wh
ile

 a
ll 

ve
rti

ce
s 

w
ith

in
 a

 s
eg

m
en

t s
ha

re
 s

im
ila

r 
pr

op
er

tie
s. 

Th
e 

co
nt

ou
r's

 
ve

rti
ce

s 
pn

 a
re

 v
isu

al
ise

d 
by

 l
in

es
 p

er
pe

nd
ic

ul
ar

 t
o 

th
e 

co
nt

ou
r. 

Th
ic

k 
lin

es
 i

llu
st

ra
te

 t
he

 s
eg

m
en

t 
bo

un
da

rie
s.

Th
re

e 
fu

nd
am

en
ta

l d
ra

w
ba

ck
s 

in
 th

is
 a

lg
or

ith
m

 c
an

 b
e 

id
en

tif
ie

d:

1. 
Th

e 
di

ffe
re

nt
 e

ne
rg

y 
fu

nc
tio

ns
 d

o 
no

t i
nt

rin
si

ca
lly

 c
on

sid
er

 in
ex

ac
t a

 p
rio

ri 
kn

ow
l­ 

ed
ge

.
2. 

Th
e 

le
ng

th
 o

f 
a 

co
nt

ou
r 

se
gm

en
t 

ca
nn

ot
 b

e 
sp

ec
ifi

ed
, 

al
th

ou
gh

 a
n 

ap
pr

ox
im

at
e 

va
lu

e 
m

ay
 b

e 
kn

ow
n 

in
 a

dv
an

ce
.

3. 
Th

e 
al

go
rit

hm
 i

s 
co

m
pu

ta
tio

na
lly

 e
xp

en
siv

e,
 s

in
ce

 t
he

 c
lo

su
re

 o
pe

ra
tio

n 
ge

ne
r­ 

at
es

 a
 l

ar
ge

 n
um

be
r 

of
 p

os
sib

le
 s

ta
te

s 
in

 t
he

 f
in

ite
-s

ta
te

-m
ac

hi
ne

 b
as

ed
 p

at
te

rn
 

m
at

ch
in

g.

Th
is

 p
ap

er
 fo

cu
se

s 
up

on
 th

es
e 

sp
ec

ifi
c 

di
sa

dv
an

ta
ge

s 
an

d 
in

tro
du

ce
s 

a 
ne

w
 te

ch
ni

qu
e 

ba
se

d 
up

on
 f

uz
zy

 s
na

ke
s 

[5]
 w

hi
ch

 w
ill

 b
e 

sh
ow

n 
to

 s
ol

ve
 a

ll 
th

re
e 

pr
ob

le
m

s, 
th

e 
la

tte
r 

tw
o 

ha
vi

ng
 a

 c
om

m
on

 s
ol

ut
io

n.

3 
F

uz
zy

 S
eg

m
en

t 
L

en
gt

h

Th
e 

fu
zz

y 
sn

ak
e 

ap
pr

oa
ch

 p
er

m
its

 t
he

 s
pe

ci
fic

at
io

n 
of

 th
e 

nu
m

be
r 

of
 s

ub
se

qu
en

t 
ve

r­ 
tic

es
 t

ha
t s

ha
re

 a
 c

om
m

on
 e

ne
rg

y 
fu

nc
tio

n,
 a

 p
ar

am
et

er
 c

on
st

ra
in

t w
hi

ch
 d

ra
m

at
ic

al
ly

 
re

du
ce

s 
th

e 
se

ar
ch

 s
pa

ce
. 

A 
cr

isp
 l

en
gt

h 
sp

ec
ifi

ca
tio

n 
ho

w
ev

er
, 

w
ou

ld
 n

ot
 b

e 
ab

le
 t

o 
co

ns
id

er
 u

nc
er

ta
in

 in
fo

rm
at

io
n.

 A
 n

ew
 m

et
ho

d 
to

 s
pe

ci
fy

 th
e 

le
ng

th
 o

f a
 s

na
ke

 s
eg

m
en

t 
by

 a
 f

uz
zy

 n
um

be
r 

is 
th

er
ef

or
e 

pr
es

en
te

d.

3.
1 

N
ot

at
io

n

In
st

ea
d 

of
 s

pe
ci

fy
in

g 
sn

ak
e 

se
gm

en
ts 

of
 a

rb
itr

ar
y 

le
ng

th
 a

s 
fo

r 
ex

am
pl

e 
a*

b*
c*

d*
, 

th
e 

le
ng

th
 o

f e
ac

h 
se

gm
en

t 
ca

n 
be

 g
iv

en
 b

y 
th

e 
ex

pr
es

sio
n 

aa
aa

aa
bb

bb
bb

cd
dd

. 
Si

nc
e 

se
g­

 
m

en
t 

le
ng

th
s 

ar
e 

no
t 

kn
ow

n 
pr

ec
ise

ly
, 

a 
di

ffe
re

nt
 n

ot
at

io
n 

is 
in

tro
du

ce
d,

 w
he

re
 t

he
 

le
ng

th
 is

 e
xp

re
ss

ed
 a

s 
a 

(d
isc

re
te

) 
fu

zz
y 

nu
m

be
r 

[6]
 I

, w
ith

 m
ea

n 
va

lu
e 

la 
an

d 
sp

re
ad

 s
, 

de
fin

ed
 b

y 
ft(

l) 
> 

0 
V 

I 6
 {

(„ 
- 

s,
..
.,
 k

 4
- s

}.
Th

e 
co

nt
ou

r o
f t

he
 e

xa
m

pl
e 

ob
je

ct
 in

 F
ig

. 2
 c

an
 n

ow
 b

e 
de

sc
rib

ed
 b

y 
th

e 
ex

pr
es

sio
n 

(6
a.

) (
6b

) (
1 c

) (
4 A

) . 
In

 th
e 

fir
st 

se
gm

en
t, 

fo
r a

 fu
zz

y 
le

ng
th

 o
f /

„ 
= 

I, 
= 

6 
an

d 
a 

sp
re

ad

F.
 H

aw
in

g 
et

al
. 
/ 

Li
ng
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ic
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Fuzzy active contour model

F.Howing, L.S.Dooley and D.Wermser

Abstract: A new method for representing and tracking of object boundaries is presented, which 
allows for the integration of uncertain a prior; knowledge into an active contour model. The novel 
concept of fuzzy snakes is developed to allow for an intuitive specification of the properties of an 
object's boundary. This is achieved by introducing fuzzy energy functions and establishing a 
linguistic rule base, which describes each of the fuzzy snake's segments. Furthermore the 
approximate length of each contour segment may be specified to both improve the segmentation 
process and to reduce computational complexity. Experimental results demonstrate the validity of 
the theoretical properties of the fuzzy snake approach, and examples have been included illustrating 
the application of the technique to complex scenes, such as medical imaging sequences.

1 Introduction

Active contours [1], or 'snakes', are a well known method 
for matching an object's contour model to features in an 
image. The approach, which uses a polygonal object 
representation (Fig. 1), is distinguished by its intrinsic 
ability to handle variations in the boundary that is to be 
detected. It is therefore capable of identifying and tracking 
deformable objects in image sequences.

For each image, the algorithm requires an initial polygon 
P = (Po> /'!>••• >PN-\) consisting of TV vertices />, = (*,, 
yt ), where x, and yt are the spatial co-ordinates of p t . The 
detected boundary is represented by the polygon Q = (q0 , 
1\ i • • • . QN- i ). with 9i ~ (xt > yi)- Each qt is selected from a 
set of candidates €",=(0,0, cil ,...,ciM _ ] ). In many 
applications the candidates c, j = (jc; , >>; ) are uniformly 
sampled along a search line normal to the initial polygon 
and intersecting pt . Tracking of the contour is achieved by 
processing a sequence frame by frame and taking the 
resulting Q, as the initial estimated contour Pt+l for the 
next frame.

From this polygonal representation, it is possible to 
formulate an appropriate energy function Esnake for the 
object, which can subsequently be minimised to obtain the 
desired contour Q. This minimisation is achieved by select­ 
ing an optimal set of vertices from the candidates which 
have been sampled in a region R, around an initial contour.

Normally Esnake is decomposed into two components:

Eint , the internal energy, represents general contour proper­ 
ties such as stiffness, which are usually required to produce 
a smooth shape. The external energy Ee^ is composed of 
Eimagei which guides the contour towards particular 
features in the image, and Ecm , which allows for the 
integration of additional constraints (cf. eqn. 2). Weighting 
parameters wint , wext , wimage and wcon control the relative 
influence of the energy components and are generally 
determined by a process of trial-and-error,

= wimageEima (qn ) + wcmEcm (qn ) (2)

n=0

The original active contour algorithm presented in [1] had 
some inherent computational problems in evaluating the 
energy function, which were subsequently solved by Amini 
et al. [2]. The energy minimisation of the snake was 
performed by a discrete dynamic programming algorithm 
which allowed for the integration of hard constraints, such 
as a minimum distance between the snake's vertices.

A simplified version of the dynamic programming 
algorithm is given in Table 1, where TV is the number of 
vertices and M the number of candidates for each vertex. 
S(n, m) represents the minimal energy level possible for 
the vertices 0,..., n if the nth vertex is the candidate

Table 1: Dynamic programming algorithm for optimisa­ 
tion of a global energy function

1. for n=1 ...N- 1
2. for m=0.../W-1
3. S(n, m) = mmk (w!n! E,n,(cn . m ) + wex,Eex,(cn. m ) + S(n - 1, k)}
4. T(n, m) = ^"
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Fig. 1 Polygonal contour representation
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c?,m> A"™ is the ke[0, M- I] that minimised the expres­ 
sion in line 3. It points to the optimal predecessor of cn m 
and is stored in T(n, m). After all vertices have been 
processed, these pointers are traced back to obtain the 
new boundary Q. Olstad [3] successfully applied this 
algorithm to the detection of the left ventricle in ultrasonic 
images.

An alternative optimisation strategy allowing for hard 
constraints is the greedy algorithm proposed by Williams 
and Shah in [4], while an extensive survey of other 
optimisation strategies which also have been applied to 
active contours is given in [5]. Amongst some of the 
principal items raised are issues concerning the large 
number of iterations and convergence problems. In both 
these respects the approach proposed in this paper requires 
only a single iteration to find the desired object boundaries, 
provided they were within the search lines.

Many of the approaches adopted are concerned with 
implicit knowledge representation. Examples include 
statistical models of shape in [6,7], where active contours 
are trained from a set of examples, and the most popular 
and effective approach of active shapes in [8] is based on a 
point distribution model.

The fuzzy active contour presented in this paper is based 
on an explicit representation of an object's properties, 
including but not limited to shape. It is appropriate in 
situations where a representative training set is either not 
available or where an explicit and sometimes verbal knowl­ 
edge representation is more appropriate in the context of 
the application. For instance, in medical domain applica­ 
tions selected non-computer vision experts can easily 
describe both shape and appearance in linguistic terms.

2 Active contours with multiple segments

In traditional active contours a fundamental limitation 
remains in terms of representing a priori knowledge 
concerning more complex objects which are to be detected. 
This is that all vertices of the active contour are charac­ 
terised by the same local energy function, resulting in a 
single, global description of the object. To overcome this 
problem, Olstad [9, 10] introduced a grammatical descrip­ 
tion of the snake's energy function. Fig. 2 shows an 
example of a contour, which can be described as a 
sequence of four different external energy functions E^,, 
E°ext , ££,., and E^,, represented by the respective terminals 
a, b, c and d. The grammatical expression describing such 
a segmented boundary would be a — a*b*c*d*, where * is

Po

Fig. 2 Example object
This synthetic boundary demonstrates a multisegment object contour. The 
boundary segments have a different shape (local curvature) as well as a different 
appearance in the image (edge contrast), while all vertices within a segment 
share similar properties. The contour's vertices pn are visualised by lines 
perpendicular to the contour. Thick lines illustrate the segment boundaries
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a b c 
Fig. 3 Two objects with different curvature properties
Lower constant contour can be detected by a traditional active contour (b), while 
upper multisegment contour requires a better model. Figs, b and c also contain 
initial contour hypothesis P (upper arc) as well as search lines C, (straight lines)

the closure operator which allows parts of a pattern to be 
arbitrarily repeated. A pattern-matching algorithm is incor­ 
porated within the active contour's energy minimisation 
process which constrains the resulting contours to only 
those that comply with the grammatical expression.

To illustrate the benefits of the grammatical model 
consider only the local shape (curvature) of the example 
object in Fig. 2 resulting in the upper object in Fig. 3a. The 
traditional active contour is only capable of representing 
constant local properties. Its similarity constraint favours 
the constant contour (Fig. 36). With the grammatical model 
the more complex contour can be represented and hence 
detected (Fig. 3c).

3 Fuzzy contour model

The grammatical approach described in the preceding 
section may considerably increase the number of energy 
functions, their parameters and weights. Often these 
numerical parameters are obscure and their refinement 
time consuming. This is especially true in situations 
where the a priori knowledge is imprecise or uncertain, 
or where it is explicitly available in the form of verbal 
expressions. It then becomes much more desirable to use a 
more intuitive contour description.

This section introduces the general concept of a fuzzy- 
logic based active contour model [11, 12]. In addition to a 
representation where the length of each contour segment 
can be specified it permits a linguistic description of 
various properties of an object's boundary at a high level 
of abstraction.

Analogous to the image energy Eimage of an active 
contour, the fuzzy snake is capable of representing the 
appearance of an object in the image. Further properties of 
the object's boundary segments, such as shape, may be 
represented in a similar way to the function Econ in an 
active contour. The model, however, uses linguistic vari­ 
ables and linguistic values of fuzzy sets instead of numer­ 
ical parameters.

To illustrate this approach consider the local shape of the 
example object in Fig. 2 again. The boundary may be 
decomposed into four segments. With Olstad's model, a 
grammatical expression to describe this contour could be 
a = a*b*c*d*, where a represents an energy function 
favouring local angles of 160°, while b and c favour 
angles of 180° and 110°, respectively.

A more intuitive description would be 'a medium length 
arc, bending right, followed by a medium straight line, a 
right bending corner and a short straight line'. Such a 
verbal expression can be formalised through the proposed 
fuzzy contour description D, which is a concatenation of 
segment descriptions dz , z & [0, Z], with Z being the 
number of boundary segments. Each dz is decomposed 
into a fuzzy segment length \z and a segment property zz .

IEE Proc.-Vis. Image Signal Process., Vol. 147, No. 4, August 2000



Table 2: Example of a linguistic fuzzy contour descrip- 
tion in terms of each segment's length and property

D = medium right arc, medium straight line 
very short right corner, short straight line

Table 3: Fuzzy contour description using fuzzy lengths 
and shortcut property labels

D = (6a)(6b)(?c)(3d)

Table 4: Property labels defined by linguistic rules

Segment property label Shortcut Fuzzy rule base 
label

right arc 

straight line

right corner

IF curvature medium right 
THEN quality very good 
IF curvature Rat left 
OR curvature Rat right 
THEN quality very good 
IF curvature strong right 
THEN quality very good

Table 2 demonstrates the use of linguistic values for lz 
(medium, short and very short). To integrate them into an 
algorithm, they are translated into a fuzzy number of snake 
vertices (cf. Table 3). The details of this mapping are 
discussed in Section 4. The property labels for zz used in 
Table 2 (right arc, straight line and right 
corner) represent linguistic fuzzy rules to describe all 
the features a contour may exhibit. For convenience short­ 
cut labels may be used (cf. Tables 3 and 4). To realise this, 
a linguistic variable is created for each feature. To describe 
a local shape, for example, the local angle at each vertex is 
measured and mapped to a linguistic variable curvature. 
Fuzzy sets are created and linguistic values assigned to 
characterise the curvature as, for example, acute right 
or flat. Taken together with an output variable quality, it is 
then possible to describe each segment's curvature by a 
fuzzy rule base. An example is given in Table 4.

The calculation of the active contour's external energy is 
performed by a fuzzy inference [13], the defuzzified [14- 
16] output of which is a crisp quality measure for each 
contour candidate. The details of this approach are 
presented in Section 5.

4 Fuzzy segment length

The fuzzy snake approach permits the specification of the 
number of subsequent vertices that share a common energy 
function, a parameter constraint which dramatically 
reduces the search space.

4.1 Notation
Since snake segment lengths are not known precisely, a 
new notation is introduced, where the length is expressed 
as a fuzzy number (cf. Table 3). Fig. 4 illustrates such a 
(discrete) fuzzy number [17] /, with mean value /0 and 
spread s, denned by u.(l) > 0 V/e {/0 - s,... , 10 +s}.

In the first segment of the contour in Fig. 2, for a fuzzy 
length of /0 = 6 and a spread of s = 2, the segment speci-

IEE Proc.-Vis. Image Signal Process., Vol. 147, No. 4, August 2000
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I, vertices 
Fig. 4 Segment length as a fuzzy number

fication (6a) denotes a segment consisting of between four 
and eight vertices, sharing a common property defined by 
an energy function E*exl . Using the analogy of a gramma­ 
tical description, the fuzzy snake can now be specified as 
an expression, using operators such as concatenation, 
logical AND and OR, together with a fuzzy length.

The absolute number of vertices depends on the 
sampling distance and is not a direct measure for the 
length of a segment. While the fuzzy snake algorithm 
uses the absolute length, the user-level contour description 
must allow for a length measure relative to the overall 
length of the contour. With the segment length expressed 
as a percentage, the above example can be written as (0.4a.) 
(0.4b) (0.05c) (0.15A). These relative lengths can now be 
mapped to linguistic labels as shown in Table 5 to realise a 
contour description as proposed in Table 2.

4.2 Extended optimisation algorithm 
An extension to the dynamic programming algorithm 
outlined in Section 1 is necessary to account for the 
variable length of snake segments. Multiple external 
energy functions imply that many different calculations 
have to be performed for each vertex. Since the segment 
length is now variable, several energy functions may be 
calculated simultaneously for vertices either on or near a 
segment boundary. To illustrate this, an example is 
provided in Table 6.

When back-tracking takes place, only one energy func­ 
tion for each vertex succeeds. The selected function 
thereby determines the final state of that vertex.

The actual implementation of the fuzzy segment length is 
achieved by an extension to the expression in line 3 of Table 
1. The new expression is rewritten in line 3 of Table 7. The

Table 5: Mapping of linguistic labels to fuzzy numbers: 
example for expression in Table 2 with N= 16

Linguistic label

very short
short
medium

Relative length

R=5%

=«15%

^40%

Absolute fuzzy length

1
3
6

Table 6: Energy functions which have to be considered 
in the Fig. 2 example

Vertex 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Functions aaaaaaaaa
bbbbbb b b b b 

c c c c c c c
dddddddd
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Table 7: Extended dynamic programming algorithm

1. forn=l...N-1
2. for m=O...M- 1
3. Sz (n, m) = mmk [w!n,Elnt (cn. m + wext Elxt (cnim ) + Sz (n - 1, /c) +1 - n(l,(n - 1, k))]
4. /i (n)m) = /z(/7 _1 i ^mln) + 1
5. rz(n, m) = /cmln

length is regarded as an additional constraint, where 
lz(n — 1, k) is analogous to S2 (n — 1, k) and denotes the 
number of preceding vertices which would fall into state z 
if candidate cnm was selected. Consequently, candidates 
which assist in constructing a chain of the specified length 
are favoured. Line 4 of Table 7 updates the length informa­ 
tion. Tz in line 5 points to that predecessor of cn m which 
would be optimal if the final state of vertex n was z.

An additional advantage occurring from this approach is 
that computational complexity is reduced considerably. In 
the above example an arbitrary segment length would gener­ 
ate (N - 1)(Z ~ ^ = 15 3 = 3375 possible states of the contour, 
where Z is the number of segments. Exploiting the a priori 
knowledge concerning the approximate segment length 
reduces this number by approximately 98.5% to 52. It must 
be stated, however, that the actual computational complexity 
is very much application-specific and depends on lz , s and the 
complexities Q(E2ext), where Ze (a, b, c,...}.

5 Fuzzy energy functions

The second novel feature integrated into the proposed 
fuzzy snake is the fuzzy representation of energy functions. 
Using linguistic variables, this approach provides the 
active contour with an intuitive man-machine interface, 
allowing uncertain knowledge to be exploited.

5.1 Fuzzification
The Appendix defines an example set of algebraic energy 
functions typically used by a traditional active contour. 
With the fuzzy snake, the components of the external 
energy function (eqns. 4 and 8) are- represented separately 
by linguistic variables and fuzzy sets. For Eimage the 
calculation of image evidences (eqns. 5-7) is retained, 
but they become linguistic variables.

The example in Fig. 5 illustrates how an evidence 
function can be extended by an intuitive interface using 
elements of fuzzy logic. Foreedge , a linguistic variable edge 
is created. Fuzzy sets with linguistic values, for instance 
falling very strong,..., rising very strong, 
are defined to cover the value range of eqn. 5 [Note 1]. In 
this example, the values of the term Vj_(CH , cnm) are 
mapped to adjectives which cover the range from very 
weak to very strong. The factor 5, which specifies the 
edge direction, is accounted for by the adjectives rising 
and falling, respectively.

In an analogous manner, the definition of linguistic 
variables and fuzzy sets for the region and motion-based 
evidences (eqns. 6 and 7, respectively) are similarly given. 
To illustrate how a constraint energy function is integrated 
into the fuzzy snake, the fuzzification of eqn. 8 is shown in 
Fig. 6. Although eqn. 8 already allows for the integration 
of inexact knowledge, it affords a number of parameters

Note 1: For simplicity, that the adjectives are regarded as a part of the 
primary term of the linguistic value rather than as a linguistic hedge with 
an associated operator in the sense of [18].
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RVW \ / RW \ / RM \ / RS RVS

A A A A
0.5 
edge

1.0

Fig. 5 Fuzzy representation of edge-based image evidences
F, falling; R, rising; VS, very strong; VW, very weak; S, strong; M, medium, 
W, weak

0

IF ML

90
curvature, deg

SL

1f

AL

180 360270 
curvature, deg

Fig. 6 Fuzzy representation of curvature constraint
AR, acute right; SR, strong right; MR, medium right; F, flat; ML, medium left; 
SL, strong left; AL, acute left

and hence does not provide an intuitive interface to either 
the shape constraint or other constraints that may similarly 
be applied. Through fuzzification the geometrical 
constraint becomes a linguistic variable curvature which 
is calculated using eqn. 9 and represents the actual measure 
for the constraint.

The weighting function v in eqn. 10, however, is now 
replaced by a number of fuzzy sets. The membership 
functions of the fuzzy sets acute to flat have been 
determined empirically to relate to the human perception 
of the different degrees of curvature. Many other alter­ 
native constraints may also be included, for example the
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orientation of a contour segment (by using the angle of the 
major axis of a segment) or the relative position of 
different contour segments.

The entire membership degrees n(edge), ^(region) and 
^(motion) for a given candidate cnm can thus be regarded 
as its fuzzy image energy [Note 2], and membership 
degrees for constraints such as ^(curvature) correspond­ 
ingly as its fuzzy constraint energy.

5.2 Fuzz/ness of boundary features 
The fuzzy snake model constrains the possible shapes the 
resulting contour might have, while concomitantly allow­ 
ing for a certain deviation from an optimal prototype of the 
object that is to be detected. The variable segment length is 
one element which affords this flexibility. Another is the 
fuzziness in the description of desired boundary features. 
To illustrate how a fuzzy snake is capable of favouring 
desired features using the fuzzincation described above, 
the following example visualises the membership degrees 
of the fuzzy sets over the linguistic variable curvature.

For each vertex of the example contour in Fig. 2, all 
membership degrees for the fuzzy sets in Fig. 6 are 
calculated. The highest and second highest value (if any), 
for each vertex are recorded in the graph in Fig. 7. The 
graph shows that the analysed contour is very similar to the 
description given in Tables 2 and 4, which demand curva­ 
tures of medium right, flat left OR flat right, 
strong right, flat left OR flat right. These 
relations become more evident when a different visualisa­ 
tion is applied as demonstrated in Fig. 8. Here the fuzzy 
sets are colour coded and superimposed as circles over the 
contour image. The circle diameter is proportional to the

oT 1.0
3

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
vertex number n 

A acute right » strong right • medium right

• flat right • flat left n medium left 

Fig. 7 Significant membership degrees for each vertex of a contour

Fig. 8 Visualisation of membership degrees for boundary features
Fuzzy sets are colour coded according to Fig. 7 
a Maximum membership degrees of each vertex 
b Second highest values

Note 2: It should be recalled that high membership values relate to low 
energy values (see definition of eqn. 4.)
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Fig. 9 Demonstration of shape feature's fuzziness through a visualisa­ 
tion of mean maximum membership degrees for curvature of different 
nonrigid deformations of a prototype

mean degree of membership within a consecutive sequence 
of equal fuzzy sets.

As both the representation and detection of non-rigid 
objects are of particular interest, a sequence of defor­ 
mations of the example contour is shown in Fig. 9. 
This sequence demonstrates to what degree the fuzzi­ 
ness of a contour description favours certain deviations 
from the prototype while placing less emphasis on 
others. In Fig. 9a-c a local distortion was introduced 
in the longer straight segment, bending the contour to 
the left. With the deformations in Figs. 9a and b the 
local curvature at the distorted vertices results in a high 
value for /j,mediumlsft (curvature), while the desired 
/j. flatle£t (curvature) is very small or zero (not shown). 
This means that the overall energy Esnake is significantly 
smaller for Figs. 9a and b than it is for Fig. 9c. In other 
words the deformation shown in Fig. 9c is more similar to 
the prototype than that in Fig. 9a or b.

5.3 Linguistic rules
As previously described, each energy function for a 
boundary segment exhibiting constant properties consists 
of a rule base, which inputs a number of different 
evidences or features from the image, as well as constraints 
on, for example, the geometry of an object. The output 
from the inference process using this rule base is a quality 
measure (Fig. 10), describing the compliance with the rule 
base for each vertex.

Normally rules will have the conclusion quality very 
good to describe a known desired result, while negative

VG

0.5 
quality

Fig. 10 Output variable of fuzzy system
VB, very bad, B, bad; M, medium, G, good; VG, very good

1.0
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Table 8: Rule bases for example in Fig. 4

a:
IF edge falling very weak
AND curvature medium right
THEN quality very good
b:
IF edge falling weak
AND (curvature flat left
OR curvature flat right)
THEN quality very good

IF edge falling medium 
AND curvature strong right 
THEN quality very good 
d:
IF edge falling medium 
AND (cu/vafureflat left 
OR curvature flat right) 
THEN quality very good

linguistic values for quality may be used for those proper­ 
ties which a contour segment must not exhibit.

Considering the edge and curvature properties of the 
example shown in Fig. 2, the contour can now be described 
by the four rule bases a, b, c and d in Table 8.

The defuzzification procedure converts the result of the 
inference process, which is a fuzzy quality measure, into a 
crisp value Ezat(cnm). Here the well referenced centre-of- 
gravity method [14-16] is used for defuzzification.

6 Application examples of fuzzy snakes

An application area which has proved beneficial for 
exploiting the concept of fuzzy snakes in preference to 
more traditional active contouring techniques is the field of 
medical imaging. In this paper two specific applications are 
presented. First, the segmentation of wrist bones from MRI 
image sequences [19] and secondly the tracking of the 
tongue from moving X-ray sequences of the oral cavity 
[20, 21].

6.1 Segmentation of wrist bones in magnetic- 
resonance image (MRI) sequences 
Here the contours of a number of bones are to be segmen­ 
ted precisely to measure the objects' 2-D motion while the 
patient's wrist bends. All objects are known, though their 
characteristic shape varies individually.

Image segmentation methods based primarily on low- 
level image features obtain good results in many cases 
[19], though crucially where neighbouring anatomic struc­ 
tures are too similar with respect to their features then 
segmentation fails. In Fig. 1 la, for example, a tissue region 
not belonging to the bone was segmented in the upper right 
area of the image. These errors can only be corrected 
through integration of a priori knowledge concerning the 
shape of the object.

Traditional active contours use only global constraints, 
which improve the segmentation, but this is not sufficient 
in certain cases. In Fig. 11 b the global shape constraint is 
able to create a smooth contour, resulting in the exclusion 
of most of the false tissue. The right-hand area of the 
result, however, is still incorrect as the active contour is 
attracted to strong image features that could not be over­ 
ridden by the moderate global shape constraint. A stronger 
influence of the constraint in this critical area is necessary. 
Note that, had the initial contour been closer to the bone, 
the result could be improved. However, such an initial 
contour would then be too specialised to be applied to 
more than one patient - an issue revisited later in this
section.

Fuzzy snakes allow for a more detailed modelling of the 
object, resulting in a correct segmentation. The results in
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Fig. 11 Improved segmentation through fuzzy snakes
a Histogram-based approach presented in [19]
b Traditional active contour with global shape constraint
c, d Segmentation in images of two different patients using fuzzy snakes

Fig. lie were obtained with the description (using relative 
fuzzy lengths) (0.26.) (O./b) (O.OSc) (O.le) (0.15f) 
(O.OSc) (O.OSf) (0.3a) beginning at the upper left vertex 
and following the contour clockwise. The characters are 
shortcut labels for the rule bases given in Table 9. The 
description was derived from a linguistic description of the 
object provided by orthopedic practitioners.

The fuzzy snake is able to handle a certain variability in 
the object's contour, which allows for the segmentation of a 
bone over a patient's MRI sequence. Furthermore, the 
inter-individual variations are moderate, so the bones of 
other patients can be segmented successfully using 
the same contour description, or prototype as shown in 
Fig. lid.

Table 9: Rule bases modelling boundary segments of a 
wrist bone (Os Hamatum) in MRI sequences as shown in 
Fig. 11

a:
IF edge rising medium
AND (curvatureflat left
OR curvature fiat right)
THEN quality very good
b:
IF edge rising medium
AND curvature medium right
THEN quality very good
c:
IF edge rising medium
AND curvature strong right
THEN quality very good

d:
IF edge rising strong
AND (curvature flat left
OR curvature flat right)
THEN quality very good
e:
IF edge rising strong
AND curvature medium left
THEN quality very good
f:
IF edge rising strong
AND curvature medium right
THEN quality very good

IEE Proc.-Vis. Image Signal Process,, Vol. 147, No. 4, August 2000



6.2 Segmentation and tracking of tongue in 
X-ray image sequences
In the second example application, articulatory organs have 
to be measured to investigate the complex dynamics of 
speech production. Of particular interest is the robust 
boundary detection of the tongue in sagittal X-ray imaging 
sequences, which poses particular problems to image 
processing.

Medical X-ray sequences are characterised by the 
presence of transparently superimposing structures and 
varying textural appearances of organs and noise. Under 
these conditions local low-level based image processing 
operators are not able to segment an object such as the 
tongue. It was demonstrated by Meyer [22] that at least a 
minimum of local shape information is required to obtain 
first results in single X-ray images (cf. Fig. 12a).

In [21], satisfactory results for many positions of the 
tongue were presented (cf. Fig. I2b), emphasising the need 
for combined image features as well as a shape constraint 
as outlined in the Appendix. To detect several different 
shapes of the tongue it was necessary to allow for a 
relatively high tolerance in the shape constraint, but this 
however reduced the robustness of the active contour 
against distortions. Furthermore, the tip of the tongue 
was not detected as its locally higher curvature could not 
be modelled through the global shape constraint.

These problems were overcome using the more detailed 
contour description afforded by the fuzzy snake. The 
description in Table 10, together with the rule bases in 
Table 11, allowed for a modelling of the segments of the 
tongue for a characteristic position. Locally different 
curvatures were accounted for, increasing the robustness 
of the segmentation as well as enabling the detection of the

Table 10: Contour description of one characteristic 
position of tongue

very short tip, short flat front, medium bent middle, 
medium bent back

Table 11: Some rule bases for modelling boundary 
segments of tongue

tip:
IF edge falling very weak
AND motion medium
AND curvature strong right
THEN quality very good
IF edge falling medium
OR edge falling strong
THEN quality bad

bent middle: 
IF edge falling weak 
AND motion strong 
AND (curvature flat right 
OR curvature medium right) 
THEN quality very good

flat front:
IF edge falling medium
AND motion strong
AND curvature fiat right
THEN quality very good
IF region negative strong
OR region negative very
strong
THEN quality bad
bent back:
IF edge falling medium
AND motion medium
AND (curvature flat right
OR curvature medium right)
THEN quality very good

Fig. 12 Segmentation of tongue through local contour tracing and 
traditional active contours
a Local contour trace
b Traditional active contours
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Fig. 13 Fuzzy snake detection of tongue with superimposed mean 
membership degrees for curvature fuzzy sets
a Highest values
b Second highest values

tip of the tongue (cf. Fig. 13). Structures that were able to 
distort the snake were explicitly modelled, increasing the 
correctness of the segmentation. The second rule in the 
rule base tip, for instance, accounts for the lower jaw, 
while the IF-region rule in the rule base flat front 
reduces the influence of a tooth filling located in the upper 
jaw.

7 Conclusions

This paper has introduced the concept and presented the 
theoretical basis of the fuzzy snake as a new form of active 
contour, broadening the areas of application of this well 
known contour identification approach. It has been shown 
that the principal advantage of this new method, in parti-
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cular, is the ability to exploit uncertain a priori knowledge, 
such as a verbal description of contour properties. The 
proposed new fuzzy energy functions present a level of 
abstraction which is higher and therefore closer to the 
human expert than that of algebraic energy functions. 
Parameters and weights with sometimes obscure meanings 
are replaced by the more intuitive linguistic interface 
provided by fuzzy logic expressions.

By allowing a more detailed object description it has 
been proved that the fuzzy snake approach can improve 
boundary detection in images of poor quality and also 
reduce computational complexity. Examples have been 
presented to verify the performance in being able to 
identify complex structures, most notably in the processing 
of MRI and X-ray based imaging sequences.
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10 Appendix: Algebraic energy functions

The internal energy used for all experiments was [20]

Eint =f(\k - m|) = el*'" 1 (3)

The following external and constraint energy functions 
were proposed in [21]. The external energy computes an 
evidence value e for every candidate pixel cnm , denoting 
the possibility of it being a contour pixel:

^image^fn,mI ~ ^edgeH^edge^n.m)" < ^region \\^region(^n,m)\\

<~ M;mo/io«ll emo//o«Vc«,m/'i vv

|| ||: normalises the respective evidences to the range [0, 1]. 
High evidences correspond to low energy values.
Edge-based evidence:

«e*B(cB . m ) = VJ.(CII ,CBija (5)

Vj_: gradient magnitude (cf. [23]) along the search line Cn 
which is perpendicular to the initial contour hypothesis P, 
6=1: rising edge, 6 — — 1: falling edge.
Region-based evidence:

t(xi ,y,) =
: R(xt , yj)<0

0
(6)

9: grey level threshold to weaken the edge of dark occlud­ 
ing objects; depends on a priori knowledge. R(xt , yj): a 
pixel from the region of interest R.
Motion-based evidence:

mofion\^n.m) ~~ ^med^ n,m)>

A moving edge detector (med [23]). /?,: region of interest 
extracted from images at instances i = t, i = t — d\ and 
i = t + d2 , where d\ and d2 are constants.

For the energy component Econ several constraints can 
be applied. In this paper, a general form is introduced, 
where K represents a measure of the constraining feature. 
This feature value is weighted by an assessment function v 
which is high when the actual feature value for a candidate 
vertex is similar to a prescribed value:

(8)

(9)

cn m : the current vertex in the dynamic programming opti­ 
misation; cn _ lk : its possible predecessors; cn _ 2T(n _-[k) : 
their optimal predecessors;

0
(10)

v(y) is a Gaussian function, the parameters of which define 
either a convex or concave contour, y: desired local angle 
within an allowable range [ymm , ymax ]. a2 : certainty with 
which y is known a priori.
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Abstract

This article presents a system for the automated tracking of non-rigid anatomic structures in two-dimensional image sequences, which was 
primarily applied to X-ray image sequences of the vocal tract. In this particular application articulatory organs have to be measured to 
investigate the complex dynamic characteristics of human speech production. Of particular interest is a robust boundary detection of non- 
rigid organs such as lips and tongue. To solve this ill-posed detection problem under the presence of transparently superimposing structures, 
varying textural appearances of organs and noise, a two-level system is proposed. At the lower level, several edge-, region-, and motion- 
based image operators are combined to exploit their respective benefints and concomitantly compensate for their deficiencies. For the sake of 
precision, the result of these operators are not represented as larger tokens, such as line segments, but remain pixel-related cues or image 
evidences. At the higher level, an active contour-based component allows for the introduction of a priori knowledge about the object to be 
detected. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: X-ray image sequences; Vocal tract; Boundary detection; Non-rigid objects; Active contours

1. Introduction

The detection of the boundary of an object in an image 
can be an intractable problem owing to such extraneous 
effects as noise and the image projection process, so the 
problem is underconstrained and does not possess a unique 
solution. In the attempt to solve this problem, computer 
vision research has propounded many different approaches. 
Methods that are intrinsically able to handle variations in the 
boundary to be detected are of particular interest. They 
allow for the tracking of deformable objects in image 
sequences [1], as well as for identification of several similar 
specimens of rigid objects [2].

As a top-down method for detecting non-rigid objects, 
active contours [3] or snakes are a well-recognised 
approach. In applications where image scenes are complex 
however, that is ones which comprise many occluding or 
even transparently superimposing structures, the general 
constraints for smoothness may not lead to an exact result.
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If the segmentation result is subsequently used to provide 
features for the classification of an object, or to qualitatively 
describe a scene, then an imprecisely extracted contour may 
still be adequate. This article conversely assumes that the 
class of an object is already known, but that the segmenta­ 
tion has to be precise, despite poor image quality. A good 
example of an application where these conditions occur is 
the tracking and measurement of anatomical structures in 
medical X-ray image sequences.

2. Application: analysis of the vocal tract

The following application helps to substantiate the char­ 
acteristics of medical X-ray image sequences. It is a good 
example of where precise segmentation of object bound­ 
aries must be obtained from images which have low loca­ 
lised contrast and generally poor quality.

Articulatory phonetics is a branch of linguistics that is 
concerned with the very complex dynamic characteristics 
of the articulatory organs of the human vocal tract. Under­ 
standing their motion and interrelation is an important basis 
for understanding human speech production. Apart from 
being a contribution to basic research, this knowledge is 
also valuable in speech therapy [4-6].

reserved.



60 F. Hawing et at, / Computerized Medical Imaging and Graphics 23 (1999) 59-67

Fig. 1. Characteristic parameters of the articulatory organs. (1). Lip position, (2). Lip opening, (3). Front teeth, (4). Tip of tongue, (5). Front tongue, (6). Middle 
tongue, (7). Back tongue, (8): Velum, (9). Epiglottis, (10). Hyoid bone, (11). Glottal narrowing, (12). Glottis.

To analyse the articulatory organs it is necessary to deter­ 
mine the position of 12 characteristic parameters of the 
vocal tract defined on the midsagittal plane (cf. Fig. 1; for 
an anatomical background see Refs. [7-9]). For this purpose 
X-ray image sequences were taken, at a rate of 25 frames 
per second, from different speakers while uttering certain 
syllables. Fig. 2 shows a single frame from one such 
sequence.

For a statistically reliable analysis a very large number of 
images have to be processed, so manual measurement 
would be prohibitively time-consuming. However,

Fig. 2. X-ray image of the human vocal tract.

automated processing would importantly eliminate 
subjective influences from the measuring process.

2.1. Medical X-ray image sequences

There are two basic characteristics common to all X-ray 
images of human organs, which pose particular problems to 
their computer-based analysis:

• the images are blurry and have a low local contrast,
• despite the use of a contrast agent, relevant soft parts are 

occluded by more visible objects like bones, cartilage 
and teeth.

For these reasons, low-level image processing operations, 
like edge filters and thresholding, that are often successfully 
applied to industrial scenes are ineffectual.

The characteristics of the medical image sequences 
considered in this article may be summarised as follows 
(for X-ray image formation see Refs. [10-13]):

1. It is assumed that there is no explicit information on the 
specific X-ray imaging system. Information on the image 
formation process, other than general X-ray imaging 
characteristics (see below), is therefore not exploited. 
The lack of this knowledge is not so much a drawback 
for the development of a computer vision system, as it is 
an advantage for the generality of the solution and the 
range of other possible applications.

2. As X-rays penetrate the objects rather than being 
reflected from them, the resulting image is determined 
by the absorption coefficients of the objects.
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knowledge about 
Image formation, objects 
and operators

Fig. 3. System structure.

3. An X-ray image is a two-dimensional, transparent 
projection of three-dimensional objects, so therefore 
there are superimposing structures in the image. 
Objects of a high density may even occlude other 
objects.

4. To make soft parts visible, a contrast agent may be 
applied. This substance changes the tissues' absorption 
coefficient and therefore their textural appearance in the 
image. The concentration of the contrast agent may vary 
(e.g., because of salivation in case of the earlier 
mentioned vocal tract images), so an object's appearance 
will in general be time varying.

5. It is assumed that no subtraction radiography is available, 
that is no Images were taken without a probationer or, 
where applied, a contrast agent. This again widens the 
generality of the proposed system.

6. The scenes are complex. There are many structures of 
which only few may be of interest, that is there are many 
elements that may impair image processing.

7. Object boundaries are not sharply defined but rather 
blurry and have a low local contrast.

8. Local as well as global mean brightness may not be 
constant over time.

9. The image formation process may have introduced a 
considerable amount of noise.

3. Contour identification and measurement system

Fig. 3 shows the overall structure of the proposed modu­ 
larised contour identification and tracking system, whose 
characteristics are:

• A sequence is processed frame by frame. Currently all 
objects are processed independently.

• Except for the first image of the sequence, where the 
relevant contours have to be marked by a human expert, 
the system is fully automatic.

• Multiple image evidences from different image operators 
are integrated.

• The detected contour is fed back into the system to 
improve detection in the next frame.

• As the probationer (or patient) may move rela­ 
tive to the camera, this motion is compensated 
for to obtain anatomically relevant measurement 
values.

Fig 4 Results of a dynamic-programming based contour tracing system using a minimum of a priori knowledge about the object. The images show the region 
of the lower lip in successive frames (from left to right and top to bottom), with the identified contour superimposed.
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Fig. 5. Insufficient boundary detection of the tongue. 

3.1. Integration of a priori knowledge

Explicit knowledge about image formation, object char­ 
acteristics and image operator function is initially converted 
into system parameters by a human expert. For each image 
sequence, an initial contour hypothesis has to be drawn for 
each object. Based on this, the system is subsequently able 
to automatically process large image sequences without 
further interaction.

A simple contour tracing algorithm demonstrates the 
benefits resulting from the introduction of even the mini­ 
mum of geometric a priori knowledge concerning the object 
to be detected. A dynamic programming algorithm 
described in [14,15] was applied to trace the contour of an 
object along a region of interest (ROI). The region is initi­ 
ally determined from a manually drawn contour hypothesis, 
introducing knowledge about the shape of the object to the 
system. The maximum distance that an object might travel 
between two frames determines the width of the ROI. Once 
a contour was determined it is used as a contour hypothesis 
for the next frame.

Unlike mere low-level based image processing techni­ 
ques the algorithm is able to reliably identify the lips in a 
large number of images (see Fig. 4), so guaranteeing a 
closed and unique contour. The experiments showed, 
however, that such simple constraints are not always able 
to prevent the contour from being distorted by occluding 
objects. In situations where the object of interest is touching 
another object, like the other lip or the teeth, the contour 
traces an erroneous track.

Moreover the algorithm is not capable of identifying the 
boundary of the tongue. Fig. 5 shows that the contour 
tracing merely follows a maximum gradient path. Owing 
to the challenging image characteristics this path does not 
always correspond to the required object boundary.

These results emphasised the need for a better model, 
which also had to contain more specific geometrical 
constraints. With the proposed system these constraints 
were incorporated into an active contour based module, 
described in Section 3.4.

3.2. Preprocessing

The preprocessing module enhances the often consider­ 
ably noisy and low-contrasted images. It also reduces the 
overall computational complexity by extracting a user- 
defined region of interest (ROI) for a particular object. 
(see Fig. 6).

An automatic image contrast enhancement is performed 
by computing an equalization interval based on the input 
image intensity frequency distribution. The interval is deter­ 
mined by searching the image histogram from both extrema 
until two values are found for which a specified percentage 
of the total image area falls between each value and the 
corresponding end of the histogram. This equalization is 
primarily applied to provide subsequent processing stages 
with a normalised intensity range, which facilitates para­ 
meter selection.

Noise reduction is obtained through standard median 
filtering of the ROI, exploiting the edge preserving proper­ 
ties of this operator. In our application a relatively large 
kernel size of 11 X 11 was used to reduce the large amount 
of noise introduced by the digitisation process.

As outlined in Section 2.1, details about the image forma­ 
tion process are not available. The operations used here are 
therefore general enough to make the preprocessing stage 
independent of a particular medical imaging device.

3.3. Feature extraction

The task of this module is to extract image features elmage 
that form the basis for the subsequent contour identification 
module. Unlike other approaches the proposed module does 
not segment tokens [16], such as geometric objects like lines 
or polygons, and either group or delete them afterwards

Fig. 6. Region of interest for the tongue before and after preprocessing.
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Fig. 7. The search space R is derived from an initial contour hypothesis 
(centre line).

based on their individual features. Instead, the features 
remain pixel-related in order to be able to identify a precise 
contour.

To exploit the benefits of the many existing image proces­ 
sing operators and at the same time compensate for their 
individual deficiencies, a structure is introduced that 
combines several edge-, region-, and motion-based low- 
level operators in a computationally efficient manner by a 
normalised weighted sum Eq. (1).

eimagev£.) — wedgell eedge " region I on(<0||

W,motionlFmoti on(<0 (1)

The result of each operator, normalised to the range [0,1] 
through the norm ||-||, is regarded as an indication of to what 
degree a certain pixel c may belong to the object's contour. 
This local feature value is therefore referred to as image 
evidence e. It is also possible to incorporate operators that 
are able to deliberately detect structures which do not 
belong to the desired contour.

Experiments show that each operator may wrongly lead 
to low evidence values for contour pixels and/or high values 
for non-contour pixels. The weighted combination of all

evidences for a certain pixel compensates for the effect 
and leads to an attenuation of evidences of most contour 
pixels.

The individual evidence functions are very-much 
application dependent. The following definitions in Eqs. 
(2) to (4) have successfully been applied to the application 
presented in this article. Figs. 7 and 8 demonstrate the 
individual sub-components of eimage which are now 
discussed.

The edge-based evidence is given by

where V± is the gradient normal to the initial contour 
hypothesis. The factor 8 specifies either a rising (S = 1) 
or falling edge (<5 = - 1) respectively.

The region-based evidence given in Eq. (3) weakens the 
influence of occluding objects with grey levels below a 
prescribed threshold 0. Pixels within these objects are not 
influenced.

(3)0(xh \j) = 1 : R(x,,yj) < 6

8

Here R(\,, y/j) denotes a pixel from the region of interest R 
around the contour hypothesis (cf. Fig. 7). 6 depends on a 
priori knowledge.

To exploit information from motion in the image 
sequence the third evidence value in Eq. (4) is applied.

£med —
(4)

This moving edge detector which is indicated by the 
subscript med [7], gives high evidence values for moving

Fig 8 -</, ~ R, ,
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Fig. 9. Polygonal contour representation.

edges by multiplying the gradient of two difference images. 
The operation is performed on the same region of interest R, 
extracted from images at instances i = t, i = t - d\, and i = 
t + di, where d\ and di are constants.

3.4. Contour identification and tracking

The module described in this section represents the core 
of the proposed system. Its task is to identify the contour 
pixels of an object based on the evidences provided by the 
preceding modules described earlier.

A contour identification approach which not only uses an 
intermediate symbolic representation of an object, but also 
provides a method that links this representation with image 
features and a priori knowledge, is that of active contours or 
snakes. Active contours also allow for interaction with 
higher-level processes and may therefore represent a basis 
for further extensions of the proposed system.

Active contours were first introduced by Kass et al. [3]. 
They can be described as energy minimising splines or 
polygons. For each image, the algorithm needs an initial 
polygon P = (po, Pi, ..., Pw-i) consisting of N vertices 
P, = (*.-, v,-), where *,- and y,- are the spatial co-ordinates of 
p,. The detected boundary is represented by the polygon Q = 
(q0, qi,..., qw-i) with q, = (xh yd- Each q, is selected from a 
set of candidates C, = (c,i0, cu , ..., c,-,M-i) where in our 
application, the candidates cy = (*,-, y;-) are uniformly 
sampled along a search line normal to the initial polygon 
and intersecting p, (cf. Fig. 9). Tracking of the contour is 
realised by processing a sequence, frame by frame and 
taking the resulting Q(f) as the initial, estimated contour 
P(t + 1) of the next frame.

With the polygonal representation it is possible to formu­ 
late an appropriate energy function Esnake for the object 
which is then minimised to obtain the desired contour Q. 
Moreover, the representation incorporates the simple 
connectivity of the objects and drastically reduces search
space.

Kass et al. [3] proposed that an energy function be 
composed of the following three components:

• £int represents the internal energy of the active contour, 
forcing it to act like a membrane or thin plate, producing 
a smooth shape.

• •Eimage represents an external force that guides the contour 
towards features in the image.

• £COn represents external constraint forces.

To minimise the energy function, the original algorithm 
of Kass et al. [3] involves four steps:

1. setting up a variational integral on the continuous plane
2. deriving a pair of Euler equations
3. discretisation
4. solving the discrete equations iteratively until conver­ 

gence.

There are a number of problems resulting from this algo­ 
rithm that were recognised, such as that the energy function 
must be a differentiable function which therefore constrains 
the range of possible models [17]. Also the vertices may 
move along the contour and cluster, because it is not possi­ 
ble to incorporate "hard constraints" such as a minimum 
inter-vertex distance [18]. As with most iterative approaches 
the problem of convergence is one of the main subjects in 
the literature (cf. Ref. [19] for an overview).

To overcome these problems, Amini [18] establishes the 
problem of energy minimisation as a discrete multi-stage 
decision process, which enables him to use a discrete 
dynamic programming algorithm to find an optimal solu­ 
tion. The results obtained by this method, however, still did 
not yield the precision needed in the processing of medical 
X-ray image sequences. Even after 30 iterations (conver­ 
gence) the contour was not able to precisely identify the 
entire boundary of a non-occluded object [18].

This result is neither a fundamental drawback of the 
active contour approach nor of the dynamic programming 
optimisation - similar algorithms were applied successfully 
to medical images by Olstad (ultrasonic image sequence of 
the left ventricle [20]) and Geiger (angiograms and nuclear 
magnetic resonance (NMR) images of the left ventricle 
[21]). The reason is rather that it is necessary to fully exploit 
the potential of the approach by formulating the energy 
function according to the characteristics of image and 
object. In the proposed system, this was achieved by:

• introducing multiple image evidences from several 
sources to form £iraage,

• introducing an object specific constraint (Econ), that 
restricts the possible shapes of the active contour beyond 
a mere, general demand for smoothness.

The energy function of the active contour is minimised by 
the dynamic programming algorithm where S (n, m) repre­ 
sents the minimal energy level that is possible for the 
vertices 0, ..., n if the nth vertex is the candidate cn<m . T 
(n, m) holds the index k (k = 0, ..., M - 1) that minimises 
the expression in line 8 and thus points to the optimal prede­ 
cessor of the candidate cn>m . After all vertices were 
processed, the new boundary is obtained by tracing back 
the pointers, beginning with the candidate that has a 
minimal S (N - I, m) value.
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Dynamic programming algorithm
1. for all m
2. 5(0, m) = wiraage£image(c0,m)

65

+ wint£int + 5(0, fc)]
3. for all m
4. 5(1, m) = min* [
5. 71(1, m) = /T"1
6. forn = 2, ..., N- 1
7. for w = 0, ...,M - 1
8. 5(n, m) = min* [wimage£image (c,, im) + wint£int +

Wcon£con + 5(n - 1,*)]
9. T(n, m) = k1™"

The weighting factors wimage , wmt and wcon control the 
relative influences of the energy function's components.

In our application the image energy is derived from the 
image evidences described in Section 3.3: (see Eq. (5)

^image — 1 ^image (5)

The internal energy of the active contour is denoted [20]

into the dynamic programming algorithm. Eq. (7) favours 
convex or concave contours by weighting the angle y which 
is measured in the open polygon consisting of the current 
candidate vertex cn ,m, its possible predecessor cn _ liJb and the 
optimal predecessor of the latter, cn_ 2i7(n _i,t). By always 
measuring y in the same direction, setting the possible 
range [•y imn,ymax], the expected angle y and the standard 
deviation a, the resulting contour can be forced to bend in 
a desired direction.

y™ > y > y™ (7)
2 V

277CT
11 : /"" < 7<

as

_ e\k-m\~ (6)

favouring candidates with a curvature similar to the initial 
hypothesis. Therefore an inter-vertex force counteracting 
the external force is applied, smoothing the contour. The 
function ||-|| normalises £im to the range [0,1], where 0 indi­ 
cates a strong similarity, to facilitate parameter settings (see 
Eq. (6)).

A geometrical constraint presented in [22] is applied, 
which explicitly introduces knowledge on the expected 
shape of the contour and which can be easily incorporated

The use of a Gaussian weighting function (again normal­ 
ised to the range [0,1] through a normalisation function ||-||) 
allows exploitation of uncertain knowledge concerning the 
actual shape of the object. For instance if a is small then the 
tolerance range around y where £con gives a good assess­ 
ment is narrower than for higher values of a. In theory, the 
weighting function applied in Eq. (7) could be replaced by 
any mathematical distribution which exhibited the appropri­ 
ate properties.

4. Results

Figs. 10 and 11 demonstrate the performance of the 
proposed system, showing some results of identifying the 
tongue in a number of frames of two X-ray sequences. Both

Fig. 10. Results of the proposed system identifying the tongue. Every second frame of a sequence is shown.
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Fig. 11. Results of the tongue tracking system on a different probationer. Every third frame of a sequence is shown.

sequences of different probationers were successfully 
processed using the same parameter settings. The weighting 
factors of the normalised energy components were wiinag6 = 
0.6, wim = 0.15 and wcon = 0.25. The constraint parameters 
were set to y = TT - 0.2, a- = 0.2, y™0 = -n - 0.4 and 
y™* = ir. These settings were easily found as small 
changes did not affect the results. The parameters of the 
geometrical constraint proved to be particularly robust.

The tongue is partially occluded by teeth, cheek bones 
and fillings. As a result of salivation the distribution of the 
contrast agent which was applied orally, is not constant. 
Although these influences lead to varying features of the 
boundary, the tongue is detected correctly. Even when the 
back tongue touches the velum so there is little distinction to 
be made between the two articulators, the active contour 
correctly aligns with the boundary of the tongue. Fig. 11 
demonstrates the same robustness when the middle tongue 
touches the soft palate. This result is of particular impor­ 
tance to the analysis of speech production, as the location 
and diameter of constrictions constitute important para­ 
meters to characterise a particular sound.

The final image in Fig. 10 shows a concave section in the 
front tongue, with the boundary correctly aligned with sali­ 
ent image features. This demonstrates the ability of the 
system to locally violate the geometrical constraint under 
the presence of strong image evidences.

the lips and tongue in sagittal X-ray image sequences of the 
human vocal tract was presented. The successful boundary 
detection, which requires only an initial user interaction, 
forms the basis for a subsequent measuring of characteristic 
parameters of the articulatory organs. This automated 
process replaces the time consuming and inaccurate manual 
measurement of a very large number of X-ray images, to 
facilitate a statistical analysis.

Within the area of application considered in this article, a 
boundary detection cannot be successfully achieved without 
a model of the object to be detected. The proposed system 
integrates such a priori knowledge into an active contour 
based approach. Although the object model itself remains 
comparatively simple, the complete system is able to 
successfully identify the contours of simply connected 
deformable objects. Extensive experiments involving 
Vocal tract image sequences have shown, that in most 
cases the best segmentation result is achieved in a single 
iteration, so problems related to the convergence of the 
algorithm and to possible clustering of contour nodes were 
overcome.

The system has also been proven to be robust against 
small changes in its weighting and constraint parameters 
and is therefore easily adaptable to similar tasks.
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Recognition and tracking of articulatory 
organs in X-ray image sequences

F. Howing, D. Wermser and L.S. Dooley

Indexing terms: Image processing, Medical image processing

Deformable organs of the human vocal tract are detected. An 
active contour is optimised by a dynamic programming algorithm, 
for which a new constraint is presented that introduces a priori 
knowledge on the shape of the expected boundary. The algorithm 
is able to detect convex and concave objects even when the image 
quality is poor.

Introduction: The analysis of the articulatory organs of the human 
vocal tract is important in understanding and modelling speech. A 
comprehensive model of human speech production can be derived 
[1] from the precise measurement of the motion of characteristic 
points in the vocal tract, with X-ray image sequences being used 
to provide information upon all organs. As a very large number of 
images have to be measured, an accurate and robust automated 
system is required.

This Letter presents a central element of an image processing 
system, capable of recognising and tracking deformable organs in 
large X-ray image sequences. Most of the problems that have been 
encountered and subsequently overcome were due to features of 
the X-ray images, such as low contrast, varying textures and 
superimposing objects.

Algorithm: The detection is based on the concept of Active Con­ 
tours, which can be described as energy minimising splines or pol­ 
ygons [2]. For each image, the algorithm needs an initial polygon 
P = (Po> Pi> •••> PA/I) consisting of TV vertices p, = (xn _>>,), where *, 
and y, are the spatial co-ordinates of p,. The detected boundary is 
represented by the polygon Q = (q0 , q,, ..., q^,) with q, = (x,, y^). 
Each q, is selected from a set of candidates C, = (c, 0, c,,, ..., cjM_,), 
where the candidates c,;/ = (xt, y]) are uniformly sampled along a 
search line normal to the initial polygon and intersecting p,. Track­ 
ing of the contour is realised by processing a sequence, frame by 
frame and taking the resulting Q(r) as the initial, estimated con­ 
tour P(r + 1) of the next frame.

The energy function of the active contour is minimised by the 
dynamic programming algorithm in Table 1. S(n,m) represents the 
minimal energy level that is possible for the vertices 0, ..., n if the 
nth vertex is the candidate c,.n . T(n,m) holds the index k (k = 0,..., 
A/-1) that minimises the expression in line 8 and thus points to the 
optimal predecessor of the candidate cnm . After all vertices have 
been processed, the new boundary is obtained by tracing back the 
pointers, beginning with the candidate that has a minimal S(N-l, 
m) value.

I/, represents an external force that guides the contour towards 
features in the image. In our particular application the gradient of

Table 1: Dynamic programming algorithm

1.
2.
3.
4.
5.
6.
7.
8.
9.

for all m
5(0,w) = cx l f/,(c0,,,)

for all m
5(1, m) = mint [a,[/,(C|
T(1,/M) = k"»"

for n = 1 ... N- 1
for m = 0 ... M-\

S(n,m) = minjfa, £/,(
J\n,m) = k"""

„,) + a2 ei*-'"i + S((U)

cn:n,) + a2 U2 + S(n-l,k)]

With this constraint the active contour is already able to move to 
small areas of weak image features when necessary to produce an 
overall smooth contour. Where these areas are too large, however, 
or where strong features occur that do not belong to the object 
boundary, this constraint is insufficient.

A geometrical constraint is therefore proposed, which explicitly 
introduces a prioi knowledge on the expected shape of the contour 
and which can be easily incorporated into the dynamic program­ 
ming algorithm. Eqn. 2 favours convex or concave contours by 
weighting the angle y which is measured in the open polygon con­ 
sisting of the current candidate vertex cnjm its possible predecessor 
cn_ u, and the optimal predecessor of the latter, cn_27,,,_ui . By 
always measuring y in the same direction, setting the possible 
range [yi*1 ,y"'"r], the expected angle y and the standard deviation 
o, we can force the resulting contour to bend in a desired direc­ 
tion,

0 > 7 > 7" 
< 7 < 7"

(2)

Results: The algorithm has been applied succesfully to detect the 
boundaries of the lips and part of the tongue in large X-ray image 
sequences, an example of which is shown in Fig. la. It has proven 
to be especially robust against changing image properties.

Fig. 1 X-ray image of the vocal tract
a Vocal tract
b Contour detection without constraint
c Contour detection with proposed shape constraint

Fig. \b shows an image where a portion of the back tongue has 
been detected without any constraint. It is clear that the contour is 
neither very smooth nor does it follow the desired object boundary 
particularly well. The contour has just been dragged towards the 
strongest image features within the search area.

Application of the proposed constraint in eqn. 2 gives to the 
boundary in Fig. \c. It can be seen that the active contour is now 
able to bridge areas of weak image feature very well, avoiding mis­ 
leading strong features to produce a contour of the desired shape.

Conclusion: A new shape constraint for active contours based on a 
dynamic programming algorithm is proposed. It allows for a 
robust and precise detection of convex or concave object bounda­ 
ries in X-ray image sequences with low contrast and varying tex­ 
tures. The new constraint is insensitive to small changes in its 
parameters and is therefore easily applicable.

the image intensities along the search line is employed. The sec­ 
ond component U2 represents an internal force that restricts the 
possible shapes of the contour. The weighting factors a, and a, 
control the relative influence of the two components. In eqn. 1, a 
constraint is introduced that forces the active contour to preserve 
a curvature similar to that of the initial estimate,

U-2 = a 1 *-™ 1 (1) 
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Abstract. In many cases articular damages 
cannot be diagnosed through an examination 
of a single image. A motion analysis of a 
joint's bones might be necessary to make a 
reliable diagnosis [1,2]. Examples are lesions 
of the ligaments and cartilage of the knee or 
in the cervical and lumbar regions of the 
vertebral. This paper presents a novel system 
to diagnose lesions of the ligaments of the 
wrist (carpal instabilities [3]). The method is 
particularly well-suited to aid in the diagnosis 
of the scapho-lunate instability. This damage 
is a common injury after accidents involving 
the wrist. The lesion occurs when the 
ligaments between the Scaphoid and the 
Lunate are torn [4]. Motion graphs (Fig. 4) 
show the rotation as well as the translation of 
the carpal bones. The measurement is 
performed relative to an anatomic co-ordinate 
system defined by the distal end of the 
Radius. Compared to other applications [5] a 
motion analysis of wrist bones is more 
difficult because there are many bones with a 
similar shape which complicates their 
identification. Furthermore some of the bones 
may tilt, that is they may rotate around axes 
not perpendicular to the view plane. This 
results in a varying appearance of the bones in 
the sliced magnetic resonance (MR) images.

1 Problem

Availability of Nuclear Magnetic Resonance 
Imaging allows scanning of entire sequences 
of images of bones and joints without harmful 
dosage of radiation. Analysis of such

sequences allows a much more reliable 
diagnosis of lesions of the ligaments 
compared to methods in use today such as 
single x-ray images [1,2,3]. However, a 
necessary scanning procedure with a 
sufficient number of positions requires 
approximately 100 2-D images for every 
patient. The manual evaluation of such a 
number of images in the daily medical 
diagnostic is not feasible. The aim of the 
proposed approach here is the automatic 
processing of these images in order to obtain 
motion graphs which allow an easy medical 
diagnostic. For the recognition of lesions of 
the ligaments the representation of translation 
and rotation of the carpal bones with respect 
to a coordinate system defined by the radius 
proved to be most suitable. Using cadaveric 
specimen such investigations have been 
carried out by implantation of markers [4]. 
Because of the considerable exposure to 
radiation, in vivo analysis of such movements 
has been carried out only with very coarse 
resolution. The method proposed here allows 
for a much finer resolution of the bone 
movement determined (Fig. 4).

Compared to the motion analysis of the knee 
or the spine the measurement of the motion of 
carpal bones is much more complicated. This 
is because of the number of bones with 
similar appearance which complicates the 
identification of the bones. Furthermore a tilt 
of some of the carpal bones is responsible for 
a change in appearance within the NMR slices 
during the sequence.
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2 Automatic measurement

The overall system comprises the following 
components:

• Image acquisition - Depending on the 
flexibility of each patient approximately 8 
different positions of the wrist will be 
scanned. For each wrist position 12 layers 
of the hand are acquired.

• Layer selection - An approach based on 
the Fourier-Mellin transform [6] allows 
for the selection of an MR layer which is 
best suitable for the measurement by 
comparing the input layers with a 
reference image (Fig. 1).

• Segmentation - An adaptive threshold is 
applied to an automatically selected region 
of interest (ROI). To obtain a higher 
precision the algorithm is applied in two 
stages to the ROI of the wrist and to 
smaller ROIs of the individual bones.

• Identification of the bones - Constrained 
by their possible motion the relevant 
bones are identified through an analysis of 
the shape and position of a set of 
candidate bones (Fig. 2).

• Measurement of translation and rotation - 
For each bone its major axis and centroid 
is determined (Fig. 3).

• Motion graphs - The measurement results 
of usually about 8 different positions of 
the wrist are collected (Fig. 4). The 
coordinate system which is taken as 
reference will be determined by a concave 
curvature of the radius in order to 
compensate unavoidable movement of the 
patients arm.

The performance of the system is 
demonstrated by automatically measuring the 
motions of the bones of 158 wrist positions of 
20 patients to date. A resulting number of 
1106 bones were identified correctly. The 
segmentation was highly successful for the 
most relevant bones Scaphoid, Lunate and 
Radius (Tab. 1). A good segmentation was 
also obtained for other carpal bones, allowing 
the system to be applied to the diagnosis of 
other carpal instabilities as well.

Bone

os hamatum
os capitatum
os trapezoideum
os triquetrum
os lunatum
os scaphoideum
Radius

Correct 
segmentation

77,8%
94,9%
90,5%
89,2%
94,3%
96,8%
97,5%

Table 1: Success rate for automatic 
segmentation of the carpal bones in 
158 wrist positions.

3 Clinical use

In order to ease the introduction of this 
system to daily use in medical diagnosis, an 
interactive graphical user interface is under 
development [7]. The intermediate results of 
the different processing steps are 
automatically tested for plausibility. If errors 
are detected, the user is automatically 
requested for a manual correction. A 
description of the appearance of specific 
lesions in motion graphs is presented in [8].

This project was partially funded by the 
German Ministry of Science and Culture 
(AGIP program).
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Figure 1: Selection of the best layer: a) upper layer, it does not contain all bones, b) suitable layer, 
contains intersection of all bones, c) under layer, some bones are partially intersected, d) 
reference image, e) correspondence of the layers with reference image

Figure 2: Identification of the wrist bones, a) Pre-selection of candidates through an analysis 
of the region's position and size, b) Relevant bone regions, automatically 
identified: (1 Radius, 2 Os hamatum, 3 Os Capitatum, 4 Os Trapezoideum, 5 Os 
Triquetrum, 6 Os Lunatum, 1 Os Scaphoideum).
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Figure 3: Measurement of translation and rotation - For each bone its major axis and centroid is 
determined. The anatomic reference co-ordinate system is derived from measuring salient 
feature points of the Radius. This examples shows three wrist positions: radial deviation, 
neutral, and ulnar deviation.

-30,0
-40,0 -30,0 -20,0 -10,0 0,0 10,0 20,0 30,0

Angle of deviation
oshamtum *i™ os capitatum 

•os triquetrum -*-os lunatum
•os trapezoideum
•os scaphoideum

Figure 4: Motion graph - Collection of measurement results for several wrist positions. This graph 
shows the rotation of the wrist bones for a healthy patient. The rotation of each bone is 
normalised to its angle at the wrist's neutral position.
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FUZZY SNAKES
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ABSTRACT

A new method for representing and tracking of ob­ 
ject boundaries is presented, which allows for the 
integration of uncertain a priori knowledge into an 
active contour model.
The new fuzzy snake allows for an intuitive speci­ 
fication of the properties of an object's boundary. 
This is obtained by setting up a linguistic rule base, 
which describes each of the fuzzy snake's segments. 
Furthermore the approximate length of each con­ 
tour segment may be specified to improve the seg­ 
mentation process and to reduce the computational 
complexity.

INTRODUCTION

Active contours (Kass et al (1)), or snakes, are a well 
known method for matching an object's contour 
model to features in an image. The approach, which 
uses a polygonal object representation (Fig. la), is 
distinguished by its intrinsic ability to handle varia­ 
tions in the boundary to be detected. It is therefore 
capable of identifying and tracking deformable ob­ 
jects in image sequences.
With the polygonal representation, it is possible 
to firstly formulate an appropriate energy function 
Esnake for the object. Esnake is then minimised to 
obtain the desired contour by selecting an optimal 
set of vertices from candidates in a region around 
an initial contour.
Usually Esnake consists of two components Eint 
(internal energy to produce a smooth shape) and 
Eext - The external energy Eext may be composed of 
Eimage which guides the contour towards features in 
the image and Econ which allows for the integration 
of additional constraints.
Some computational problems resulting from the 
original algorithm presented in (1) have been over­ 
come by Amini et al (2). The energy minimisation 
of the snake is performed by a discrete dynamic pro­ 
gramming algorithm. This approach allows for the 
integration of hard constraints such as a minimum 
distance between the snake's vertices.

An important extension to this work was the intro­ 
duction of a shape constraint introduced by Howing 
et al (3). In addition to only using image features, 
the integration of geometrical knowledge (within 
Econ) about the object considerably improves de­ 
tection of structures in images of poor quality (see 
Wermser and Howing (4)).

b) a*

1 ————

b*
H —

c*
H ———— | ———-\ —— 1 —— 1

c)
4a

Figure 1: a) Polygonal contour representation, b) 
Grammatical description of a multi-segment con­ 
tour, c) Fuzzy specification of the length of contour 
segments.

ACTIVE CONTOURS WITH MULTIPLE
SEGMENTS

There remain some limitations in terms of repre­ 
senting a priori knowledge concerning more com­ 
plex objects which are to be detected. All vertices 
of the active contour are characterised by the same 
local energy function, resulting in a single, global 
description of the object. In order to overcome this 
problem, Olstad (5) introduced a grammatical de­ 
scription of the snake's energy function. Fig. Ib
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shows an example of a contour, which can be de­ 
scribed as a sequence of three different (external) 
energy functions ££,.,, E%at and Elxt , represented by 
the terminals a, b and c. The grammatical expres­ 
sion describing such a segmented boundary would 
be a*b*c*, using the closure operator * which allows 
parts of a pattern to be repeated arbitrarily. A pat­ 
tern matching algorithm incorporated into the ac­ 
tive contour's energy minimisation, constraints the 
possible resulting contours to comply with the ex­ 
pression.
Three fundamental drawbacks in this algorithm are 
investigated and subsequently overcome in this pa­ 
per:

1. The different energy functions do not intrinsi­ 
cally consider inexact a priori knowledge.

2. The algorithm is computationally expensive, 
since the closure operation generates a large 
number of possible states in the finite-state- 
machine based pattern matching.

3. The length of a contour segment cannot be 
specified, although it may approximately be 
known in advance.

Mil) 

1 -

0 -it

X X 

X X

I/vertices

Figure 2: Segment length as a fuzzy number.

Extended algorithm

An extension of the dynamic programming algo­ 
rithm is necessary to account for the variable length 
of snake segments.
An active contour with only one global energy func­ 
tion is optimised by the (simplified) dynamic pro­ 
gramming algorithm in Fig. 3, where N is the num­ 
ber of vertices and M the number of candidates for 
each vertex.

FUZZY SEGMENT LENGTH

The first two problems have a common solution. The 
fuzzy snake allows for specification of the number of 
subsequent vertices sharing a common energy func­ 
tion. This dramatically reduces the search space. A 
crisp length specification however, would not con­ 
sider uncertain information. A new method to spec­ 
ify the length of a snake segment by a fuzzy number 
(see Bezdek and Pal (6)) is therefore proposed.

Notation

Instead of specifying snake segments of arbitrary 
length, for example a*b*c*, the length of each seg­ 
ment is given by the expression aaaabbbbbccccc. 
Since segment lengths are not known precisely, a dif­ 
ferent notation is introduced, where a length is given 
as a fuzzy number, for example (^a) (5b) (5c). 
Fig. 2 illustrates such a fuzzy number I. In this ex­ 
ample the segment specification (4 a) denotes a seg­ 
ment consisting of 1 - 7 vertices, sharing a common 
property defined by an energy function E\xt .
Similar to a grammatical description, the fuzzy 
snake can now be specified as an expression, using 
operators such as concatenation, logical AND and 
OR, plus a fuzzy length. The implementation of log­ 
ical operations will be examined in a forthcoming 
publication.

1. for n= 1...JV-1
2. for m = 0... M - 1
3. 5(n, m) = mm [tUint.Emt + West-Eeitfcn.m)

4. T(n,m) = fcmin

Figure 3: Dynamic programming algorithm.

5(n, m) represents the minimal energy level that is 
possible for the vertices 0,..., n if the nth vertex is 
the candidate cn>TO . T(n,m) points to the optimal 
predecessor of c,vn . After all vertices have been pro­ 
cessed, these pointers are traced back, to obtain the 
new boundary.

TABLE 1 - Energy functions which have to be 
considered in the example of Fig. Ic

Vertex
Func­ 
tions

0123456789 10 11
a a a a a

b b b b b b b
c c c c c c

With multiple external energy functions a different 
function may have to be calculated for each vertex. 
Since the segment length is now variable, several en­ 
ergy functions may be calculated simultaneously for 
vertices on or near a segment boundary. An example 
is given in Table 1.
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Linguistic rules

As described above, each energy function for a 
boundary segment of constant properties consists 
of a rule base, which inputs a number of different 
evidences or features from the image, as well as con­ 
straints on geometry and motion of an object. The 
output of the inference process using this rule base, 
is a quality measure, describing the compliance with 
the rule base for each vertex.
The contour in Fig. la could, for example, be de­ 
scribed by three different (simplified) rule bases a, 
b and c:
a:
IF curvature flat
AND orientation nw
AND edge weak
THEN quality very good
b:
IF curvature medium right
AND orientation north
AND edge very weak
THEN quality very good
c:
IF curvature weak right
AND orientation east
AND edge strong
THEN quality very good
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Defuzzification

The defuzzification converts the fuzzy quality mea­ 
sure, which is the result of the inference process, 
into a crisp value Elxt (cn , m ).

CONCLUSIONS

The fuzzy snake is a new form of an active con­ 
tour, widening the areas of application of this well 
known contour identification approach. The advan­ 
tage of the new method in particular, is the ability 
to make use of uncertain a priori knowledge, such as 
a verbal description of object properties by a human 
expert. Allowing for a more detailed object descrip­ 
tion, the fuzzy snake approach presented in this pa­ 
per improves boundary detection in images of poor 
quality, such as medical X-ray sequences (4,7). As 
first results are promising, a forthcoming publica­ 
tion will examine these results as well as details on 
the implementation.




