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Summary

Segmentation of movingand deformable structures in medical image processing has be-
come an increasingly important research field in recent years. Fast and high-resolution
image acquisition methods such as Magnetic Resonance (MR) imaging produce very
detailed cross-sectional images of the human body. Segmentation of anatomically rel-
evant objects is then a subsequent operation, performed in order to visualise and/or
measure shapes and motions of interest. The segmentation task is usually performed by
clinicians and other experts. High demand on expert time and inter- and intra-observer

variability impose a clinical and scientific need of automating this process.

This thesis presents a novel approach for segmenting and tracking of anatomical
objects in 2D medical image sequences, which enables quantitative studies of relevant
structures even under the presence of distortions introduced by the image formation

process.

The underlying premise of the work presented, is based upon the observation that
a robust and precise image segmentation requires a priori knowledge on both image
formation and the objects to be detected. Such knowledge is often vague or uncertain

and may only be acquired from experts in natural-language terms.

In combining active contours with fuzzy logic a novel contour segmentation method
is developed which is capable of exploiting uncertain knowledge in both syntactical and
linguistic terms. Unlike other approaches the contour description is fully integrated into
the segmentation process, with the additional advantage that many existing image

processing operators can also smoothly be integrated into the fuzzy framework.

Specific applications addressed are motion analysis of carpal bones in MR image
sequences and the analysis of the vocal tract in X-ray image sequences. Traditional so-
lutions for both applications have been developed. The new framework is fully validated

in comparison to these solutions as well as on synthetic image material.
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Chapter 1

Introduction

1.1 Background

Research interest in medical image processing has grown continuously over the last
three decades. Imaging devices such as digital X-ray, Computer Tomography (CT)
and Magnetic Resonance Imaging (MRI) are now widespread applications of what
was once considered advanced research. These devices add digital visual enhancement
technologies to the everyday practice of medical experts, improving the reliability of
the diagnostic process. In more recent years, computer vision research has focused on
the challenge of automatically extracting anatomical structures from image sequences,

leading medical applications from predominantly qualitative to quantitative analysis.

First results in image processing dating back to the early 1970s, initiated a conti-
nous cycle of improvements in computer technology, advances in image processing and

algorithmic research and the medical application of more powerful computer assisted

methods and tools.

With the digitisation of analogue X-ray images it became possible to enhance single
images in a more advanced way than was possible with analogue signal processing
techniques. The medical expert’s eye was assisted by imaging devices which afforded

histogram-based contrast enhancement and pseudo-colour display to name just two of
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the advances. The visual diagnosis of diseases such as tumours through the detection

of static anatomical structures became easier and more reliable.

Lower radiation doses and higher image resolutions were introduced by digital X-
ray devices which made use of charge coupled devices (CCD) rather than traditional
celluloid film. Together with improved computing capacity, visual enhancements be-
came possible in real-time, leading to the application of new innovative devices during
surgical procedures. Still more sophisticated image processing methods were required

however that could automatically detect structures such as blocked blood vessels.

Another research strand, parallel to imaging and visual enhancements, provided a
new and exciting dimension to medicine: the quantitative analysis of image sequences.
Medical experts have always had a need to measure particular anatomical structures.
Applications ranged from using single radiographs to measure lung areas for the diag-
nosis of related diseases, and the measurement of size and distance of finger bones to

calculate the growth of children.

With analogue images, the measurement was performed manually by medical ex-
perts applying pen and ruler. When images became available in digital form, “electronic
rulers” were used, to measure the distances between anatomically relevant landmarks,
such as the ends of finger bones. Similarly areas of the lung, for example, could be

measured by applying a drawing tool.

These manual techniques however, are both time-consuming and subject to indi-
vidual variations of the experts’ capabilities. It is therefore highly desirable to let a
computer identify the relevant anatomical structures, outline their contours and mea-
sure the significant landmarks automatically. The benefits of such a system include
more precise results in less time, making diagnostics more reliable and cost efficient.
As measurement results will be based upon a repeatable, objective method, new areas
of medical research will be possible, as well as being able also to evaluate the success

of a therapy over time.

Such sophisticated techniques are particularly relevant in medical areas where the
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analysis of image sequences is desired. Together with radiation-free imaging such as
MRI, it will be possible to acquire mass data for research purposes and hence investigate
new medical phenomena, creating statistically sound reference data for normal and
pathologic cases. An example for such innovative research is the analysis of carpal

bones, detailed in this thesis.

Despite the scientific and technological advances in recent years, the task of au-
tomatically identifying meaningful structures in medical images still poses a number
of major challenges. Rather than classifying pixels based on local image features it
is necessary to include a priori knowledge about the shape of anatomical structures.
Furthermore, a quantitative analysis requires more precise detection results than was

previously deemed sufficient for a qualitative analysis.

In addition to obtaining static images, novel imaging technologies are able to create
image sequences. It is now possible to analyse two-dimensional motion (frequently
referred to in the literature as 2D-+t), three-dimensional structures (3D) or even three-
dimensional motion (3D+t). As with two-dimensional image analysis there is a strong
demand in medicine to automatically process these kinds of image sequences, example
applications include the analysis of the vocal tract (2D+t), detection of brain tumours

(3D) and the diagnosis of heart-related diseases (3D+t).

This demand results in an evolution in research from single images to image se-
quences, from static shape to motion and deformation, from pixel processing to scene

interpretation and hence from signal or image processing to high-level computer vision.

There is no doubt that the long term future techniques in automatic medical image
processing will reliably handle three-dimensional image sequences. These 3D and 3D+t
cases, however will continue to pose very high demands on both computing resources

and theoretic concepts for the foreseeable future.

High-level processing of two-dimensional image sequences on the other hand will
have a big impact on a wide range of today’s medical questions. Even when three-

dimensional techniques become more mature and applied, 2D+t techniques will still
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be attractive since they will adequately cover many medical applications and research
areas. Furthermore the resources required by 2D+t techniques will be considerably less

and their user interfaces inherently easier to handle than three-dimensional techniques.

1.2 Objectives

With the prediction that the analysis of two-dimensional image sequences will play a
major role in future medical image processing and that related systems will coexist
with three-dimensional techniques, today’s systems still need to be improved to meet
the requirements of quantitative medical image analysis. From an application point of
view, these requirements embrace the automatic analysis and subsequent measurement
of moving anatomical structures, applying a wide range of different imaging devices,
such as X-ray or MRI. From a technical and scientific perspective the most crucial
requirement is the precise segmentation of object outlines and their tracking over a
sequence of frames, even under the presence of distortions introduced by the image

formation process.

The demand to handle anatomical structures both rigid and deformable, requires
a detection of a wide range of shapes which cannot be defined exactly. This degree of
uncertainty in the problem definition is increased further by the fact that devices such as
X-ray scanners involve an imaging process where relevant and irrelevant structures are
superimposed. It was expressly to address the problem of these uncertainties, which are
involved in both image formation and the characteristics of the objects to be detected,
that this research project has its roots. A system was formulated with the clear objective
of providing a framework for quantitative medical image analysis that would afford an

exploitation of such uncertainties.

Figure 1.1 provides a conceptual insight into the system which forms the framework
for the research. It involves the design of a novel feature extraction component (block
2), while providing a simple yet effective interface, decoupling the image analysis com-

ponent (block 3) from a particular imaging device (block 1). An effective adaption of
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process (block 1) must be propagated to the higher level (block 3). The actual decision
on the segmentation of a pixel is deliberately delayed, so as not to bias any decision,
based on general assumptions until the higher level, at which point a much more reliable

decision can be made which takes specific object knowledge into account.

The main objectives of this research are listed below:

¢ Investigating and classifying the sources of uncertainties and variation introduced
by various imaging devices, deformable and moving objects as well as imprecise

object descriptions;

o Investigating the usability of active contour model as a segmentation method

within the problem domain;

o Investigating the possibilities of fuzzy logic as a generic framework for both knowl-

edge representation and contour segmentation;

e Establishing a novel theoretical framework combining both active contours and

fuzzy logic;

e Considering existing image processing operators to provide image features that

can be integrated into the proposed fuzzy active contour;
e Establishing a novel framework for such an integration;

e Development of an innovative knowledge representation that allows for a de-
scription of both object and image properties, taking into account the identified

uncertainties and variations.

In conclusion, the objectives of the work presented in this thesis recognise the novel
philosophies of the previously identified innovative building blocks within the proposed
system framework shown in Figure 1.1. Verification of the proposed principles are
performed on two complementary applications. The underlying methodology of this

verification approach is detailed in the following section.
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1.3 Methodology

Computer vision is a wide area were no general purpose solution to even moderately
complex problems exists. Many decades of research have demonstrated that it is nec-
essary to define the outline of a vision problem, preferably by formalising a target
application. In order to obtain a more general solution an area of similar applications
can be defined. If this is envisaged, many characteristics of both images and objects

have to be considered carefully.

In this thesis, the area of application considered are firstly surveyed theoretically.
These theoretical issues are substantiated by two representative applications presented

by HOWING et al. in [2] and [5] respectively.

There is no valid test data or quality assessment criterion for the considered domain,
which could allow for a validation of the theoretical properties of the proposed new
approach. Hence in a first step, solutions for the example applications are realised
using several well-referenced traditional image processing techniques. These solutions

demonstrate both the potential and certain limitations of the existing methods.

During the realisation of the example applications, a certain view on image pro-
cessing systems is adopted which is based on a classification of KASTURI and JAIN and
which is introduced in section 2.1.1. It is shown that the realisations of some of the
processing stages identified by KASTURI and JAIN are useful. For other stages however,
a novel approach is presented, so both the new and the traditional solutions are based
on the same system structure. Hence it is possible to compare both traditional and
novel approaches when applied to the example applications. This forms the basis for
an application-based validation of the new approach and at the same time allows for a

demonstration of its benefits over traditional solutions.

1.4 Overview

Chapter 1: Introduces the background and goals of this research.



CHAPTER 1. INTRODUCTION 22

Chapter 2:  Sets the scope of the project by placing it into a theoretical computer
vision context as well as defining an area of application. Two example

applications are presented.

Chapter 3:  Summarises the results of literature surveys for the two major scientific
areas that are combined in this research: active contours and fuzzy
logic. Relevant foundations of both subjects are summarised, making

this thesis self-contained.

Chapter 4:  Within this part of the thesis the theoretical analysis of the aforemen-

tioned novel approach is given.

Chapter 5:  Validates the theoretical properties of the thesis’ main contribution
through an experimental analysis of both synthetic and medical image
data.

Firstly, many of the major traditional image processing methods are
evaluated by elaborating different solutions for the example applica-
tions. Subsequently the more recent approach of active contours is
adapted and applied. Having analysed the capabilities and deficiencies
of existing image processing methods in practice, the novel approach

is applied to the example image data.
Chapter 6: Conclusion and further work.

Appendix A: A brief introduction into the notation of the Structured Analysis and

Design Technique.

Appendix B: Selected papers published during this research.



Chapter 2

Quantitative Analysis of Medical

Image Sequences

In this chapter the research is positioned theoretically within the diverse area of com-
puter vision. The scope is then set through an application-centred perspective, defining

the central terms of the research: quantitative analysis, medical, and image sequences.

The second section provides a brief survey of image and scene properties as relevant
to medical image processing. Uncertainty and variation which play an important role

in the outlined domain are also investigated.

The third section substantiates what was described in the preceding sections by in-

troducing two complementary applications, which together form a representative basis

to verify the validity of the proposed approach.

2.1 Scope of the Project

2.1.1 Computer Vision Context

The ultimate goal of computer vision is the development of an artificial system with

scene-interpretation capabilities comparable or even superior to that of humans.
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Since the human visual system is not fully understood in detail there is an ongoing
discussion on the various aspects of vision, cognition and models of scene structure
[6]. Some of the current paradigms are strongly influenced by the more philosophical
aspects of perception. An interesting interdisciplinary approach has been proposed by

WECHSLER (7] who states that

computational vision
= parallel distributed computation
= parallel distributed representation + parallel distributed processing
+ parallel distributed strategies
= parallel distributed representation + parallel distributed processing
+ active perception
= parallel distributed representation + parallel distributed processing

+ (functional active perception + exploratory active perception)

It is clear and emphasised by the use of the term computational vision rather than

computer vision that this approach cannot be realised with today’s technology.

During the development of image processing and computer vision research over the
past two decades, several more realistic and hence limited models have been proposed
in the literature. There are several possible ways to look at the structure of a computer
vision system, that is to describe a system model depending on the purpose of the

system, the background and intention of the author.

BALLARD, for example, states that “Visual perception is the relation of visual in-
put to previously ezisting models of the world.”[8] He focuses on four categories of

representation that are necessary to connect the input to the output.

RADIG puts an emphasis on image understanding, by proposing a four-layer struc-
ture going from the raw image to a scene interpretation [9]. The model focuses on

declarative knowledge and sets aside control.

As with BALLARD and RADIG, the system structure of PINZ possesses several
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levels of representation, but in addition processes (algorithms) and control structures

are given equivalent importance within the model [10].

From a more practical view point, KASTURI and JAIN give an overview of computer

vision [11,12] and propose the following main subjects of the field:

1. Image formation

Segmentation

Feature extraction and matching
Constraint exploitation and shape recovery
Three-dimensional object recognition

Dynamic vision

Noe o e N

Knowledge-based vision

Many text books on computer vision refer to similar subjects [8,13-21]. This view
is adopted in this thesis as it is appropriate for the application area considered and

also because it is fully congruent with the methodology described in section 1.3.

2.1.2 Application Area

The following items briefly characterise the area of application within which the con-

tributions of this thesis are validated:

e A quantitative analysis of images requires
— the measurement of anatomically relevant parameters, typically points on
or relative to object boundaries, as well as
— the determination of an anatomically relevant co-ordinate system.
The alternative is a qualitative analysis where the contents of scenes are described

(for example in robot vision) or where whole images are classified (for example

in image retrieval systems).
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e Medical images in this thesis involve

— known anatomic structures with

— inter-individual variations in these structures.

Another important characteristic of medical images is the presence of a high

amount of distortions, for example blurry or superimposing structures.
e Imaging sequences lead to

— global motion of whole objects relative to their surroundings, and

— local object deformation, that is intra-individual variations.

Imaging sequences in the context of this research are sequences of two-dimensional
images taken at discrete time intervals, commonly referred to in the literature
as the 2D+t case. Motion and deformation are assumed to only take place in or
parallel to the image plane. If this requirement is not upheld then the processing
of the third dimension of objects were required, which is beyond the scope of this

research as already mentioned in section 1.1

Within this application area, the ultimate goal of an image processing solution is
a precise determination of anatomically relevant parameters, in the presence of distor-

tions and variation influences, sources of which are analysed in the next section.

2.2 Sources of Uncertainty and Variation

The problem of relating image structures to the real-world objects they originate from
is that there is no unequivocal one-to-one mapping. The image formation process nor-
mally involves a loss of information and the introduction of noise. Models on imaging

and objects that are used to compensate for these effects are often incomplete or im-

precise.
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Characteristics or distortions which cannot be addressed through a systematic anal-
ysis or their deliberate exclusion from the process introduce a factor of uncertainty to
the system. Examples include a vague definition of the objects to be measured as well

as unknown parameters of the imaging device.

Natural variations within or between individuals pose another class of problems,
which have to be analysed in order to develop a solution that is flexible enough to cover

the class variations.

Both uncertainty and variation are particularly relevant, hence this section briefly
surveys the main sources of uncertainty resulting from image formation and object
models in general. It then delimits the actual image formation characteristics considered
in this thesis. Subsequently, the variations introduced by objects in medical imaging

sequences, which are especially relevant to this project are surveyed.

2.2.1 Uncertainty in Image Processing

Processing grey-level images involves different kinds of uncertainty at different process-
ing levels. T1ZHOOSH identifies uncertainties that stem from the grey-levels themselves,
from their relationships and from expert knowledge [22]. For this purpose TIZHOOSH
classifies image processing steps similar to those identified by KASTURI and JAIN (cf.

section 2.1.1) into three levels:

e low level: image formation and preprocessing
e intermediate level: segmentation, visualisation, description

e high level: analysis, interpretation, recognition

In the literature, intermediate-level methods are not usually described as a separate
stage in image processing. Instead they are assigned to either the low or high level,

an example of which is the structure proposed by LIEDTKE (cf. Figure 2.1). Here
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however, a separation into three levels is performed to identify an additional source of

uncertainty.

image capture
___________________________________ (- -
image iconic i
processing iconic image
l low-level
processing
segmentation
segmented
image
S Y______
pictorial-symbolic pictorial-symbolic acguisition of a_
processing processing pnma.ry .symbollc
description
___________________________________ (-
symbolic symbolic
processing description
| high-level
processing
interpretation
result
| A

Figure 2.1: Levels of processing in an image analysis system. Adapted from [23].

In explaining the procedure in image understanding, the diagram delimits low-level
from high-level processing. It also shows where one may draw the line between the

lower iconic and the higher symbolic level of representation.
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Greyness Ambiguity

The first source of uncertainty is the image formation process (block 1 in Figure 1.1)
as the initial stage of an image processing system. This normally involves a loss of
information. An example is the loss of depth information in a 3D to 2D projection.
Another example is the blurring of edges during X-ray imaging. This effect can only
be compensated for if a precise model of the imaging device is known, which may
not always be the case. Similarly the introduction of noise cannot be compensated for

completely, leading to further uncertainty at this stage.

Subsequent low-level processing involves the manipulation of the pixels’ intensities.
Common operations at this level are contrast enhancement, noise reduction, threshold-
ing and most other local operators. To find optimal parameters for these operations is
often difficult and usually there is not a unique solution. When determining a thresh-
old value to binarise an image for example, the optimal value depends on the actual

histogram as well as on the task that is to be performed.

The intermediate level of processing is concerned with geometrical relations within
images and commonly involves local operations. The main concern of intermediate
operations is to find object boundaries, trace contours or edges. Questions arise on

where the edge or boundary of an object segment actually is.

Indeed, does the object have an edge at all? And if it does, is the edge sharp and
well-defined: If the boundary of objects or segments are blurry and ill-defined a crisp
decision on segmentation, for example, would result in a loss of information similar to

the application of inadequate low-level operations.

Uncertain Knowledge

A priori expert knowledge is normally used at the last, high-level stage of an image
processing system. Generally it aids in object recognition, image interpretation, and

scene analysis. The basis of these processes is formed by the results of the lower-level
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stages. Consequently uncertainty at the high level can occur if uncertainties were not

properly handled at the lower-level stages.

In the high-level stage, the expert knowledge itself may be a source of uncertainty.
Often an object’s model is not known completely resulting in a vagueness of object
(class) definitions. A similar uncertainty is introduced by a knowledge representation
which is not unique or vague, particularly when knowledge is available in linguistic

terms the uncertainty of language leads to uncertain knowledge.

Systematic Uncertainties

The actual implementation of an image processing or computer vision system may
introduce further uncertainties. These are usually discretisation problems, hardware or

software errors resulting in incorrect or imprecise calculations.

The lack of absolute quantitative measures in image processing is another reason
for uncertainties. There exists no absolute measure to assess the image quality after
preprocessing for example. This is application dependent and based on subjective as-

sessment of experts or empirical methods.

2.2.2 Image Formation

In general an image is formed when a sensor records a received signal, usually elec-
tromagnetic waves, as a two-dimensional function / (z,y), where = and y represent the
co-ordinates of the image intensities . In digital images x, y and I are discrete and a

picture element at (z,y) is called a pizel (or pel).

Depending on the sensor, the brightness or intensity values I represent for example,
the reflectance of light from object surfaces, the temperature of objects or their dis-
tance. In this thesis, medical magnetic resonance (MR) and X-ray imaging is considered
in particular. Here the image intensities represent structural properties of anatomical

objects, that is the distribution of hydrogen and their absorbtion coefficient respec-
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tively. X-ray images are characterised by the transparent projection of object densities,
while MR images are formed from a local atomic response, allowing slices of objects to
be scanned. These particular imaging methods are described in detail in sections 2.3.1

and 2.3.2 respectively. More information on medical imaging in particular can be found

in [24].

While a single image is represented by the two-dimensional function I(z,y), image
formation may result in more dimensions, obtaining image sequences. These can be

devided into

2D A single two-dimensional image is acquired.

2% D Additional information, interpreting I, is available.

2D+t A sequence of two-dimensional images is acquired over time.
3D Depth information may be obtained directly, calculated from
the combination of two or more 2D-images or by taking

a spatial sequence of two-dimensional image slices.

3D+t A sequence of 3D-images is acquired over time.

This research project considers the 2D+t case in particular. This means that rather
than static scenes dynamic processes involving motion are investigated. What is intu-
itively regarded as motion may have a number of causes in image sequences. Motion
results in a change of image intensities over time. Intensity changes however, may be
due to camera motion or object motion, as well as to illumination changes, or changes
in object structure, size or shape. As not all of these influences may be considered to
be motion, it is important to identify them in an image processing system. In this sec-
tion changes due to the image formation process are considered, while the next section

explores object-induced changes.

As to motion caused by camera (or imaging device in general) or objects the fol-
lowing cases represent the four possibilities for such a dynamic camera/world setup:

[11,12]
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1. Stationary camera, stationary objects (SCSO);
2. Stationary camera, moving objects (SCMO);
3. Moving camera, stationary objects (MCSO); and

4. Moving camera, moving objects (MCMO).

The first case involves only static image processing, while the SCMO case allows
an analysis of object motion. The MCMO case is the most challenging and usually
requires additional information about the motion of either the camera or the object to
fulfil computer vision tasks. This research project primarily considers the SCMO case

which is most common in medical applications, where motion is involved.

2.2.3 Object Characteristics

Regarding objects within image sequences the following variations are possible:

e Intra-individual Variations occur within the same individual over the course

of an image sequence (over time and/or space that is).

e Inter-individual Variations of the same anatomical object that occur over dif-

ferent individuals.

e Motion Global change in position of an object, relative to the image co-ordinate

system. Motion can be divided into translation and rotation.

e Shape variation Local changes in the 2D contour of an object lead to defor-

mation.

It is important to emphasise that the terms used relate to the appearance of a
two-dimensional object boundary in an image sequence, which may lead to a different
classification than a look at the physical object in three dimensions would give. In the
real world a bone for example, would be classified as a rigid object, because it cannot

be deformed. In a sliced MR image sequence however, the 2D contour of that bone may
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undergo deformations from one slice to another as the position of the slice changes (see

section 2.3.1). Similarly in an X-ray image sequence the projection of a rotating bone

may lead to a deformation of its outline, when the rotation is not restricted to the axis

perpendicular to the view plane.

Tables 2.1 to 2.3 survey a number of object classes, derived from the possible com-

binations of the above variations. For each class a medical example is provided.

Object class Object characteristics Medical
example
Intra-individual Inter-individual
Motion Shape variation Shape variation
Trans- | Rotation | Rigid | Deform- Rigid | Deform-
lation able able
artificial ) o X - X - fiducial
reference marker
structure

Table 2.1: Rigid objects. Definitions of object variations and resulting object class.

Legend: x Yes, — No, o Yes or No

Object class Object characteristics Medical
example
Intra-individual Inter-individual
Motion Shape variation Shape variation
Trans- | Rotation | Rigid | Deform- Rigid | Deform-
lation able able

fixed - - X - - X bone,

anatomical fixed relative

reference to imaging
structure device
anatomical - X X - - X bone,
reference restricted to
structure, X - X - - X move only
moving in the parallel to
view plane X X X - - X view plane
fixed object - - X - - X bone,

(rigid in 3D) fixed relative
to reference
structure

object - X X - - X bone,

(rigid in 3D), restricted to

moving in the X - X - - X move only

view plane parallel to
X X X - - X view plane

Table 2.2: Inter-individually deformable objects. Definitions of object variations and

resulting object classes. Legend: X Yes, — No
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Object class Object characteristics Medical
example
Intra~-individual Inter-individual
Motien Shape variation Shape variation
Trans- | Rotation | Rigid | Deform- Rigid | Deform-
lation able able
object - X - X - X bone,
(rigid in 3D), moving out
rotating X - - X - X of the view
around x- plane
and/or y-axis X X - X - X
soft objects, - - - b - X tissue,
connected to attached to
reference reference
structure bone
soft object, - X - X - X
not connected X - - X - X
to reference X X - X - X
structure

Table 2.3: Intra-individually deformable objects. Definitions of object variations and
resulting object classes. Legend: x Yes, - No

2.3 Example Applications

This section substantiates the discussions of the preceding sections by introducing two
applications from different imaging as well as application domains. Together the appli-
cations address all of the subjects mentioned above and are regarded as a representative

basis to verify the validity of the proposed approach.

2.3.1 Analysis of Carpal Bones in Magnetic Resonance

Imaging Sequences
2.3.1.1 Clinical Motivation

To date the diagnosis of ligament lesions of carpal bones relies on a qualitative exami-
nation of the patient’s wrist. This section presents a novel system where sequences of
magnetic resonance images are automatically analysed to measure the motion of seven

wrist bones. Resulting motion graphs provide a quantitative basis for diagnostic as
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well as scientific purposes. As the imaging method is non-invasive up to twelve wrist

positions can be measured giving a detailed insight into the bone’s motion.

In many cases articular damage cannot be diagnosed through an examination of
a single image. A motion analysis of a joint’s bones might be necessary to make a
reliable diagnosis [25,26]. Examples are lesions of the ligaments and cartilage of the
knee or in the cervical and lumbar regions of the vertebra. The developed system
enables the diagnosis of lesions of the ligaments of the wrist (carpal instabilities [27]),
and is particularly well-suited to aid in the diagnosis of the scapho-lunate instability.
This damage is a common injury after accidents involving the wrist. The lesion occurs

when the ligaments between the Scaphoid and the Lunate are torn [28].

Availability of Nuclear Magnetic Resonance Imaging allows scanning of entire se-
quences of images of bones and joints without harmful dosage of radiation. Analysis
of such sequences allow a much more reliable diagnosis of lesions of the ligaments
compared to methods in use today, such as single X-ray images [25-27]. However, a
necessary scanning procedure with a sufficient number of positions requires approxi-
mately 100 2D images for every patient. The manual evaluation of such a large number

of images in the daily medical diagnostic is not feasible.

The aim of the developed solution is the automatic processing of these images
in order to obtain motion graphs which allow an easier medical diagnosis. For the
recognition of lesions of the ligaments, the representation of translation and rotation of
the carpal bones with respect to a co-ordinate system defined by the radius proved to
be most suitable. Using cadaveric specimens such investigations have been carried out
by implantation of markers [28]. Because of the considerable exposure to radiation, in
vivo analysis of such movements has been carried out only with very coarse resolution.

The method proposed here allows for a much finer resolution of the bone movement.

For the measurement of translation and rotation for each bone its major axis and
centroid is determined. The measurement is performed relative to an anatomic co-

ordinate system defined by the distal end of the Radius bone (cf. Figure 2.2).
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Object class Object characteristics Wrist
bones
Intra-individual Inter-individual
Motion Shape variation Shape variation
Trans- | Rotation [ Rigid | Deform- Rigid | Deform-
lation able able
anatomical X X X - - X Radius bone
reference
structure,
moving in
the view
plane
object X X - X - X carpal bones
(rigid in 3D),
moving in
the view
plane

Table 2.4: Variations of the wrist bones. Legend: x Yes, — No

2.3.2 Analysis of the Vocal Tract in X-ray Imaging Sequences

2.3.2.1 Scientific Motivation

Articulatory phonetics is a branch of linguistic science that is concerned with the very

complex dynamic characteristics of the organs of the human vocal tract (cf. Figure 2.7).

‘The probability that an articulator will move parallel or anti-parallel to

the preferred direction during speech sound production is dependent on the

movements’ orientation of the production of his neighbouring sound which

in turn is influenced by the production of the neighbouring sound and so

on. This chain of effects develops because the vocal tract is a dynamic net-

work system in which different articulatory parts effect each other through

interaction.’[29]

Understanding this complex motion and interrelation of articulatory organs is an

important basis for understanding human speech production. Apart from being a con-

tribution to basic linguistic research, this knowledge is valuable for example to speech
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structure

Object class Object characteristics Articulators
Intra~individual Inter-individual
Motion Shape variation Shape variation
Trans- | Rotation | Rigid | Deform- Rigid | Deform-
lation able able
artificial X X X - X - lip marker
reference
structure
fixed - - X - - X upper front
anatomical tooth
reference
structure
fixed object - - X - - X alveolus,
(rigid in 3D) palate,
pharynx
object X X X - - X lower front
(rigid in 3D), tooth,
moving in hyoid bone
the view
plane
soft objects, - - - X - X velum,
connected to upper lip,
reference epiglottis
structure
soft object, X X - X - X lower lip,
not connected tongue,
to reference glottis

Table 2.6: Variations of objects in the vocal tract.

2.3.3 Summary of Example Applications

Legend: x Yes, - No

The preceding sections presented two example applications that lie within the scope of

this work as detailed in section 2.1.

The clinical analysis of MR image sequences and the scentific measurement of X-

ray sequences are complementary with respect to the variation classes identified in

section 2.2.2 (image formation) and section 2.2.3 (object characteristics).

While MRI produces image slices with good contrast and edge quality, analog X-ray

imaging results in low-contrasted blurry edges, with superimposing structures.
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The objects to be analysed are both rigid and deformable. While the MR application
focuses on inter-individual deformation (carpal bones), the X-ray analysis is mainly

concerned with intra-individual deformation of, for example, the tongue.

Both applications involve the challenging properties investigated in section 2.2 and
provide a basis for both the evaluation of traditional image processing methods and

the validation of the novel approach proposed in this work.
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Chapter 3

Related Activities and Literature

Surveys

While the analysis of medical images and image sequences dates back to the early
1970’s, it is still an active field of research and has led to various medical applica-
tions, the most prominent being the analysis of the heart. In particular volumetric
and dynamic analysis of the left ventricle has led to numerous publications over the
last three decades [34-38]. A similarly relevant application is the assessment of the
state of coronary arteries [39-42], whilst among the first anatomic structures to be
processed digitally were the lungs [8,43]. Other applications have been concerned with

rigid structures of the head [44] and the non-rigid tongue [45, 46].

In all these medical image analysis applications, the main task has been the seg-
mentation of anatomically relevant structures [47-55]. There currently exists no single
segmentation method that yields acceptable results for every type of medical image
material and application. Multiple techniques are frequently combined to improve the
results. Methods do exist that can be applied to a variety of data, however, those
that are specialized to particular applications achieve better performance by taking

into account a priori knowledge. Some of these existing methods are referenced in this

section.
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Existing approaches can be divided into two categories. The first group contains
pixel classification methods such as thresholding, region growing, classifiers and clus-
tering algorithms. The second group includes methods based on deformation such as

atlas warping as well as a number of important deformable models.

Early approaches were very much application specific and low-level oriented [34, 35,
39, 45]. Typically methods such as thresholding and region growing were used together
with other local operators. For medical segmentation variations on classical threshold-
ing have recently been proposed that incorporate information based on local intensities
[56] and connectivity [57]. Region growing is mainly used for detection of small simple

structures such as tumors and lesions [58].

Supervised classifiers require a manually segmented training set which is used for
automatically segmenting new data. Here statistical methods such as the maximum
likelihood classifier play an important role. Examples for improving and applying such
classifiers for medical image analysis include [59] and [60]. Also artificial neural networks

(ANNS) can be applied as supervised classifiers [61].

When no training data is available, unsupervised clustering methods may be used for
pixel classification. Markov random fields (MRF) are often incorporated into clustering
algorithms such as the k-means algorithm under a Bayesian prior model [62, 63]. MRF
modeling itself is not a segmentation method but a statistical model, with segmentation
obtained by maximising the a posteriori probability of the segmentation given the
image data using iterative methods [64]. Other non-statistic clustering methods such

as unsupervised ANNs and fuzzy clustering [65], are also available.

In contrast to pixel classification methods, atlas-guided approaches treat segmen-
tation as a registration problem. Here a pre-segmented template image is warped to a
target image using either a linear or non-linear transformation. This method has been
applied mainly to MR brain images [66], though accurate segmentation of complex

structures is difficult due to anatomical variations. Using probabilistic atlases can help

to model these variations [67].
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It was recognised that models could improve segmentation results [50], particularly
with often noisy medical images [51]. The exploitation of a priori knowledge includes
specific models concerning the image formation process of the object to be analysed
[36,40, 41, 43, 68], and also expert systems were developed to provide explicit knowledge

representation schemes [42, 69)].

More general approaches which attempt to model boundary or shape properties [34,
70, 71] have provided a rich research area in medical image analysis. The representation
and detection of deformable anatomic structures has recently attracted much research
interest [38,72,73]. An extensive analysis of current research in this area is given in

(53], and other relevant contributions may be found in [52, 54, 55).

An influential deformable boundary model, the so-called active contour was pro-
posed by KAsS et al. [74] (cf. section 3.1). Later approaches include deformable tem-
plates where size and relationships of object subparts are represented in parametrized

templates [38, 75-77).

StAIB and DUNCAN [78,79] augmented the boundary finding process with a priori
probability information representing the mean shape and natural variation of the ob-
ject to be segmented. Fourier descriptors were used as model parameters to represent

boundaries. SZEKELY et al. [80] also developed Fourier parametrized models.

CoOTES et al. [81] combined deformable shape descriptors with statistical modal
analysis. Their active shape model obtains characteristic shape variations from a train-
ing set of boundary points. An example medical application published in [82] trains

active shapes with the outlines of finger bones in single X-ray images for age assessment.

The novel approach presented in this thesis is partially based on principles of active
contour models, which are discussed in depth in section 3.1. Other important aspects of
this thesis are related to representing and processing uncertainties. Many methods have
been developed in this field [83], the most relevant of them being Bayesian probability

theory and fuzzy set theory.

In Bayesian statistics all uncertainties are represented by probabilities. Probability
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is regarded as a subjective measure, representing a degree of belief that something will
occur. Probabilistic methods play an important role in medical image segmentation,
where stochastic uncertainties are handled. Soft segmentations for example can be ob-
tained in statistics through the use of probability functions [60, 84]. Particularly in cases
where training data is available probabilistic methods have been applied successfully.
Some important approaches were developed in the areas of classifiers, clustering and
deformable models, as mentioned earlier in this section. In [78-81] uncertain knowledge
of shape is included by incorporating prior probability distributions obtained from a
training set. Other relevant references include [59,85-94]. For a comprehensive survey

of the field consider [53, 95, 96].

In this thesis an explicit, linguistic representation is pursued, while training data
is considered unavailable. In these circumstances fuzzy logic is adequate and will be

discussed fully in section 3.2.

3.1 Survey of Active Contour Models

Active contour models were first introduced by KAss, WITKIN and TERZOPOULOS
[74], and are often referred to as the classic snake or deformable contour model. Active
contours are energy-minimising splines or polygons guided by internal and external
forces that pull them towards image features during an optimisation process. They
dynamically segment an object contour by locking onto nearby edges and localising

them accurately.

Applications of active contour models include line and edge detection, detection of
subjective contours, motion tracking, stereo matching, and interactive interpretation of
image scenes with user-imposed constraints, in the area of computer vision, computer
graphics, and computer-aided geometric design [52,97-101]. More recently active con-

tour models were applied in computer-assisted medical image analysis [46, 72, 102-107].
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3.1.1 General Concept

The traditional model is based on a spline with controlled continuity, providing piece-
wise smoothness constraints as internal spline forces and thus regularising the defor-
mation of the model in terms of its elasticity and bending. The representation of the
traditional active contour model however, is not spline-based during the deformation
process, but only for the final interpolation of the result. The external image forces
push the model towards salient features such as lines or edges. External constraint
forces are responsible for pulling the model near a desired local energy minimum using
appropriate automatic attentional mechanisms, or high-level interpretation. In the ab-
sence of such mechanisms, interactive approaches like the snake pit [74] can be used,
providing an interactive approach for defining pushing and pulling forces in the image

scene via spring and volcano forces.

The key point of active contour models is the design and optimisation of suitable
energy functions whose local minima comprise a set of alternative solutions which can
be based on a priori knowledge of the approximate shape, size, location, and motion
of the object under investigation, and on a user-defined initial estimate of the object’s

contour.

During an optimisation process which was originally formulated within a Euler-
Lagrangian setting for the traditional model, the internal and external image and
constraint forces are adjusted to find the desired local optimum causing a suitable

deformation of the active contour model.

3.1.1.1 Continuous Spline Representation

An active contour is based on a parameterised contour v(s), s € [0, 1]. Closed contours
are obtained by making the contour periodic, for example by setting v(0) = v(1). An
energy function €44 is formulated to obtain an estimate of the quality of the model
in terms of its internal forces ¢;,; and external forces, such as underlying images forces

Eimage and user-constrained forces €,,. The energy function integrates a weighted linear
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combination of the internal and external forces over the spline contour:

1
Esngke = /(; wintgint(v(s)) + Wimage€image (V(s)) + wconscoﬂ(v(s)) ds (31)

As there is no consistency in the literature as to what kind of forces are to be
designated as internal, external or constraint forces, the following definition is used
throughout this thesis. The snake’s overall energy function comprises an internal as

well as an external component:

1
€ snake = /(; wintsint(v(s)) + wezteezt(v(s)) dS (32)

Internal forces are formulated through &in;(v(s)) which represents all general char-
acteristics that an arbitrary object might have, such as smoothness. Image features as
well as object-specific constraints are regarded as being external to the spline and are

hence grouped into €..:(v(s)):

Eent(V(8)) = Wimage€image (V(S)) + WeonEcon (V(5)) (3.3)

This is conform with the view that an energy function can also be regarded as the
compromise between internal and external contour shape quality. In this compromise
the weighting parameters Wint, Wert, Wimage, aNd Weon control the relative influence of

the energy components and are generally determined by a process of trial-and-error.

Moving the vertices of an active contour leads to a change in energy, which trans-

forms the segmentation problem into an optimisation problem.

3.1.1.2 Discrete Polygonal Representation

The continuous energy function £, is usually discretised by replacing the integral
by summation, leading to a discrete energy function Egsnake. In the following a dis-

crete formulation of the active contour model is used, which is based on a polygonal
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representation of a contour, as shown in Figure 3.1.

For each image, the algorithm requires an initial polygon P = (po,p1,..-,Pn-1)
consisting of N vertices p; = (i, y:), where z; and vy; are the spatial co-ordinates of
P:. The detected boundary is represented by the polygon Q = (qo, qy, . - -, Qn-1), With
qi = (z;,¥:). Each q; is selected from a set of candidates C; = (€i0,Ci1s -+, CiM—1)-
In many applications the candidates ¢;; = (z;,y;) are uniformly sampled along a
search line normal to the initial polygon and intersecting p;. Tracking of the contour
is achieved by processing a sequence frame by frame and taking the resulting Q; as
the initial estimated contour P;,; for the next frame. A closed contour is obtained by

setting qo = qx and hence pg = py and Cy = Cy.

Figure 3.1: Polygonal contour representation.

From this polygonal representation, it is possible to formulate an appropriate dis-
crete energy function Fy,q. for the object, which can subsequently be minimised in
order to obtain the desired contour Q. This minimisation is achieved by selecting an

optimal set of vertices from the candidates which have been sampled in a region R,

around an initial contour.

Analogous to eq. (3.2) Espake is decomposed into two components:

N-1
Esnake(Q) = Z wintEint(qn) + weztEezt(qn) (34)

n=0

with the external energy being
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E.. (qn) = 'wimageEimage (qn) + WeonEeon (qn) (35)

where FEjnq.e and Egy, are the discrete equivalents of the analogue components

5ima_qe and Econ-

3.1.2 Modelling Object Characteristics

The classic formulations as well as some modifications and extensions of internal and
external active contour forces used to model object characteristics will be summarised

in the following.

3.1.2.1 General Characteristics (Internal Energy Terms)

The classical active contour models general elastic deformation as well as bending

characteristics through Eq. (3.6) and (3.7) respectively.

Eetast(v(5)) = IV'(s)1? (3.6)

Ebend(V(5)) = V" (8) I (3.7)

Here the elastic energy €5 of the contour is modelled by the first order derivative
term v'(s) which makes the snake behave like a membrane. The second order derivative

term v"(s) represents the contour’s bending energy €send, leading to a thin-plate like

behayviour of the active contour.

Both properties are integrated in the internal energy €;,; through a weighted sum:

5int(v(5)) = Welast€ elast (V(S)) + Whend€ bend (V(S)) (38)

With this model an object’s general characteristics can be parameterised through

the weights Weiast and Wpeng. Increasing weiqs: forces contour vertices to move closer
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together, while decreasing the parameter allows the contour to develop gaps. The
smoothness of an object is parameterised through wpe,s where higher values decrease

the model’s flexibility resulting in a contour with less corners and vice versa.

Discrete approximations of Eq. (3.6) and (3.7) were suggested by [74, 108]:

Eelast (qn) = ”qn - Qn—ll'z (39)

Eiena (qn) = HQn—l -2q, + (ln+1”2 (3'10)

An alternative to the backward difference is a forward difference:

Eelast(qn) = ”qn - qn+1”2 (3'11)

or a centered difference is also possible:

_ 2
Eelast(qn) = ”qn—l 2qn+1” (312)

In [109] it was pointed out that Eq. (3.9) is made under the assumption that the
vertices of the active contour model are evenly spaced. As this may not always be
the case, it was proposed to subtract the elasticity term from the vertices’ average
distance ||d||. Unlike Eq. (3.9) the proposed energy expression Eq. (3.13) is not larger
for more distant vertices, resulting in a more evenly spaced vertex distribution avoiding

a possible contraction of the snake.

Eelast(Qn) = ”a” - ||qn - q.n—1||2 (313)

When the above elasticity and bending measures are calculated relative to the initial
hypothesis contour v, (corresponding to the discrete polygon P) a similarity constraint

is introduced [110]:

Eetast (V($)) = (V(5) = vo(s))? (3.14)
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Erena(V(3)) = (v"(5) — v5(s))? (3.15)

The similarity constraint is flexible in that it implicitly models the properties of the
hypothesis. If the hypothesis was constant in its local properties then the similarity
favours contours with the same constancy. This is why the similarity constraint results
in a smooth contour without explicitly modelling smoothness: through a smooth initial

hypothesis.

To explicitly model the smoothness of a contour WILLIAMS suggested a restriction

of the local curvature [109]:

-1 (qn - qn—l)(q'n-}-l - qn) (316)
”qn - Qn—ll'“qn+1 - Qn“

Esmoothness (qn) = CO0S

A smoothness constraint that is based on the direction of the image gradient rather

than on the contour’s geometry is presented in the following section (Eq. 3.25).

3.1.2.2 Image Based Characteristics (External Image Energy Terms)

The external image energy of the classic active contour model {74] involves forces due
to image intensities, edges and terminations of line segments, the first of which being

the simplest useful image functional:

Eintens (qn) = I(qn) (317)

A simple, discrete edge functional is the intensity gradient (cf. section 5.2.2.1):

Beige(an) = =1V (qn)II* (3.18)

where the negative sign produces low energy values for high gradient values. Squar-

ing the gradient narrows the edge response.
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In order to find terminations of line segments the curvature of level lines in a slightly

smoothed image I, can be used to formulate an Eyepp(qy,).

To form the image energy the terms were integrated using a weighted sum:

Eimage(qn) = wintensEintens(q'n.) + wedgeEedge(q'n.) + wtermEterm(qn) (319)

Depending on the sign of w;nseqs the snake is attracted to either dark or bright pixel
intensities. The absolute values of all three coefficients control the relative influences

of the energy terms, modelling the predominant image characteristics of the object.

As an alternative to the intensity functional of eq. (3.17), a simple “event detector”
was suggested in [111] using a threshold operator with a user defined threshold value

é:

(3.20)

Ethresh(q'n) = { I(qn) -0 I(q’n) >0

The extensive body of research upon image edges has led to the application of a
number of different edge detectors in active contours. In addition to the simple gradient
operator in Eq. 3.18, gradients with a specified direction are applied [99, 110], with one
specific form being the gradient perpendicular to the contour [81]. Among the applied
standard edge detectors are the Sobel [72, 100,105}, Canny [105, 108] and Deriche [103]

operators. A combination of different 2D Gabor filter responses is proposed in [107].

Of particular relevance to the processing of image sequences is the exploitation of
image motion. It seems however, that the results of the extensive research in related
subjects such as optical flow have not been integrated into active contours. A motion

detector based on the gradient of a difference image D, was presented in [100]:

Emotion(qn) = IVDt(qn)| (321)

where
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Dy(an) = |1:(an) — To(an) — 1| (3.22)

Here I is the current image, Iy the start image and I the mean intensity difference

within a reference region to compensate for global intensity variations.

In [112,113], an inflation or balloon force for (closed) active contours was suggested:

Eballoon (qn) = WpalloonNn (323)

Where n,, is a normal unitary vector at q, enforcing an expansion of the contour
point in direction of its normal. Depending on the sign of the weighting factor Wsaien

the active contours expands or contracts.

This expansion force, like the classic active contour model in general, is based only
on the boundary characteristics of a shape, disregarding the enclosed region pixels even
when the contour is closed. Several approaches have been developed to constrain the
model’s shape to its enclosed region homogeneity, some involving a philosophy similar
to that on which template matching is based upon (cf. sections 5.2.1.1 and 5.2.2.1). The
most important approach of statistical snakes or active region models was developed by
IviNs and PORILL [114]. Active region models start from a user-defined homogenous
template region (or seed region) whose mean p and variance o are computed. The
contour then grows with the help of an inflation or pressure force until it encounters
pixels whose intensities change the variance of the regions intensity significantly. The

pressure force is defined by

Epressure(qn) =n, (HI(qn) ;U.U'” - kd) (3.24)

where k is the constant defining the significance of a change in variance. The pressure
force is normalised by the scaling term (ko)2. This scheme is equivalent to weighting

the balloon force by the mean pixel intensity at each boundary pixel.[115]

A similar approach has been developed in [116] where a normalised correlation
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criterion was proposed, measuring the differences of grey-levels in the current region

and the template region.

The above section introduced a general smoothness constraint based on local angles
of the contour. GEIGER conversely modelled smoothness based on the direction of the

image gradient:

E smoothness (q'n) = |¢n - ¢n—l| (325)
-1 Vya;

¢i = ta,n 1 ——y—— 3.26

qui ( )

3.1.2.3 Specific Characteristics (External Constraint Energy Terms)

Specific object characteristics in the classic snake model can only be introduced by
allowing the user to attach springs between vertices of the contour and fixed positions

in the image plane:

Espr'ing (Qn) = _wspring(qn - X)2 (327)

With a positive value of the spring constant wgpring this term attracts the vertex q,
to a point x = (z,y) in the image. A negative sign repels the vertex from z in which

case the constraint is called volcano force.

However, the need for more specific knowledge particularly on shape has been recog-
nised [117] and led to several inclusions of active contour models.

In 100, 118] the local angle ¢, in the 3-vertex polygon of qn—1, An, Any1 Was used as
a measure of local shape. Together with specific shape constraints such as ¢, = N—Iglw

to model a circle the possible shapes of the active contour were restricted to specific
shapes.

The local angle was also used in [118,119] to attract two closed snakes towards an
object boundary. One active contour was initialised on the outside of the object and
one on the inside. This set-up improved the evolution of the active contour and helped

in finding the optimal solution.
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Several other papers address the ability of the active contour to change its shape
during the usually iterative optimisation process. BERGER et al. in [102] addressed the
snake’s size which can grow by inserting vertices dynamically. The so-called geodesic
active contour presented in [120-122] is even capable of changing its topology, allowing

for a rough initialisation.

These approaches reduce the active contour’s selectivity with respect to the shape
to make it more flexible during the optimisation. Consequently the desired shape of
an object cannot be specified precisely which is a drawback where challenging image

material is involved.

An approach to detail the desired shape was presented in [97]. Human heads were
modelled by using different sets of snake weights on different sections of the contour,

corresponding to chin, ears, and hair.

The most complex approach to include not only geometric constraints but to gen-
erally represent explicit a priori knowledge about specific objects is the grammatical
active contour. The novel approach presented in this thesis is partially based on this

approach, the details of which are presented in the following.

In [123,124] OLSTAD proposes a grammatical framework for encoding structural
information on the object to be detected. The grammatical object description is inte-

grated into the energy minimising procedures of an active contour model.

Normally syntactic approaches are applied to decompose or classify contours (cf.
section 3.2.2.2) after they have been segmented. The image information is not utilised
in the structural processing of the contour. Incorporating syntactic processing into an

active contour affords the possibility of combining both image features and detailed

structural constraints in contour segmentation.

One fundamental idea of the grammatical active contour is to specify local prop-
erties of an object’s contour, that is to use a different energy function for each vertex
instead of just one global function. The grammatical description of a contour can then

be performed through a string (concatenation) of characters (terminals), such as
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aaaaaabbbbbbcbbb

Table 3.1: Example grammatical contour description

where each character stands for one vertex. The letters represent the different, usually

external, energy functions E%,, EY,, and ES,.

A hard specification of a characteristic’s location such as, “vertex 5 has an angle of
60 degrees”, however contradicts the active contour’s ability to account for variabilities.
A formal grammar offers a representation where the exact location does not have to

be specified, but can be left as an additional dimension in the optimisation process.

Formally a (context-free) grammar is defined as a quad-tuple

(N,Z,P,S)

where

N 1is a finite set of non-terminals,

e Y a finite set of terminals,

P a finite set of production rules, and

S the starting symbol of the grammar.

A grammar G = (N, X, P,S) generates a formal language L(G) which is a set of
all strings that can be produced by G. In restricting L(G) to languages that can be
described by regular expressions R, OLSTAD introduces a flexibility to the contour

description. The basic production rule of concatenation of two regular expressions R,

and R,

R\ R, = {st|s is accepted by R, and t is accepted by R}
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ultimately allows for a concatenation of terminals resulting in rigid expressions (cf.

Table 3.1). Additional rules however, allow for variation through the union, defined as

R1 U Ry = {s|s is accepted by R; or Ry}

as well as the KLEENE closure

allowing for an arbitrary repetition of patterns. Applying the closure operator to the

example in Table 3.1 yields

o = axb*xc*bx*

This regular expression does not specify the exact location of each vertex property
anymore. Contours which are segmented based on this description can comply with

any of the possible strings as for example

abbbbbbbbbbbcbbb
aaaaaabbbbbbcbbb

aaabbbcccccbbbbb

Unlike active contours with only one global energy function (corresponding to the
expression ax), each vertex can obtain up to |X| different states. To find the optimal
contour in the resulting state space is the task of the optimisation procedure. Olstad
integrates a finite-state machine based pattern-matching algorithm into a dynamic
programming optimisation (cf. section 3.1.3.2). Effectively this algorithm parses the
regular expression, generates a state space containing all possible strings and calculates

the overall energy for each of these alternatives.
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While the terminals of the grammar could in theory represent any internal or exter-
nal energy function, Olstad proposes a set of constraint functions which are combined

to form a particular external energy function. Image-based constraints are

EValue(Qn) = Vs(I(Qn) - VE)) (328)

EInterAvg(qn) = Vg (I(qm qn+1) - VE)) (329)

where I(Qy, q,41) is the average pixel intensity of all pixels connecting qn, and qn4+; on

a straight line. V; is a user defined threshold parameter.

Constraints based on the geometry of a contour are

EImageAngle (qn) = f(é(qm Qn+1)) (330)
EAngle(Qn) = Ve(wn) = Ve(é(qn—l, Qn, An+1)) (3'31)
EMovement(qn) = f(”qn - pn“) (332)

Some of the above functions include weighting functions v(z) affording an uncer-

tainty by smoothing the function arguments:

1
v(e)=1-e"  o=-InzVs (3.33)

Ve(z) = €°° (3.34)

where 8 controls the growth of the exponential function.
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3.1.3 Optimisation

Active contour models are considered to be active because the usually iterative min-
imisation of its energy function causes the model to change dynamically. The slithering
movement of the contour during the iterations has lead to the nickname snakes. The de-
formation of the active contour from the initial estimate to its final shape is performed
by an energy minimising optimisation process. In the following the classic optimisation

technique as well as other techniques applied for active contour models are reviewed.

3.1.3.1 Variational Approach

The classic model is embedded in an Euler-Lagrangian setting, using variational cal-
culus in order to derive a differential equation solved by an iterative minimisation

technique using sparse matrix methods.

However, this variational approach does not guarantee global optimality of the so-
lution and requires estimates of higher order derivatives of the discrete data. Moreover,
hard constraints cannot be directly enforced unless the constraints are differentiable,
in which case higher-dimensional spaces are required for more unknowns. Given a de-
sired constraint term such as a minimum inter-vertex distance, it can only be enforced
by increasing the associated weighting, which will force more effect on this constraint,
but on the cost of other terms. Further disadvantages of the variational approach are

the numerical instability and the tendency for vertices to bunch up on strong image

features. [115]

3.1.3.2 Dynamic Programming

To overcome the problems related to the variational optimisation approach presented
in the previous section, in [108] AMINI et al. have proposed dynamic programming as
an approach to minimise the energy of active contour models. Their approach allows
the introduction of hard constraints directly and in a straightforward manner while at
the same time ensuring a globally optimal solution with respect to the search space.
Numerical stability is ensured by moving the contour vertices on a discrete grid without

any approximation requirements.
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In general dynamic programming [125] is an optimisation tool with applications
beyond the segmentation of contour points for which it has been applied in various
contexts [16, 20, 126-128]. The optimisation problem is viewed as a multi-stage decision

process, the basic steps of which can be identified as

1. decompose an optimisation problem into smaller sub-problems,
2. find and store the optimal solution for each of the sub-problems,

3. select the solution for a sub-problem, if the sub-problem becomes part of the

overall solution

Through this strategy the dynamic programming bypasses local minima as it is
embedding the minimisation problem in a family of related problems. With the ac-
tive contour model this is achieved by replacing the minimisation of the total energy

measure by the problem of minimising a number of sub-energies in the form:

Eoae(Q) = rr(ﬂ)n FEonake(Co,C1, ..., Cn-1) (3.35)
= FEy(Cop,C1,C2) + E1(Cyq,Co,C3) + - - -

+En_3(Cn-3,Cn-2,Cn-1) (3.36)

= z=§%—3 E;i(Ci, Cis1, Ciy2) (3.37)

where each variable is allowed to take only m possible values and

El(Cl) = 'lUintEint(Ci) + wext(wimageEimage (Cl) + wconEcon(Ci)) (338)

In other words, the problem of segmenting the complete contour is decomposed into
finding a number of smaller optimal contour segments. As it is not known a priori which
of the possible contour segments will be part of the globally optimal solution, for each

contour candidate its optimal contour segment has to be determined and stored until
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in a final backtracking step the optimal segments are connected to form the optimal

contour.

The complete dynamic programming algorithm shown in Table 3.2 is based on
[108] and [72]. It is used throughout this thesis wherever traditional active contours are
applied and forms a basis for the presented novel approach of fuzzy active contours.
The central element of the algorithm is the recurrance relation

Si(ci) = wintEint(Ci)+wezt(wimageEimage (Ci)‘f’wconEcon(Ci))"'glin Si—l(Ci—l) (339)

i—-1

realising the determination of optimal contour segments. Its realisation S(n,m) in
Table 3.2 represents the minimal energy level that is possible for the vertices 0, ..., n if
the nth vertex is the candidate c, . T'(n, m) in the algorithm holds the index k (k =
0...M —1) that minimises the expression and thus points to the optimal predecessor
of the candidate c,,,. After all vertices have been processed, the new boundary is
obtained by tracing back the pointers, beginning with the candidate that has a minimal
S(N — 1,m) value. In most applications the algorithm is repeated until the change of

the total active contour’s energy AFE;,qk. is smaller than a prescribed threshold 6.

Typically E;,; is calculated over the vertices ¢ and ¢ — 1 while E,,, requires infor-
mation from the vertices ¢, i—1 and 7 — 2. Consequently in an open contour for the first
vertex only Fjmqge can be calculated and pointers to preceding candidates do not exist
(cf. Table 3.2, lines 1 and 2). The optimisation of the second vertex involves Ejnqge
as well as F;;; (lines 3 to 5). The remaining vertices of an open contour as well as all

vertices of a closed, periodic contour operate on all energy terms (lines 6 to 9).

As an example Figure 3.2 visualises the segmentation of a contour using dynamic
programming. Circles denote the candidates of the active contour. The arrows indicate
the pointers calculated during the first phase of the dynamic programming algorithm.
Starting at the upper right candidate, which is assumed to have the minimal energy
value, backtracking follows the red arrows, connecting optimal candidates (grey circles)

for each vertex. Optionally interpolating these vertex positions results in a smooth

contour (blue line).
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1. forallm

2 S{0,m) = Wegt Wimage Eimage (Co,m )

3. forallm

4 S(1,m) = mkin [w,-mE,-m(cl,m) + West Wimage Eimage (€1,m) + S (0, k)]

5. T(1,m) = k™in

6. forn=2...N-1

7 for m=0...M -1

8 S(n,m) = mkin [wintEint(Cn,m) + Weat (Wimage Eimage (Cn,m)
+Weon Beon (€n,m)) + S(n — 1,k)]

9. T(n,m) = kmin

10. Espoke = rr;riln S(N —1,m)

11. dqn-1 = CN_1mmn

12. mmin = T(N — 1, m™n)

13. forn=N-1...1

14. qn = Cpmmin

15.  m™" = T(n,m™")

16. repeat from 1. until AE,, ;. <0

Table 3.2: Dynamic programming algorithm for a non-cyclic active contour.
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Figure 3.2: Backtracing optimal pointers (red) result in a contour made up of optimal

vertices (grey). These may subsequently be used to interpolate a smooth contour (blue).
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3.1.3.3 Other Optimisation Strategies

Another optimisation strategy allowing for hard constraints is the greedy algorithm
[109], which is regarded as being stable and efficient. The algorithm however does not
guarantee to find the global optimum. Also the selection of appropriate thresholds and

weights introduces problems in the application of the approach.

Simulated annealing is a stochastic relaxation technique which is based on the
physical process of annealing a metal. At high temperatures the atoms are randomly
distributed. With decreasing temperatures they arrange in a crystalline state minimis-
ing their energy. In [104] this technique was applied to active contours, though the

computational demands proved to be very high.

3.2 Survey of Fuzzy Logic in Image Processing

Where uncertainties originate from sources such as the vagueness of linguistic expert
knowledge (cf. section 2.2) fuzzy logic is an appropriate approach to both represent

and process such uncertainties.
3.2.1 Relevant Basics of Fuzzy Logic

The basics of fuzzy logic is the fuzzy set theory founded by ZADEH (129,130]. Fuzzy

set theory ‘in the last two decades has developed along two lines:

1. As a formal theory which, when maturing, became more sophisticated and spec-
ified and was enlarged by original ideas and concepts as well as by ‘embracing’
classical mathematical areas such as algebra, graph theory, topology, and so on by

generalizing (fuzzifying) them.

2. As a very powerful modeling language, that can cope with a large fraction of
uncertainties of real-life situations. Because of its generality it can be well adapted

to different circumstances and contests. (...)'[131]
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The basic element of fuzzy set theory is the extension of classic or crisp sets to fuzzy

sets while at the same time providing appropriate operations on these continuous sets.

This concept provides the basis for an extension of the traditional Boolean logic
to a continuous or fuzzy logic. Here logic variables are defined as fuzzy sets while the
operations defined for fuzzy sets allow for a definition of fuzzy logic operations such
as logical AND and OR. Now it is possible to formulate fuzzy logic rules and to draw

conclusions.

While the continuous representation of input variables is closer to the real world
than the binary logic it is still not close enough to the human representation of vague
information. Here the key point is language, which is integrated into fuzzy logic through
linguistic variables. This concept allows for the mapping of linguistic terms to fuzzy sets,
consequently allowing for a formulation of logic rules in a linguistic form as linguistic

rules.

As the next more complex application of fuzzy rules fuzzy inference systems can
process an input through a collection of fuzzy rules, the rule or knowledge base. Unlike
such systems in Boolean logic an initial fuzzification step is needed to relate the usually
crisp input values to fuzzy sets which can be handled by the system. By definition the
result of the subsequent inference of the fuzzy rules is a fuzzy conclusion. Should a non-
fuzzy output be required, a defuzzification is performed to translate the fuzzy result

back to a crisp value.

In the following the above mentioned elements of fuzzy set theory and fuzzy logic
are briefly summarised to define a notation and to make this thesis reasonably self-

contained. For details consider the many available text books such as [131-140].

3.2.1.1 Fuzzy Sets

Sets in general can be regarded as mathematical abstractions of objects in the real

world. Set theory provides such abstractions as well as operations to process these sets.
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A classical or crisp set A, can be defined as a collection of objects, or elements,
z € X where A, C X. The definition of A, can be performed by either listing its

elements, for example

AC: {1a2)3’41 5}7 (340)

by stating conditions for membership

A. = {z|z <5,z € IN} (3.41)

or by using the characteristic function f4_, in which 1 indicates membership and 0

non-membership respectively:

1 : z<5,z€N
fa. = (3.42)
0 : z>5z€N

This dual membership is characteristic for a crisp set. A fuzzy set A however, is
characterised by a membership function p4, which assigns to each element z € X a

degree of membership where p4(z) € [0,1], pa(z) € RR:

A= {(z, pa(@)lx € X} (3.43)

An application for a fuzzy set is the definition of a fuzzy number. Figure 3.3 illus-
trates such a (discrete) fuzzy number /, with mean value l; and spread s, defined by

p) >0 VIie{ly—s,...,lo+ s} An example “approximately 3” can be defined by

A= {(1,0.3),(2,0.6),(3,1.0), (4,0.6), (5,0.3)} (3.44)

Note that for convenience those elements with p4(z) = 0 are normally not listed.
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Figure 3.3: A triangular fuzzy number.

3.2.1.2 Fuzzy Rules

[

0

Logics can be characterised by their truth values, operators and reasoning procedures.

In Boolean logic, truth values can be either 0 (false) or 1 (true). Based on these truth

values operators are defined via truth tables. Two familiar examples for two statements

A and B being

A
0
0
1
1

—_ o = oW

A
0
0
0
1

—= o= = O <

defining the operators AND (A) and OR (V). There are situations however, where

two truth values are not sufficient and where truth tables cannot easily be assigned

a name to reflect its function [131]. As a solution fuzzy logic regards both the truth

values and the statements as fuzzy sets (or more precisely as linguistic variables which

are presented below).

Let v(A) be a fuzzy set representing the truth value of the statement A with

v(4) = {(z, pa(a)lz € [0, 1]},

(3.45)
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then the truth value TRUE can be defined as a fuzzy set

v(TRUE) = {(0.5,0.6), (0.6,0.7), (0.7,0.8), (0.8,0.9), (0.9, 1.0), (1.0,1.0)}  (3.46)

With the negation operation defined as

-w(A) = v(NOT A) =1 —v(4) = {(1 — z, pa(z)|z € [0,1]}, (3.47)

the truth value FALSE becomes

v(FALSE) = {(0.0,1.0), (0.1,1.0), (0.2, 0.9), (0.3,0.8), (0.4,0.7), (0.5,0.6)}  (3.48)

The logical operations AND and OR are normally defined as

v(A) Av(B) = v(A AND B) = {(z, minlua(2), s (=)])} (3.49)

and
v(A) V v(B) = v(A OR B) = {(x, max[pua(z), us(x)])} (3.50)

respectively. Similarly the operator = (implies) is defined as

v(A) = v(B) = v(A = B) = w(A) Vu(B) = {(z,max[l — pa(z), us(z)])} (3.51)

providing the basis for reasoning procedures such as the common modus ponens

(AN(A=B))=B
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It is applied in reasoning to come from a premise (A is TRUE) and an implication
(IF A THEN B) to a conclusion (B is TRUE). Using fuzzy logic allows approximate

reasoning where

1. the statements as well as

2. the conclusion may be fuzzy.

The elements of fuzzy logic described so far provide the formal basis for an intuitive
interface to human reasoning by introducing fuzzy inputs (statements) and output

(conclusions).

To make the transition from formal rules such as
IF Ais 0.6 AND Bis 0.8 THEN Cis 0.9

to a more intuitive representation of knowledge in the form of linguistic rules such

as
If the pixel is bright then noise is very likely

it is necessary to integrate elements from the human language into fuzzy logic.

The concept of linguistic variables provides this integration and is summarised in the

following.

3.2.1.3 Linguistic Variables

The first step in the integration of linguistic terms into fuzzy logic is an analysis of the
possible interpretations the concept of the fuzzy membership allows. The membership
plays a central role in fuzzy systems as it represents the connecting element between
the real world and the numerical world of mathematics and logic. Each application
may require a different view on this relation. TIZHOOSH gives an overview about the

different interpretations of the membership in the literature:
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e Membership as similarity When classifying objects through the definition of
a prototype, memberships reflect the degree of similarity between an object an
the prototype. The feature space is used to determine this degree of similarity.
Assigning a membership of 0.9 to an object could for example represent the

numerical mapping of the linguistic terms “very similar” or “nearly identical”.

e Membership as probability Membership can also be interpreted as an object’s
probability of belonging to a certain class. The terms “very likely”, “likely” and
so on can be represented as fuzzy sets. When stochastic processes cannot be
handled by probability theory, these terms may be determined subjectively. In
this case using fuzzy sets may be useful to describe such processes. However,
fuzzy membership itself must not be confused with probability (on the differences

consider for example [131]).

e Membership as approximation In some applications the membership degree
reflects the quality of an approximation of a measured value and the real or

reference value.

e Membership as intensity A different interpretation of membership is the in-
tensity with which the property of a set X’ is true for an element z € X. A good
example is the brightness for which terms such as “very bright”, “dark” and so

on can be found.

These interpretations illustrate the usefulness of a linguistic representation of mem-

bership degrees. ZADEH formulated the motivation as follows:

‘In retreating from precision in the face of overpowering complexity, it 1s
natural to explore the use of what might be called linguistic variables, that is,
variables whose values are not numbers but words or sentences in a natural
or artificial language. The motivation for the use of words or sentences
rather than numbers is that linguistic characterizations are, in general, less

specific than numerical ones.’[130]
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The concepts of a linguistic variable formalises the relation between linguistic and

numerical values as follows. A linguistic variable is defined by a quintuple

(z, T (x),U, G, M)

in which

e z is the name of the variable,

e T(x) is a set of its terms or linguistic values,

e U the universe of discourse for z, with the base variable u,
e G is a (syntactic) rule generating the term names X, and

e M is a (semantic) rule for associating with each X its “meaning” M (X) which is

a fuzzy set on U.

Figure 3.4 illustrates the transition from the linguistic level to the numerical level
for the following example. Note that in this example the rules G and M are not formally
defined. Both the generation of term names and the definition of associating fuzzy sets
are performed subjectively by a human expert. This is the case in many applications
and shows where subjectivity is introduced in the otherwise precise definition of a

linguistic variable.

Consider a linguistic variable with

x = pizel brightness

T (z) = {very dark, dark, grey, bright, very bright}

With U = [0,255] the base variable u is the pixel brightness in grey levels. An

example for the assignment of a fuzzy set to the term X = dark is

M(dark) = {('Uf, /Jldark(u))}
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as well as the complexity of a rule depends on the functionality of the actual imple-
mentation of the FIS which is applied. In general simple IF-premise-THEN-conclusion

rules are applied in the form

Rk : IF Pk THEN Ck

A simple example rule base follows:

R, : IF pizel brightness is dark THEN noise is not likely
R, : IF pizel brightness is grey THEN noise is likely
R; : IF pizel brightness is bright THEN noise is very likely

Where multiple input variables are involved their dependencies are accounted for
through premises composed of sub-premises Py, connected by fuzzy logical operators

(OJ"H

Py = Pi1 Ok1 Pra Ok - -+

Inference — Reaching a Conclusion

For simple rules such as in the above example it is sufficient to execute an implication
operation to come from a premise to a conclusion. A rule base consisting of a number

of rules however which may also contain multiple sub-premises, for example

RlllF .P11VP12 THEN 01
Rz :IF P21 A Pzz THEN 02

requires an inference procedure involving the three stages aggregation, implication and

accumulation.
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Aggregation. For each sub-premise Py its truth value is calculated. Operators then
aggregate these in order to obtain a single truth value vy, for the whole premise P. The
aggregation operators correspond to the fuzzy logical operators ®y,; specified in the rule.
Normally fuzzy logical AND and OR are applied where the corresponding aggregation
operators are min and max respectively. For the above example the following operations

are performed:

vy =v(Py1 V Pp)
Vg = ’U(P21 A P22)

Implication. The task of this stage is to determine the degree of fulfillment of a
conclusion based on the truth values of the premise. For each rule R; of the same
output variable, the truth value of its premise v is used to weight the membership
function of the linguistic term given in the conclusion Cy. The result is a fuzzy set Z;.

Normally the minimum or the product operator is applied.

For example with
vy = v(pizel brightness is dark) =0

vy = v(pizel brightness is grey) = 0.6
vz = v(pizel brightness is bright) = 0.4

an implication applying a minimum operator yields

{(u: min(vlv “not |ike|y (u)))}
{(u, min(vy, Nlikely(u)))}

2y = {(u, pz(v)}
Zy = {(u’ Kz, (u))}
23 = {(ua /J’Za(u))} = {(u’ min(v&h /Jve(y ||kely(u)))}
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Accumulation. The accumulation stage integrates the fuzzy result of Z; of each
rule’s implication into a single fuzzy result Z for all rules involving the same output.

Normally the maximum operator is applied in the accumulation:

Z = {(u, uz(w))} = {(u, max(uz, (u)))}

Defuzzification — Decoding of outputs

To transform the fuzzy result of the inference back to the numerical domain, that is to

a crisp output value, defuzzification is performed.

The design of a fuzzy inferences system includes the definition of output variables
u, € Uy, 0 € [1,0]. Analogous to the fuzzification, for each u, a linguistic variable z, is
defined. To obtain a crisp value u, from the fuzzy result Z several different methods
exist, and selecting the most appropriate depends on the particular application. From
a philosophical viewpoint as this stage requires an interpretation of the meaning of all
possible fuzzy sets Z this choice is not always straightforward. Consequently devising
new interpretations (that is, defuzzification methods) is subject to continuous research.

One practically relevant method is presented here as it is used in this thesis.

The centre-of-area (COA) method, also called centre-of-gravity (COG) method,
interprets the centre of the area spanned by the fuzzy set Z as the best crisp interpre-

tation of this set. The COA is defined as

u%bl U Kz (U)
Ll Sy (3:52)

u€elU

To visualise this method consider the example provided in Figure 3.7
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apply fuzzy logic in low or intermediate levels of image processing with either little or
no relation to complete objects. There does not seem to exist a method to describe an
object on a high level of abstraction, preferably linguistic, while at the same time using
this description in a segmentation procedure. Some relevant approaches are summarised

in the following.

3.2.2.1 Object-independent processing

Amongst the few recent medical image processing applications where fuzzy logic is
applied are [141,142] where tumors are to be segmented in MR images. Both arti-
cles present a low-level pixel-based segmentation where pixels are classified into tissue
classes. The classifiers are trained in a preceding supervised or unsupervised learning

stage.

When concerned with segmenting images the subject of (object independent) edge
detection has long since attracted the attention of many researchers. An early example
for an edge detection method applying fuzzy set theoretic methods is [143]. PAL and
KING present the segmentation of wrist bones in X-ray images, where in a first stage
fuzzy contrast enhancement and smoothing are applied. To perform these fuzzy oper-
ations the grey-level image is transformed to the fuzzy domain by interpreting each
pixel as a fuzzy set. The membership values denote the degree of having a brightness
level relative to some brightness level. After the fuzzy enhancement operations are per-
formed the image is transformed back to the spatial image domain. The actual edge

detection is performed as a local operation in this crisp domain.

Consequently this approach does not fully integrate fuzzy set theoretic operations
into an edge detection algorithm. In [144] a fully integrated pixel-based edge detection is
presented based on a model of an edge. The model is described explicitly and processed
using a fuzzy reasoning approach. An implicit representation of an edge is used in [145],

where fuzzy edges are learnt from 6 x 6-pixel templates.

The concept of a fuzzy image utilised in [143] was refined in [132] in that the mem-
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bership values of the pixel’s corresponding fuzzy sets can be related to any property,
depending on the application. This notion was applied in [146] for example. Here the
fuzzy property relates to uniform surfaces. Applying fuzzy image processing operations
such as smoothing leads to a manipulation of the image with respect to the modelled
property, such as smoothing surfaces. While this approach does not merely look at
local edges it still defines a general object property and as such it is still independent

from a specific object.

3.2.2.2 Object-related processing

The description of object contours utilising fuzzy methods has mainly been studied
in the context of analysing previously segmented contours. Here shape analysis and
contour decomposition are the main subjects to facilitate feature selection and primitive

extraction in that context.

PAL et al. have presented a measure of the fuzzy “arcness” of a curved line segment

pare(x) = (1 - %)Fe (3.53)

where a is the Euclidean distance between the two endpoints of x and [ is the actual
length of the arc segment. As this measure is applied in the fuzzy domain, the formalism

contains a fuzzification parameter F, (cf. [132] or details).

A segmented, binary contour is chain coded and analysed using this arcness mea-
sure to distinguish three primitives: a straight line L;, with [ being the line length, a

clockwise arc A,, with the degree of arcness , and a couter-clockwise arc A, respec-

tively.

A typical description of a contour resembles for example

Ly A0.86L4A0.272L1A0.662L4A0.598L7A0.272A0.765A0.816A0.272L1A0.765
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This intermediate-level representation is a preceding stage in utilising high-level
knowledge to recognise the contour, that is the underlying object. PAL suggests to
apply a set of application specific thresholds to the above basic primitives to select a
specific set of primitives. These are then used to develop a grammar to recognise the

contour, that is its resulting string, syntactically [147].

It is desirable to perform such a syntactic processing with a continuous version of
formal grammars. Such fuzzy grammars exist [22,132] as well as their related mech-
anisms such as fuzzy automata. A comprehensive bibliography is given in [148]. A
recent application example is the recognition of hand-written script [149]. Previously
segmented contours are decomposed into sequences of segments of constant curvature.
Using a fuzzy syntactical approach these segments are assigned to sub-allographs, which
in turn are related to allographs, which is when the recognition is reached. Both sub-
allographs and allographs are defined by a fuzzy grammar. Each sub-allograph is a
sequence of primitives, each primitive possessing a starting point, an end point as well
as one or more characteristic points in between. Features can be derived from these

primitives, such as curveness, discontinuity and tilt.

Using fuzzy grammars to incorporate a priori knowledge into the actual segmen-
tation process, similar to OLSTADs approach utilising traditional grammars (cf. sec-

tion 3.1.2.3), does not seem to exist.

RALESCU et al. [150] defines fuzzy primitives not to analyse previously segmented
contours but to actually perform a segmentation step. This approach is based on a
group-and-delete technique where an image is binarised into a large number of short
line segments. These lines are then linked or erased depending on some criterion. With
RALESCU et al. the grouping is based on perceptual organisation. Basic human visual
properties are mimicked by the model in recognising straight lines or L-junctions (and
the way we distinguish one from the other). The related primitive consists of two
straight line segments L; and L, as well as two constraints on the endpoint distance
and the inner angle between these lines (cf. Figure 3.8a). Both constraints are modelled

through fuzzy sets reflecting the opinions of an expert on when to consider two lines



CHAPTER 3. RELATED ACTIVITIES AND LITERATURE SURVEYS 88

near enough to belong to a common line or junction (cf. Figure 3.8b), as well as when

the inner angle represents a straight line or a junction (cf. Figure 3.8c).

A

1
Euclidean
2‘ distance
=
0 (-
®)
_‘gl straight lind\ L-junction [ straight line
g angle
1
a Degrees
=0 30 50 120 -

©

Figure 3.8: Modelling L-junctions: a) example of L-junction (endpoint distance and in-

ner angle); b) proximity membership function; c) L-junction angle membership function

(dashed membership functions are for proximity of colinear segments. (from [150])



Chapter 4

A Fuzzy Active Contour

This chapter introduces the concept and presents the theoretical basis of the fuzzy
active contour. Experimental results are presented in chapter 5 to demonstrate the
validity of the theoretical properties of the fuzzy snake approach and to illustrate the

application of the technique to medical imaging sequences.

4.1 Imntroduction to Fuzzy Active Contours

A new method for representing and tracking of object boundaries is presented in this
chapter. The novel concept of fuzzy active contours or fuzzy snakes is developed to

allow for the integration of uncertain a priori knowledge into an active contour model.

The fuzzy active contour combines the concept of active contours with elements of

fuzzy logic where the following benefits of each approach are exploited.

Active contours

e provide a segmentation method which is capable of handling variations in image

features and object shape,

e integrate low-level constraints to utilise general object knowledge,
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e allow for the integration of high-level constraints to utilise specific object knowl-

edge.
Fuzzy logic offers

e a formal theory which provides tools to handle uncertainties, such as

e linguistic rules which can provide an intuitive, verbal specification of the proper-

ties of an object’s boundary to utilise high-level expert knowledge;

e appropriate algorithms and interfaces to process linguistic rules and integrate

this fuzzy concept into a crisp numerical context.

Analogous to the image energy FEjnq4 of an active contour, the fuzzy active contour
is capable of representing the appearance of an object in the image. Further properties
of the object’s boundary segments, such as shape, may be represented in a similar way

to the function F,,, in an active contour.

This is achieved by introducing fuzzy energy functions and establishing a linguistic
rule base, which describes each of the fuzzy snake’s segments. The contour candidate’s
external energy E.g is then evaluated through fuzzy inference and subsequent defuzzi-

fication (cf. section 3.2.1.5).

In [151] deformable models are combined with fuzzy image processing operators to
exploit uncertain knowledge on a low level. The proposed fuzzy active contour goes

beyond that in providing an interface to high-level uncertain knowledge.

Figure 4.3' shows the principal structure of the calculation of the fuzzy energy
function with integrated linguistic rules. Similar to traditional active contours (cf. Fig-
ure 4.1) salient image-based features are extracted. Geometric features are also calcu-
lated providing a basis for the exploitation of a prior:i shape knowledge. Note that in

principle any additional constraints may be integrated into the fuzzy active contour.

1For a brief introduction to the Structured Analysis and Design Technique (SADT) refer to Ap-

pendix A.
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Image as well as constraint features are fuzzified to allow for their processing in a
fuzzy inference machine. This stage evaluates a set of rules which specify the desired
properties of the currently processed contour candidate. After defuzzification an ex-
ternal energy value is output. It is compatible with traditional active contours in that
low values represent a good compliance of the candidate with the model. Unlike active

contours the fuzzy snake’s model is partially represented by a set of linguistic rules.

The traditional active contour approach was investigated during this research (cf.
chapter 5). One of the findings is that the results can be improved considerably by ex-
tracting image features through multiple methods, obtaining multiple image evidences.
Consequently the active contour was extended by a weighted sum of edge-, region-, and

motion-based operators (cf. Figure 4.2, modules A1-A3).

The fuzzy active contour also exploits multiple image evidences. They are not simply
added however, but fully integrated into the overall fuzzy concept (cf. Figure 4.4,
modules A1-A3).
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Figure 4.1: Principle structure of external energy calculation for traditional active con-

tours.



CHAPTER 4. A FUZZY ACTIVE CONTOUR 92

[]
Initial
pammaters
TR I R T T e
: edge waight, image waight
N reglon weight, . conastraint weight
Praprocesaed . motion weight :
" reglon : adge-based :
T wdge-based suidences
o o regions : methods 1 [ )
reglon-based M
- EJmags
reglon-based svidence combine -
methods B N
2 | 4
welghted aum, :
'———w nommalization N
motion-based N ot
motion-based Bvidences : > combine B
mothods " - : ™ o
3 7
Extract image feature . *
.............................................................. - weighted 6um,
normalisation
contour weighting
thesi function
local
] calculate curvature E_con
cumrent vertex — assess
5 (]

Figure 4.2: Principle structure of external energy calculation for traditional active con-

tours using multiple image evidences.

<1
initial
paramelore
h—.
l fuzzy sete global abjest
nilebase definition

saloct
local

current vertex

wlshase
] B — N
local
preprocessed rulobase

" reglon image
exract image svidences
raw reglon foatures
2 1
fuzzy
E_image
= o o
fuzzification fvzzy Infererce - o1
contour E_ocon maohine
hypothesis 4 7 8
looal
e | calculate curvalura
cument vertex geornelrc
i3 ocontraints

Figure 4.3: Principle structure of external energy calculation for the fuzzy active con-

tour.



93

CHAPTER 4. A FUZZY ACTIVE CONTOUR

10—

o3

uogeoyzzniep

s SUIRIIUCO €l
7 s 3 XBUSA JuaLnd
L] {eunjeAino)? empennd eienoes - \
fzmy saasBep =]
dyssequew
_ sisoyjodAy
Inojuod
- sainyee; oBew) 10ENXS :
. ‘
spoyisw .
(uonow)d e saouepie PR .
samiBop pesug-ualjow 1:
dusisquiowr a ﬁ :
ey
Azmy
2 let————
ouyoew z
8:2.&“ - spousw
Heoyy: suel peseq-uoibal
afiewn™g (uoibai)t seauepine
fzz0y seaubap poseq-uoibes
d)ysiogquews A ~
oauﬂn_.ﬂ
ep——— £ = 2l
_Ue__ XejreA jueuno - ' muo;_waE - uoibo me
— pre— jesl)) ceotepine peseq-s5pe . "
seaibep peseq-ebpe N uoibes
diysiequew A » pesseacsdasd
uofajep eseqeu | L e e e
pelgo ieqo)B sies Azzny

siapwed
ey

Figure 4.4: Principle structure of external energy calculation for the fuzzy active con-

tour. This diagram also details the use of multiple image evidences.



CHAPTER 4. A FUZZY ACTIVE CONTOUR 94

Also unlike traditional snakes for each segment of an object’s boundary a differ-
ent set of rules may be applied. Furthermore the approximate length of each contour
segment may be specified to both improve the segmentation process and to reduce

computational complexity.

This approach allows for a formal specification of an object which is very similar

to a human verbal description such as

“A medium length dark arc, bending right, followed by a medium length grey line,

a right bending flexible corner and a short rigid line.”

The formal description is easily derived from the above, simplifying knowledge
engineering as well as the application of the fuzzy active contour. A global set of
linguistic rule bases is defined for each application, defining what features make for
example a “dark arc” or a “rigid line”. As these fuzzy primitives may consist of a
variable number of contour vertices, a particular selection method determines which

rule base has to be applied for a given contour candidate.

4.2 Fuzzy Contour Model

4.2.1 Multiple Segments

Despite the advances in the development of traditional active contours a fundamen-
tal limitation remained in terms of representing a priori knowledge concerning more
complex objects which were to be detected. Namely that all vertices of the active con-

tour were characterised by the same local energy function, resulting in a single, global

description of the object.

In order to overcome this problem, OLSTAD introduced a grammatical descrip-
tion of the snake’s energy function (cf. section 3.1.2.3). Figure 4.5 shows an example
of a contour, which can be described as a sequence of four different external energy

functions F2,, E% ¢, and EY,, represented by the respective terminals a, b, ¢

ext?’ ezt
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While OLSTAD’s contour description is solely grammatical, the fuzzy snake repre-
sents object boundaries in a form closer to natural language (cf. section 4.2.2). Also
unlike OLSTAD’s approach, a (fuzzy) segment length can be specified for each contour
segment (cf. section 4.2.3), with the fuzzy contour describing the segment properties
through fuzzy rule bases rather than algebraic functions (cf. section 4.2.4). The de-
tailed realisation of these features, original to the fuzzy active contour, are described

in section 4.3.

4.2.2 Contour Description

The grammatical approach described in the previous section extends the representa-
tional power of the traditional active contour. It allows for a more detailed exploitation
of a priori knowledge by using different energy functions for subsequent segments of
an object’s boundary. This conversely may considerably increase the number of energy
functions, their parameters and the weighting parameters between them, and often

these numerical parameters are obscure and their refinement time consuming.

This is especially true in situations where the a priori knowledge is imprecise or
uncertain, or where it is only available in the form of verbal expressions. It then becomes
much more desirable to use a more intuitive, verbal contour description. The fuzzy snake

allows for a description that is close to a natural language description of an object’s

boundary.

To illustrate this approach consider the local shape of the example object in Fig-
ure 4.5 again. The boundary may be decomposed into four segments. With OLSTAD’s

model, a grammatical expression to describe this contour could be
o = axbxcxb*

where a represents an energy function favouring local angles of 160°, while b and ¢

favour angles of 180° and 110° respectively. A much more intuitive description would

be
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“A medium length arc, bending right, followed by a medium straight line,

a right bending corner and a short straight line.”

This description can be formalised, where each contour segment is characterised by
both its length and a property label. Table 4.1 provides the resulting linguistic contour

description.

D = medium right arc, medium straight line,

very short right corner, short straight line

Table 4.1: Specification of fuzzy contour description in terms of each segment’s length

and property.

Syntactically a fuzzy contour description D is a concatenation of segment descrip-
tions d,, where z € [0, Z[ with Z being the number of boundary segments. Each d, is

decomposed into a fuzzy segment length 1, and a segment property z,.

Z-1 Z-1
D= U d, = | Lz (4.1)
z=0 z=0

The details of these major components of the fuzzy snake’s contour model are

presented in the following sections.

4.2.3 Fuzzy Segment Length

The first element of the fuzzy snake representation is the specification of a segment’s
length 1,. To integrate linguistic values such as medium, short, and very short into
an algorithm, they are translated into a number of snake vertices. In this way the
fuzzy snake approach permits the specification of a number of subsequent vertices that
share a common energy function, a parameter constraint which dramatically reduces

the search space. A crisp length specification however, would not be able to consider
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uncertain information. A new method to specify the length of a snake segment by a

fuzzy number is therefore presented.

With OLSTAD’s grammatical representation snake segments normally are of arbi-
trary length, for example a = axb*c*b*. Only a crisp length of each segment could
be given by concatenating the appropriate number of terminals as in the expression
o = aaaaaabbbbbbcbbb. The fuzzy snake introduces a different notation, where the

length is expressed as a fuzzy number (cf. section 3.2.1.1).

In the first segment of the contour in Figure 4.5, for a fuzzy length of [ = 6 and
a spread of s = 2, the segment specification (6a) denotes a segment consisting of
between 4 and 8 vertices, sharing a common property defined by an energy function

a
E3,.

Using the analogy of a grammatical description, the fuzzy snake can now be specified

as an expression, for example D=(6a) (6b) (1c) (3b).

The absolute number of vertices, however depends on the sampling distance and
is not a direct measure for the length of a segment. While the actual fuzzy snake
algorithm uses the absolute length (cf. section 4.3.2), the user-level contour description

must allow for a length measure relative to the overall length of the contour:
I; = round(l,/N) (4.2)
With the segment length expressed as a percentage, the above example can be writ-

ten as D=(0.4a) (0.4b) (0.05¢) (0.15b). These relative lengths can now be mapped

to linguistic labels as shown in Table 4.2 to realise a contour description as proposed

in Table 4.1.

4.2.4 Fuzzy Segment Properties

A linguistic representation of a segment’s properties is the second kernel element of the

fuzzy snake model. Property labels such as right arc, straight line, and right
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Linguistic label 1, Relative length I} Absolute fuzzy length [,

very short 5% 1
short 15% 3
medium 40% 6

Table 4.2: Mapping of linguistic labels to fuzzy numbers. Example for the fuzzy contour

description in Table 4.1 with N = 16.

corner may be used instead of terminal characters such as a,b, and c of the grammat-
ical model. This however, is only a replacement of arbitrary labels. The fuzzy snake

conversely, uses linguistic fuzzy rules to describe all the features a contour may exhibit.

For this objective, a linguistic variable is created for each feature. To describe a
local shape for example, the local angle at each vertex is measured and mapped to a
linguistic variable curvature. Fuzzy sets are created and linguistic values assigned to
characterise the curvature as for example acute right or flat. Taken together with an
output variable quality, it is then possible to describe each segment’s curvature by a

fuzzy rule base. An example is given in Table 4.3.

The calculation of the active contour’s external energy is performed by a fuzzy
inference, the defuzzified output of which is a crisp quality measure for each contour

candidate. The details of this approach are presented in section 4.3.3.5.

4.3 Realisation of the Fuzzy Active Contour

4.3.1 Processing a Multi-Segment Active Contour

Multiple external energy functions imply that a number of different calculations have to
be performed for each vertex. Since the segment length is now variable, several energy
functions may be calculated simultaneously for vertices either on or near a segment

boundary. When back-tracking takes place in the dynamic programming optimisation,
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Segment property label  Shortcut label  Fuzzy rule base

right arc a IF curvature medium right
THEN quality very good
straight line b IF curvature flat left
OR curvature flat right
THEN quality very good
right corner c IF curvature strong right

THEN quality very good

Table 4.3: Property labels defined by linguistic rules. Example for the fuzzy contour
description in Table 4.1

only one energy function for each vertex succeeds. The selected function thereby de-

termines the final state of that vertex.

With the fuzzy active contour each segment’s length is specified as a fuzzy number.

The realisation of this approach requires two separate operations to be performed:

1. The mean and the spread of [, defines the possible states each vertex can be in.
It hence defines which external energy functions have to be calculated for each
vertex. With the fuzzy active contour an external energy function is determined
by its specific rule base. Consequently when calculating the external energy of
a particular candidate, the appropriate rule base has to be choosen. This oper-

ation is performed in module A6 (cf. Figure 4.6) and described in the following

subsections.

2. The fuzzy membership degrees of [, are taken into account by a modification of the

dynamic programming optimisation algorithm and is described in section 4.3.2.
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Figure 4.6: Principle structure of external energy calculation for the fuzzy active con-

tour. Marked is the module to select the local rule base (A6).

4.3.1.1 Unspecified Segment Length

For a contour specification where the segment length is not specified as for example
with OLSTAD’s grammatical expression (cf. section 3.1.2.3) many alternative contours
are valid. Consequently for most vertices all the properties’ energy functions used in
an expression o have to be calculated. This can be visualised in a function table. For
the example used in the previous sections the expression o = axb*c*b* leads to the

function table shown in Table 4.4.

A resulting contour can comply with any pattern that can be generated through
a, such as aaaaaaaaaaaabcb. An alternative formalism showing this are state graphs
of finite state machines (FSMs) designed to generate or recognise all possible patterns

for o? (cf. Figure 4.7).

2The state graphs used in this thesis follow the MOORE definition. A double circle denotes the
start state. The state name corresponds to the name of the terminal characters used in the regular
expression. A state transition occurs when the state machine is in a state and sees the character given

at the arrow pointing to the target state.
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Vertez |0 1 2 3 456 7 8 9101112131415

a aaaaaaaaaaaa
Proper- P bbbbbbbbbbbdbd
ties cccccecceccececececcecccc

bbbbbbbbDbDbdbbob

Table 4.4: Energy functions which have to be considered in the Figure 4.5 example,

when the segment length is not specified.

Figure 4.7: State graph for a finite state machine to generate the patterns defined by

«a = axb*c*xb*,

In theory the patterns generated by this FSM are of infinite length. In practice
contours have a finite number of vertices (), so that a FSM will perform only a finite
number of state transitions. Consequently an FSM can be resolved, or expanded, using

a state graph with no backward referencing links as shown in Figure 4.8.

Figure 4.8: Expanded state graph for a = axb*cxb*,
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This graph however was simplified to show the formal background of the function
table, their relation now being obvious: a column of states relates to the possible states
a vertex may be in. A correct expansion has to assign different state names each time
a transition is made, as the states do not reflect a vertex’ state but the state of the

whole system. The system state here relates to the state of the active contour.

Figure 4.9: First nodes of a completely resolved state graph.

The first nodes of a completely resolved FSM are shown in Figure 4.9. Here the
b state in the third column is split into two alternative states bgy; and bggy. This
demonstrates an important aspect of active contour optimisation: ell possible paths
have to be evaluated before the optimal pattern can be found, each vertex’ final state

is known and hence the contour is detected.

In the above example the overall energy of the first three vertices may be different

when either the energy function sequences aab or abb are evaluated. Hence the active

contour will either be in state bgg; or bags.

4.3.1.2 Specified Segment Length

With the absolute fuzzy segment length I, (cf. section 4.2.3) the function table for the
example contour description D = lpzq l121 lyz5 373 = (62) (6b) (1¢) (3b) is shown in

Table 4.5.
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Vertezx [0 1 2 3 4 56 6 7 8 9101112131415

a aaaaaaa

Proper- b bbbbbbbbdobd
ties ccccecececec
b b bbb bobd

Table 4.5: Energy functions which have to be considered in the Figure 4.5 example,

when the segment length is specified as a fuzzy number.

The related state graph is given in Figure 4.10.

b)al5¥2  b|5¥2  c|0+2  b|2t2

Figure 4.10: State graph for a contour description based on fuzzy active contours. a)

general form for D = lyzg [121 l225 l323, b) example for D = (6a)(6b)(1c)(3b).

Unlike traditional state graphs the maximum number of state transitions is specified
using the absolute fuzzy length I, and its spread s. In practice some restrictions apply

in extreme cases, such as that [, — 1+ s > 0, of course.

The resolved and simplified state graph is given in Figure 4.11.
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Figure 4.11: Expanded state graph for D = (6a)(6b)(1c)(3b).

Incorporating the segment length reduces the computational complexity consider-
ably. An example presented in [4] required only 2% of the number of states that were
needed without the length constraint. It must be stated however that the actual com-
putational complexity is very much application-specific and depends on /,, s and the

complexities O(E?%,), where Z € {a,b,c,...}.

With respect to module A6 of Figure 4.6 the global rule base is the complete set of
rule bases defined for a given application (a, b and ¢ in the example). The local rule

base is selected by the described algorithm. The object definition is D.

4.3.2 Integration of a Fuzzy Segment Length

The actual implementation of the fuzzy part of the fuzzy segment length is achieved by
an extension to the expression in line 8 of Table 3.2. The new expression is rewritten in
line 3 of Table 4.6. The length is regarded as an additional constraint, where l,(n—1, k)
is analogous to S,(n — 1, k) and denotes the number of preceding vertices which would

fall into state z if candidate c, , was selected. Consequently, candidates which assist

in constructing a chain of the specified length are favoured.

As the dynamic programming algorithm integrates (accumulates) local energy val-
ues, the length constraint must be based on the derivative (difference function) of the

fuzzy number’s membership function, shown in Figure 4.12.
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Line 4 of Table 4.6 updates the length information. T, in line 5 points to that

predecessor of ¢, , which would be optimal if the final state of vertex n was z.

1. forn=2...N-1

2 for m=0...M -1

3. Sz(n, m) = rnkin[wintEint(Cn,m) + Wer B2 (Cpm) + Sa(n — 1,k) + 1—-Ap(l(n — 1, k))]
4 L(n,m) =l,(n—1,k™") +1

5 T.(n,m) = ki

Table 4.6: Extended dynamic programming algorithm.

Ap(l)

X XX X
0 H—r—T— ; T T T ll ™,
ln- 8 + 8 .

Figure 4.12: Au(l), as used in the length constraint of the extended dynamic program-

ming algorithm.

4.3.3 Integration of Fuzzy Segment Properties

Snake applications are often insufficient. This is not a principle problem of active
contours. The reason is rather that it is necessary to fully exploit the potential of the
approach by formulating the energy function according to the characteristics of image

and object. In the proposed system, this has been achieved by:

e introducing multiple image evidences from several sources to form Ejmage,

e introducing an object specific constraint (Econ), that restricts the possible shapes

of the active contour beyond a mere, general demand for smoothness.
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Sections 4.3.3.1 and 4.3.3.2 introduce this framework and formulate appropriate
energy functions that were applied successfully to medical image sequences (cf. sec-
tion 5.2) using a traditional active contour. It is also shown where these functions are
integrated into the fuzzy snake. Section 4.3.3.3 demonstrates how such energy functions
are fuzzified in order to be processed in the fuzzy domain of the fuzzy active contour.
As the fuzzy snake is generally capable of modelling arbitrary properties the described

functions represent examples.

4.3.3.1 Algebraic Integration of Multiple Image Features

To exploit the benefits of the many existing image processing operators and at the
same time compensate for their individual deficiencies, a structure is introduced that
combines several edge-, region-, and motion-based low-level operators. With the fuzzy

snake these operators are integrated according to Figure 4.13.

3]

Initial
parameters
tuzzy sets globai obisct
rulebase definition
select
local
current vertex = "
19 —_ﬂ R
preprocessed ebas, mue
| region image
1
1 extractimage | evidences
faw reglon features
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luzzy
E_image - Em
sy o I W L ] e
Tuzzificati ¥ .
contout lication il - i .
hypothesis | \ . 7 B
SR local
| calculate curvature

currant vertex geometric
13 - s

Figure 4.13: Principle structure of external energy calculation for the fuzzy active con-

tour. Marked is the module to obtain edge-, region-, and motion-based image features

(A1).
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With the traditional active contour which is applied in chapter 5, the operators are

combined in a computationally efficient manner by a normalised weighted sum (eq.

4.3).

Eimage =1~ €image (43)

eimage (Cn,m) = Wedge I leedge (cn,m) l l +wregz'ou | leregion (cn,m) I l +Wmotion l lemotion (cn,m) l | (44)

The result of each operator, normalised to the range [0, 1] through the norm || ||, is
regarded as an indication of to what degree a certain pixel ¢ may belong to the object’s
contour. This local feature value is therefore referred to as image evidence e. 1t is also
possible to incorporate operators that are able to deliberately detect structures which

do not belong to the desired contour.

Each operator may wrongly lead to low evidence values for contour pixels and/or
high values for non-contour pixels. The weighted combination of all evidences for a
certain pixel compensates for the effect and leads to an attenuation of evidences of

most contour pixels.

The individual evidence functions are very much application dependent. The fol-
lowing definitions in equations (4.5) to (4.7) have successfully been applied to the

applications presented in this thesis.

The edge-based evidence is given by

eedge(cn,m) = VJ_(Cna cn,m)5 (45)
where V, is the gradient normal to the initial contour hypothesis. The factor ¢
specifies either a rising (§ = 1) or falling edge (6 = —1) respectively.

The region-based evidence given in equation (4.6) weakens the influence of occluding

objects with grey levels below a prescribed threshold 6. Pixels within these objects are
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not influenced.

1 : R(xz,yJ)_<_0

0 : R(xi,yj)>9 (46)

Eregion(Cnm) = —|V(©,Cnm)|  Olzs,y;) = {

Here R(z;,y;) denotes a pixel from the region of interest R around the contour

hypothesis (cf. Figure 3.1). § depends on a priori knowledge.

To exploit information from motion in the image sequence the third evidence value

in equation (4.7) is applied.

€motion (cn,m) = Emed (Cn,m), Emed = \/V (IR't—dl - R'tl)\/v (lRt - Rt+d2 l) (47)

This moving edge detector which is indicated by the subscript med [7], gives high
evidence values for moving edges by multiplying the gradient of two difference images
[152,153]. The operation is performed on the same region of interest R; extracted from

images at instances i = t, ¢ =t — dy, and i = t + dy, where d; and d; are constants.

4.3.3.2 Algebraic Integration of Object Features

For the traditional active contour a geometrical constraint presented in [1] is applied,
which explicitly introduces knowledge on the expected shape of the contour and which
can be easily incorporated into the dynamic programming algorithm. Equation (4.8)
favours convex or concave contours by weighting the angle v which is measured in the
open polygon consisting of the current candidate vertex cnm, its possible predecessor
Cn_1,, and the optimal predecessor of the latter, Cn_2,7(n-1,k) (cf. eq. (4.9)). By always
measuring v in the same direction, setting the possible range [ymin, y™eX] | the expected
angle 7 and the standard deviation o, the resulting contour can be forced to bend in

a desired direction (cf. eq. (4.10)).

Econ (Cn,m) = ||V(’Y(Cn,m))|| (4.8)
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'Y(cn,m) = Z(cn—2,T(n—1,lc)7 Cn—1,k) Cn,m) (49)
0 . ,ymin > 0% > ,ymax
v =y | _, (2=1)? i o (4.10)
L-e:(% ymin <y <y

The use of a Gaussian weighting function (again normalised to the range [0,1]
through a normalisation function || ||) allows exploitation of uncertain knowledge con-
cerning the actual shape of the object. For instance if ¢ is small then the tolerance
range around ¥ where E,, gives a good assessment is narrower than for higher values
of 0. In theory, the weighting function v(v) applied in equation 4.10 could be replaced

by any mathematical distribution which exhibited the appropriate properties.

With the fuzzy snake the weighting function is not used to realise a shape constraint.

Only the shape feature v is calculated in module A5 (cf. Figure 4.14).

c1
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fuzzification fwzzy Inlerence A "
contour E_con . machine L - o1
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local
——®1 calculate curvature
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<} 5

Figure 4.14: Principle structure of external energy calculation for the fuzzy active

contour. Marked is the module calculating a shape feature (A5).
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4.3.3.3 Fuzzification

With the fuzzy snake, the components of the external energy function (in equations (4.3)
and (4.8)) are separately represented by linguistic variables and fuzzy sets. The trans-
formation from the numeric to the fuzzy domain (the fuzzification) is performed in

module A4 of the fuzzy active contour’s external energy calculation (cf. Figure 4.15).

With Ejpqge the calculation of image evidences (equation (4.5) to (4.7)) is retained,

but they become linguistic variables.
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Figure 4.15: Principle structure of external energy calculation for the fuzzy active

contour. Marked is the fuzzification module (A4).

The following example illustrates how an evidence function can be extended by an
intuitive interface using elements of fuzzy logic. For e.q, a linguistic variable edge is
created. Fuzzy sets with linguistic values, for instance falling very strong, ..., rising very
strong are defined to cover the value range of equation (4.5).3 In this example, the

values of the term V. (Cy, €n.m) are mapped to adjectives which cover the range from

3Note for simplicity, that the adjectives are regarded as a part of the primary term of the linguistic

value, rather than as a linguistic hedge with an associated operator in the sense of [16].
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very weak to very strong. The factor § which specifies the edge direction, is accounted

for by the adjectives rising and falling respectively.

The formal definition for this linguistic variable is

UL = €edge, U =[-1,1], T, = edge

Ti(edge) = { falling very strong, falling strong, falling medium, falling weak,
falling very weak, rising very weak, rising weak, rising medium,

rising strong, rising very strong}

The definitions of the related membership functions are shown in Figure 4.16.

u(edge)
} f,aeI:mg falling falling falling f’ae"'ns
4 strong medium weak ry
strong vy
1
° T T T -
-1 - 05 0 edge
p(edge)
‘ isi ..
rising rising rising rising :I.:mg
weal weak medium strong ry
weak strong
1 /‘>< ><7
0 | | ' -
Y 0.5 L edge

Figure 4.16: Fuzzy representation of edge-based image evidences.

In an analogous manner, the definition of linguistic variables and fuzzy sets for the

region and motion-based evidences (equations (4.6) and (4.7) respectively) are similarly

given.
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U2 = Eregion, Z/{2 = ["1, 1], Ty = Tegion

Ta2(region) = { negative very strong, negative strong, negative medium, negative weak,
negative very weak, positive very weak, positive weak, positive medium,

positive strong, positive very strong}

U3 = Emotiony Us = [_1, 1], T3 = motion

Tz(motion) = { negative very strong, negative strong, negative medium, negative weak,
negative very weak, positive very weak, positive weak, positive medium,

positive strong, positive very strong}

The definitions of the related membership functions are identical to those shown in

Figure 4.16.

To illustrate how a constraint energy function is integrated into the fuzzy snake,
the fuzzification of equation (4.8) is demonstrated. The geometrical constraint becomes
a linguistic variable curvature which is calculated using equation (4.9) and represents

the actual measure for the constraint.

The weighting function v in equation (4.10) however, is now replaced by a number
of fuzzy sets. The membership functions of the fuzzy sets acute to flat have been
determined empirically to relate to the human perception of the different degrees of
curvature. Prototype polygons such as those shown in Figure 4.17 were classified by
a number of test persons. The statistical distribution of these classifications are the

basis for the membership functions of the linguistic variable curvature and are shown

in Figure 4.18.
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a)c — Ob)o’/o\o

flat medium
strong acute

Figure 4.17: Examples for the 3-vertex polygons that were used in empirically deter-

mining the membership functions

u(curvature) .
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curvature / o
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Figure 4.18: Fuzzy representation of curvature constraint.

Due to the fuzzification of the curvature measure the desired curvature no longer
has to be expressed through the parameters 7, Amin ymax and g, but instead more

intuitive linguistic values may be used.

The formal definition of curvature is
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uy =7, U, = [0, 360], T4 = curvature

Ta(curvature) = { acute right, strong right, medium right, flat,

medium left, strong left, acute left}

Many other alternative constraints may also be included, for example the orientation
of a contour segment (by using the angle of the major axis of a segment) or the relative

position of different contour segments.

The entire membership degrees p(edge), p(region) and u(motion) for a given can-
didate ¢, , can be regarded as its fuzzy image energy,* and membership degrees for

constraints such as u(curvature) correspondingly as its fuzzy constraint energy.

To complete the fuzzification an output linguistic variable is defined. It allows for

the definition of linguistic rules which specify the quality of a vertex:

FEert = 1 — u,, U, =10,1], 2o = quality

T.(quality) = {very bad, bad, medium, good, very good}

The membership functions are defined as shown in Figure 4.19.

p(quality)
|

very
good

] : X T
0.5 1

Figure 4.19: Output variable of the fuzzy system.

bad

1

very bad medium good
T

uality
o q

41t should be recalled that high membership values relate to low energy values (see definition of

equation (4.3)).
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4.3.3.4 Linguistic Rules

Algebraic equations (4.3) and (4.8) can now be replaced by a fuzzy inference process

using formal linguistic rules instead of trial-and-error weights.

As previously described, each energy function for a boundary segment exhibiting
constant properties consists of a rule base, which inputs a number of different evidences
or features from the image, as well as constraints on for example, the geometry of an
object. The output from the inference process using this rule base, is a quality measure
(cf. Figure 4.19), describing the compliance with the rule base for each vertex.
Normally rules will have the conclusion quality very good to describe a known desired
result, while negative linguistic values for quality may be used for those properties

which a contour segment must not exhibit.

Considering the edge and curvature properties of the example shown in Figure 4.5,
the contour can now be described by the four rule bases labelled a, b, c and d re-
spectively in Table 4.7. In this simple example each rule base consists of only one rule

R,.

a: C:

R : IF edge falling very weak R; : IF edge falling medium

AND curvature medium right AND curvature strong right
THEN quality very good THEN quality very good

b: d:

R; : IF edge falling weak R, : IF edge falling medium
AND (curvature flat left AND (curvature flat left
OR curvature flat right) OR curvature flat right)
THEN quality very good THEN quality very good

Table 4.7: Rule bases for the example in Figure reffig:ex3.
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4.3.3.5 Fuzzy Inference

For each calculation of an external energy one rule base is inferenced according to the

procedures described in section 3.2.1.5.

4.3.3.6 Defuzzification

The defuzzification procedure converts the result of the inference process which is a
fuzzy quality measure, into a crisp value EZ%,(c, ). Here the centre-of-gravity method

is used for defuzzification.

4.4 Calculation Example
This section summarises the calculations performed to obtain the external energy func-

tion E.y of a fuzzy snake and gives example values. The calculations are performed for

one candidate vertex ¢, .

Evidence calculation

€cdge(Cnm) = ||VL(Cn, Cam)l|-1.1 = —0.65 (4.11)
€region (Cnm) = ||V(©; Com)|[-1.1 = —0.1 (4.12)
emotion (Cnm) = ||€med(Cnm)||-1.1 = 0.8 (4.13)
Y(Cnm) = |[£(Ca-2,7(n-1/6) Cn-1k Cnm)|loe..a60e = 120° (4.14)

Rule base selection

The actual selection of a rule base to be applied to one candidate is done within the

overall algorithm, as described in section 4.3.1. Here we assume the following example

rule base a:
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R, : IF motion positive strong THEN quality very good
Ry : IF edge falling weak THEN quality good
R;3 : IF curvature strong right THEN gquality good

Ry : IF region negative strong

OR region negative very strong THEN quality bad
R;s : IF edge falling medium

OR edge falling strong THEN quality bad

With R, the motion evidence is modeled as a strong indicator for the desired object.
R, and Rj; are less confident. R, models a distracting dark object, while Rs models

unwanted structures which have slightly stronger edges than the wanted object (cf.

Ry).
Fuzzification

The fuzzy inference processes the rules in several steps. The first step is to fuzzify the

input values, that is the evidence values obtained in equations (4.11) to (4.14).

Each value is input to its related linguistic variable edge, region, motion and curva-
ture (cf. Fig. 4.16 and 4.18). For each of the fuzzy sets defined for a linguistic variable,
the membership value is calculated. In practise, only fuzzy sets that are actually used

in the rule base are calculated, for example:

for R, : ”;)nggot?ve strong(e’""”"" (c”m)) = “;)ngg%?ve strong(0'8) =09
for Ry : ”F:fleing weak(eedge (c"’m)) = 'u?:fleing weak(—0'65) =0.8
for Ry : pgimetsity(7(enm) = praar 1 (120) =07
for Ry : N;egg:tive strong(ereyion (Cnm)) = “;egg:tive strong(_o'l) =0.0

: __ , region _ _

K ’T’egg:tiVe very Stfong(eregi""(c"’m)) = Hnegative very strong( 0.1) =0.0
d __, edge _ .

for R : ”Fafﬁng medium(eedge(cn:m)) = Halling medium 0.65) =0.2
d __, edge _ _

”;afﬁng strong(eedge(cn,m)) = Pfalling strong( 0.65) =0.0
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Aggregation

The next step is to obtain truth values v for the premises P. Where rules consist of

more than one premise an aggregation is required.

’“";lggl‘t):?ve strong(e"wﬁon (cnm)) = 0.9

dge
'u\saglllmg weak (€edge (Cn.m)) =038
Us = Kgtrong right (7(Cnm)) =0.7

vy = v(Py; OR Py)

. region region
- [Mnegatwe strong(e’egwﬂ (Cnm)); 'unggative very strong(ere.‘l""" (Cn.m))
= max [0.0, 0.0]
Vg = 00
Vs = ’U(P51 OR P52)
dge edge
= max /“LFaIImg mednum(eedge (Cam)), ' Hfalling strong(eedge (cnm))]
= max [0.2, 0.0]
V5 = 0.2
Implication

Each rule’s conclusion is now weighted by the related truth value, resulting in a fuzzy

set Z for each rule.

2= (o min a0 = L0 09,135t
22— i s T = i o530
23 = {(u, min :”3’”213":3’( )])} = {(u, min [0 g“)‘z’gy ])}
24 = {(u, min [us, 25 W)])} = {(u,min [0.0, uag™ (w)])}
Z5 = {(u, min :Us,ﬂg:“é”y(u)])} = {(u, min [0 2, qu’;aéﬁty ] }
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Accumulation and Defuzzification

The accumulation of the above fuzzy sets results in a single fuzzy set, that reflects the

fuzzy quality of the calculated candidate:

2 = {(u, 42(w)} = {(u, max [uz, ()}

As the contour optimisation is performed in the crisp domain, a defuzzification is

performed, to obtain a single crisp value from the resulting fuzy set:

u%:uu MZ(U’)
A ST
u€eU

High membership values correspond to a low contour energy, hence the crisp output

value is inverted to obtain the external energy value for the calculated candidate:

Ei(cnm)=1—1u, =02

4.5 Summary

This chapter has introduced the concepts and presented the theoretical basis of the

fuzzy active contour.

This novel approach for the segmentation of deformable structures affords a seam-
less integration of traditional image processing operators, active contours and a fuzzy

reasoning component. In summary, the main features of this concept are:

e Uncertainties immanent in linguistic a priori knowledge are exploited through

an original contour description method.

e The description allows for the inclusion of both image- and object-related char-

acteristics.

e Furthermore the linguistic description method eliminates the need for obscure

numerical system parameters.
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e Immanent uncertainties are propagated through most of the processing blocks
of the system. This way, the necessary crisp segmentation decision is made at a

very late stage, reducing segmentation errors considerably.

This chapter has also presented a computationally efficient realisation of the fuzzy
active contour, based on a finite state machine and a dynamic programming optimi-
sation algorithm. The principle concept however is independent of a particular imple-

mentation.
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Chapter 5

Experimental Results

5.1 Application to Synthetic Images

5.1.1 Detection of Multi-Segment Object Contours

The refined model representation presented in this research improves contour detection
in comparison to traditional active contours. To validate this characteristic synthetic
images were created which allow for an experimental analysis. For clarity the only

property considered was shape.

Without specific a priori knowledge an active contour cannot detect a specific
object. To demonstrate this, Figure 5.1a shows two symmetrical objects with a constant
local angle. An active contour with only a similarity constraint would normally detect
the object most similar to the initial hypothesis. To detect the lower object, for example

the hypothesis would have to be bend downwards as well.

In this example however, the hypothesis was placed on the axis of symmetry between
both objects. As now both contours share the same similarity relative to the hypothesis,

it depends on the implementation which contour is detected. Here the lower object was

found (Figure 5.1b).
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As both the representation and detection of non-rigid objects are of particular in-
terest, a sequence of deformations of the example contour is shown in Figure 5.8. This
sequence demonstrates to what degree the fuzziness of a contour description favours
certain deviations from the prototype while placing less emphasis on others. In Fig-
ure 5.8a) to c) a local distortion was introduced in the longer straight segment, bending
the contour to the left. With the deformations 5.8a) and b) the local curvature at the
distorted vertices results in a high value for pmedium left(curvature), while the desired
Eflat left(curvature) is very small or zero (not shown). This means that the overall en-
ergy Egnake is significantly smaller for 5.8a) and b) than it is for 5.8¢). In other words

the deformation 5.8c) is more similar to the prototype than either 5.8a) or b).

5.1.3 Summary of Application to Synthetic Images

Traditional active contours are capable of representing object characteristics, such as
shape, through a global similarity constraint. It was demonstrated that this approach

is insufficient to detect complex contours.

While an extension of an active contour to represent local constraints would in
theory be possible, this would require too many numerical parameters. Conversely the
fuzzy active contour representation allows for the intuitive, linguistic representation of
local characteristics, while being more compact than a mere numerical representation.

It was shown, that contours with locally inconstant characteristics can be detected.

Furthermore the fuzzy active contour’s selectivity in the presence of local defor-
mations was explored. It was shown, that the linguistic terms used in a fuzzy contour

description are in fact related to perceptible changes in an object’s shape.

Synthetic images were also used in [4] to evaluate the fuzzy active contour’s prop-

erties.
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5.2 Application to Medical Images

Each of the two applications involving medical image sequences cover some of the
challenging properties investigated in section 2.2. Together, the presented MR and
X-ray images provide a basis for both the evaluation of traditional image processing

methods and the validation of the novel approach proposed in this work.

In the first section for each example application, solutions based on traditional image
processing methods are investigated. The selected methods are low-level, intermediate-
level, model-free as well as model-based. This selection covers different approaches
and hence investigates the potentials and limitations of traditional methods. The con-
clusions drawn from these image processing solutions give a justification for a new
approach and build a basis for comparison between the traditional and the novel ap-

proach.

5.2.1 Application to Carpal Bone MRI Sequences
5.2.1.1 Traditional Image Processing Approach

This section presents an image processing solution to the MRI application. The solution
is based on classical methods to explore their potential and deficiencies. From a scientific
point of view the development of a solution principle was comparatively easy, due to
the restrictions that were imposed on the image formation process. These conditions

allowed for an enhancement of the robustness and applicability of the solution and its

implementation.

The SADT diagram in Figure 5.9 gives an overview of the overall system, which
according to the structure presented in section 2.1.1 has been designed as a sequence
of modules performing the following principle functions: image acquisition (Al), pre-
processing (A2), and segmentation (A3) through feature extraction and matching. The
measuring procedure has been divided into the measurement of the reference structure

(A4) and also the objects of which the motion is to be determined (A5). A subsequent
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module processes the measured parameter values to obtain motion graphs required to

make a diagnosis.

Images
Acqulre images

1

bestlayer
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3
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Figure 5.9: System structure of the traditional image processing solution to the analysis

of carpal bones in MRI sequences.

Preprocessing

Due to the fixed parameter settings the MR image quality is good and almost constant,
so that no noise reduction or contrast enhancement is necessary. The only preprocessing
step that affects the pixel data is a grey-level normalisation that normalises the pixel
values to a 10 bit range of [0, 1023] since the grey-level range of the MR imaging device
could not be fixed. 10 bits was empirically established as more than adequate for these

images.

The two most important preprocessing steps involve the selection of a region of

interest as well as the selection of a suitable MRI layer and are described in detail in

the following subsections.

Automatic Selection of a Region of Interest

To allow for a histogram-based segmentation, a preselection of the area where the

carpal bones are to be found is necessary (cf. Figure 5.10). This excludes metacarpals
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Segmentation results were assessed by scientific and medical experts. Bone outlines
were judged as being correct if the outlines included most of a bone’s region and no

extraneous tissue.

The segmentation was very successful for the most relevant bones os scaphoideum,
os lunatum and the Radius (cf. Table 5.1). A good segmentation was also obtained for
other carpal bones, allowing the system to be applied to the diagnosis of other carpal

instabilities as well.

Bone Correct segmentation [%]
os hamatum 77,8
0s capitatum 949
os trapezoideum 90,5
os triquetrum 89,2
os lunatum 94,3
os scaphoideum 96,8
radius 97,5

Table 5.1: Correct segmentation rate.

Of particular importance for the overall goal of the application is to determine

which of the measured parameters are significant to facilitate diagnosis.

Together with medical experts, motion graphs were developed, with the measure-
ment results of usually 7 different positions of the wrist collected (cf. Figure 5.14). To
ease comparison between normal and pathological bone motion, the rotation of each

bone was normalised to the neutral position (an angle of 0 degrees) of the hand.

The bones’ rotation was found to be particularly significant to aid in the diagnosis
of carpal instabilities. In a healthy wrist there are two independent rows of bones,
where the bones within each row are connected by ligaments: the distal row consisting
of the 0s hamatum, o0s capitatum and os trapezoideum, and the proximal row including

the os triguetrum, os lunatum and os scaphoideum.
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comparison, the same set of images is used in the following sections, where an active

contour and the proposed fuzzy snake are validated.

To detail the segmentation results outlined in Figure 5.16, the bone contour was

divided into eight sections. The result of the assessment is given in Table 5.2.

Correct contours Correct sections

0/9 39/72 = 54%

Table 5.2: Correct segmentation rate for the os hamatum with the traditional image

processing approach.

5.2.1.2 Traditional Active Contour Approach

This section summarizes an application based on an active contour as described in
section 3.1. The particular energy functions applied in this solution were introduced in

sections 4.3.3 and 4.3.3.2.

Traditional active contours use only global constraints, which improve the segmen-
tation but this is not sufficient in certain cases. In Figure 5.17(e) for example, the
global shape constraint is able to create a smooth contour resulting in the exclusion of
most of the false tissue. The right-hand area of the result however, is still incorrect as
the active contour is attracted to strong image features that could not be overridden

by the moderate global shape constraint. A stronger influence of the constraint in this

critical area is necessary.

As in the preceding section an assessment of the segmentation results (cf. Fig-

ure 5.17) was performed by both scientific and medical experts. The result of the

assessment is given in Table 5.3.

Correct contours Correct sections

1/9 47/72 = 65%

Table 5.3: Correct segmentation rate using a traditional active contour.
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5.2.1.4 Summary of Application to MRI Sequences

In this section three image processing and computer vision approaches were applied to

medical MRI sequences introduced in section 2.3.1.

Histogram-based thresholding as well as morphological operators form the basis of
a solution, which was presented to validate the potential of low-level methods. This
approach produced satisfactory results detecting a number of medically relevant wrist
bones. Where bones were touching soft tissue with a similar appearance however, the

low-level approach failed.

Active contours employing simple shape constraints improved results but were also

found to be incapable of producing a correct segmentation in many cases.

Only the improved representational power of the fuzzy active contour leads to a

correct separation of bone and tissue.

Table 5.6 summarizes the performance of the validated approaches. The segmenta-

tion rates were obtained from an assessment by scientific and medical experts.

Approach Correct contours Correct sections
low-level 0/9 39/72 = 54%
active contour 1/9 47/72 = 65%
fuzzy snake 8/9 71/72 = 98%

Table 5.6: Correct segmentation rates of different approaches.

Different aspects of the traditional image processing solution were published in [2, 4,
5,160-164]. The active contour approach was covered in (2,4,160,163]. Additionally the

application of the fuzzy active contour to the MR images was presented in [4, 160, 163].
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Segmentation of rigid objects

A low-level image segmentation method based on intensity statistics demonstrates the
principle of such an approach and the results which can be obtained with the presented
X-ray sequences. As an example for a rigid object with a relatively good contrast the

front teeth (cf. Figure 2.8) were selected.

Generally a local edge detecting operator based on gradient approximation attenu-
ates not only edges of the object under investigation but also any other structures in
the image (cf. Figure 5.22a). Hence the gradient value VI(z,y) of a pixel represents its
probability of being a contour pixel (edge probability), but it does not state which ob-
ject the pixel belongs to. The basic concept of the approach is to multiply the gradient
value with a transformed intensity value which represents the probability of a pixel to
belong to the object contour under investigation (object probability). The result of this
operation is a pixel’s probability of being a contour pixel of the desired object.[17, 165]

With blurred edges there is no sharp transition between object and background.
Hence object contours cover a relatively wide area of pixels and a range of intensity
values rather than a single pixel with only one intensity. Consequently it is possible
to calculate a histogram for contour pixels of a reference object to obtain information

about the intensity characteristics of that contour (cf. Figure 5.21).

While the edge probability is a monotonic function of the gradient value this does
not hold for object probability and contour histogram. Thus an intensity transformation
is necessary to obtain a similar relationship. The enclosing hull of the discrete histogram

pc(i) can be approximated by the Gaussian

fe(i) = - (5.1)

where the intensity values ¢ € [0,Q — 1].
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Although the template matching approach was highly successful for the location of

the hyoid bone, it cannot be applied to the other articulators for the following reasons:

e The applied correlation is not invariant against scaling and rotation. Two invari-
ant template matching approaches [157,167] have been investigated in [158, 168]
and proved to be promising. An in-depth exploration however, is beyond the

scope of this thesis.

e The image correlation approach directly outputs the co-ordinate of an object
point rather than a contour. It is therefore not suitable for the determination of

the parameters listed in Table 2.5.

e Template matching is not robust against occlusion and deformation.

Segmentation of deformable objects

An intermediate-level approach is investigated next to detect deformable objects such
as the lips and the tongue. The method uses a priori knowledge about the object to
be detected on a higher level than the intensity-based approaches presented above. It
allows for the exploitation of simple geometrical constraints and guarantees an unin-
terrupted one-pixel wide contour. The approach developed by [51] and implemented
in [165] involves a constrained search algorithm which traces a contour pixel by pixel

within a region of interest (ROI) close to the actual object contour.

Initially the ROI is determined by manually marking the desired object contour
in the first image of a sequence (cf. Figure 5.26a). This contour is referred to as the
initial contour hypothesis, as it represents an initial estimate for the actual position of
the contour in the subsequent image. The width of the ROl is a system parameter and
depends on the maximal distance the object might travel from one frame to another.
When the object has been segmented, the resulting contour serves as initial estimate

for the next frame, hence tracking a moving or deforming object.
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Such a region of interest leads to a significant reduction of the search space and
hence improves the computational complexity of the segmentation. More importantly
it introduces implicit knowledge to the system about where the object is to be found.
Consequently distortions such as other objects do not impair the segmentation as long
as they are outside the ROI. Furthermore knowledge about the approximate shape is

also introduced.

To simplify the segmentation algorithm, the ROI is transformed into a straight
matrix (cf. Figure 5.26b). Assuming that the initial contour hypothesis is approximately
parallel to the object contour and that parts of the ROI do not overlap, the straight
matrix contains exactly one contour point per row. The contour tracing algorithm now
processes each row to find the optimal horizontal position of each contour point. After
all rows have been processed the detected contour points are transformed back into the

original image to obtain the final contour.

Figure 5.26: a) Initial contour hypothesis with ROI in the source image, b) straight

matrix after geometrical transformation of the ROI From [51].

To find the optimal contour point in each row a dynamic programming algorithm is
applied. Dynamic programming in general is described in [125]. Other contour segmen-
tation methods based on this optimisation principle are presented in [16,20,126,127].
As dynamic programming is also used in the novel approach presented in this thesis it

is investigated thoroughly in section 3.1.3.2.
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Of more relevance to the current section is the image feature that is used to segment
the contour. With the segmentation of rigid objects the use of the image gradient was
presented as a method to detect edges. With the transformed ROI the gradient can
be used more effectively. As in each row the detection of the optimal contour point is
reduced to a one-dimensional problem, the (horizontal) gradient can be approximated

by a one-dimensional convolution[18,21], the coefficient matrix of which is
Hy=[-1 -2 0 2 1] (5.5)

Edges parallel to the initial contour hypothesis will be attenuated, while edges perpen-
dicular to it will be suppressed. This directional sensitivity represents an edge detection
based on a priori knowledge. It is an advantage over the two-dimensional edge detection

which applies a directional insensitive operator to the original image.

As the horizontal edge orientation is parametrised by the sign of the coefficient
matrix, the number of possible contour points can be reduced further. Applying Hj
denotes a transition from dark to bright intensities (when viewed from left to right),
while —H, =[1 2 0 —2 —1]will detect bright-to-dark transitions. This allows
for an implicit inclusion of knowledge about the inside or outside of objects which do

not change their brightness relative to the background.

Figure 5.27 shows an example sequence where the lower lip was successfully seg-
mented using the contour tracing approach. Due to the local and geometric restrictions
the segmentation is robust against distortions that occur within the shown image re-
gion but outside the ROI around the contour. The directional gradient ensures that
the contour is not attracted by for example the upper lip. Finally the algorithm follows

small deformations of the lip.

When applied to the tongue the limits of the approach become evident. In Fig-
ure 5.28 the contour roughly follows the tongue in most parts. Particular difficulties
arise in the front part, where the contrast and hence the gradient is very low. Conse-
quently the contour locally deviates from the optimum. This deviation becomes larger
over the course of a sequence and eventually affects other parts of the contour, as the

initial contour hypothesis becomes more and more inaccurate.
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locks to their strong gradient values. Furthermore the resulting contour is not smooth

while the tongue is, as the flowing contrast agent is not distributed homogeneously.

5.2.2.2 Traditional Active Contour Approach

This section describes an application based on an active contour as described in sec-
tion 3.1. The particular energy functions applied in this solution were introduced in

sections 4.3.3 and 4.3.3.2.

Contour Identification and Measurement System

Figure 5.29 shows the overall structure of the proposed modularised contour identifi-

cation and tracking system.

knowledge about
image formation, objects
and operators

|

constraint and operator
determination | parameters
of initial
parameters
digitised
X-ray image preprocessed N image object
sequence region feature extraction | gyigances| eantour contour
. (edge-based, N o
4 preprocessing " identification
region-based, N
N and tracking
2 motion-based) 3 4

object

adjusted p
contour values

motion measurement |[————————&

compensation
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Figure 5.29: System structure.

The system’s characteristics are:

e A sequence is processed frame by frame. Currently all objects are processed in-

dependently.
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An assessment of these segmentation results was performed by scientific experts. To
detail the assessment, the tongue was divided into the four sections tip, front, middle

and back. The result of the assessment of Figure 5.35 is given in Table 5.7.

Correct contours Correct sections

0/9 18/36 = 50%

Table 5.7: Correct segmentation rate using a traditional active contour.

5.2.2.3 Fuzzy Active Contour Approach

Satisfactory results for many positions of the tongue were presented (cf. Figures 5.33
and 5.34), emphasising the need for combined image features as well as a shape con-

straint as outlined in sections 4.3.3.1 and 4.3.3.2.

To detect different shapes of the tongue it was necessary to allow for a relatively high
tolerance in the shape constraint, but this however reduced the robustness of the active
contour against distortions. Furthermore highly concave sections of the front tongue as
well as the tip of the tongue were not detected as the locally different curvature could

not be modelled through the global shape constraint.

These problems were overcome using the more detailed contour description afforded
by the fuzzy snake. The description in Table 5.8 together with the rule bases in Ta-
ble 5.10 allowed for a modelling of the segments of the tongue for characteristic posi-

tions.

very short tip, short front, medium bent middle, medium bent back

Table 5.8: Contour description of the tongue.

Locally different curvatures were accounted for, increasing the robustness of the
segmentation as well as enabling the detection of the tip of the tongue (cf. Figure 5.36).
Structures that were able to distort the snake were explicitly modelled, increasing the

correctness of the segmentation. The second rule in the rule base tip for instance,
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tip:

IF edge falling very weak

AND (motion negative medium
OR motion positive medium)
AND curvature strong right
THEN quality very good

IF edge falling medium
OR edge falling strong
THEN quality bad

bent middle:

IF edge falling weak

AND (motion negative strong
OR motion positive strong)
AND (curvature flat right
OR curvature medium right)

THEN quality very good

bent back:

IF edge falling medium

AND (motion negative medium
OR motion positive medium)
AND (curvature flat right

OR curvature medium right)

THEN quality very good

Table 5.10: Rule bases for modelling the boundary segments of the tongue.

front:

IF (edge falling medium

OR edge falling weak)

AND (motion negative strong
OR motion positive strong)
AND curvature flat right |
THEN quality very good

IF (edge falling medium

OR edge falling weak)

AND (motion negative strong
OR motion positive strong
OR motion negative medium
OR motion positive medium)
AND curvature medium right

THEN quality very good

IF (edge falling medium

OR edge falling weak)

AND (motion negative strong
OR motion positive strong
OR motion negative medium
OR motion positive medium)
AND (curvature flat left

OR curvature medium left)

THEN quality very good

IF region negative strong
OR region negative very strong

THEN quality bad
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5.2.2.4 Summary of Application to X-ray Sequences

This section has initially presented traditional image processing solutions to validate
the potential of low-level and intermediate-level methods applied to medical X-ray

sequences introduced in section 2.3.2.

It was verified that low-level image processing based on intensity statistics and local
edge detection can detect rigid objects with a high local contrast. Where the contrast
is low and edges blurry, more advanced low-level techniques such as template matching

can be successful.

Both model-free low-level techniques fail for partially occluded and deformable ob-
jects. It then was shown that such variations require a priori knowledge, which in turn
requires an at least intermediate-level approach. The investigated contour tracing ap-
proach models the objects to be detected through a region-of-interest and a preferred

edge direction.

This knowledge on shape and appearance is however merely implicitly represented
by the approach, making its application and extension difficult. Consequently a more
generic method to represent and detect deformable structures was investigated: active
contour models. Together with an appropriate preprocessing which was developed in
this research, active contours outperform the previously investigated approach, while

at the same time being open for adaptions and extensions.

Approach Correct contours Correct sections
low-level n/a n/a
active contour 0/9 18/36 = 50%
fuzzy snake 8/9 35/36 = 97%

Table 5.11: Correct segmentation rates of different approaches.

The representational power of active contours however proved to be limited. Where

a more detailed piece-wise description of an object is required, the representation of the
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novel fuzzy active contours is superior. More complex contours or objects with a high
degree of variations and uncertainties were successfully represented and segmented by
the fuzzy active contour. Table 5.11 summarizes the performance of the investigated

approaches.

Various parts of the traditional image processing solutions presented in this section
were published in [4, 170-172]. The active contour approach was developed in [1,4, 170~
174]. The fuzzy active contour applied to the vocal tract X-rax images was published

in [4].



Chapter 6

Conclusions

This thesis has presented both the theoretical basis and empirical analysis of a novel
solution for segmenting and tracking of anatomical objects in 2D medical image se-
quences. An original combination of active contour models and fuzzy logic is employed
to represent and integrate uncertain knowledge within the segmentation process. Ex-
perimental results on both synthetic and medical images validate the overall feasibility

of the framework.

As a basis for the development of a new approach this research has thoroughly inves-
tigated the characteristics of medical image sequences both theoretically and through

the design of clinical and scientific applications.

The investigations and developments were guided by a separation of the subject
into image formation and object characteristics which correspond to a separation into
low-level and high-level processing stages. It has been verified that the challenging
properties of medical image sequences can be formulated as a set of variations and
uncertainties in image formation and object characteristics. The observation that un-
certainties play a major role in both low-level and high-level stages motivated the
development of the fuzzy active contour, which provides a framework for integrating

uncertain knowledge at all stages.
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Existing image processing operators are also accounted for by the novel approach in
defining an interface for their integration into the fuzzy framework. Traditional image
processing solutions developed in this research suggested the combination of comple-
mentary operators to handle images of poor quality. For the detection and tracking
of deformable objects in particular active contours were successfully extended with

combined image processing operators.

Deferred decision making employed in this integration also became a key philos-
ophy in the fuzzy active contour. Many existing approaches perform crisp decisions
at each processing stage. Pixels are classified into possible objects or background
through thresholded low-level operators and subsequently are grouped or deleted based
on higher-level constraints. Conversely extended active contours developed in this re-
search defer the segmentation decision to the last processing stage. Low-level operators
are not thresholded early but are summed up to obtain continuous image evidences.
A dynamic-programming-based snake optimisation further delays the final constraint-
based segmentation. While this approach proved to be beneficial in a challenging ap-
plication, the integration of a priori knowledge had limitations, which were overcome

through the development of a novel contour representation.

Unlike existing representations the fuzzy contour model affords piece-wise descrip-
tion of image and geometric features. Both lengths and properties of each segment can
be specified through fuzzy terms. These terms can be represented either as linguis-
tic variables or grammatical characters, which allows for an exploitation of uncertain

verbal knowledge as well as more formally defined a priori information.

A full integration of the high-level contour description into all stages of the seg-
mentation was achieved through the introduction of fuzzy rules bases, each describing
the properties of one contour segment. Instead of algebraic external energy functions
with obscure numerical parameters, the fuzzy active contour calculates fuzzy external

energies from linguistic rule bases.

The research has led to publications in the areas of image processing [1-5,173),

medical image analysis [162, 163, 170, 174], medical engineering [161, 164, 172] and fuzzy
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logic [160, 175]. Early results were presented in [176] and also published in [171].

Points for further research

e Other object constraints than shape could be integrated into the framework to
increase the representational power. Examples are velocity and direction of con-
tour segments, their orientation as well as the distance to other segments or to

landmarks which are not part of the contour.

e Representation schemes could be investigated that allow for a description of

branched and looped contour topologies.

e The fuzzy snake bears the potential to be used a tool to assess and identify /classify
previously segmented contours. It could be investigated how this capability can

be realised using
— E,pake as a crisp quality/classification measure and
— a fuzzy quality measure based on the fuzzy Ee,;.
e Alternative appearances of a contour segment can be represented within its rule
base. To specify alternatives on the multi-segment level of the contour description,

the logical OR could be integrated into the description and into the algorithm

that selects a local rule base.
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Appendix A

Structured Analysis and Design

Technique

Throughout the research project the Structured Analysis and Design Technique (SADT)

has been used as a graphical method to describe system structure and to document

functional units.

When applying SADT, a system is described in a structured and hierarchical way.
In a top-down approach the system structure is first designed coarsely. The functional

units are detailed then in a number of sub-diagrams, until the systems specification is

complete.

SADT differentiates between activity and data diagrams. With activity diagrams
an action is shown as a box while data flow follows arrows between the boxes. Data

diagrams reverse this definition and are not used in this thesis.
Each side of the box may have arrow(s) of the following meanings:
e left: input data (I), will be transformed to output data;
e top: control data (C), influences or controls the transformation;

e right: output data (O), the result of the action;
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e bottom: mechanism (M), the executing element or an aid to the action.

The letters in parenthesis identify the elements of the action’s interface at a lower
level. Each action has a number, which is used to identify its lower-level diagram. The
top-level diagram is labelled A0, the diagram of action 1 in A0 is called A1, the diagram
of the third action in A1 is marked A13 and so on.

For more information on SADT consider [184-186).
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Articles in Books

e Howing, F., Dooley L.S., Wermser, D.: Linguistic Contour Modelling through a
Fuzzy Active Contour. Mohammadian, M. (Ed.), New Frontiers in Computational

Intelligence and its Applications, invited paper, pp. 271-279, Amsterdam 1999

Journal Articles

e Howing, F., Dooley L.S., Wermser, D.: Fuzzy Active Contour Model. IEE Pro-
ceedings on Vision, Image and Signal Processing, invited paper, 147(4):323-330,
August 2000

e Howing, F., Dooley L.S., Wermser, D.: Tracking of non-rigid articulatory or-

gans in X-ray image sequences. Computerized Medical Imaging and Graphics.

23(2):19-27, April 1999

e Howing, F., Wermser, D. and Dooley L.S.: Recognition and Tracking of Articula-
tory Organs in X-ray Image Sequences. IEE Electronics Letters, 32(5):444-445,

February 1997
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Articles in Conference Proceedings

e Howing, F., Biilow, H., Wermser, D., Dooley, L.S. and Thoma, W.: Automatic
Motion Analysis of Bones from MR Sequences. International Conference on Image

Processing and its Applications, pp. 397-401, Manchester, July 1999

o Howing, F., Wermser, D. and Dooley, L.S.: Fuzzy Snakes. International Confer-

ence on Image Processing and its Applications, pp. 627-630, Dublin, July 1997
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Fuzzy active contour model

F.HOwing, L.S.Dooley and D.Wermser

Abstract: A new method for representing and tracking of object boundaries is presented, which
allows for the integration of uncertain a priori knowledge into an active contour model. The novel
concept of fuzzy snakes is developed to allow for an intuitive specification of the properties of an
object’s boundary. This is achieved by introducing fuzzy energy functions and establishing a
linguistic rule base, which describes each of the fuzzy snake’s segments. Furthermore the
approximate length of each contour segment may be specified to both improve the segmentation
process and to reduce computational complexity. Experimental results demonstrate the validity of
the theoretical properties of the fuzzy snake approach, and examples have been included illustrating
the application of the technique to complex scenes, such as medical imaging sequences.

1 Introduction

Active contours [1], or ‘snakes’, are a well known method
for matching an object’s contour model to features in an
image. The approach, which uses a polygonal object
representation (Fig. 1), is distinguished by its intrinsic
ability to handle variations in the boundary that is to be
detected. It is therefore capable of identifying and tracking
deformable objects in image sequences.

For each image, the algorithm requires an initial polygon
P=(py, Py,-..,py_)) consisting of N vertices p,;=(x;,
¥:), where x; and y; are the spatial co-ordinates of p,. The
detected boundary is represented by the polygon Q=(q,,
qy,---,qy_1), with g, = (x;, y,). Each g, is selected from a
set of candidates C;=(e;q, ¢;,,...,¢; 1) In many
applications the candidates ¢; ;=(x;, y;) are uniformly
sampled along a search line normal to the initial polygon
and intersecting p;. Tracking of the contour is achieved by
processing a sequence frame by frame and taking the
resulting @, as the initial estimated contour P, for the
next frame.

From this polygonal representation, it is possible to
formulate an appropriate energy function E.,,, for the
object, which can subsequently be minimised to obtain the
desired contour Q. This minimisation is achieved by select-
ing an optimal set of vertices from the candidates which
have been sampled in a region R, around an initial contour.

Normally E, . is decomposed into two components:

N—-1
Epaiel@ =Y WinEin@,) + WeuFeulg,) (1)

n=0
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E,,,, the internal energy, represents general contour proper-
ties such as stiffness, which are usually required to produce
a smooth shape. The external energy E,,, is composed of
Eipage, which guides the contour towards particular
features in the image, and £, which allows for the
integration of additional constraints (cf. eqn. 2). Weighting
parameters Wi, We, Winqe and w,,, control the relative
influence of the energy components and are generally
determined by a process of trial-and-error,

Eext(qn) = WimageEimage(qn) + wconEcon (qn) (2)

The original active contour algorithm presented in [1] had
some inherent computational problems in evaluating the
energy function, which were subsequently solved by Amini
et al. [2]. The energy minimisation of the snake was
performed by a discrete dynamic programming algorithm
which allowed for the integration of hard constraints, such
as a minimum distance between the snake’s vertices.

A simplified version of the dynamic programming
algorithm is given in Table 1, where N is the number of
vertices and M the number of candidates for each vertex.
S(n, m) represents the minimal energy level possible for
the vertices 0,...,n if the nth vertex is the candidate

Table 1: Dynamic programming algorithm for optimisa-
tion of a global energy function

1. forn=1.. N-1

2 form=0...M-1

3. S(n, m) = min Wiy Eint(€n m) + Wext Eoxt (€. ) + SN — 1, K)]
4 T(n, m) = kmin

Fig. 1 Polygonal contour representation






1:ablt_a 2: Example of a linguistic fuzzy contour descrip-
tion in terms of each segment’s iength and property

D=medium right arc, medium straight line
very short right corner, short straight 1ine

Table 3: Fuzzy contour description using fuzzy lengths
and shortcut property labels

D ={6a)(6b)(1c)(3d)

Tabie 4: Property labels defined by linguistic rules

Segment property label  Shortcut  Fuzzy rule base
label
right arc a IF curvature medium right
THEN quality very good
straight line b IF curvature flat left
OR curvature flat right
THEN quality very good
right corner c IF curvature strong right

THEN quality very good

Table 2 demonstrates the use of linguistic values for /,
(medium, short and very short). To integrate them into an
algorithm, they are translated into a fuzzy number of snake
vertices (cf. Table 3). The details of this mapping are
discussed in Section 4. The property labels for z, used in
Table 2 (right arc, straight line and right
corner) represent linguistic fuzzy rules to describe all
the features a contour may exhibit. For convenience short-
cut labels may be used (cf. Tables 3 and 4). To realise this,
a linguistic variable is created for each feature. To describe
a local shape, for example, the local angle at each vertex is
measured and mapped to a linguistic variable curvature.
Fuzzy sets are created and linguistic values assigned to
characterise the curvature as, for example, acute right
or flat. Taken together with an output variable quality, it is
then possible to describe each segment’s curvature by a
fuzzy rule base. An example is given in Table 4.

The calculation of the active contour’s external energy is
performed by a fuzzy inference [13], the defuzzified [14-
16] output of which is a crisp quality measure for each
contour candidate. The details of this approach are
presented in Section 5.

4 Fuzzy segment length

The fuzzy snake approach permits the specification of the
number of subsequent vertices that share a common energy
function, a parameter constraint which dramatically
reduces the search space.

4.1 Notation
Since snake segment lengths are not known precisely, a
new notation is introduced, where the length is expressed
as a fuzzy number (cf. Table 3). Fig. 4 illustrates such a
(discrete) fuzzy number [17] I, with mean value [, and
spread s, defined by wh>0Vvie{l,— S, Sl st

In the first segment of the contour in Fig. 2, for a fuzzy
length of I =6 and a spread of s=2, the segment speci-
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Fig. 4 Segment length as a fuzzy number

fication (6a) denotes a segment consisting of between four
and eight vertices, sharing a common property defined by
an energy function E%,,. Using the analogy of a gramma-
tical description, the fuzzy snake can now be specified as
an expression, using operators such as concatenation,
logical AND and OR, together with a fuzzy length.

The absolute number of vertices depends on the
sampling distance and is not a direct measure for the
length of a segment. While the fuzzy snake algorithm
uses the absolute length, the user-level contour description
must allow for a length measure relative to the overall
length of the contour. With the segment length expressed
as a percentage, the above example can be written as (0.4a)
(0.4b) (0.05¢) (0.153). These relative lengths can now be
mapped to linguistic labels as shown in Table 5 to realise a
contour description as proposed in Table 2.

4.2 Extended optimisation algorithm

An extension to the dynamic programming algorithm
outlined in Section 1 is necessary to account for the
variable length of snake segments. Multiple external
energy functions imply that many different calculations
have to be performed for each vertex. Since the segment
length is now variable, several energy functions may be
calculated simultaneously for vertices either on or near a
segment boundary. To illustrate this, an example is
provided in Table 6.

When back-tracking takes place, only one energy func-
tion for each vertex succeeds. The selected function
thereby determines the final state of that vertex.

The actual implementation of the fuzzy segment length is
achieved by an extension to the expression in line 3 of Table
1. The new expression is rewritten in line 3 of Table 7. The

Table 5: Mapping of linguistic labels to fuzzy numbers:
example for expression in Table 2 with N=16

Linguistic label Relative length Absolute fuzzy length

very short ~=5%
short ~15% 3
medium ~40% 6

Tabie 6: Energy functions which have to be considered
in the Fig. 2 example

Vertex 01234567 891011 1213 14 15 16 17

Functions a a a a aaaaa

bbbbbb b b b b
cccc cc ¢
dddddddd

325



Table 7: Extended dynamic programming algorithm

1 forn=1...N-1

2 for m=0...M—-1

3. sz(nr ITI) = mink[wintEim(cn.m"' stfEQn(cn,m) + Sz(n -1 k) +1-— .u(lz(" -1, k))]
4 L{n, my=h(n—1, K"y +1

5 T(n, m)=kmn

length is regarded as an additional constraint, where
L(n — 1, k) is analogous to S,(n — 1, k) and denotes the
number of preceding vertices which would fall into state z
if candidate c,, was selected. Consequently, candidates
which assist in constructing a chain of the specified length
are favoured. Line 4 of Table 7 updates the length informa-
tion. 7, in line S points to that predecessor of ¢, ,, which
would be optimal if the final state of vertex n was z.

An additional advantage occurring from this approach is
that computational complexity is reduced considerably. In
the above example an arbitrary segment length would gener-
ate (W — 1)~ =153 = 3375 possible states of the contour,
where Z is the number of segments. Exploiting the a priori
knowledge concerning the approximate segment length
reduces this number by approximately 98.5% to 52. It must
be stated, however, that the actual computational complexity
is very much application-specific and depends on /,, s and the
complexities O(E%,,), where Ze {a,b, c,...}.

5 Fuzzy energy functions

The second novel feature integrated into the proposed
fuzzy snake is the fuzzy representation of energy functions.
Using linguistic variables, this approach provides the
active contour with an intuitive man-machine interface,
allowing uncertain knowledge to be exploited.

5.1 Fuzzification

The Appendix defines an example set of algebraic energy
functions typically used by a traditional active contour.
With the fuzzy snake, the components of the external
energy function (eqns. 4 and 8) are represented separately
by linguistic variables and fuzzy sets. For Ej,.,. the
calculation of image evidences (eqns. 5-7) is retained,
but they become linguistic variables.

The example in Fig. 5 illustrates how an evidence
function can be extended by an intuitive interface using
elements of fuzzy logic. Fore,g,, a linguistic variable edge
is created. Fuzzy sets with linguistic values, for instance
falling very strong,..., rising very strong,
are defined to cover the value range of eqn. 5 [Note 1]. In
this example, the values of the term Vi(C,, ¢, ,) are
mapped to adjectives which cover the range from very
weak to very strong. The factor d, which specifies the
edge direction, is accounted for by the adjectives rising
and falling, respectively.

In an analogous manner, the definition of linguistic
variables and fuzzy sets for the region and motion-based
evidences (eqns. 6 and 7, respectively) are similarly given.
To illustrate how a constraint energy function is integrated
into the fuzzy snake, the fuzzification of eqn. 8 is shown in
Fig. 6. Although eqn. 8§ already allows for the integration
of inexact knowledge, it affords a number of parameters

Note 1: For simplicity, that the adjectives are regarded as a part of the
primary term of the linguistic value rather than as a linguistic hedge with
an associated operator in the sense of [18].

326

u(edge)

edge

1{edge)

o : .

0 05 1.0
edge

Fig. 5 Fuzzy representation of edge-based image evidences

F, falling; R, rising; VS, very strong; VW, very weak; S, strong; M, medium,
W, weak

wcurvature)

B —
0 90 180
curvature, deg
F ML SL AL
1
@
5
@
c
=1
o
=
0 1 It
180 270 360

curvature, deg
Fig. 6 Fuzzy representation of curvature constraint

AR, acute right; SR, strong right; MR, medium right; F, flat; ML, medium left;
SL, strong left; AL, acute left

and hence does not provide an intuitive interface to either
the shape constraint or other constraints that may similarly
be applied. Through fuzzification the geometrical
constraint becomes a linguistic variable curvature which
is calculated using eqn. 9 and represents the actual measure
for the constraint.

The weighting function v in eqn. 10, however, is now
replaced by a number of fuzzy sets. The membership
functions of the fuzzy sets acute to flat have been
determined empirically to relate to the human perception
of the different degrees of curvature. Many other alter-
native constraints may also be included, for example the
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cular, is the ability to exploit uncertain a priori knowledge,
such as a verbal description of contour properties. The
proposed new fuzzy energy functions present a level of
abstraction which is higher and therefore closer to the
human expert than that of algebraic energy functions.
Parameters and weights with sometimes obscure meanings
are replaced by the more intuitive linguistic interface
provided by fuzzy logic expressions.

By allowing a more detailed object description it has
been proved that the fuzzy snake approach can improve
boundary detection in images of poor quality and also
reduce computational complexity. Examples have been
presented to verify the performance in being able to
identify complex structures, most notably in the processing
of MRI and X-ray based imaging sequences.
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10 Appendix: Algebraic energy functions

The internal energy used for all experiments was [20]
By = f(k = ml) = = 3)

The following external and constraint energy functions
were proposed in [21]. The external energy computes an
evidence value e for every candidate pixel ¢, ,, denoting
the possibility of it being a contour pixel:

Eimage(cn.m) = Wedge”eedge(cn,m)“ + Wregion Heregion(cn.m)”
+ Womotion "emolion(cn,m)” (4)

| I: normalises the respective evidences to the range [0, 1].
High evidences correspond to low energy values.

Edge-based evidence:
eedge(cn,m) = V.L(Cn’ Cn,m)(S (&)

V,: gradient magnitude (cf. {23]) along the search line C,
which is perpendicular to the initial contour hypothesis P,
d=1: rising edge, 6 = — 1: falling edge.

Region-based evidence:
eregion(cn,m) =—|V(0, cn.m)[

1 : R(x,y) <0

0 @ R(x,y)>¢6 ©)

O(x;, y) =

6: grey level threshold to weaken the edge of dark occlud-
ing objects; depends on a priori knowledge. R(x;, y;): a
pixel from the region of interest R.

Motion-based evidence:
emotion(cn.m) = Emed(cn,m)’
eped = /VOR,_g, = RDVOR, — Ry ) (7)

A moving edge detector (med [23]). R;: region of interest
extracted from images at instances i=t, i=t—d; and
i=t+d,, where d| and d, are constants.

For the energy component £, several constraints can
be applied. In this paper, a general form is introduced,
where x represents a measure of the constraining feature.
This feature value is weighted by an assessment function v
which is high when the actual feature value for a candidate
vertex is similar to a prescribed value:

Econ(cn,m) = ”V(K(Cn,m))“ (8)

K(cn.m) = Z(cn—Z,T(n—l,k)’ Cpnl ks cn,m) (9)

¢, »: the current vertex in the dynamic programming opti-
misation; c¢,_, ;: its possible predecessors; ¢,_; r(—1.4)’
their optimal predecessors;

max

0 L
v(}J) = 1 e—li("v;y)z : .))min <y< ymax
V2no
v(y) is a Gaussian function, the parameters of which define
either a convex or concave contour. y: desired local angle

within an allowable range [y™", y™*]. ¢2: certainty with
which 7 is known a priori.

(10)
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Abstract

This article presents a system for the automated tracking of non-rigid anatomic structures in two-dimensional image sequences, which was
primarily applied to X-ray image sequences of the vocal tract. In this particular application articulatory organs have to be measured to
investigate the complex dynamic characteristics of human speech production. Of particular interest is a robust boundary detection of non-
rigid organs such as lips and tongue. To solve this ill-posed detection problem under the presence of transparently superimposing structures,
varying textural appearances of organs and noise, a two-level system is proposed. At the lower level, several edge-, region-, and motion-
based image operators are combined to exploit their respective benefints and concomitantly compensate for their deficiencies. For the sake of
precision, the result of these operators are not represented as larger tokens, such as line segments, but remain pixel-related cues or image
evidences. At the higher level, an active contour-based component allows for the introduction of a priori knowledge about the object to be

detected. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: X-ray image sequences; Vocal tract; Boundary detection; Non-rigid objects: Active contours

1. Introduction

The detection of the boundary of an object in an image
can be an intractable problem owing to such extraneous
effects as noise and the image projection process, so the
problem is underconstrained and does not possess a unique
solution. In the attempt to solve this problem, computer
vision research has propounded many different approaches.
Methods that are intrinsically able to handle variations in the
boundary to be detected are of particular interest. They
allow for the tracking of deformable objects in image
sequences [1], as well as for identification of several similar
specimens of rigid objects {2].

As a top-down method for detecting non-rigid objects,
active contours [3] or snakes are a well-recognised
approach. In applications where image scenes are complex
however, that is ones which comprise many occluding or
even transparently superimposing structures, the general
constraints for smoothness may not lead to an exact result.
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If the segmentation result is subsequently used to provide
features for the classification of an object, or to qualitatively
describe a scene, then an imprecisely extracted contour may
still be adequate. This article conversely assumes that the
class of an object is already known, but that the segmenta-
tion has to be precise, despite poor image quality. A good
example of an application where these conditions occur is
the tracking and measurement of anatomical structures in
medical X-ray image sequences.

2. Application: analysis of the vocal tract

The following application helps to substantiate the char-
acteristics of medical X-ray image sequences. It is a good
example of where precise segmentation of object bound-
aries must be obtained from images which have low loca-
lised contrast and generally poor quality.

Articulatory phonetics is a branch of linguistics that is
concerned with the very complex dynamic characteristics
of the articulatory organs of the human vocal tract. Under-
standing their motion and interrelation is an important basis
for understanding human speech production. Apart from
being a contribution to basic research, this knowledge is
also valuable in speech therapy [4--6].

0895-6111/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved.
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Fig. 9. Polygonal contour representation.

edges by multiplying the gradient of two difference images.
The operation is performed on the same region of interest R;
extracted from images at instances i =t,i=t —d;,and i =
t + d,, where d, and d, are constants.

3.4. Contour identification and tracking

The module described in this section represents the core
of the proposed system. Its task is to identify the contour
pixels of an object based on the evidences provided by the
preceding modules described earlier.

A contour identification approach which not only uses an
intermediate symbolic representation of an object, but also
provides a method that links this representation with image
features and a priori knowledge, is that of active contours or
snakes. Active contours also allow for interaction with
higher-level processes and may therefore represent a basis
for further extensions of the proposed system.

Active contours were first introduced by Kass et al. [3].
They can be described as energy minimising splines or
polygons. For each image, the algorithm needs an initial
polygon P = (py, Py, ..., Pnv-1) consisting of N vertices
p; = (x; y;), where x; and y; are the spatial co-ordinates of
p:- The detected boundary is represented by the polygon Q =
(90, 95 - -, quv—1) With @; = (x;, y;)- Each q; is selected from a
set of candidates C; = (¢;q, €1, ..., C;m—1) Where in our
application, the candidates ¢;; = (x;, y;) are uniformly
sampled along a search line normal to the initial polygon
and intersecting p; (cf. Fig. 9). Tracking of the contour is
realised by processing a sequence, frame by frame and
taking the resulting Q(f) as the initial, estimated contour
P(t + 1) of the next frame.

With the polygonal representation it is possible to formu-
late an appropriate energy function Egg. for the object
which is then minimised to obtain the desired contour Q.
Moreover, the representation incorporates the simple
connectivity of the objects and drastically reduces search
space.

Kass et al. [3] proposed that an energy function be
composed of the following three components:

e E,, represents the internal energy of the active contour,
forcing it to act like a membrane or thin plate, producing
a smooth shape.

® Ejn,g tepresents an external force that guides the contour
towards features in the image.
e E... represents external constraint forces.

To minimise the energy function, the original algorithm
of Kass et al. [3] involves four steps:

. setting up a variational integral on the continuous plane

. deriving a pair of Euler equations

. discretisation

. solving the discrete equations iteratively until conver-
gence.

W N =

There are a number of problems resulting from this algo-
rithm that were recognised, such as that the energy function
must be a differentiable function which therefore constrains
the range of possible models [17]. Also the vertices may
move along the contour and cluster, because it is not possi-
ble to incorporate ‘‘hard constraints’” such as a minimum
inter-vertex distance {18]. As with most iterative approaches
the problem of convergence is one of the main subjects in
the literature (cf. Ref. [19] for an overview).

To overcome these problems, Amini [18] establishes the
problem of energy minimisation as a discrete multi-stage
decision process, which enables him to use a discrete
dynamic programming algorithm to find an optimal solu-
tion. The results obtained by this method, however, still did
not yield the precision needed in the processing of medical
X-ray image sequences. Even after 30 iterations (conver-
gence) the contour was not able to precisely identify the
entire boundary of a non-occluded object [18].

This result is neither a fundamental drawback of the
active contour approach nor of the dynamic programming
optimisation — similar algorithms were applied successfully
to medical images by Olstad (ultrasonic image sequence of
the left ventricle [20]) and Geiger (angiograms and nuclear
magnetic resonance (NMR) images of the left ventricle
[21]). The reason is rather that it is necessary to fully exploit
the potential of the approach by formulating the energy
function according to the characteristics of image and
object. In the proposed system, this was achieved by:

e introducing multiple image evidences from several
sources to form Ejp,ge,

e introducing an object specific constraint (E.,), that
restricts the possible shapes of the active contour beyond
a mere, general demand for smoothness.

The energy function of the active contour is minimised by
the dynamic programming algorithm where S (n, m) repre-
sents the minimal energy level that is possible for the
vertices 0, ..., n if the nth vertex is the candidate ¢, T
(n, m) holds the index k (k = 0, ..., M — 1) that minimises
the expression in line 8 and thus points to the optimal prede-
cessor of the candidate ¢, After all vertices were
processed, the new boundary is obtained by tracing back
the pointers, beginning with the candidate that has a
minimal S (N — 1, m) value.
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Abstract. In many cases articular damages
cannot be diagnosed through an examination
of a single image. A motion analysis of a
joint’s bones might be necessary to make a
reliable diagnosis [1,2]. Examples are lesions
of the ligaments and cartilage of the knee or
in the cervical and lumbar regions of the
vertebral. This paper presents a novel system
to diagnose lesions of the ligaments of the
wrist (carpal instabilities [3]). The method is
particularly well-suited to aid in the diagnosis
of the scapho-lunate instability. This damage
is a common injury after accidents involving
the wrist. The lesion occurs when the
ligaments between the Scaphoid and the
Lunate are torn [4]. Motion graphs (Fig. 4)
show the rotation as well as the translation of
the carpal bones. The measurement is
performed relative to an anatomic co-ordinate
system defined by the distal end of the
Radius. Compared to other applications [5] a
motion analysis of wrist bones is more
difficult because there are many bones with a
similar shape which complicates their
identification. Furthermore some of the bones
may tilt, that is they may rotate around axes
not perpendicular to the view plane. This
results in a varying appearance of the bones in
the sliced magnetic resonance (MR) images.

1 Problem

Availability of Nuclear Magnetic Resonance
Imaging allows scanning of entire sequences
of images of bones and joints without harmful
dosage of radiation. Analysis of such

sequences allows a much more reliable
diagnosis of lesions of the ligaments
compared to methods in use today such as
single x-ray images [1,2,3]. However, a
necessary scanning procedure with a
sufficient number of positions requires
approximately 100 2-D images for every
patient. The manual evaluation of such a
number of images in the daily medical
diagnostic is not feasible. The aim of the
proposed approach here is the automatic
processing of these images in order to obtain
motion graphs which allow an easy medical
diagnostic. For the recognition of lesions of
the ligaments the representation of translation
and rotation of the carpal bones with respect
to a coordinate system defined by the radius
proved to be most suitable. Using cadaveric
specimen such investigations have been
carried out by implantation of markers [4].
Because of the considerable exposure to
radiation, in vivo analysis of such movements
has been carried out only with very coarse
resolution. The method proposed here allows
for a much finer resolution of the bone
movement determined (Fig. 4).

Compared to the motion analysis of the knee
or the spine the measurement of the motion of
carpal bones is much more complicated. This
is because of the number of bones with
similar appearance which complicates the
identification of the bones. Furthermore a tilt
of some of the carpal bones is responsible for
a change in appearance within the NMR slices
during the sequence.
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2 Automatic measurement

The overall system comprises the following
components:

* Image acquisition — Depending on the
flexibility of each patient approximately 8
different positions of the wrist will be
scanned. For each wrist position 12 layers
of the hand are acquired.

e Layer selection — An approach based on
the Fourier-Mellin transform [6] allows
for the selection of an MR layer which is
best suitable for the measurement by
comparing the input layers with a
reference image (Fig. 1).

e Segmentation — An adaptive threshold is
applied to an automatically selected region
of interest (ROI). To obtain a higher
precision the algorithm is applied in two
stages to the ROI of the wrist and to
smaller ROIs of the individual bones.

e Identification of the bones — Constrained
by their possible motion the relevant
bones are identified through an analysis of
the shape and position of a set of
candidate bones (Fig. 2).

* Measurement of translation and rotation —
For each bone its major axis and centroid
is determined (Fig. 3).

¢ Motion graphs ~ The measurement results
of usually about 8 different positions of
the wrist are collected (Fig. 4). The
coordinate system which is taken as
reference will be determined by a concave
curvature of the radius in order to
compensate unavoidable movement of the
patients arm.
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The performance of the system is
demonstrated by automatically measuring the
motions of the bones of 158 wrist positions of
20 patients to date. A resulting number of
1106 bones were identified correctly. The
segmentation was highly successful for the
most relevant bones Scaphoid, Lunate and
Radius (Tab. 1). A good segmentation was
also obtained for other carpal bones, allowing
the system to be applied to the diagnosis of
other carpal instabilities as well.

Bone Correct
segmentation
os hamatum 77,8%
os capitatum 94,9%
os trapezoideum 90,5%
os triquetrum 89,2%
os lunatum 94,3%
o0s scaphoideumn 96,8%
Radius 97,56%
Table 1: Success rate for automatic

segmentation of the carpal bones in
158 wrist positions.

3 Clinical use

In order to ease the introduction of this
system to daily use in medical diagnosis, an
interactive graphical user interface is under
development [7]. The intermediate results of
the different  processing  steps  are
automatically tested for plausibility. If errors
are detected, the wuser is automatically
requested for a manual correction. A
description of the appearance of specific
lesions in motion graphs is presented in [8].

This project was partially funded by the
German Ministry of Science and Culture
(AGIP program).
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FUZZY SNAKES
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ABSTRACT

A new method for representing and tracking of ob-
ject boundaries is presented, which allows for the
integration of uncertain a priori knowledge into an
active contour model.

The new fuzzy snake allows for an intuitive speci-
fication of the properties of an object’s boundary.
This is obtained by setting up a linguistic rule base,
which describes each of the fuzzy snake’s segments.
Furthermore the approximate length of each con-
tour segment may be specified to improve the seg-
mentation process and to reduce the computational
complexity.

INTRODUCTION

Active contours (Kass et al (1)), or snakes, are a well
known method for matching an object’s contour
model to features in an image. The approach, which
uses a polygonal object representation (Fig. 1a), is
distinguished by its intrinsic ability to handle varia-
tions in the boundary to be detected. It is therefore
capable of identifying and tracking deformable ob-
jects in image sequences.

With the polygonal representation, it is possible
to firstly formulate an appropriate energy function
E, nake for the object. Espuke is then minimised to
obtain the desired contour by selecting an optimal
gset of vertices from candidates in a region around
an initial contour.

Usually Eg¢nare consists of two components Eip:
(internal energy to produce a smooth shape) and
E.;:. The external energy Ee;; may be composed of
Eimage Which guides the contour towards features in
the image and E.on which allows for the integration
of additional constraints,

Some computational problems resulting from the
original algorithm presented in (1) have been over-
come by Amini et al (2). The energy minimisation
of the snake is performed by a discrete dynamic pro-
gramming algorithm. This approach allows for the
integration of hard constraints such as a minimum
distance between the snake's vertices.

An important extension to this work was the intro-
duction of a shape constraint introduced by Héwing
et al (3). In addition to only using image features,
the integration of geometrical knowledge (within
Econ) about the object considerably improves de-
tection of structures in images of poor quality (see
Wermser and Howing (4)).

aj
Py
b)
a* b* c*
L 1 L l L 1 1 l i L 1 l
r T T T L T o l T o T j
Py
c)
4a 5b 5¢
Py Py

Figure 1: a) Polygonal contour representation. b)
Grammatical description of a multi-segment con-
tour. ¢) Fuzzy specification of the length of contour
segments.

ACTIVE CONTOURS WITH MULTIPLE
SEGMENTS

There remain some limitations in terms of repre-
senting e priori knowledge concerning more com-
plex objects which are to be detected. All vertices
of the active contour are characterised by the same
local energy function, resulting in a single, global
description of the object. In order to overcome this
problem, Olstad (5) introduced a grammatical de-
scription of the snake’s energy function. Fig. 1b
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shows an example of a contour, which can be de-
scribed as a sequence of three different (external)
energy functions E2,,, Eb,, and ES,,, represented by
the terminals a, b and c. The grammatical expres-
sion describing such a segmented boundary would
be a*b*c*, using the closure operator * which allows
parts of a pattern to be repeated arbitrarily. A pat-
tern matching algorithm incorporated into the ac-
tive contour’s energy minimisation, constraints the
possible resulting contours to comply with the ex-
pression.

Three fundamental drawbacks in this algorithm are
investigated and subsequently overcome in this pa-
per:

1. The different energy functions do not intrinsi-
cally consider inexact a priori knowledge.

2. The algorithm is computationally expensive,
since the closure operation generates a large
number of possible states in the finite-state-
machine based pattern matching.

3. The length of a contour segment cannot be
specified, although it may approximately be
known in advance.

FUZZY SEGMENT LENGTH

The first two problems have a common solution. The
fuzzy snake allows for specification of the number of
subsequent vertices sharing a common energy func-
tion. This dramatically reduces the search space. A
crisp length specification however, would not con-
sider uncertain information. A new method to spec-
ify the length of a snake segment by a fuzzy number
(see Bezdek and Pal (6)) is therefore proposed.

Notation

Instead of specifying snake segments of arbitrary
length, for example a*b*c*, the length of each seg-
ment is given by the expression aaaabbbbbccccc.
Since segment lengths are not known precisely, a dif-
ferent notation is introduced, where a length is given
as a fuzzy number, for example (4a)(§b)(5c).
Fig. 2 illustrates such a fuzzy number [. In this ex-
ample the segment specification (/a) denotes a seg-
ment consisting of 1 — 7 vertices, sharing a common

a

property defined by an energy function Eg;.

Similar to a grammatical description, the fuzzy
snake can now be specified as an expression, using
operators such as concatenation, logical AND and
OR, plus a fuzzy length. The implementation of log-
ical operations will be examined in a forthcoming

publication.
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Figure 2: Segment length as a fuzzy number.

Extended algorithm

An extension of the dynamic programming algo-
rithm is necessary to account for the variable length
of snake segments.

An active contour with only one global energy func-
tion is optimised by the (simplified) dynamic pro-
gramming algorithm in Fig. 3, where N is the num-
ber of vertices and M the number of candidates for
each vertex.

1. forn=1...N-1

2. form=0..M-1

3. S(n,m) = m’;m [wintEint + Wegt Eegt(Cn,m)
+8(n -1, k)]

4 T(n,m) = k™in

Figure 3: Dynamic programming algorithm.

S(n, m) represents the minimal energy level that is
possible for the vertices 0, ..., n if the nth vertex is
the candidate ¢, ;. T'(n,m) points to the optimal
predecessor of ¢, . After all vertices have been pro-
cessed, these pointers are traced back, to obtain the
new boundary.

TABLE 1 - Energy functions which have to be
considered in the example of Fig. 1lc

5 6 7 8 9 1011

b bbb

¢c € ¢ ¢ ¢ ¢C

With multiple external energy functions a different
function may have to be calculated for each vertex.
Since the segment length is now variable, several en-
ergy functions may be calculated simultaneously for
vertices on or near a segment boundary. An example
is given in Table 1.



Linguistic rules

As described above, each energy function for a
boundary segment of constant properties consists
of a rule base, which inputs a number of different
evidences or features from the image, as well as con-
straints on geometry and motion of an object. The
output of the inference process using this rule base,
is a quality measure, describing the compliance with
the rule base for each vertex.

The contour in Fig. la could, for example, be de-
scribed by three different (simplified) rule bases a,
b and c:

a:

IF curvature flat

AND orientation nw
AND edge weak

THEN quality very good
b:

IF curvature medium right
AND orientation north
AND edge very weak
THEN quality very good
C:

IF curvature weak right
AND orientation east
AND edge strong

THEN quality very good

Defuzzification

The defuzzification converts the fuzzy quality mea-
sure, which is the result of the inference process,
into a crisp value E%;(Cn.m)-

CONCLUSIONS

The fuzzy snake is a new form of an active con-
tour, widening the areas of application of this well
known contour identification approach. The advan-
tage of the new method in particular, is the ability
to make use of uncertain a priori knowledge, such as
a verbal description of object properties by a human
expert. Allowing for a more detailed object descrip-
tion, the fuzzy snake approach presented in this pa-
per improves boundary detection in images of poor
quality, such as medical X-ray sequences (4,7). As
first results are promising, a forthcoming publica-
tion will examine these results as well as details on

the implementation.
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