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ABSTRACT

For millenia, gestures have been used by humans as a method of communication. This
primitive form of communication is still used by us situationally to either to facilitate,
or replace verbal communication. For instance, gestures can indicate spatial information

such as direction, or could be used when speaking would disrupt the vicinity.
Thus the field of human-computer interaction has identified that gestures could be an im-

portant tool for natural interaction with computers. Since then, a variety of different uses for
gestural interaction have been created. It has been envisioned that such an interaction modality
could provide a convenient way of interacting with devices near to the person.

It has been suggested that hand gesture control could be useful for wearable devices, in situa-
tions where interacting with these devices are difficult with other known modalities. Currently,
smart watches and other wrist-worn devices are the dominant form factor for wearable devices,
probably due to the watch being a device that is seen as being socially acceptable to wear. Since
the watch form factor is currently so dominant, it is intuitive to embed the sensing technology
for hand gesture recognition at this location. This is a key problem that is often ignored by most
research conducted in hand gesture recognition.

This thesis analyses current wearable techniques for hand gesture recognition, paying partic-
ular attention to the practicalities of the techniques which are important for integration with
a wrist-worn form factor device. Experimentation is conducted to improve existing techniques,
attempting to address these practicality issues, with a focus on restricting the placement and
size of the device to conform to the wrist. Further ergonomic and practical issues are uncovered
through experimentation in EMG and ultrasonography, leading to a technical innovation to
extend the capability of wearable infrared gesture sensing. The initial requirements for the
ideal wearable gesture recogniser is revised after insights from each chapter. The final revised
requirements and analysis of methods lets us advise that the only reasonably practical method
that can be implemented at the moment is infrared. Finally, the analysis of methods also let us
give insight on the most promising technologies (such as ultrasonography) and the main problems
that hinder their practicality. One of the key problems that we find is that tightness of sensors
against the skin are a big practicality concern, which is almost always a factor that is ignored
in current research. Finally, we discuss additional robustness and cross-participant issues that
remain challenging in all current techniques.
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INTRODUCTION

1.1 Vision

In recent decades, gesture interaction has been an important topic of research in human-computer

interaction (HCI). It has already transformed the way we interact with devices drastically. One

notable example of gestures being widely used are in the use of touch gestures in smart phones,

e.g. pinch to zoom or swiping.

Many suggest that in the future, hand gestures will also play a key role in computer inter-

action [101]. These suggestions are based on the same principles as touch interaction on 2D

graphical user interfaces, that they are intuitive to us and simple to perform. More of this is

explained in the next section.

A number of different applications have been envisioned and studied, ranging from explicit to

implicit use. These applications require varying hand tracking accuracy in order to enable. In

section 1.3, we discuss the applications and derive from them that mobility is a key requirement

for many of them.

This requirement of mobility is what creates a challenge in enabling gesture detection. There

have been some research efforts in HCI that improve the mobile gesture recognition. However, as

we describe in the forthcoming sections, many of the requirements are still not satisfied. Quite

prominently, as a result of making systems mobile, the accuracy is often diminished. There

is still a large gap that sits between what is currently possible with stationary equipment for

hand tracking (for instance, with depth cameras), versus mobile hand tracking technology. The

ultimate aim is to match the accuracy of a stationary device in a wearable form factor device.
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CHAPTER 1. INTRODUCTION

In this thesis, we are mostly concerned with the development of better mobile devices for

recognising gestures. In particular, we focus on the form factor of a wrist-band type device, as is

commonly used by a variety of worn objects such as watches and bracelets. We look to improve

specific aspects that are currently lacking in gesture recognition technology. After reviewing past

work, we identify and target areas for improvement such as placement and size, accuracy and

complexity.

1.2 Gestures

Gestures enable a channel of communication for humans which can be used to convey messages

to others. Gestures can be performed using different body parts, but hand gestures are the most

commonly used due to the dexterity of human hands. Gestures can be used to convey a variety of

meanings.

Here, we use the taxonomy of gestures as described by M.Karam and M.C.Schraefel’s work

[62], which is tailored towards the use of gestures as an interaction method. These different

categories are not exclusive and many of them can be applied to a particular gesture. Here, we

describe them.

1.2.1 Deictic

Perhaps the simplest of gestures are pointing to objects and other spatial inferences, which are

called deictic gestures. Much work has been done on pointing with the hand to locate a point on a

display [13], or more recently in augmented and virtual reality.

1.2.2 Manipulative

By definition, manipulative gestures are those:

“whose intended purpose is to control some entity by applying a tight relationship between

the actual movements of the gesturing hand/arm with the entity being manipulated.”

For mid-air hand gestures, this is fairly limited as there is no object with we can gesture. In

this work, we can imagine various user interface widgets like sliders or a menu being manipulated

directly using gestures of the hands. For instance, opening an closing the hand can map directly

to the intensity of the light in the room.

1.2.3 Semaphoric

Semaphoric gestures represent a set of gestures that serve as symbols to communicate to the

machine. That has also been named as symbolic gestures. More traditional definitions of gestures

would likely fit within this category.
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1.2. GESTURES

Representational gestures may mimic aspects of an action or object, such as climbing. They

may also be metaphorical, like using ones hands to mimic pan scales as though weighing two

sides of an argument. These gestures convey a more abstract meaning than manipulative or

deictic gestures.

Conventional gestures convey culturally specific meaning, for instance a "thumbs up" which

represents approval in most cultures, but in some cultures may be considered obscene [8].

1.2.4 Gesticulation

Gestures are also tightly integrated with speech, when somebody gestures whilst talking, it is

called gesticulation. Not only does gesticulation help the listener in a communicative manner,

but also to the speaker in a cognitive way [17]. For instance, one study found that speakers who

gesture are more fluent, producing fewer verbal errors and hesitations, than when not allowed

to gesture[48]. There are numerous other indications that gestures are an embodiment of our

thought processes, mental imagery and feelings [58, 103].

1.2.5 Language

Linguistically based languages are independent of most other types of gestures. It is also less

intuitive and more comparable to speech [62]. Although some elements such as an alphabet made

by finger spelling, can be considered semaphoric.

1.2.6 Static and Dynamic Gestures

These are not types of gestures that fit within the taxonomy but are separate descriptions that

tell us about whether the hand of the person is moving, or whether it is static. Usually static

gestures have a hand pose to convey meaning. There may also be combinations of a static gesture

that that moves dynamically. In this thesis, we are mostly concerned with the detection of static

gestures (hand poses) as dynamic gestures can be detected with the use of an IMU. However,

here we disambiguate dynamic gestures with gestures which change the hand pose continuously,

which we call continuous gestures.

1.2.7 Gestures for Interaction with Computers

These suggestions that gestures are instinctive to humans and used as a tool to convey our

thoughts, have led many to believe that gestures are an ideal form of interaction with computers

[101]. Not only do gestures have a low cognitive load as they are performed instinctively, but they

are also easy for us to interpret, and their simplicity and intuitiveness makes them easy to learn.

This modality of input could be seen as communicating with the computer in a conversational

manner. Gestures for touch-screen interaction in today’s technology is ubiquitous. Perhaps the

most iconic of them, the "pinch to zoom" gesture. This gives some reassurance that gestural
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interaction can be successfully applied. But then why is mid-air hand gesture interaction is not yet

prevalent? The next sections in this chapter will try to address this question, by firstly analysing

where hand gesture interaction could be applied, from which a requirement for a gesture detection

device is created. Through analysing the related work, there are many requirements which are

not met, which is an indication that the technology is not yet suitable for use today.

1.3 Where Can Hand Gesture Interaction be Applied?

1.3.1 Explicit Gesture Interaction

Wearable devices such as smartwatches have recently become a topic of interest among re-

searchers and industry. Consumer products today mainly use their smartwatches as an easy-to-

reach proxy for their smartphone, for viewing notifications and performing simple tasks such as

answering calls. Their use remains somewhat limited, partially due to the difficulty in interacting

with this device form factor. For instance, the small display size on watch faces makes touch

interaction awkward due to the comparatively large size of our fingers (the ’fat finger’ problem)

[114, 115]. In addition, throughout the day there may be tasks which encumber the persons hand,

such as holding an umbrella or a shopping bag. Previous work has identified that such physical

encumbrance has negative impacts on touch gesture performance on smartphones [89]. Kerber et

al. extended this notion of encumbrance to smartwatch interaction and suggested using hand

gestures instead of touch interaction [64]. They conducted studies to elicit gestures from people

that use only the hand/arm the device is worn on. Saponas at el. found ways of enabling always

available input on smartwatches by designing gestures that can be performed even by the hand

that is busy with other objects e.g., holding a mug [106].

While there are other tangible methods for interacting with a smartwatch [111], these might

be difficult to perform without looking at the device. There may be tasks where visual attention

is critically important at all times (such as driving or running through busy streets), in which

case such tangible interaction methods may be dangerously distracting. So gesture control of

wearable devices seem to fill some niche use cases where other interaction modalities may be

awkward or distracting.

Full engagement with a device can not only be unsafe, but it may also be frowned upon

socially. Casual interactions are particularly appropriate in such scenarios. Pohl and Murray-

Smith discuss the different scenarios and technologies that may enable this interaction method,

some of which is a major topic of this thesis [99].

However, the applications of gesture interaction extends beyond simply controlling smart-

watches. The idea of interconnected household devices, controlled either by the user or by

intelligent systems has recently peaked the interest of researchers and consumers. Examples of

such "smart home" or "home automation" devices include wireless, connected LED lights [4, 5] or

cooking appliances [43, 75]. However, the most common way of controlling devices that are on the
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market today seem to be through apps on the smartphone. Some research has gone into bespoke

tangible interfaces [16]. Though neither of these modalities offer the same convenience or instant

control that gestures do. Indeed there is work that suggests using gestures for controlling smart

home devices for these reasons [95]. Gesture control of devices in the persons surroundings can be

extended beyond the house to the car [102], workplace [54] or perhaps in the foreseeable future,

interaction with objects/displays in public places [107].

These applications of hand gestures are examples of explicit gesture interaction. That is,

the user performs gestures intentionally to achieve a desired action. There are issues with

differentiating between gestures that the user performs with intent, to natural movements

from the user e.g., gestures during conversation. Although false positive gesture detection is an

important topic, it is out of the scope of this thesis. Many other works are dedicated to tackling

this problem, attempting to create gesture sets with low false positive rates [67] or activation

methods [57]. Although these natural human movements prove to be problematic for explicit

gesture detection, it actually provides an entirely new and different application for gesture

detection: implicit interaction.

1.3.2 Implicit Gesture Interaction

Implicit gestures are those that are performed with natural human movement, without intent.

We can detect activities that we perform on a daily basis for a variety of purposes. Some uses for

activity recognition include [76]:

• Health monitoring - The frequency of activities such as eating, drinking or smoking can

often have negative health effects. Implicit gesture detection can aid in the detection of

such.

• Assisted living - Can assist doctors in diagnosing certain conditions detect deviations from

a typical routine or deterioration of a patient’s current physical status.

• Context awareness - Detection of an activity such as a meeting at work (possibly inferred

from a handshake) could be used as a contextual cue to silence the phone. [108].

1.3.3 Virtual Reality or Augmented Reality

Full hand tracking of every degree of freedom is likely to be beyond what is required for gestural

interaction. Hypothetically if such a system did exist, it should in theory also be able to detect all

possible hand poses (being used as gestures). Therefore, such systems are still relevant to this

thesis.

Both virtual and augmented reality can benefit from accurate hand tracking which enables

the user to interact with the virtual world [26]. So far, computer vision methods have produced

very accurate tracking algorithms that work well for stationary settings. However, augmented
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reality may used out of the home or office, as we are going about our day outside of these known

environments where cameras may not be set up. Aside from this, cameras can still suffer from

occlusion - from objects or other bodies close by - or even from ones own body.

Gloves embedded with sensors to track hand movement, so-called data gloves, are currently a

more feasible method. However, this encumbers natural interaction with our hands for daily use,

particularly for the mobile augmented reality scenario. Therefore, there is further motivation to

find an alternative method that does not obstruct the hand but is still highly accurate.

1.4 Requirements for a Gesture Detection Device

This section formulates a set of requirements for a gesture detection device. These requirements

are derived from the aforementioned applications. We consider the obvious requirements, such as

the mobility and accuracy of systems. In thesis however, we thoroughly emphasise the placement

and size parameter, for reasons explained below. Finally, we discuss the implications of device

complexity, which effects immediate feasibility of using the device in the real world.

1.4.1 Mobility

Certainly for interaction with a smartwatch, the device to detect gestures must also be mobile.

Most of the implicit gesture recognition applications also rely on recognising gestures on-the-go.

These applications point towards a need for a mobile device that is able to detect hand poses for

always available input. This is the most important requirement that must be fulfilled.

1.4.2 Placement and Size

The requirement of mobility creates a challenge in how the device is carried by the user. Mounting

the device onto the human, a so-called "wearable", aligns well with the vision of ubiquitous

computing and seems the most convenient way to enable always-available computers [78]. Still,

the location of where the device is to be mounted and it’s size are both tied to the ergonomics,

practicality and social acceptability of it. The device should be as small as possible to not encumber

the person, and if the form factor can match items worn in today’s fashion, this will avoid any

conspicuity and satisfy social acceptance. Indeed, a focus of this thesis will be motivated by the

aesthetics and social acceptability of device placement. As an example of research that backs

up this claim, Pateman et al. do an in-the-wild evaluation with different styles and shapes of

wearables that were co-designed by the participants and them. A large number of people in

this study pointed out that they would like to have the device integrate with existing, socially

acceptable objects in order to make them "invisible" [96].
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1.4.3 Accuracy and Range of Gestures

The ultimate aim is to achieve a 100% accurate, full hand tracking system as described for the

VR/AR applications. In reality there is most likely some margin of error with the detection of hand

poses. However, as mentioned this may not be entirely necessary for simpler gestural interaction.

The types of gestures that can be performed is also an important factor. In general the more

gestures that can be detected, the better. Of course, it may not best to include all possible gestures

into the application, but if a bigger pool of gestures to select from gives better freedom for the

application designer. This does not just include the number of gestures detected, but also concerns

the different range of human hand motions that be detected. This is explained in more detail in

section 2.1.

1.4.4 Complexity

The complexity of the device, which is mostly determined by the energy, electronics and compu-

tation required, effect the immediate feasibility of the device. For instance, if the device needs

to be charged multiple times a day, using present day battery technology, the device is clearly

not yet ready. If the data that the sensors collect, require what is currently considered to be a

high-end desktop Graphics Processing Unit (GPU), it will take many more years until wearable

computing device are able to process this much data. These factors also effect the cost of the

device. From a research perspective, this could be considered less important than the other

requirements, as energy and electronics are expected to improve over time. This is especially true

for computationally expensive tasks.

1.4.5 Baseline Requirements

These four points are the basis for our initial set of requirements for a wearable gesture recogni-

tion device:

• Mobility → Wearable.

• Placement & Size → Ergonomics, practicality and social acceptability.

• Accuracy & Range of Gestures → Usefulness.

• Complexity → Immediate feasibility.

1.5 Research Questions and Thesis Contributions

As briefly mentioned at the beginning of the chapter, part of this thesis is mainly driven by the

task of getting better accuracy of gesture detection systems worn on the wrist. This satisfies the

main criteria we identify in the above requirements and to enable practical usage by ensuring
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Technique Mobility Placement & Size Fidelity Complexity
EMG Battery concerns Variable Good Variable

Ultrasound Improving but still poor Variable Very good Very complex
Infrared Highly mobile Thin & wrist Poor Very simple
Pressure Highly mobile Thin & wrist Poor Very simple

EIT Highly mobile Thin & wrist Average Fairly complex
Optical Can be mobile Wrist, but obtrusive Limited Fairly complex
Glove Highly mobile Obtrusive Excellent Simple

Table 1.1: A summary of the analysis of established gesture recognition techniques, with respect
to the initial requirements.

a high enough accuracy. We selected the wrist as an ideal location due to the fact that it is

a socially acceptable place on the body where people where objects. Technology has already

employed wristbands and smartwatches to take advantage of this, currently there is a growing

trend towards to the use of these devices. Therefore, it seems appropriate to design hardware

that can fit within this form factor. As we will describe in the related work, there is already plenty

of research that has done this. However, what has been demonstrated so far is that there is a

significant trade-off of accuracy for wearability. Skipping ahead slightly, we show the table that

arises from our analysis of the related work (Table 1.1. We will explain this later in the related

work, but this is now shown to demonstrate the range of different technologies that have been

studied, the variability of them, and the trade-offs between form factors.

From this table, we ask questions about the variability of EMG and Ultrasound device

placements and size, and the effect of it on fidelity (accuracy and range of gestures) and complexity.

We seek to improve the fidelity always, as current state of the art is still not acceptable for practical

usage due to the low accuracy of the systems. To reiterate: the end goal of this line of work is to

design a system that is minimally invasive but provides full hand tracking capabilities, similar

to what we can currently do with optical or glove based systems.

For clarity, as user-independent (or cross-user) device operation has made very little progress

in this field of research, we will not consider this in our analysis of work. All work in this thesis

focuses on user-dependent classification of gestures. We consider the implications of this in the

discussion chapter.

To begin with, we use the table of analysis to target the variability in the placement of

EMG devices. Therefore, the first exploration is to study the assumed trade off between gesture

recognition accuracy and placement on the forearm. In particular, we studied the viability of

placing EMG devices on the wrist, to conform to our ideal form factor. After two studies, we found

that EMG can be used effectively at the wrist, with complementary sensing techniques to further

boost the accuracy, such as pressure sensing. However, experientially, we found that gestures

needed to be performed forcefully for any reasonably accurate recognition rates. This hinders

some applications of the technology, such as implicit gesture detection, where the hand poses may

8



1.6. THESIS ROADMAP

not be performed forcefully on purpose. Additionally, there is the problem of having difficulty in

detecting continuous gestures due to the nature of the signal. These are issues which are almost

always not mentioned or discussed as being limitations in past work, they are assumed to exist

and solutions to them are ignored.

This led us to look back at the different techniques to find better solutions to these limitations

of EMG. Ultrasound had recently been used to detect hand poses. Again, in recent research,

numerous locations on the forearm had been employed. Similarly, we investigated accuracy

changes due to placement variation. We also checked to see if continuous motion tracking is

possible. We found that there was not a large difference between placements and accuracy, finding

that in fact the wrist placement worked very well. Continuous motion tracking also worked well,

enabling more applications. However, from hands-on experience studying the device, we know

that there are huge practical issues with the technology. This includes the use of ultrasound

coupling gel and massive device complexity. The necessity of acoustic coupling gel spurred us

to experiment with hydrogels, which showed early signs of one possible solution. But the issue

of device coupling to the skin is not only found in ultrasound. In fact, in many techniques, good

coupling is a must for the device to operate effectively. For instance, with EMG, the electrodes

must be either coupled using conductive gel, or pressed hard against the skin in the case of dry

electrodes. This led us to re-analyse the related work and consider how coupling might affect

practical use of each technology.

Finally, after looking at the newly updated analysis of techniques, we discover that infrared

techniques are different to most others as skin coupling is easier. We investigate infrared sensing

as a gesture recognition technique, and find a way to improve the accuracy of it through a novel

sensing architecture. More importantly, we find that it is robust under poor coupling conditions

(i.e., when it is not skin-tight). While this seems like the best technology going forward, as it

satisfies most of the requirements, the accuracy still leaves much to be desired. For one, there is

yet to be a demonstration of the ability to detect continuous motions using infrared.

These three main pieces of work individually progress research in their respective technolo-

gies: providing information about the effect of position on accuracy, novel methods to improve

accuracy, and an investigation of robustness issues. This accounts for the majority of the contri-

bution of this thesis. With thorough analysis and experience with many of the techniques, we

also provide a holistic overview of current state of the art and insights into key limitations or

fundamental problems of some of them.

1.6 Thesis Roadmap

Having outlined the envisioned usage and requirements for wearable gesture recognition devices,

the next part of this thesis will analyse existing techniques and assess their suitability, with

respect to these requirements.
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However, before doing so, we will give a primer on relevant anatomy and hand movements

in the next chapter. This is vital to the understanding of the methods discussed in depth in the

following chapters. Although it is perhaps not so vital to the understanding of the bigger picture

of the thesis: which include the implications of the contributions of each piece of work and the

strengths and weaknesses of each technique. The primer on anatomy is included merely for

completeness of the thesis.

After this, the next three chapters: 4, 5 and 6 are works published during my PhD. They aim

to explore practicality while still improving accuracy. After experimentation with each method,

other practicality and usability concerns became clearer to me. In the discussions found at the

end of these chapters, I will amend the original requirements for the device to include these

concerns. Given these new requirements, I re-analyse the "landscape" of work. Each subsequent

chapter aims to find a method in past literature that can satisfy the newly revised requirements

or gaps in the analysis. A full table of chapters is given here for the reader to get a better sense of

what to expect in each chapter.

The following table gives details on the contents of each chapter. For those who are interesting

in a brief read of the thesis to gain an understanding of the implications and results of the work,

and would rather leave out the details of the individual pieces within, I would recommend that

you read: the related work, the beginning and ends of each of the main chapters, (chapters 4,

5 & 6), the discussion and conclusion. For those seeking the final requirements and analysis

of methods, which is main outcome of this thesis, I would recommend skipping straight to the

discussion and conclusion.

Chapter 2:

Primer on

Anatomy

A primer on anatomy. Pre-requisite knowledge to gain a full understanding

of the inner-workings of each technique. Also helpful in determining the full

range of human hand motion made possible by the bio-mechanics of the hand.

Chapter 3:

Literature

Review

Mostly an in depth literature review of well established methods for gesture

recognition. Following detailed explanations for each technique, we evalu-

ate them based on the requirements we formulated in the introduction. We

find that there are unanswered questions for certain techniques, in partic-

ular the device placement upon the forearm. Based on this, we investigate

electromyography and ultrasound in the subsequent sections.
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Chapter 4:

EMG

In this section, we explore the effect of Electromyography (EMG) sensor

placement on classification accuracy. In our initial study, we expected EMG

to perform worse when placed at the wrist, however our findings showed

otherwise. We hypothesised this was due to motion artefacts in the signal,

created by wrist deformations. We tested our hypothesis using a novel sensing

system based on the combination of EMG and pressure sensing that enabled

us to separate the two signals. We found that wrist deformations picked

up by the pressure sensors, are complementary to EMG sensing. Through

experimentation with the technology and in literature, we identify that

EMG has difficulties capturing hand motions that are continuous, or weakly

performed.

The content of this chapter is mostly work I have published in the Proceedings

of the 2016 CHI Conference on Human Factors in Computing Systems (CHI

’16): "EMPress: Practical hand gesture classification with wrist-mounted

EMG and pressure sensing" [82].

Chapter 5:

Ultrasound

A chapter of two parts. We look at ultrasound to answer one of the questions

from our table of analysis - the variation in performance due to placement

and orientation. We also investigate it’s potential to capture continuous or

weakly performed gestures, that may enable control of continuous values,

or subtly/implicitly performed gestures. We find that while ultrasound is an

ideal technology from a performance perspective, it is massively hindered

by feasibility issues but also importantly, issues that require the use of a

coupling gel.

The content of the former and more prominent part of the chapter is a

revised version of work I have published in the Proceedings of the 2017 CHI

Conference on Human Factors in Computing Systems (CHI ’17): "EchoFlex:

Hand Gesture Recognition using Ultrasound Imaging" [81].

The latter part of this chapter that addresses the gel coupling problem of

ultrasonography is mostly taken from work that I have published in the Pro-

ceedings of the 2017 ACM International Conference on Interactive Surfaces

and Spaces (ISS ’17): "Improving the Feasibility of Ultrasonic Hand Tracking

Wearables" [79].
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Chapter 6:

Infrared

After reflecting upon the necessity sensor coupling to skin, that occurs in

most techniques found in gesture recognition, we find that infrared could be a

method that is not be affected by this. Through our experimentation, we find

that infrared is more robust to weak coupling to the skin and works without

being skin-tight. We also develop a novel sensing approach that increases the

performance of infrared sensing, nearing accuracy levels close to EMG.

The content of this chapter is mostly a revised version of work I have pub-

lished in the Proceedings of the 2017 UIST Proceedings of the 30th Annual

ACM Symposium on User Interface Software and Technology (UIST ’17):

"SensIR: Detecting Hand Gestures with a Wearable Bracelet using Infrared

Transmission and Reflection" [80].

Chapter 7:

Discussion

In this chapter, we present the final revision of the requirements for an ideal

gesture recognition device. Having gained a holistic view of methods and

hands-on experience in some of them, I describe my opinions on the most

promising methods for the future. I advise on future research directions

for each of these techniques, based on our analysis that points out current

weaknesses of each technique. We also identify difficult challenges that lay

ahead in the field of gesture recognition, including robustness issues and

anatomical uniqueness that hampers practical usage.

Chapter 8:

Conclusion
A chapter to briefly concluding all findings in the thesis.
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2
PREREQUISITE KNOWLEDGE: PRIMER ON ANATOMY

2.1 Introduction to Hand Anatomy

The human hand is incredibly dexterous, capable of precisely controlled movements that enable

many of the applications that we use on a daily basis. We owe this to the intricate muscular-

skeletal design that evolution has crafted. This dexterity is part of what make us as humans

unique as a species; in particular we have opposable thumbs that can connect with every other

digit.

This section aims to make the reader familiar with the fundamental bio-mechanics of the

hand and anatomical terminology. This will provide an easier understanding of the techniques

discussed throughout this thesis. This section will begin with an overview of basic anatomical

terminology, necessary for the detailed explanation of the hand and forearm that follows. There

is an overview of the bio-mechanical hand movements that are possible, with an explanation for

how these movements are created. Much of the content here, including images and anatomical

definitions, is relevant information taken from "Gray’s anatomy for students" [31].

It is worth noting that there are always subtle differences in anatomy between people. Though

sometimes these differences can be quite significant. For instance, the palmarus longus (a muscle

in the forearm) is absent in about 15% of the population [110]. Not only are there differences

within and between ethnic populations, there may also be differences in certain individuals

unilaterally rather than bilaterally (one arm different to the other). The implications of this

are that a "one size fits all" device is impractical and as explained in more detail later, creates

difficulties in the gesture detection across people.
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CHAPTER 2. PREREQUISITE KNOWLEDGE: PRIMER ON ANATOMY

2.2 Basic Anatomical Terminology

The following terms describe the location of a particular anatomical part. The terms are in

reference to the left and right of the subject, rather than the observer. In addition, the human in

reference is standing, with the arms facing downwards and palms facing forward. These terms

are taken from "Gray’s anatomy for students" [31]:

• Anterior and posterior. These describe whether the body part is in the front (anterior) or

back (posterior) in relation to the body. For example, the palms of our hands are anterior as

they are facing forwards.

• Proximal and distal. These describe a position that is further (distal) or closer (proximal)

from the trunk of the body. For example, the wrist is proximal to the elbow, and the fingers

are proximal to the wrist.

• Superficial and deep. These describe structures that are further from (deep) or closer to

(superficial) the surface of the body. These are useful for describing the location of muscles

as they are in dense layers within the forearm.

• Medial and lateral. These describe a position that is further from (lateral) or closer to

(medial) the mid-line of the body. For instance, the thumb is located laterally to the other

fingers. This is also used to describe movements of the hand.

• Superior and inferior. These describe positions above (superior) or below (inferior) another

part of the body.

The following terms describe the relevant anatomical tissues needed for explaining the

anatomical structure of the hand:

• Bone. The skeletal system consists of many bones which give structure and form to the

body. The interface between two (or more) bones are sometimes created as joints to allow

different degrees of movement.

• Muscle. Specifically, skeletal muscle, are attached to bones and are capable of strong

contractions that are used to move skeletal elements. There are often groups of muscles,

opposing each other around a joint. Such grouping of muscles are named antagonistic pairs:

when one group contracts, the other relaxes, and vise versa. This is to ensure control of

the moving part both forwards and backwards. The nervous system allows the human to

control the muscle contractions and thus movement of the body (described in more detail in

section 2.4).

• Tendon. The muscles attach to bones with fibrous connective tissue called tendons. As the

muscle contracts, the tendon pulls on the bones, towards the muscles origin. Some tendons
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2.3. MOVEMENTS & STRUCTURE OF THE HAND AND FOREARM

FIGURE 2.1. Basic structural diagram of the hand and forearm. Figure reproduced
from [31].

can be seen protruding from the surface of the skin, which is the underpinning of several

gesture detection techniques.

• Ligament. Ligaments connect bones together at joints. The elasticity and placement of

ligaments restrict the movement of joints.

2.3 Movements & Structure of the Hand and Forearm

The human hand moves due to the way the bones, muscles, tendons and ligaments work together.

The bones give structure and rigidity to the hand. The joints between the bones and the muscles

used to control them determine the freedom of movement of and within the hand.

The hand consists of the central palm, and the digits (fingers and thumb) that are connected

to it (Figure 2.1). The digits themselves have several joints that enable a wide variety of grasps.

The hand is connected to the forearm via the wrist. The wrist is comprised of many bones that

create joints which allow the hand to rotate freely, sometimes the wrist itself is seen as a joint.

The palm does not play a crucial part in the bio-mechanical movement of the hand, because of
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Figure 2.2: A diagram showing a cross section of the wrist. Figure reproduced from [31].

this we will not describe the anatomy of the palm in much detail. The forearm consists of two

bones, the radius and the ulna, which can twist to create rotational movement of the hand and

wrist. Finally the forearm can move around the elbow joint.

The majority of hand movements are created by muscles in the forearm. These are known

as extrinsic hand muscles. Some of the more delicate finger movements and thumb movements

are controlled by muscles located within the hand - intrinsic hand muscles. This point is of

particular interest to techniques that infer gestures using these extrinsic muscles. The muscles

in the forearm transition into tendons which pass through the wrist and into the hand to control

the appendages. Each muscle usually has multiple functions, likewise each movement if often

requires a group of different muscles working together. It is not vital for the reader to know

the exact muscle to movement mapping, and so a less than thorough anatomical overview is

presented. However, the full details are provided below, with a diagram of a cross section of the

wrist, displaying the tendons (and thus also muscles) in Figure 2.2, is here for self-containment

of the thesis.

The following describes the movements of the hand and forearm in further detail, with an

explanation for how the anatomy enables such movement (mostly reproduced from [31]).

2.3.1 Pronation and Supination of the Forearm

The muscles in the forearm enable a twisting motion 2.3. The radius and ulna, the two largest

bones that support the forearm, are able to cross over in this motion. Pronation is movement that

forces the hand to turn with the palm facing downwards. Opposing this motion is supination,
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2.3. MOVEMENTS & STRUCTURE OF THE HAND AND FOREARM

Figure 2.3: Pronation and Supination of the forearm describe a twisting motion. Figure reproduced
from [31].

which results in the palm facing upwards. The joints that allow this movement are the proximal

radioulnar joint (at the elbow) and the distal radioulnar joint (at the wrist). Muscles responsible

for these movements include the supinator, pronator teres and pronator quadratus. Muscles are

normally named in accordance to the type of hand movement that they are primarily responsible

for.

2.3.2 Flexion, Extension, Adduction and Abduction of the Hand

The wrist joint allows the hand to move forwards or backwards about this joint, as illustrated

in Figure 2.4. The forward movement is more accurately known as flexion (to flex), which is

described as a bending movement around a joint that decreases the angle between the adjoining

bones. The opposite of this is known as extension (to extend), which describes a straightening

motion that increases the angle. Sometimes, the joint allows bending both forward and backward.

Such is the case with the wrist joint, flexion then refers to bending towards the anterior side of the

body (the palm - palmar flexion) and extension refers to bending movements towards the posterior
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Figure 2.4: Wrist motions of the hand. Figure reproduced from [31].

side. Flexion of the wrist uses these muscles: flexor digitorum superficialis, flexor digitorum

profundus, flexor carpi radialis, flexor carpi ulnaris, abductor pollicis longus, flexor pollicis longus.

As the names of the muscles suggest, these are used primarily for flexion movements. Similarly,

extension of the wrist uses extensor digitorum, extensor carpi radialis longus, extensor indicis,

extensor digiti minimi, extensor carpi radialis brevis, extensor pollicis longus, extensor carpi

ulnaris.

The joint also enables movement of the hand from side to side, which is used for instance in

Western culture, to wave ones hand to signify "hello" or "goodbye". The anatomical terms for these

movements are adduction and abduction. Hand abduction around the wrist joint, is movement

that pulls the hand towards the side with the thumb, as it is moving away from the body as per

the definition of abduction (still considering the neutral anatomical human posture described in

Section 2.2). This is sometimes known as radial deviation, due to the pulling movement towards

the radius bone. The muscles that perform this movement are: extensor carpi radialis longus,

extensor pollicis longus, abductor pollicis longus, flexor pollicis longus, flexor carpi radialis. The

opposite movement is called adduction, or ulnar deviation, and uses these muscles: extensor carpi

ulnaris, flexor carpi ulnaris, extensor digitorum, extensor digiti minimi.

These four movements enable the hand to rotate freely around the wrist joint with two

angular degrees of freedom, as shown in Figure 2.4. Along with pronation and supination of the

forearm, this covers all the mechanical movements of the hand that are not within the hand

i.e., fingers and thumb. All the muscles listed here belong to the forearm, with tendons that run

through the wrist and into the hand.

2.3.3 Finger movement

The digits of the hand are numbered from 1 to 5, from thumb to little finger (figure 2.5). As a

simplification, the work in this thesis refers to the digits mostly by their names: thumb, index,

middle, ring and pinky/little. Each of the 5 digits of the hand contain several bones, called

phalanges. There is one proximal phalanx, one middle phalanx, and one distal phalanx for each
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Figure 2.5: Number and names of digits of the hand. The bones and joints of the digits are
labelled. Figure edited and reproduced from [31].

digit, except for the thumb which does not include a middle phalanx. The phalanges within each

digit are connected together with ligaments. The palm also contains bones, one for each digit,

called metacarpals.

Fingers have a large range of movement due to the many joints between the phalanges. The

base of each proximal phalanx is connected to the metacarpal bones. The joint at the intersection

of these bones is the MetaCarpoPhalangeal (MCP) joint - more commonly known as the knuckle.

The MCP joint is the predominant joint allowing the fingers to spread apart from each other

(abduction) as seen in figure 2.6. This joint also allows digit flexion. The joints within the digits

beyond the MCP are called the interphalangeal joints. The fingers have two, one nearer to the

knuckle called the Proximal Interphalangeal Joint (PIP), and the one further to the finger tip
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Figure 2.6: A) Finger adduction and abduction. B) Finger flexion and extension at different joints.
Left: flexing around MCP joints, Right: flexing around IP joints. Figure reproduced from [31].

called the Distal Interphalangeal Joint (DIP). The Thumb only has one Interphalangeal Joint

(IP). The digits can flex and extend with numerous degrees of freedom.

As illustrated in figure 2.6, the fingers can flex at different joints individually. Most of the

flexing happens at the MCP and PIP joints, but there is some minor control over the DIP joint.

With the addition of adbuction and adduction of the fingers, this means each finger has a total

of 4 degrees of freedom (DoF) [36]. The muscles that are primarily used for flexing the fingers

are the flexor digitorum profundus that bends the finger around the proximal and distal joints,

and the flexor digitorum superficialis that bends the finger at the proximal joints. The flexor

digiti minimi brevis assists in flexing the little finger. As for extension of the fingers, the extensor

digitorum communis, extensor indicis proprius (for the index) and extensor digiti minimi (for the

pinky). These muscles originate from the forearm, with tendons that pass through the wrist and

up to the fingers. There are however, intrinsic muscles that are responsible for finer control of the

fingers. The lumbricals are intrinsic muscles of the hand, located within the palm, that extend

the IP joints and flex the MCP joints of the fingers. The interosseous muscles are those that

are attached to the fingers themselves. These muscles assist the lumbricals to flex and extend

the fingers, but also adduct (palmar interossei) and abduct (dorsal interossei) the fingers. It is

important to note that this particular movement can only be performed by intrinsic hand muscles

(interossei).

2.3.4 Thumb movement

The thumb is different, and has an additional degree of freedom compared to the fingers. Although

it only has one IP joint between the phalanges that allow flexion/extension and the usual MCP

joint that allows flexion/extension and abduction/adduction; the carpometacarpal (CPC) joint

between the metacarpal and the base of the wrist joint allows further flexion/extension and
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FIGURE 2.7. A) Thumb flexion and extension. B) Thumb adduction and abduction.
C) Opposition of the thumb with the another digit, a pinching motion. Figure
reproduced from [31].

abduction/adduction of the thumb (additional 2 DoF). The thumb therefore has 5 DoF in total.

Thumb flexion is produced by the flexor pollicis longus and brevis. Thumb extension is

produced by the extensor pollicis longus, brevis and abductor pollicis longus. There are some

differences between which muscles control flexion and extension at the MCP vs CPC joint.

Abduction of the thumb at the CPC joint is mainly controlled by the abductor pollicis longus and

brevis; adduction mostly by the adductor; abduction mainly by the adductor pollicis muscle. Some

of these muscles form a group called thenar muscles. These are intrinsic hand muscles which are

located in the palm of the hand, at the base of the thumb. Similar to the intrinsic finger muscles,

these muscles produce finer movements of the thumb relating to abduction, adduction, flexion

and opposition of the thumb.

This concludes the motions of the hand and the muscles used to produce them.

2.4 Muscle Innervation

A muscle is comprised of many muscle fibres that are able to contract and relax in order to

create movement and forces [30]. The initial action that triggers a chain of events that leads to

this contraction begins with a neural impulse from the central nervous system (i.e. the spinal

cord and brain). A nerve impulse is able to propagate through to other neurons closer to the

intended muscle through relay neurons. This impulse is electrical, caused by the movement of

ions (neurotransmitters) in and out of the neuron. When the signal eventually reaches the desired

muscle, the motor neuron that innervates (supplied with neurons) several muscle fibres transmits
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a signal through the neuromuscular junction. In technical terms, the axon of the motor neuron

releases acetylcholine (ACh, the neurotransmitter) which binds to the receptors of the motor

end-plate of the muscle fibres. Once the acetylcholine binds, a channel in the receptor opens up

causing the muscle fibre to depolarise as positively charged ions flow through this channel. Soon

after this depolarisation happens, voltage-gated sodium channels are opened, allowing sodium

ions to enter causing an action potential to spread along the muscle fibres, initiating contraction.

The collection of muscle fibres and the motor neuron that innervates them is called a motor

unit. The action potential that is produced by such a unit is called a motor unit action potential

(MUAP).
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FIGURE 2.8. Motor neuron axon innervation into end plate. Figure reproduced from
[49].
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3
LITERATURE REVIEW

3.1 Wearable Gesture Recognition Methods

This section reviews previous work regarding wearable hand gesture recognition techniques.

Here is listed the techniques that we will review:

Optical - Methods that use direct optical visuals of the hands in order to infer hand pose.

Glove - Sensors that attach to the appendages to track the flexing of joints in the hand.

EMG - Electromyography is a sensing technique that senses the muscle activity using

electrodes, to infer hand movement.

Ultrasound - Ultrasound imaging uses sound waves to image body tissue, including

forearm muscles.

Infrared - Using the superficial nature of the tendons in the forearm, this allows sensing

of the movement using infrared distance sensors.

Pressure sensing - As above, but with pressure sensors.

EIT - Electrical Impedance Tomography is a technique that uses the impedance of body

tissues, which changes between hand poses, as a way of classifying gestures.

Mechanomyography - Movements of the muscles in the hand and forearm produce low

frequency vibrations that can be sensed.

IMU - Inertial Measurement Units can detect movements of the hand and facilitates

gestures recognition in another dimension.
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Gesture detection requires some information of the hand pose. The most obvious way is to

do so visually i.e., with cameras. Much work has gone into capturing hand pose using cameras

[84, 112], which are now able to very accurately track human hands. However, as we later discuss,

vision based tracking solutions are not ideal for mobile hand tacking.

The other obvious way to detect hand pose are gloves with embedded sensors [38]. Although

this method can accurately track the hand pose, instrumenting the hand can inhibit fine or

expert manipulation e.g., small objects, surgery or simply keeping the physical naturalness of

interaction with objects (because the skin may be covered, for example).

Conveniently, the smartwatch provides space to embed sensors in the watch face or strap. In

addition to this, the social acceptance of the placement is not an issue since watches have been a

desirable location for worn devices for many years. This has spurred research into creating new

gesture recognition technology that can fit into this space. The applications of always available

gesture recognition are recent, and so development of this technology is still in it’s infancy.

However, a lot of techniques discussed in the upcoming sections were not designed with this form

factor in mind, but I will cover each of these in detail and analyse it’s potential as wrist-worn

form factor device. The analysis shows that EMG, ultrasound, infrared, EIT and pressure sensing

are all methods that have been shown to integrate with wrist-worn form factors or have the

possibility of being integrated. Towards the end of this section I will compare these techniques

against the original set of requirements listed in the introduction (section 1.4).

3.1.1 Changes in Musculature

Many of the techniques in the literature rely on the basic principle of morphological wrist changes

during hand movement. To explain this more clearly, as the hand changes in pose such as a finger

being flexed or the hand tilts upwards, the muscles and tendons in the forearm that produce

these movements shift around. This shifting can be seen visibly from the surface of the forearm.

Proximal to the elbow, the change in shape of the forearm is created by contracted muscles. But

distally, close to the wrist, the changes are seen as a result of superficial tendon movement. To

illustrate this, figure 3.1 shows the shape of the wrist between two different hand poses. These

changes may be seen clearer in upcoming sections which include sonographic images of the

anatomy, but interpreting these images is somewhat difficult.

The only caveat to methods that rely on this principle is that it is usually only superficial

changes in musculature that can be observed from the surface. This means less information is

available to work with when estimating the hand pose.

There are a multitude of methods to detect these changes as shall be discussed in the upcoming

sections.
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3.2. OPTICAL (CAMERA)

FIGURE 3.1. Morphological changes in the shape of the wrist as a result of changes in
hand poses.1

3.1.2 Gesture Segmentation

A segmentation or delimiter method, as we define here, is a way of determining when a gesture

starts or ends. It may also be used to discriminate between natural body movements and explicitly

performed gestures. Delimiter methods are out of the scope of this work, as it is a large topic of

research in itself. There are numerous works that present techniques to try to segment gestures

to avoid false positive detection, such as using additional sensors as mentioned in Wristwhirl [46]

and Pactolus [23]. Conversely, implicit gesture recognition does not require the use of a delimiter.

3.2 Optical (camera)

Optical methods are based on employing a camera to determine 2D or 3D hand position. The

camera can be sensitive to the visible spectrum but alternatives exist in the infra-red or below. A

review of these methods can be found in work by Rautaray et al. [101].

Figure 3.2 shows possible mounting positions of cameras on the body. As mentioned briefly

at the start of the chapter, there are difficulties when using cameras for gesture detection. To

begin with, vision based hand tracking is suited for stationary applications where there is space

to mount cameras. Cameras attached to the body tend to be conspicuous due to their size. As the

camera points outwards, there is no control of what is recorded beyond the wearer’s hands. This

creates legal and ethical issues using this method [126].

1Reproduced with edits from "Hand shape classification with a wrist contour sensor: development of a prototype
device" by Fukui et al. [42]

2Reproduced from "Effects of camera position and media type on lifelogging images" by K. Wolf et al. [125]
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FIGURE 3.2. Some possibilities wearable locations for body-mounted cameras, including
the chest and on glasses.2

Furthermore, the camera may not always be capturing the user’s hands depending on where

the camera is mounted. For instance, a camera mounted on glasses can only reliably capture

hand pose if the hands are in front of where the user is looking. Even then, the fingers can be

easily occluded by the hands or arms of the user. This issue is also described by Bailly et al.,

where the camera has an inability to capture large and demonstrative gestures [10]. Despite

this, there is work that successfully used computer vision in a wrist mounted wearable to track

limited movements of the fingers [65]. The system, Digits, used an IR camera attached to the

wrist to sense the distance to the fingers. The system does have drawbacks, however.

Firstly, the sensor is worn on the wrist and as with all optical approaches requires direct line

of sight to the fingers. In order to achieve this, the camera must protrude far out from the wrist to

gain line of sight. This protrusion is significant enough to be considered too large for integration

with current wrist-worn form factors. This is a fundamental problem with the technology and not

of the specific implementation.

Secondly, the device suffers from occlusions by the hand itself. If the hand is tilted in certain

ways, the fingers become occluded. If the thumb is opposed, it can also occlude fingers. Some of

these hand movements may be vital to a gesture set.

For these reasons, we cannot consider optical methods to be mobile yet, without some revolu-

tionary technology that can avoid the protrusion of a camera or occlusion problems.

3.3 Glove

Gloves hinder interactions with objects due to the physical encumbrance which either restricts

freedom of movement or the additional size. An exemplary scenario where this is an issue is

in space exploration. The glove of the space suit creates a barrier that inhibits human sensory

perception [109]. Gloves may also create additional fatigue due to restricted freedom or extra

strength required to move the fingers [118]. Sorenson et al. attempt to develop an unobtrusive
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glove that will attempt to "provide a suited crewperson with as close to nude-body hand dexterity

as possible".

Despite the unobtrusive nature of gloves, they are extremely accurate for hand tracking, and

are sometimes viewed as the de facto method for attaining the ground truth of the hand pose for

which other methods can compare against.

Gloves can use a variety of sensors in order to measure finger and wrist movements, from

accelerometers [66] to flex sensors [71]. They are also sometimes used in conjuction with computer

vision, where the gloves may have markers to aid tracking [122].

3.4 Electromyography

3.4.1 Fundamental Concepts and Example use in Healthcare

As explained in section 2.4, muscle contraction is initiated by a complex series of events that

propagates a signal from the motor neuron to an eventual action potential that spreads across

the muscle. This action potential can be measured using electrodes to monitor muscle activity.

Electromyography (abbreviated as EMG) is the name for this technique. EMG is used for a

variety of different purposes, but most applications belong to medicine. It can be used to analyse

muscles for abnormalities such as neuromuscular diseases. More relevant to this thesis is the

use of EMG for controlling prosthetic devices - in particular prosthetic hands controlled using

EMG to monitor residual forearm muscle activity.

The electrodes that are used for measuring the electrical impulses can be either invasive,

using needles to probe specific muscles. Otherwise they make contact with the skin above the

muscle in a non-invasive manner. This method is called surface EMG (or sEMG) and is the type

we are mostly concerned with in this work, since the invasive methods are beyond consideration

in the practical design of wearable EMG systems. Surface EMG electrodes need good electrical

conductivity. Electrically conductive gel is usually used to achieve high levels of conductivity

needed for good signal to noise ratio. Often times adhesive pads are used in conjunction with gel

to maintain good mechanical contact.

A simple and typical setup for an EMG measurement of a single muscle is shown in figure 3.3.

In this setup, two electrodes are arranged to take bipolar readings of the muscle activity. In this

arrangement, the differential of the signals from each electrode is amplified, with respect to

a reference electrode which is placed elsewhere on electrically inactive tissue. The other type

of setup is monopolar, where there are numerous electrodes and only one reference electrode.

Measurements are taken between the reference electrode and each of the other electrodes

individually. The advantage of bipolar is that it eliminates the common noise in the electrodes

and thus have better signal to noise ratio. An example EMG signal that one can expect to see for

large muscle contractions is shown in figure 3.4. The magnitude of the signal corresponds to the

intensity of the muscle contraction.
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FIGURE 3.3. EMG bipolar setup on the forearm. Reference electrode not shown.

The original signal is minuscule, in the order of a few millivolts [69] and sometimes even as

low as a few microvolts. This means that the signal amplification needs to be very high, by a

factor of at least 500. This makes the signal quite noisy due to the amplification of noise leaking

in from the surrounding environment. Notch filtering to cancel mains noise is generally avoided

due to destroying signal information. To amplify the signal by this amount requires a lot of energy.

Portable EMG systems have been designed before but require large batteries in order to operate

for long periods of time [85].

3.4.2 Gesture Recognition using EMG

Recently, EMG has been proposed as a way to recognise hand gestures using a wearable EMG

device worn on the forearm.

From as early as the year 2000, EMG has been proposed as a method for interaction with

computers [11, 27]. They were initially proposed as an aid for people with reduced motor functions

or other disabilities. However, the applications for gesture control grew and the increased

motivation for a gesture detection device spurred further research in other areas, including HCI.

Saponas et al. realised the potential that EMG could provide for enabling always-available

input for computers [106]. This would be especially useful in interactions with wearable computers

as discussed in section 1. With this vision in mind, they were one of the first to consider the form

factor of EMG wearables and designed a small band to fit around the forearm.

However, research aiming to improve EMG has mostly shied away from investigating the

size and placement of such devices. Instead, large and dense arrays of EMG electrodes, better
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FIGURE 3.4. An example raw EMG signal from two separate contractions of the bicep.

signal acquisition circuits and state-of-the-art machine learning has improved the resolution and

accuracy of hand pose detection, at the expense of practicality [7, 45]. However, this research

does demonstrate excellent recognition rates for finger and thumb movements [7] and for wrist

movements [44]. Large and dense sensor arrays may be more appropriate for integration into

clothing than wearable devices [39]. As an example of this, NASA developed a wearable band for

astronaut suits made of 17 electrodes and accelerometers [127]. This wearable represents a way

of enhancing communications with other astronauts or vehicles.

EMG tends to suffer from a trade-off between accuracy and the surface area used for mea-

surements. Whilst EMG proves to be highly effective for a high number of electrodes, it performs

poorly under placement and surface area restrictions, making it awkward to fit into existing

wearable device form factors such as watch straps. This is a result of the low number of muscle

cells in the wrist compared to the proximal forearm (near the elbow). Additionally, the tendons

in the wrist are more difficult to discriminate as they are more tightly packed. Thus there are

increased challenges in performing EMG sensing of hand muscle movements by sensing at the

wrist.

Despite this, research has shown that EMG placed at the wrist can also contribute information

for hand pose [21, 90]. However the electrodes used in those setups also cover other parts of the

forearm, so it is yet unknown how effective EMG is used only at the wrist.

The use of EMG sensors in practical wearable scenarios typically also requires calibration in

order to account for slipping watch straps and to align sensors with the anatomically optimal

detection points. This is an issue primarily for cross-session device placement shifts. While we do
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not consider the issue of calibration in this paper, shift compensation algorithms [7] and similar

methods [32] are recent attempts to mitigate this issue.

High signal quality is difficult to achieve in sEMG. Electrodes are usually affixed to the

patient/users skin with adhesives and conductive gel. However, this presents a serious issue as

the recurring application of gel and adhesive is neither practical for regular use or comfortable.

As a result, ’dry’ electrodes (without gel or adhesive) are currently being developed to alleviate

this problem. Recent designs for dry electrodes have comparable accuracy to wet electrodes, and

are a more practical alternative [88].

Smith at al. demonstrated that EMG can be used to detect continuous angle of the fingers

[117] with an NRMSE of 11%. However, the nature of the signal creates particular difficulties

regarding continuous angle detection, and so there have been very few attempts to challenge this

task using EMG, and is therefore currently more suited to discrete gesture recognition.

3.5 Ultrasound

3.5.1 Fundamental Concepts and Example Usage in Technology

Sound is a mechanical wave that works with the compression and rarefaction (expansion) of the

particles in the medium the wave is travelling through. This compression and rarefaction can

happen at different frequencies. In air, humans are able to hear frequencies from around 20Hz to

20KHz [104]. Sound above this upper threshold of 20KHz is considered ultrasonic, and is termed

ultrasound. The higher the frequency of sound, the longer the wavelength. Thus, ultrasound has

a very short wavelength. Sound is usually created by a source that vibrates, which propagates the

vibration into the surrounding medium, like a vibrating diaphragm from a speaker that transfers

the energy into air. Commonly in applied acoustics, piezoelectric materials are used to generate

and receive sound waves. Piezoelectric materials are transducers of energy: they accumulate

electric charge in response to mechanical stress, but also in reverse they generate sound waves

when an electric field is applied.

Sound waves can be used to detect objects at a distance, by analysing the echoes that return

from a short pulse of sound. This can be extended by using multiple emitters and/or receivers to

locate the position of objects in 2D or even 3D. This technique is called echolocation and can be

seen in nature. The most notable of animals to use echolocation are bats. The basic principle of

echolocation is shown in Figure 3.5. Nearly a century ago, we also began utilising this technique

to navigate under water (sonar) . Further research in this area paved way for imaging objects in

detail using high frequency sound, finding applications in non-destructive testing and medical

diagnosis. The effectiveness of this technique spurred more research from industry, creating more

complicated imaging algorithms at higher frequencies. Using higher frequencies in ultrasound

imaging produces more detailed images. This is because the shorter wavelengths are able to

reflect off smaller objects (due to the diffraction limit). Hence, ultrasound is used for imaging,
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Call Echo

Left ear
Right ear

FIGURE 3.5. The working principles of echolocation. By emitting a short pulse of sound
and receiving the echo with two ears spaced apart, the bat is able to locate the
reflecting object.

FIGURE 3.6. A 3D ultrasound scan of a fetus at 17 weeks.

which is why the technique is named ultrasound imaging (or ultrasonography).

The latest ultrasound imaging machines can now provide extremely detailed images of objects.

The most commonly known application for ultrasonography are for scanning the developing

fetus during pregnancy. Ultrasound imaging machines are now so advanced, they are capable of

creating 3D images (Figure 3.6).

However, the use of medical ultrasound imaging extends far wider, including scanning of
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FIGURE 3.7. Medical ultrasound imaging equipment, showing the probe, driving circu-
ity, physical control interface, computer and monitor.

organs such as the heart, or even the eyes. The most relevant use of this technology for our

purposes is musculoskeletal imaging, which can image the tendons, muscles, ligaments, nerves

and bones. This is commonly used by radiologists in assessing bones, joints and soft tissues for

disorders.

The machines are usually comprised of a probe (synonymous with a transducer in this context),

where the piezoelectric elements are contained within (Fig 3.7). These elements create focused

ultrasonic beams into the desired medium and also receive echoes. The probe has different shapes

and sizes depending on the application, but is usually shaped so that it can be held comfortably

in one hand by the operator. The analogue signals that are collected by the probe are the sent

to a signal conditioning and processing unit to sample the signals. The data is then sent to a

computer to process in order to create images. The piezos are also excited by voltages generated

from the same unit the probe is connected to.

The signal conditioning and sampling unit is very complicated. This is because the signals are

very low in voltage, and therefore need accurate low noise amplification. Ultrasonic signals for
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FIGURE 3.8. A flat, linear transducer/probe used for 2D ultrasound imaging.

medical ultrasound are usually beyond 3MHz, which in order to capture requires high precision

and fast sampling rate analogue to digital converters. The circuit to drive the piezos in order to

create specific beam patterns are also complex, requiring precise, sub-microsecond timing. Modern

ultrasonic imaging probes use arrays of hundreds of piezoelectric elements [83], which scales the

size and complexity of the driving and sampling circuitry proportional to the number of elements.

So traditionally, the driving and sampling circuits are separate to the probe as they often cannot

fit within. This has not been a limiting factor for medical ultrasound applications where patients

come to the clinician’s office for a diagnosis. However, point-of-care ultrasonography has recently

been raised as an important application [86]. The necessity for a small and portable ultrasound

imaging device has brought improvements to the design of such systems, and with improvements

in electronic fabrication technology, it is now possible to integrate these circuits within the probe.

Furthermore, the data can be processed using the smartphone as processors in them are more

than capable of performing the imaging algorithms.

3.5.2 Using 2D Imaging for Discrete Hand Poses

Since gestures produce movements of the muscles and bones within the wrist (section 2.1, sec-

tion 3.1.1), musculoskeletal ultrasonography can be used to predict gestures by analysing this

movement. There are many examples of prior work that proposes to use this technology for con-

trolling prostheses and other clinical applications. Zheng et al. coined the term "sonomyography"

to describe the use of ultrasound to sense muscle activity [133].

Recent work by Akhlaghi et al. has demonstrated that ultrasonography can detect discrete

gestures very accurately, with an classification accuracy of 91% for 15 gestures [3], rivalling

the accuracy of other techniques such as EMG while using less surface area. They used image

processing algorithms to do a pixel-wise comparison of brightness values for a series of images

a video. The aggregation of these image differences produces an activity pattern of general

movement of musculature for each gesture. They then used these activity patterns with a nearest
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FIGURE 3.9. Cross-section of the forearm muscles and corresponding 2D ultrasound
image. The main muscles and their functional compartments are labelled (refer
to section 2.1 for anatomical terms). The trapezoidal shape on the left image
illustrates the view of the probe, when the probe is placed on top side of the
forearm, facing downwards and perpendicularly to the axis of the forearm.3

neighbour classifier in order to predict gestures.

An earlier piece of work from the same group focused entirely on differentiating between

different digits, and estimating the movement speed of each digit individually [116]. They were

motivated to study ultrasonography due to the inherent limitations of surface EMG: A lack

of specificity for deep muscles, such as the flexor digitorum profundus. This has implications

for identifying fine-grained finger motions that use combinations of the FDP and FDS to flex

different joints of the fingers as explained in 2.1. Since deeper sections of the anatomy can be

visualised with ultrasonography, it is therefore theoretically possible to identify fine-grained finger

movements that flex around different joints. Although they did not try to classify such fine-grained

movements, Sikdar et al. should be commended for their identification that ultrasonography

could be a potential solution to this problem.

Many variations of work on ultrasonography for inferring hand poses exist. While the concept

is roughly the same, different imaging processing and machine learning algorithms are explored.

For instance, another group of researchers used an optical flow algorithm to determine the

movement of the extensor muscles [113]. Ortenzi et al. conducted a comparative study of features

and classification methods on 10 different hand poses [94]. Further to this, they were able to

estimate different gripping forces.

3Reproduced from "Real-time Classification of Hand Motions using Ultrasound Imaging of Forearm Muscles" by
Akhlaghi et al. [3]
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3.5.3 Estimating Hand and Digit Angles Continuously

However, ultrasonography is not restricted to recognising only discrete gestures or the strengths

of them. The significant advantage of ultrasonography is the capability to determine precise

continuous tracking of hand or digit flexion. In simpler terms, ultrasonography visualises the

movement of muscles, and this movement correlates linearly to the amount of bending for hands

and fingers. This is an aspect of hand tracking that EMG has particular difficulties as is it

described in section 3.4 on EMG.

In vivo experiments (performed on living human beings) by Korstanje et al. demonstrated

that this technique can be used to continuously track tendons in the wrist [70]. A "speckle" is used

to describe the pattern in the ultrasound image that is unique to different anatomical tissues, this

is different from properly imaged anatomical landmarks with a clear outline, such as interfaces

between tissues or bones. By tracking the speckle that the a particular tendon produced, they

were able to track the position within an average error of 0.3 mm (1.6%) using a block matching

algorithm.

Castellini et al. estimated continuously changing finger angles by analysing ultrasonic images

of the forearm [18] [19], obtaining a normalised root mean square error (NRMSE) of ∼2%. This

technique was also extended to estimate fingertip forces [47]. They captured ultrasound images

at the wrist and divided them into regions. Then, the features from each region were used in a

linear regressor to establish a relationship between the features and the angle or force of each

finger. In more recent work, it was shown that it is possible to recognise 10 different hand poses

and grasps with 80% accuracy, and also 3 levels of force for 4 different grasps (a total of 12

"gestures") with 60% accuracy [94].

3.5.4 Using Non-Imaging Methods

Due to the complexity of ultrasound imaging machines, it may be favourable to use a simpler

system. The device could have fewer piezoelectric elements, leading to a lower resolution that

may be sufficient. Such a system would use less power and might integrate easier with wearable

devices due to simple circuitry and decreased costs.

Another way to mitigate complexity issues would be to use a simpler scanning mechanism.

An A-scan is ultrasound terminology for one or several one-dimensional scans, rather than the

2D cross-sectional scans talked about in the previous section. Chen et al. demonstrated that

A-scans are in fact capable of tracking the opening and closing of the hand continuously, with an

RMS tracking error of 12.9% [22]. They differentiated this technique with their previous work

using 2D ultrasonography (sonomyography [133]), by naming this method 1-D sonomyography. In

fact, this work used only a single element piezoelectric transducer but was still effective. Indeed,

work by [55] expanded on this work by using 8, 5MHz transducers, each pulsing and receiving

individually. Their study on 10 amputees showed 0.852±0.04 (r2 = 72%) mean correlation with

the training set for all 5 digit flexions/extensions.
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Comparisons between EMG and 1D sonomyography were favourable for the latter in detecting

continuous wrist flexion [51] and hand grasping force [52]. For the moment, 1D sonomyography

is an appropriate method to detect a reduced set of gestures using a simpler system. It provides

limited information and lacks the possibilities offered by modern phased arrays of ultrasound

transducers for more detailed imaging.

Mujibiya et al. presented a device that is capable of detecting arm grasps (grasping ones

own arm with the other hand) and other on-body touch interactions, using a band of ultrasonic

transducers around the forearm and fingers [87]. This device has the advantage of working at

much lower frequencies and with fewer transducers than imaging devices, but the drawback is

that it can only detect interactions when one hand is touching the arm of the other. However,

detecting hand movements involving only one hand is a requirement for certain situations [64].

A technique called vector doppler imaging is an advanced technique that can be used simulta-

neously with regular 2D imaging. This provides information about the movement of different

fluids or tissues in the frame of the image. Especially relevant to our goal is tissue doppler

imaging, which can provide precise muscle or tendon velocities at different points in the image

[37]. This is a more direct way of measuring muscle movement and alleviates the need to process

the images to estimate the movement. The hardware required to do this is not a lot more than

what is already contained in regular 2D imaging apparatus. Therefore, the system suffers from

the same size and complexity issues mentioned in section 3.5.1.

3.6 Infrared

3.6.1 Fundamental Concepts and Example Usage in Technology

Infrared (IR) is a kind of light that is mostly invisible to naked eye. It refers to light with a

specific range of wavelengths that are longer than that of visible light (7̃00nm), but shorter

than radio waves (1̃mm). A more technically accurate term is infrared radiation, as it is in fact

electromagnetic radiation. However, the term IR light is used loosely because of the similar

properties to visible/actual light at similar wavelengths. IR with wavelengths near to visible

portion of the electromagnetic spectrum is termed near-infrared (NIR). NIR has wavelengths

from around 750nm to 1400nm [15]. A typical application of NIR is for imaging in the dark:

sources of infrared illuminate the scene and the reflections can be captured using a camera that

is sensitive to NIR. It can also be used to roughly estimate distances between objects: the amount

of reflected infrared radiation from an object in close proximity to an emitter can vaguely infer

the distance to the reflecting object. This principle is illustrated in Figure 3.10. A pair consisting

of an emitter and receiver of light adjacent to each other is known as a photoreflector. Usually for

photoreflectors, the emitter is a Light Emitting Diode (LED) and the receiver is a photodiode.

As the distance between an object and a photoreflector increases, the amount of reflected light

received by the photoreflector decreases due to the inverse square law for light. This law states
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FIGURE 3.10. Proximity sensing using an IR emitter and receiver.

that the intensity of light is inversely proportional to the square of the distance from the source.

This technique is commonly employed in mobile phones to detect the proximity to the users head.

This is useful for when the user picks up the phone to call somebody, the sensor detects this and

turns off the display to save battery and avoid undesired touch input.

3.6.2 Gesture Recognition using Infrared

The deformations of the wrist shape during gesture performances (as mentioned in section 3.1.1)

can be measured using this IR proximity sensing technique. A prime example of this is work from

Fukui et al. in 2011 [42]. Figure 3.11 shows the design of their prototype device that can accurately

sense the deformations of the wrists contour. The device consists of 150 IR photoreflectors, which

each sense distance to the skin. As the wrist deforms differently between gestures, these distance

measurements also change. The deformations are fairly consistent each time the gesture is

performed. This makes it possible to use machine learning techniques on this data in order to

classify gestures. Indeed, the authors in this example used a K-nearest neighbour classifier to

distinguish between 8 hand gestures with 70% accuracy. More recently, Muhammed et al. used

the same approach for rehabilitation and prosthesis control purposes [53]. They were able to

detect both finger flexion and wrist motions. They used the term "Optomyography" to describe

this method.

A current issue of this particular style of device are that they have been designed so that there

is a significantly large gap between the sensors and the skin. This means that integrating this

sensor technology in a smartwatch wrist-band is difficult, if not obviously impractical. Current

state of the art using this technique has also shown much worse classification accuracy for a

4Reproduced from "Hand shape classification with a wrist contour sensor: development of a prototype device" by
Fukui et al. [42]
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FIGURE 3.11. Fukui et al. created a wrist band consisting of 150 photoreflectors to
detect wrist deformations. 4

FIGURE 3.12. The photoreflectors measure distance to the skin, which changes as the
wrist deformed during gestures.

smaller range of gestures (70% for 8 hand gestures), compared to other techniques such as EMG

(27 gestures with 90% accuracy [7]) or Ultrasonography (91% for 15 gestures [116]). However,

this technique does have the advantage of having much simpler hardware which makes the

device less expensive.

Using the same infrared proximity sensors, Gong et al. took a different approach that allowed

them to accurately sense hand abduction/adduction and flexion/extension [46] (i.e. the entire

range of rotation of the hand around the wrist joint). In their approach, they instead aligned

the sensors so that they were parallel to the forearm, faced towards the hand. The distance

measurements could then be used to infer the rotational angle of the hand. They demonstrated

it’s use for discrete gestures and 2-DoF continuous input. Interestingly, these two different

approaches are not mutually exclusive. They may be used to complement each other, although

this has not yet been investigated.
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FIGURE 3.13. Image captured by an IR sensitive camera. A source of IR behind passes
diffusely through the hand, highlighting the veins.

3.6.3 Transmission of Infrared Through Flesh and Diffuse Optical
Tomography

We have so far discussed the use infrared to sense distance using reflections. But as a matter of

fact, some wavelengths of near-infrared penetrate through human flesh. This effect can be seen

with a simple setup: an infrared camera and IR LEDs placed behind a hand (Figure 3.13). IR

interacts with anatomical parts differently. For instance skin, bone and muscle tissue is largely

transparent to NIR, but blood has a different absorption coefficient which mostly absorbs the

IR. This is why in the photo, the veins can be seen, as the haemoglobin in the blood absorbs

IR. Furthermore, haemoglobin that is oxygen bound has a different absorption rate of IR to

haemoglobin that is not carrying oxygen. This is in fact the basic principle of pulse oximetry

(a method monitoring oxygen saturation). Functional NIR Spectroscopy (fNIRS) also uses this

principle, albeit in a much more complicated manner, in order to assess brain activity. These

methods are convenient as they are external non-invasive equipment. Additionally, IR is non-

ionising radiation and is therefore safe to use.

Diffuse optical imaging (DOI) is an advanced method of imaging that utilises these optical

properties of NIR to create scans of the human anatomy. These scans can provide information

about the anatomy, or functional information as fNIRS provides. Of relevance to research in this

thesis are anatomical scans produced using diffuse optical imaging, such as work by Zhao et al.

[132]. Figure 3.14 shows a scan of a humans lower left leg. In this scan, the bones can be clearly

distinguished from the surrounding muscle tissue. This method can be used tomographically to

produce 3D scans. To my knowledge, there is no previous research that suggests using DOI for

interaction with computers or prostheses.
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FIGURE 3.14. A scan of a human lower leg, using time-resolved NIR diffuse optical
imaging.5

3.7 Pressure Sensing

Deformation of the wrist shape (section3.1.1 can also be sensed with pressure sensors. Dementyev

et al. presented WristFlex in 2014 which uses 15 pressure sensors around the wrist and a Support

Vector Machine (SVM) to classify five pinch gestures with an average accuracy of 80% [29].

Dementyev et al. demonstrated the energy efficiency of the system, measuring an average

sensor power consumption of 60.7 µW. Like the infrared technique, this device is designed to be

worn around the wrist where it is effective at picking up small tendon movements.

The actual sensors that were used in this work were force sensitive resistors (FSR). That is, a

force that is exerted upon the FSR changes the resistance of it. They consist of a thin conductive

polymer, which can be screen printed. It’s thickness and screen printing option enables easy

integration with wearables such as watch straps.

3.8 Electrical Impedance Tomography

[Throughout the course of my PhD, Electrical Impedance Tomography (or EIT) was published

[130]. For this reason, it is not mentioned in my early work, predominantly EMG]

Electrical impedance tomography is a well known medical imaging technique that has recently

been applied to hand gesture recognition. The device that Zhang et al. showed in [130] used 8

electrodes, in tight contact with the skin. By measuring the electrical impedance between each

pair, they were able to reconstruct a very vague image of the musculature within. They went on

to improve the resolution of the device in [131]. In a similar manner to the wrist deformation,

hand gestures create changes in the musculature of the forearm. This allows them to recognise

5Reproduced from "Time-resolved diffuse optical tomographic imaging for the provision of both anatomical and
functional information about biological tissue" by Zhao et al. [132]
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FIGURE 3.15. Zhang et al. created a wrist band consisting of electrodes and measuring
the impedance’s between them to detect wrist deformations. 6

11 discrete hand gestures with a high accuracy (94.3%), however continuous tracking has not

been tested yet.

3.9 Mechanomyography

Mechanomyography (abbreviated to MMG) is a technique which records vibrations of the muscle

fibres after contraction, which oscillate at their resonant frequencies and is characteristic of a

specific muscle’s activity [93]. Although mechanical vibrations of this kind do produce sound, it is

important to note that it is not an imaging technology like ultrasonography. Mechanomyography

supports prosthesis and switch control since the placement of the sensors does not have to be

precise and the change in the skin impedance due to sweating does not affect the performance [60].

Although this technique uses sound, it is not an imaging technique and has been under-explored

within the HCI community (with the exception of [128]) despite its simplicity in hardware and

robustness to sensor placement or skin condition. Currently, studies thus far do not show high

classification rates for a range of gestures yet. Because this technology has not yet matured, this

will not be considered as an established method for analysis in the next section.

6Reproduced from "Tomo: Wearable, Low-Cost, Electrical Impedance Tomography for Hand Gesture Recognition "
by Zhang et al. [130]
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3.10 Inertial Measurement Units

Inertial Measurement Units (IMU’s) are units that contain accelerometers, gyroscopes and mag-

netometers. It is possible to accurately track the position and orientation of a device using these

sensors. IMU’s can provide data to enhance gesture classification [127]. However, data collected

from a wrist-mounted wearable can’t be used to detect rotations about the wrist joint, because

the hand can rotate separately to the forearm. Many gestures change meaning significantly

based only on localised wrist rotation, for example the difference between pointing gestures in

different directions, or the difference between a ’thumbs up’ and a ’thumbs down’. Researchers

have addressed this issue by placing accelerometers on the hand in rings or other hand-mounted

wearables [50], but this requires additional hardware over a single wrist-worn wearable. Wrist-

mounted IMUs can detect arm movement in a wider coordinate system, and can help to detect

supination and pronation in the forearm but it is still difficult to differentiate between rotation of

the whole arm and forearm, as the locally measured movements are very similar.

Although IMU’s can be used to facilitate the position and orientation of a device, it has very

recently been shown that it can in fact detect gestures. With a high-frequency accelerometer it

was possible to sense gestures of high kinetic energy (i.e. pinching, flick, snap, wave up) [74]. Also,

using the sensors integrated in a commercial smartwatch it was possible to detect 5 gestures

with 87% accuracy [123]. This is an inexpensive and easily available alternative, but the gesture

set and accuracy these works have demonstrated are very limited, and requires high consistency

in the way they are performed. Due to the infancy and somewhat limited use of IMU’s in hand

gesture detection, we will be leaving this technology out of the analysis too. However, IMU’s can

facilitate the detection of gestures that relate to the world spatially. Because of this, most of the

work in this thesis is geared towards detection of gestures that are iconic or representational.

This requires detection of the hand pose, which IMU’s struggle to detect based on past work.

3.11 Analysis of Gesture Recognition Techniques

Having gathered an overview for the main established methods for hand tracking / gesture

detection, we will now attempt to analyse these with respect to the baseline requirements listed

in section 1.4: Mobility, placement & size, accuracy & range of gestures and complexity.

3.11.1 EMG

Mobility Wearable EMG devices have been created in the past [72, 85]. The circuitry can

be complicated and the amplification requires significant amounts of power. This scales in

proportion to the number of EMG channels used. The "Myo", developed by Thalmic labs, is

a wearable EMG device worn around the proximal forearm. This device uses 8 channels

and can reportedly operate for the duration of a whole day [73].
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Placement & Size The placement and number of EMG electrodes can be varied. Per-

formance increases with number of electrodes, at the cost of practicality due to a larger

surface area. Placement at the wrist is suspected to perform worse due to less muscle mass.

Previous work has shown EMG to work in a small band [106].

Accuracy & Range of Gestures The range and accuracy is similarly expected to in-

crease proportionally to number of electrodes. Few electrodes can only recognise a few

gestures but arrays of hundreds are able to detect gesture sets that represent a large range

of human hand motions (still discretised) [7].

Complexity The acquisition circuitry can be complex due the low amplitude bio-signals

that need amplifying without introducing noise. The complexity also increases with the

number of EMG channels.

3.11.2 Ultrasound

Mobility Portable ultrasound imaging systems have been developed, but they are still too

large for integration with wearable form factors. This is partly due to battery requirements

and circuit board space.

Placement & Size The amount of surface area that the probe of the ultrasonic imaging

device occupies is actually small. The sensor is usually designed to be long and thin, which

can match the form factor of a wrist-band quite well. The placement of the probe can vary a

lot. It is not yet known which placement is best, but Castellini et al. have found it to be

effective at the wrist [18]. The trade-off of accuracy vs location is still unknown.

Accuracy & Range of Gestures Previous work has demonstrated superb range and

accuracy [3].

Complexity This is the most complicated of all systems. As with EMG, complexity scales

with the number of piezoelectric elements. However, there are several differences. Firstly it

requires a high number of elements to attain an image at all. Secondly, the ultrasonic signals

are much more difficult to detect than electromyographic signals, requiring complicated

receiving circuitry. Unlike EMG, beam-formed ultrasonic signals must also be produced

with the array which adds another layer of complexity.

3.11.3 Infrared

Mobility This technique is highly mobile due to low power and small form factor.

Placement & Size Devices created using infrared have had a particular focus on weara-

bility and the form factor typically tends to be wrist-band shaped. It is therefore an ideal
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technology from a portability perspective. Have been tested primarily on the wrist due to

visible changes of the tendons.

Accuracy & Range of Gestures The range and accuracy tends be poorer than other

methods. This is due to mostly observing changes from the surface of the forearm, where

deeper muscle movements go largely unnoticed. The signals are also weaker and harder to

correlate with muscle movement.

Complexity Past designs for these systems have been very simple, only measuring re-

flected light intensity.

3.11.4 Pressure

Mobility Similar to infrared devices, this is a highly mobile technique. Power require-

ments are potentially lower than infrared.

Placement & Size As with infrared devices, they are usually designed with mobility in

mind and are wrist-band shaped [29].

Accuracy & Range of Gestures The range and accuracy is again poor for pressure, with

them both being an indirect method for measuring muscle movement through changes in

wrist shape.

Complexity Device complexity is similarly simple, only requiring measurements of resis-

tance.

3.11.5 EIT

Mobility The second iteration of the device Zhang et al. produced showed that it was

possible to integrate the electronics into a small size [131]. The power consumption of the

device is also low. These factors make the device very portable.

Placement & Size The device has been tested at the wrist. As above, the size of the

device is very small.

Accuracy & Range of Gestures Their prototype demonstrated good accuracy for a range

of hand gestures, somewhere between infrared and EMG.

Complexity The algorithm to reconstruct images is complex, but on the other hand, the

hardware is relatively simple.
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3.11.6 Optical

Mobility Optical systems tend not to be designed with mobility in mind. However, some

wearable form factors have been designed (on wrist and glasses).

Placement & Size As explained in section 3.2, the protrusion of the camera makes it

conspicuous as a wrist-worn device.

Accuracy & Range of Gestures This is one of the best methods for real-time full hand

tracking. The only drawbacks (ignoring ethical and legal issues) being occlusion from

other objects or ones self. This is especially true for wrist-worn systems where the palm

of the hand usually occludes view of the fingers. Because of this, the range of gestures is

diminished.

Complexity Depending on the hardware used, the system can be very simple. The al-

gorithms can also vary from very complicated to very simple. Although in order to gain

high fidelity without markers on the hands, it is necessary to use sophisticated algorithms.

For practicality, markers on the hands should not be considered, and therefore complex

algorithms need to be employed in a wrist worn form factor.

3.11.7 Glove

Mobility Simplistic sensing mechanisms allow for a small computer to be embedded

within the glove. It is therefore adequately mobile.

Placement & Size This is standard, but the thickness can vary, which affects the encum-

brance of the glove. They are almost certainly obtrusive given that it can hinder everyday

interactions with other objects.

Accuracy & Range of Gestures The range and accuracy of these methods are perhaps

on par with optical methods. The advantage of this method is that it is not affected by

occlusion.

Complexity There a multitude of different sensing technologies used in glove form factor

hand trackers. Most of them tend to be simplistic, for example using flex sensors. These

require low sampling rate analogue signal acquisition units which are trivial.

3.12 Summary and Further Analysis

A summary of the analysis is shown in table 3.1. For the sake of brevity, fidelity encompasses both

accuracy and range of gestures. There is a clear overlap between the mobility and complexity

requirements. This is because they have similar factors such as circuit size and complexity, which

increases the battery power required. As stated previously, some of these factors are likely to
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Technique Mobility Placement & Size Fidelity Complexity
EMG Battery concerns Variable Good Variable

Ultrasound Improving but still poor Variable Very good Very complex
Infrared Highly mobile Thin & wrist Poor Very simple
Pressure Highly mobile Thin & wrist Poor Very simple

EIT Highly mobile Thin & wrist Average Fairly complex
Optical Can be mobile Wrist, but obtrusive Limited* Fairly complex
Glove Highly mobile Obtrusive Excellent Simple

Table 3.1: A summary of the analysis of established gesture recognition techniques, with respect
to the initial requirements. *The range of gestures are poor at the wrist.

improve in future. Consequently, a reduction in the complexity of the device should also facilitate

device mobility. The same logic should apply to finding ways to manufacture integrated chips to

reduce size and power requirements of devices.

The optical and glove methods are both inherently obtrusive methods that do not conform

to the ideal form factor we initially set out to investigate. For these reasons, we will be largely

ignoring them for further exploration, but acknowledging the supreme accuracy for full hand

tracking that these devices enable. The ultimate goal of this thesis is to explore methods for

tracking the hand accurately in a wrist-worn form factor, with a resolution that matches those of

optical and glove devices. Work in this thesis achieves steps towards this goal in two ways: by

improving the effectiveness of existing hand trackers at the wrist, but also finding innovative

improvements to those sensing methods on a hardware level, all while still considering the

practicality.

The infrared and pressure methods are near identical in terms of how well they fit the

requirements, with subtle differences mentioned before this summary. Electrical impedance

tomography (EIT) is also similar to these techniques but has demonstrated better range and

accuracy of gestures. As it stands, these three technologies are the only ones that can currently be

considered to satisfy the primary concerns of mobility and placement. It is unfortunate that these

methods do not show the same level of tracking fidelity that EMG or ultrasound demonstrate.

EMG and ultrasound methods found in literature vary in placement and size, significantly.

The fidelity of which varies with respect to the placement and size, but is generally much better

than infrared or pressure. It is uncertain whether using EMG at the wrist is a possibility, or even

if it still provides a decent gesture recognition accuracy. Ultrasound on the other hand is also

variable, but has been tested on the wrist. However, the loss in quality compared to different

probe orientations or locations proximal are untested. The problem of complexity and mobility of

ultrasound imaging systems are also not addressed in previous literature. There is very little

interest in the industry to create wearable ultrasonographic imaging apparatus (namely, the

healthcare industry). Therefore, to my knowledge, there is no exploration of research that looks

at the feasibility of ultrasonic imaging devices and possible reductions of the complexity of them
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at the cost of fidelity.

These are missing gaps that prevent us from writing a more concrete table of methods vs

requirements. To fill these gaps in literature are the initial steps of my work. Starting with

chapter 4, the feasibility of EMG at the wrist and the unknown fidelity achieved at this position

are investigated. Although it was not intentional, the battery concerns of EMG are facilitated by

the integration of simpler, more power efficient pressure sensors in the design of our prototype.

This happened as a result of a pilot study which suggested that motion artefacts were beneficial

to the classification of hand gestures, which pressure sensors could measure.
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ELECTROMYOGRAPHY

4.1 Introduction

This chapter explores variation in sensor placement of EMG devices to fill a gap in the literature:

to find out the presumed trade-off in fidelity as the placement and size varies. Practical wearable

gesture tracking requires that sensors align with existing ergonomic device forms. Thus, of

particular interest to us, is whether an EMG device can be integrated with wrist-worn form

factors.

This chapter begins with an initial study to investigate the performance of EMG at the

wrist. The results from this study exhibited surprisingly high EMG classification accuracy in

the wrist condition. This high accuracy led us to suspect that variable wrist pressure on the

EMG electrodes was modulating and enhancing our EMG finger gesture classification rate. We

theorised that these electrode motion artefacts introduced additional features into the collected

data which improved classification accuracy. From the unexpected results of the pilot study, we

hypothesised that pressure data on the wrist strap could provide our classifier with features that

enhance the EMG results.

To test our hypothesis, we built the EMPress system, which uses EMG and pressure sensors,

drawing on previous work on low-power gesture input with Force Sensitive Resistors (FSR)[29].

With explicit and separate pressure sensing in the gesture detection process, we aimed to isolate

and quantify this effect in a second study. The prototype we developed for our second study uses

padded wet electrodes to moderate pressure effects on the EMG signal, and a cross-arm reference

electrode to determine an upper bound of EMG performance.

The end result of our final study showed that combining EMG and pressure data sensed

only at the wrist can support accurate classification of hand gestures. The EMPress technique

senses both finger movements and rotations around the wrist and forearm, covering a wide
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range of gestures, with an overall 10-fold cross validation classification accuracy of 96%. We show

that EMG is especially suited to sensing finger movements, that pressure is suited to sensing

wrist and forearm rotations, and their combination is significantly more accurate for a range of

gestures than either technique alone. The technique is well suited to existing wearable device

form factors like smart watches that are already mounted on the wrist.

Although it was not our primary objective, the battery concerns of EMG are facilitated by

the use of simpler, more power efficient pressure sensors. This happened to be a byproduct of an

experimental sensor fusion prototype used for investigating motion artefacts.

Our key contributions are:

• A novel design combining EMG and pressure data using machine learning to accurately

detect and classify hand gestures.

• Two studies which identify and then quantify the performance of combining these sensors

in the prototype EMPress system.

• Experimental evidence that these sensors are strongly complementary, emphasising EMG

for detecting finger movements and FSR for detecting wrist movements.

In the following sections we explain the relevant forearm anatomy which supports our wrist-

based EMG approach. We then describe the different types of sensors which we use across the

two studies in this paper.

The content of this chapter is a revised version of work I have published in the Proceedings

of the 2016 CHI Conference on Human Factors in Computing Systems (CHI ’16): "EMPress:

Practical hand gesture classification with wrist-mounted EMG and pressure sensing" [82].

4.2 Background

4.2.1 Electromyography

This section gives a brief overview of the EMG technique, and the relevant anatomy. A more

in-depth description of EMG and the anatomy can be found in chapter 2. However, what can

be found in this section that is not shown in the earlier chapter, are the groupings of muscles

and tendons. These groupings are illustrated in the diagram via colour coding. These groups are

used later in the chapter to clearly show the link between the grouping of gestures based on the

anatomy.

When a muscle is contracted, an electrical potential difference is created by the electrically or

neurologically activated muscle cells. Surface Electromyography (EMG) measures the difference

with electrodes on the skin close to the muscles of interest, which can infer muscular activity.

EMG data can be used to determine which muscles are active and even the amount of force they

produce. Well-placed sensors are key to identifying patterns of EMG signals, which relate to
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Figure 4.1: Cross section of the forearm at the distal ends of the radius and ulna. Our final
experimental prototype is seen around the wrist. The anterior of the arm is at the top. The
muscles and tendons are coloured to represent groups with similar functionality.

specific movements of muscles. However, there are comparatively few muscle cells in the wrist

compared to the proximal upper forearm (near the elbow), and the distal tendons (near the wrist)

are more difficult to discriminate as they are more tightly packed. Thus there are increased

challenges in performing EMG sensing of hand muscle movements by sensing at the wrist. As a

result, current off-the-shelf solutions such as the Myo armband typically capture EMG signals

from muscles in the upper forearm [72].

Figure 4.1 shows a cross section of the wrist, the position for a typical wearable strap. There

are three main groups of muscles which are responsible for the flexing and extending of the

fingers. The flexor digitorum superficialis and flexor digitorum profundus (Fig 4.1, top) flex the

fingers. The extensor digitorum communis, extensor indicis proprius, extensor medii proprius

(Fig 4.1, bottom) extend the fingers, and aid a little to extend the hand. These muscles control all

fingers except the thumb, the muscles responsible for this are known as the pollicis muscle group

(Fig 4.1, left). As these muscles flex both the whole hand and the fingers it can be challenging

to differentiate between gestures using EMG, for example flexion of the wrist and flexion of

all fingers. The flexor carpi radialis, and the flexor carpi ulnaris (Fig 4.1, top left/right) control

hand flexion at the wrist, and control hand abduction and adduction, respectively. Similarly, the

extensor carpi ulnaris/radialis (Fig 4.1, bottom left/right) extend the hand at the wrist joint, and
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are also capable of abduction/adduction of the hand.

Commonly, bipolar electrodes are used to measure the electrical potential generated by the

muscles in EMG systems. Normally, three electrodes are attached to the skin, two within close

proximity of one another and another reference electrode to an area with less muscle activity. The

signal can then be acquired by measuring the output of a differential amplifier, using the bipolar

electrodes as input, removing any common noise that is measured by the reference electrode.

Electrodes can be ’wet’ (mounted onto the skin with adhesive and conductive gel) or ’dry’ (without

gel or adhesive). Recent designs for dry electrodes have comparable accuracy to wet electrodes,

and are a more practical alternative [88].

Prototype EMG sensors can be designed in high density arrays worn on the forearm. These

designs demonstrate excellent recognition rates for finger movements [7] and even for wrist

movements [44, 127]. However, these sensor arrays require a myriad of electrodes spread across

a significant proportion of the arm’s surface and may be more appropriate for integration into

clothing than wearable devices. Finger muscle movement can also be captured using targeted

wrist-mounted EMG sensors. For robustness these are commonly used in conjunction with

additional EMG sensors mounted on the hand and/or distal forearm eg [21], making the overall

configuration impractical for integration into a single wrist-mounted wearable. The use of EMG

sensors in practical wearable scenarios typically also requires calibration in order to account for

slipping watch straps and to align sensors with the anatomically optimal detection points. While

we do not consider the issue of calibration in this paper, shift compensation algorithms [7] could

further improve the results of our work.

4.2.2 Hand Gesture Sensing Techniques

Given the challenges of accurate EMG sensing, a number of other techniques have been applied

to wearable gesture recognition. In the related work chapter, we gave an extensive list of the

most prominent techniques to date.

We’ve selected to talk about pressure sensing for gesture recognition here, as it’s highly

reveleant to this chapter. Recent work has explored whether Force-Sensitive Resistors (FSRs)

can provide a useful additional channel of data from a wrist-mounted wearable. FSRs have two

copper traces that sandwich a special type of conductive polymer in between, which decreases

in resistance as force is applied to it. By measuring the resistance of the resistor (e.g. by using

a voltage divider), the amount of force applied can be inferred. Superficial tendons will move

as hand gestures are performed, and because of their proximity to the surface of the skin,

the movement can also recorded by FSRs to classify certain gestures. WristFlex [29] used an

array of FSRs in a wearable wrist strap to detect finger pinch gestures based on the subtle

tendon movements in the wrist. The authors found a high classification accuracy with low power

consumption.
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Figure 4.2: Gestures used for the pilot study.

4.2.3 Gestures

The types of gestures that we wish to classify are shown in Figure 4.3. The coloured dots next to

each gesture indicate the corresponding coloured muscles in Figure 4.1 that are predominantly

responsible for producing the gesture, starting and finishing with the Palm hand posture. Most

gestures are categorised by their muscle groups.

While there is no standardised hand gesture taxonomy, most gesture techniques described

above evaluate against variations of general movements which draw on finger and wrist rotations.

For our pilot study, we try to classify a set of gestures which contain several finger gestures, a

fist and a palm gesture. Finger gestures and Wrist gestures are significantly different due to

the different muscle groups which are required, illustrated by the colour variations between the

gesture classes. For our follow-up study, we grouped and supplemented these gestures to explore

a more challenging set of 15 gestures in three classes:

Finger Gestures These are gestures which only involve movements of the fingers. Anatomically,

any movement which only involve rotations of the phalanges around their phalangeal joints

will be classed as a finger gesture. In this class, we want to test whether individual fingers

can be discriminated, and therefore include single finger flexions.

Wrist Gestures Hand movements which rotate the whole hand around the wrist joint are

classified as wrist gestures. Although supination and pronation of the forearm occurs

because of rotations at both the wrist and elbow joint, we include them as wrist gestures

because they rotate the whole hand.

Other Gestures This set of gestures are not naturally focused only on single fingers or the

wrist, consisting of whole-hand gestures that use multiple fingers simultaneously.
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Figure 4.3: The entire set of gestures that were used for the latter study. The coloured dots
represent the muscle groups shown in Figure 4.1 which are predominantly used during the
gesture.

4.3 Pilot Study

4.3.1 Motivation

The aim of our pilot study was to compare the effectiveness of hand gesture recognition using

EMG when using sensors located on the wrist in comparison to another device located on the

proximal upper forearm. We were especially interested in how the relocation of sensors would

affect the classification rates of finger gestures. We did not include wrist gestures in our pilot,

as we expected to rely on existing studies that have measured wrist gesture performance with

EMG [1]. The gesture set that we tested for included the following from Figure 4.2.3: Palm, Index,

Middle, Ring and Fist. The palm gesture represents a relaxed state with no muscle activity.
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4.3.2 Hardware

Hand-gesture recognition using electromyography is more challenging to implement around

the wrist than if the sensors were located at the proximal end of the forearm, for the reasons

explained previously, including smaller surface area, reduced muscle mass and the muscles being

closer together.

Commonly in EMG, each muscle is individually measured. However, due to the constraints

set by the surface area of the wrist and considering practically, we decided to use just two pairs

of bipolar electrodes. The positioning of these electrodes is crucial, as they both need to have

good coverage over different areas of the flexor digitorum muscles. The number of muscles in the

forearm which we wish to detect are far greater than the number of data channels the device

provides. The underlying principle for detecting which muscles are active in this situation is as

follows.

Several muscles are measured by a single electrode. The sensitivity of an electrode to any

particular muscle is proportional to it’s distance away from the electrode’s conductive centre.

Since the values that are collected are roughly consistent each time a gesture is performed, a

machine learning classifier can predict the gesture. The muscles of interest here are the flexor

digitorum superficialis and profundus, and therefore we placed our 2 pairs of sensors orthogonal

to these muscles, on the anterior of the forearm, so that each pair of sensors are more receptive

to certain fingers. Figures 4.4 & 4.5 show differences in signals when flexing different fingers, for

two bipolar electrodes placed horizontally across the wrist, as per the placements in Figure 4.1.

The graphs show that each sensor is indeed more receptive to a particular muscle, as confirmed

by the differences in amplitude.

The reference electrode was placed to the side and on the posterior of the forearm, close to the

ulna. Here there are fewer muscles and thus less muscle activity to be picked up by the electrode,

making it the ideal for a wrist-mounted device to place a ground electrode. The electrodes are

held in place with an elastic strap.

For this prototype, we created our own electrodes using conductive metal pins. It was necessary

to apply gel to the electrodes for good electrical contact with the skin.

The electrodes are connected to circuit boards that apply a differential amplification, rectifi-

cation and smoothing of the signals from the bipolar electrodes [120]. Each of the four boards

are connected to an Arduino Uno. The Arduino is programmed to read analogue data from the

sensors, which are then sent to the computer via serial communication for data collection and

processing. The data is collected at approximately 60Hz.

4.3.3 Software

The data samples recorded for each channel from the device is of the form of a 1D time series.

We extracted several time-domain features from each sensor in a given recorded sample. We

used a support vector machine to classify the gesture data that we recorded. We chose to use
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Figure 4.4: Index flexion EMG signals
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Figure 4.5: Ring flexion EMG signals

Figure 4.6: EMG signals from flexing a) the index finger and b) the ring finger

an SVM over alternative classifiers because we knew our feature space would be small, and the

kernel that the SVM uses will increase the dimensionality of the feature space. We also found

that previous work on hand gesture recognition using EMG demonstrate that SVMs yield good

performance [6, 127]. We chose to use Libsvm, a simple yet efficient library for support vector

machines [20]. After extracting the features, we normalised the values of each feature vector,

since an SVM is not scale invariant. We used C-Support vector classification with a radial basis

function kernel due to it’s better classification performance over linear kernels [63], although a

linear kernel would be faster if interactive feedback were required from a real-time wearable

system with limited processing capabilities. The C-SVC classifier implemented by Libsvm uses a

"one-versus-one" method for multi-class classification.

For the data collected with each device, we used the k-fold cross validation technique in order

to find suitable parameters for the SVM classifier. Using these parameters to train the SVM on

the training data, we could then use the classifier to predict each testing instance, and compare

this to the training label to find out if the outcome was correct. The percentage accuracy of the

classifier for each participant then equates to the number of correctly classified instances divided

by the total number of instances.

4.3.4 Procedure

We used a within-subjects experimental design, with the independent variable being the place-

ment of the electrodes, and dependent variable being the accuracy of the SVM classifier. We kept

the feature set and the supervised learning implementation the same in each iteration of the

study.

12 participants (9 male, 3 female) participated in the study, all participants were healthy

with no known muscle impairment. The study consisted of a 30 minute session, during which the
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Predict Palm Predict Ring Predict Middle Predict Index Predict Fist
Actual Palm 10 0 0 1 1
Actual Ring 0 6 0 5 1

Actual Middle 0 0 11 1 0
Actual Index 0 0 2 10 0
Actual Fist 0 0 0 0 12

Table 4.1: Confusion matrices for the predicted gestures of the wrist-worn device.

Predict Palm Predict Ring Predict Middle Predict Index Predict Fist
Actual Palm 8 2 0 2 0
Actual Ring 0 3 0 2 7

Actual Middle 0 2 6 0 4
Actual Index 0 1 0 4 7
Actual Fist 1 0 0 0 11

Table 4.2: Confusion matrices for the predicted gestures of the forearm-worn device.

participant would perform gestures while wearing one device worn at the wrist, and then again

with the second device on the upper forearm. During each of the 5 gestures, the device would

record the data from each bipolar differential channel. The gesture would be repeated multiple

times over the course of the session.

4.3.5 Results

The results of the pilot study are shown in Tables 4.1 and 4.2, as confusion matrices of each

predicted gesture against their truths.

A Shapiro-Wilk test showed that the classification sample was not normally distributed

(W=0.731, p <0.05), so a non-parametric Wilcoxon Signed Ranks Test was applied to compare

the devices’ classification accuracy. This test indicated that the classifier was significantly more

accurate for the data collected from the device worn on the wrist (mean 82% correctly classified)

than for the device located on the upper forearm (mean 53%), Z = -2.359, p <0.01.

4.3.6 Discussion

Our pilot study demonstrated a significant increase in classification accuracy when the electrodes

are worn on the wrist compared to the proximal forearm location. While we hoped that the new

placement might prove comparable to the usual upper forearm placement for finger gesture

detection, we were surprised that the difference was so significantly in favour of the wrist, which

we believed should be more anatomically difficult to discriminate the EMG signals.

This result led us to explore other potential reasons for the increased performance of the

classifier in the wrist condition. Looking at the differences in the system design, one key area was

the home-made electrodes used under the wrist band. During some sessions, we found that the
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Figure 4.7: An Image of the prototype worn around the wrist.

resting amplitude of the EMG sensor data varied within the same session. One reason for this

could be a change in electrical contact with the skin. This change can be caused by a displacement

of the electrodes, due to movements of the forearm. Upon further experimentation with the device,

we came to believe that the increased performance could be attributed to changes in pressure on

the EMG electrodes from the elastic wrist strap. The pressure was modulating the EMG signal

in ways which we suspected may be providing additional gestural features to the classifier than

pure EMG signals alone.

The hypothesis that wrist pressure was providing predictable features by modulating our

EMG data was rather surprising. Existing studies in the literature directly using wrist pressure

to detect hand gestures had selected specific movements to ensure classification accuracy, such

as the use of a finger pinch in the WristFlex study [29]. Nonetheless, we hypothesised the wrist

pressure was the most likely variable in the higher classification rate. In order to test this

hypothesis, we conducted a second user study in which we isolated the pressure and EMG data

collected only on the wrist, in order to quantify the effect of the pressure changes in the wrist on

the gesture classification results.

4.4 Main Study

This section describes the design process of the device for our main study. The following section

describes the study and results.

4.4.1 Hardware

The changes in pressure applied to each electrode from the strap are present for a number of

reasons. The key explanation is that muscles/tendons in the forearm become displaced upon

contraction. Stretching of the skin can also affect the pressure between the sensor and strap.

Factors of the strap design such as the elasticity, can significantly change how the movement
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FIGURE 4.8. Diagram of the hardware components used in the prototype.

of the skin affects the pressure, as we found out during trial and error of different strap types.

Eventually we decided that a simple elastic band would suffice.

In order to measure the pressure between the strap and the wrist, we chose to use the same

Force Sensitive Resistors that are used in the WristFlex prototype [29]. The FSR400 component

[35] provides good performance in their study and our requirements are similar: inexpensive,

small and highly sensitive.

In order to isolate the pressure data from the EMG readings, we chose to use a more robust

EMG sensor (SKINTACT Ag/AgCl aqua-wet electrode, ref: FS-TF). ’Wet’ ECG electrodes that are

commonly used for medical purposes have a design which mitigates the effect of pressure, due to

the use of highly porous foam beneath the sensor. The electrodes are connected to circuit boards

via shielded cables with snap connectors. The circuit boards apply differential amplification,

rectification and smoothing of the signals from the bipolar electrodes [120]. For each pair of

bipolar electrodes this provides a single channel of EMG data. Each of the four signal processing

boards are connected to an Arduino Uno.

The prototype for our second study extends the capabilities of the device used previously.

We kept the same configuration of 2 bipolar EMG electrodes located on the anterior side of the

forearm, because of the reasonable accuracy for single finger gesture recognition that our first

study showed is attainable.

The increased gesture set which we aim to identify in this study includes gestures other
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than finger gestures. Some gestures require the use of the muscles located in the posterior

compartment of the forearm (Figure 4.1, bottom), as indicated by the coloured dots in Figure 4.3.

Chiefly, these are the Extend, Adduction, Abduction, Spread and Point gestures. Therefore to

detect the activity of these muscles, we decided to place two additional bipolar sensors close to the

extensor muscles on the posterior of the forearm. This has the added effect of detecting muscle

activity from the extensor digitorums, thus facilitating the classification of Finger gestures. The

muscles that are active upon wrist Flex, Extend, Adduct and Abduct are the flexor/extensor

carpi radialis/ulnaris.

The new EMG sensors we have chosen are unnecessarily large (excessive amounts of adhesive)

and could be engineered at a fraction of their size with no loss of functionality. For our purposes,

this limited the amount of space left to allocate to FSR sensors. We therefore chose to put the

reference electrode on the other hand. In an ideal situation where the sensors are smaller, it

should be possible to have the reference electrode placed close to the ulna as in our pilot study,

without overlapping with any of the other sensors.

The force sensors we have used are much smaller than the EMG sensors. This allows us

to easily place them on the sides, close to the tendons of the muscles which control thumb

movement and hand abduction/adduction. We were also able to fit two more FSRs in between

the two EMG sensors on the anterior and posterior of the wrist (Figure 4.1. These latter two are

conveniently placed onto the tendons of interest for finger gestures: tendons of the flexor and

extensor digitorum muscles. The sensors are spaced around an elastic band which is worn around

the wrist. Our design supports adjustment of the sensors’ placement on the band, to account for

differently sized wrists. The elastic is required so that there is slight pressure exerted onto every

force sensor, so that when the shape of the wrist changes, there is a change in pressure. In the

absence of such an external force, the sensor would simply move with the surface of the skin, and

there would be minimal change in signal. The force sensors are connected to a small circuit that

consists of a digital multiplexer and a voltage divider which work in tandem. A resistor of 180kΩ

gave us values within a suitable range. The output signal from the circuit is then connected to

the Arduino’s analogue pin.

The approximate positions of all the sensors are shown in Figure 4.1 and Figure 4.7. In total

there are eight electrodes worn on the wrist, and there are also reference electrodes for each

pair of bipolar electrodes attached to the other arm. Our aim is to be able to detect finger and

wrist gestures with as few electrodes as possible while still maintaining a reasonable accuracy,

as increasing the number of electrodes makes a device more impractical due to the size, power,

computational load and cost.

The diagram in Figure 4.8 shows how each of the hardware components are connected. In the

figure, only one of four sets of EMG components are shown.
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Figure 4.9: Graphs of electromyographic and pressure signals for select gestures. The horizontal
axes show time, and the vertical axes show amplitude.

4.4.2 Software

The data collection process that we use remains similar to that of the pilot study. Instead of

receiving 2 data channels from the Arduino, we now have 4 FSR and 4 EMG channels. Features

for EMG could theoretically be extracted from both the frequency and time domain. However, due

to the limitations of our hardware, we could not collect sensor data at a high enough frequency

for there to be any significant information in the frequency domain. Useful frequency information

would have to sample data at a rate several orders of magnitude higher than our current rate of

60Hz [1, 98]. We extracted the following features for each 1D time signal (2.4s):

• Root mean square (RMS) - This feature is correlated with the signal energy, and thus

muscle activity in the case of EMG. This has been found to be a good feature for machine

learning with EMG data [7]. Significant changes in signal energy also occur in the FSR

data, as seen in the sample data shown in Figure 4.9. The muscles in the forearm have

different sizes, and the larger they are, the higher the amplitude of the received EMG

signals. Large muscles, such as the flexor carpi ulnaris, can influence several sensors due

to their size. These properties facilitate the process of classification, as the muscles which

could have produced the electric potential difference can be inferred.

• Standard deviation (SD) - Also correlated with the muscle activity, although this feature is

invariant to amplitude offsets.

• Peak amplitude - Measures the maximum value of the sensor data. This is chosen to take

into account the shape of the signal, as two signals with the same RMS could look entirely

different.
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We tested the accuracy of our classifier by using a leave-one-out 10-fold cross validation on

our data sets. For each iteration, we use a stratified shuffle split on the training portion, and

then used a grid search algorithm for selecting the hyper parameters, C and γ. Once suitable

parameters were found, we then trained the SVM and tested the classification on the test fold.

Using this method, we remove any bias from the parameter selection that would have otherwise

occurred if the parameters were instead chosen using a grid search on the entire data set.

The time taken to read the data file, compute the features and classify the instance using

the SVM, is less than 5ms on a desktop class Core i7 Intel processor , across all gestures and

sensors. This is 3 times less than the sampling rate, which suggests the feasibility of real time

classification using our system entirely possible, as further optimisations would reduce the time

even more.

Our software suite also included an application that would show the participant a sequence of

videos of someone performing certain gestures that they would then mimic. While the participant

is performing the gesture, a second Python script would record 2.4 seconds of sensor data that

was sent to the computer’s serial port from the Arduino. It is then stored as comma separated

value files for later analysis.

4.4.3 Participants

A total of 12 participants (different from the first study) took part in our experiment. There

were 3 female, and 9 male participants. The average age across all participants is 33 years, with

a standard deviation of 9.1 years. The circumferences of their wrists averaged 16cm, with a

standard deviation of 1.3cm.

4.4.4 Procedure

An experiment began with the participant being asked to wear the device around their left wrist.

We first adhered the electrodes for the electromyography onto the participants arm. The band

with the force sensors was then placed around the wrist, making sure that each force sensor had

good contact with the skin, with slight pressure on each of them to ensure the output signal was

in a suitable range.

We then instructed them to mimic the gestures that were shown in a video clip on a screen

in front of them. They were told to keep the timing of their hand movements in sync with the

one in the video clip, as closely as possible. Each video clip is 4 seconds, and the gesture in every

clip starts and ends at the same point in time. This is to ensure that the gestures are performed

consistently throughout. Each gesture video clip is shown 6 consecutive times, the first clip is to

let the participant acknowledge that a new gesture has started, and so that they can practice

it once. The data is not recorded during this period, only for the 5 subsequent gestures. The

participants perform 15 different hand gestures in this manner, these gestures are all those

shown in Figure 4.3. This process is repeated once more, to give a total of 10 data points per
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Figure 4.10: Cross validation accuracies for each test condition, with standard error bars.

gesture. For each participant’s data set, we tested 10-fold cross validation accuracies using a

separate SVM to train each individual’s gesture data.

In our study, we used three sensor conditions (EMG, FSR, Both) and three gesture sets

(Fingers only, Wrist only, All), where the ’All’ category combines the first two gesture classes with

the ’Other’ gestures shown in Figure 4.3. Since we vary both of these variables simultaneously,

data is collected across a total of 9 different experimental conditions.

To re-iterate our hypothesis: we expected that incorporating pressure data increases the

classification rate of gestures compared with using EMG alone on the wrist.

4.4.5 Results

Figure 4.10 shows the mean results for each experimental condition. For the full set of 15

gestures, average 10-fold cross validation classification rate for both EMG and FSR data across

all participants is 95.8%. This gives us a classification rate for our overall device with respect to

our gesture set. We also compared the Sensor and Gesture conditions to identify main effect and

to identify any interaction between them.

65



CHAPTER 4. ELECTROMYOGRAPHY

A Shapiro-Wilk test showed that the classification sample was normally distributed for EMG

(W=0.944912, p <0.05) and FSR (W=0.973691, p <> 0.05). A two-way repeated measures ANOVA

indicated that the main effect of Gesture was significant, F(2,10) = 5.67, p <0.001. Post hoc

analysis with Bonferroni correction accounting for multiple comparisons showed that Wrist

Gestures were classified significantly better than All Gestures (p <0.05), but not significantly

different to Finger Gestures (although approaching significance, p=0.06). The overall difference

between Finger Gestures and All Gestures was also not significant.

The main effect of Sensor was also significant, F(2,10) = 17.70, p <0.001. Post hoc analysis,

again with Bonferroni correction, indicated that Both sensors were significantly better than

either EMG (p <0.001) or FSR (p <0.001), but that these did not significantly differ from one

another.

The interaction effect between Gesture and Sensor was also significant F(4,8) = 11.69, p

<0.001. The distributions of Gesture and Sensor classification rates suggest that this effect was

caused by EMG data correctly classifying more Finger Gestures (90.5%) than Wrist Gestures

(85.3%), while FSR data correctly classified more Wrist Gestures (96.1%) than Finger Gestures

(86.5%). The EMG and FSR techniques in combination showed significant complementarity when

classifying All Gestures, each technique alone providing fewer correct classifications (EMG 86.6%,

FSR 89.4%) while together they classified All Gestures correctly to an accuracy of 95.8%.

The confusion matrix in Figure 4.11 shows the performance of the classifier for the case

with Both sensor types and All gestures. There is no obvious misclassification for any particular

gesture, although the main confusion appears in the finger gestures. The ring gesture has the

highest number of false positives, wrongly classifying the middle, pinky, and palm gestures.

Similarly, the SVM classified several index and pinky gestures as middle finger gestures, and

fist as point gestures. This error could be attributed to a few possibilities. The most likely of

them however, is that there is an insufficient number of sensors for the flexor/extensor muscles

that control the fingers. The Finger gestures being the most incorrectly classified gestures can

also be confirmed by the fact that the average cross validation result is worse than that of Wrist

gestures, and also All gestures. The thumb gesture appears to have fewer false positives and

false negatives, and this is likely due to do the fact that the thumb gesture uses muscles which

are different from those the other finger gestures use.

We found the standard deviation to be much larger for Finger gestures (3.72%) than Wrist

gestures (1.67%) and All gestures (1.98%), when all sensors are used. When the EMG sensors

are only used, the deviation is 6.22% for the Finger gesture set. This is a much larger variance

than Wrist gesture classification using only FSR (2.05%). One possible reason for this could be

the variance in hand dexterity of participants, due to the somewhat difficult control of individual

finger flexing; the flexor digitorum superficialis is principally responsible for this.

In theory, larger wrist sizes should increase the recognition rates of the classifier, since the

muscles are more interspersed, and the larger muscle mass should increase the difference in elec-
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Figure 4.11: Confusion matrix across all participants, using both sensors and all gestures.

trical potential. Though our data does not suggest such a correlation between the circumference

of the subjects wrists and the classification accuracies, our sample has too limited variance to

determine this.

4.5 Discussion

Our principal result is the accurate classification, just below 96%, demonstrated by the combined

EMG and FSR data across our gesture set. This indicates that the EMPress technique is viable

for hand gesture recognition, and that this approach is significantly better than either sensor

type on its own.

It is not possible to directly compare EMPress to other published gesture sensing methods,

because gesture sets, number and type of sensors used, and anatomical position vary widely

across the literature. Our overall classification rate for Finger gestures is 94.0%, while the

rate for Wrist gestures is 97.5%. Confusion matrices show that the weakness in our system is

generally due to the mis-classifications of adjacent fingers within the Finger gesture set. We

67



CHAPTER 4. ELECTROMYOGRAPHY

Pr
o.

Fis
t
Po

in
t
Ri
ng Fle

x

In
de

x
Su

p.

Th
um

b

Sp
re

ad

Mid
dl
e
Ad

d.
Ab

d.
Ex

t.

Pi
nk

y
Pa

lm

True

Pro.

Fist

Point

Ring

Flex

Index

Sup.

Thumb

Spread

Middle

Add.

Abd.

Ext.

Pinky

Palm

Pr
ed

ic
te

d
107 5 2 3 1

103 10 1 6 3 1 2 1 4 1 1 1

2 8 97 3 1 1 1 1

108 2 6 1 1 1 1 2

6 1 99 3 1 1 2 1 2 1 1

1 2 8 89 2 4 1 2 1 1

1 1 1 1 2 103 1 2 1 5 5 4

2 2 106 1 1

107 1 2 1

4 1 1 3 108 2 2 2

1 2 2 1 1 1 102 2 9 1

1 4 1 3 3 102 1

1 3 3 3 6 3 103 1

1 2 2 1 6 1 113

1 5 5 113
0

15

30

45

60

75

90

105

120

Figure 4.12: Confusion matrix across all participants, using only EMG sensors and all gestures.

suspect that this is partly due to the low electric potential generated by the few muscle cells that

are present in the wrist. Sensing EMG spikes predictably at the wrist against low signal-noise

ratios is the most challenging aspect of the EMPress technique. Nonetheless, our data shows

that even with these challenges that EMG outperforms FSR when classifying Finger gestures,

and its inclusion therefore remains an important component of our technique. Uniquely, we have

also demonstrated that this high level of classification accuracy is possible without resorting

to distributed arrays of EMG sensors across the forearm, instead localising the sensors to a

wrist-mounted device. Following [7], even if constrained to "spare" real estate on the existing

wrist strap, we expect that further EMG sensors should increase the classification rate.

While we expected pressure sensing to significantly supplement EMG gesture classification

accuracy, our study demonstrates that pressure not only contributes to EMG classification of

gestures, but can actually parallel or even beat EMG performance in complementary ways. The

study data reveals that the overall FSR-only classification success rate is 89.4%, showing a strong

predictability of wrist pressure over a wide range of gestures. While we expected pressure sensing

to perform well under conditions of wrist movement (96.1%), perhaps most surprising is that
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pressure sensing alone was able to detect finger gestures to a classification accuracy of 85.3%.

While WristFlex [29] already demonstrated a high predictability for a particular anatomically

targeted pinch gesture using FSR sensing at the wrist, we believe the EMPress technique is the

first time such an approach has been shown to be potentially strong for a varied range of gestures

without special anatomical targeting of the sensors, and particularly for combined wrist and

finger movement classification.

Finally, our study shows that the EMG and FSR techniques are strongly complementary,

with EMG significantly better for detecting finger gestures and FSR significantly better for

Wrist gestures. We therefore propose that, for wrist-based wearables, the techniques are used in

conjunction so that a high recognition rate can be achieved while locating sensors only at the

wrist. Note that our device consists of wet electrodes with cross-arm references, this suggests

that our findings apply under optimal EMG conditions. It is not necessarily the case that this

complementarity will yield true for a system with dry electrodes with a same-arm reference

electrode placed over the ulna, and further work will be required to verify this level of performance

against dry and locally grounded EMG such as our pilot study used.

4.6 Future Work

We anticipate exciting future work in the design of the electrodes deployed in EMPress-enabled

wearables.

Firstly, it may be possible to integrate the different sensing types. Having separated EMG

and pressure sensing in order to separate their contribution to the overall effect, it is now possible

to consider engineering a design which re-integrates EMG and pressure sensing. Designs would

be possible which directly exploit the pressure-modulated EMG signal we observed, alongside a

comprehensive exploration of optimal feature sets of the signal for classification. It would also be

possible to retain the software design for our second study but integrate hardware within the

EMG electrode itself, supporting pressure sensing while greatly increasing the space available on

the wearable strap for a larger array of sensors around the wrist.

Moreover, with this approach the FSR component could then directly measure the pressure

exerted onto the EMG sensor. In our final prototype, even with foam underneath the electrode,

there is still a slight change in electrical contact as the foam is compressed. Dry electrode sensors

such as those used in the Myo will also suffer from pressure changes due to the movement of the

wrist strap. The use of conductive foam [9] may mitigate but not remove the effect of pressure.

However, an integrated EMPress sensor would be able to measure the pressure exerted onto

the EMG contact from the band. This would allow a predictive model of the modulating effect of

pressure on the EMG signal to underpin an estimate of the ’true’ EMG signal.

Our gesture set allows us to differentiate between Finger gestures and Wrist gestures.

However, we have not tried to classify nuanced combinations of both Finger and Wrist gestures,
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nor have we attempted to combine multiple Finger gestures simultaneously. Detecting multiple

Finger gestures with a reasonable accuracy will probably demand higher density of EMG sensors

placed precisely above muscles of interest as described above. Since the sensors seem to be suited

to recognising separate components of gestures, calibration algorithms to map sensor-anatomy

offsets [7] will be important. There is also the potential to biologically tailor the device so that

additional pressure sensing can be targeted towards regions where there are limited surface

EMG signals owing to wrist anatomy.

Finally, given existing wearables typically already include an IMU, our technique could

potentially draw on acceleration data to detect many more gestures and/or with further increases

in accuracy. In particular, gestures which require movements that stem from the elbow, arm, or

whole body would be well-supported by such data, and we may observe some further improvement

to Wrist gesture classification accuracy as well.

4.7 Conclusion

Our initial study planned to compare the effect of EMG sensor placement on the forearm. We

found that placement of EMG around the wrist has comparable accuracy to when the sensors

are located on the upper forearm. This unexpected outcome led us to believe that pressure

exerted from the wrist-band which held the EMG sensors to the skin, modulated the signal in a

semi-predictable manner.

Our main study confirmed our hypothesis that including the pressure around the wrist does

indeed increase the classification rate for different kinds of gestures involving both finger and

wrist movements. Furthermore, we found significant complementarity between the two types of

sensors: the pressure sensing surpasses EMG for classifying Wrist gestures, and the reverse is

true for Finger gestures.

We believe this technique is sufficiently accurate and ergonomically practical to have signifi-

cant potential for underpinning a new generation of wearable gesture sensing technology.

4.8 Reflection and adjustments to the requirements

Although we have demonstrated that EMG works at the wrist and found improvements for this,

there were problems with the technique that became clearer after experimenting with it. These

issues are seldom described in EMG literature, and therefore can be misleading or at the very

least uninformative of the types of interactions that EMG can currently enable.

The first problem is the necessity to perform gestures forcefully. This is required since the

amplitude of the signals generated by the muscles are very weak. This problem is exacerbated by

constraining the placement of electrodes to the wrist, where the muscle mass is much smaller

and therefore the signals diminish further, leading to poorer signal to noise ratio. In fact, during

the study, the participants were asked to produce gestures very clearly, with intent. Performing
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gestures in this way is not ideal as it may lead to muscle fatigue after prolonged use, which can be

expected in some usages. Gestures performed weakly is also likely to yield greater classification

errors. This problem makes the technology unsuitable for subtle gestures that are typically

detected for the application of contextual awareness and other implicitly detected activities.

The second problem of EMG is also one that stems from the nature of the electromyographic

signals. The signals are generated by the muscles and there are features of the signals that vary

depending on the length of the contraction (in time). Faster contractions produce a higher ampli-

tude signal that makes it easier to measure and identify. However, slower, steadier contractions

are more difficult to pick up due to the power of the signal being spread out over time. This is the

type of contraction that needs to be detected for control of continuous variables using gestures.

Therefore, EMG is a technological solution to a subset of application usages. It does however,

lack the precision and fidelity needed for subtly or implicitly performed gestures and gestures

used for controlling continuous variables. The requirements for a gesture recognition device can

thus vary depending on the intended application. We’ve used ’fidelity’ as a term that encompasses

accuracy and range of gestures in the table of analysis (table 3.1 in section 3.12). We will now

extend our definition of fidelity to include additional precision for continuous or weakly performed

gestures.

Since the requirements of an application may or may not require such a level of fidelity, we

include update our baseline requirements to include a situational requirement. Updating the

initial baseline requirements to include (from section 1.4.5), changes marked in bold:

• Mobility → Wearable.

• Placement & Size → Ergonomics, practicality and social acceptability.

• Accuracy & Range of Gestures & Continuous and Weak → Usefulness.

• Continuous control or subtly performed gestures.

• Complexity → Immediate feasibility.

It is assumed here that a technology that is able to detect the continuous states of hand

poses (as opposed to discrete gestures), is also able to detect gestures performed weakly. This

assumption is made because changes in continuous states of the hand pose is essentially a a

weakly performed gesture. For this reason, continuous control and subtly performed gestures are

put into the same requirement. In a way, this also resembles a level of precision, which is why we

still consider it a level of fidelity.

To sum up the the chapter, we will also update the table of analysis with our new findings:

The analysis of the EMG technique has been revised in the above table, with experiments to

confirm it’s functionality remains with good fidelity at the wrist location. It is also fairly effective

for a wide range of gestures with fairly simple, low-cost equipment. The size of the equipment is
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Technique Mobility Placement & Size Fidelity Complexity
EMG Battery concerns Wrist Good* Simple

Ultrasound Improving but still poor Variable Very good Very complex
Infrared Highly mobile Thin & wrist Poor Very simple
Pressure Highly mobile Thin & wrist Poor Very simple

EIT Highly mobile Thin & wrist Average Fairly complex
Optical Can be mobile Wrist, but obtrusive Limited Fairly complex
Glove Highly mobile Obtrusive Excellent Simple

Table 4.3: An updated table of analysis for gesture recognition techniques, with respect to the
requirements.

still somewhat of an issue, with electrode-spacing a variable to investigate in the future (this

is why it is not written ’Thin and wrist’). The asterisk on the fidelity (*) is there as a reminder

of the fact that EMG has difficulties with detecting continuous or subtly performed gestures.

Additionally, the fidelity also scales with the number of electrodes. Reading through literature not

in EMG, but in ultrasound imaging confirms this phenomenon. An example of work in this area

that identifies this problem, work by Zheng. et al on ultrasound imaging for detecting muscle

movement [133] uses this limitation of EMG as a motivation to pursue higher tracking fidelity

with ultrasound imaging. However, as analysed in the related work, ultrasound has serious

practicality issues that need to be addressed. Thus, in order to search for a technology that can

satisfy this separate requirement of continuous control / subtle gestures, we now investigate

ultrasound imaging as a potential technology for integration with wearables.
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ULTRASONOGRAPHY

5.1 Introduction

Ultrasound imaging, or ultrasonography (US is also a typical abbreviation of ultrasound, which

in turn can be a name given to the ultrasound imaging technique), has long been available as a

medical technique for safe anatomical inspection, for example to see developing fetuses or heart

disease. It’s uses extend beyond clinical uses, with previous research utilising ultrasonography

as a control mechanism for devices. This has been motivated by uses in: controlling mechanical

hands for either prostheses, teleoperation or exo-skeleton control. Despite this work being found

outside of the HCI community, there is an obvious connection to it’s purpose in controlling

computers. Therefore, here we explore the possibilities that ultrasound may enable in future

gesture recognition devices, for HCI purposes.

Ultrasound imaging provides a direct visualisation of the muscles in real time, enabling

precise estimations of body movement. It is unlikely that this technique provides more accuracy

than systems which directly measure moving body parts, such as cameras or data gloves, but US

has potential benefits over these existing wearable hand tracking techniques. Directly imaging

the muscles is not subject to occlusion, unlike imaging the body parts externally which can be

obscured by other body parts or be out of view depending on the mounting of the camera. In

contrast to wearing instrumentation on the hand, imaging the muscles leaves the hands free to

perform actions unencumbered by devices or sensors. This could be beneficial for sensitive or

expert manipulation as in the case of fragile objects, surgical operations, or simply to keep the

physical naturalness of a handshake.

This differs from most other techniques such as EMG, or methods that rely on deformation of

the skin surface, as these instead indirectly measure signals.
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Moreover, the signals from EMG are usually sampled over a window of time during which the

gestures are performed. In contrast to this, Ultrasonography is able to give an estimation of the

hand pose at any single point in time (relevant works cited in section 3.5.3 "Estimating Hand

and Digit Angles Continuously").

In fact, the ability to give an estimation for any single point in time would enable the

applications that require higher fidelity (as mentioned at the end of the previous chapter): weakly

or subtly performed gestures or continuous control.

However, with this technology being relatively new, there are numerous questions surrounding

it’s use as a wearable gesture recognition device. To begin with, there is the question of device

placement. Previous work using ultrasonography for hand gesture recognition has done so with a

variety of device placements and orientations (as listed in the related work and table of analysis).

Location plays a fundamental role in ergonomics and performance since the anatomical features

differ among positions. We therefore compare the performance of different forearm mounting

positions for a wearable ultrasonographic device. We analyse the performance of this in two

different ways: discrete gesture recognition and continuous finger flexion. In addition, we also

provide a simple but effective method for compensating for cross-session sensor misalignment.

Not only is the technology fairly recent, but also rapidly improving. One of the obvious

challenges is integrating this technology into wearable devices, due to it’s size. In the latter

parts of this chapter, we show that although the technology is gradually decreasing in size,

integration of ultrasonography devices into wearable devices is currently not feasible. We go

further to explain why exactly this is the case, with a preliminary exploration into alternative

device designs to reduce the size and complexity. Finally, we highlight one of the key practicality

issues of ultrasonography that is often disregarded or ignored as problem: the use of gel between

the device and the skin in order to allow the sound waves to pass through. We try to investigate

alternative dry coupling mediums to mitigate this issue.

The content of the former and more prominent part of the chapter is a revised version of work

I have published in the Proceedings of the 2017 CHI Conference on Human Factors in Computing

Systems (CHI ’17): "EchoFlex: Hand Gesture Recognition using Ultrasound Imaging"[81].

Sample data is provided in the supplementary material found in the ACM digital library,

under "Source Materials": https://doi.org/10.1145/3126594.3126604. The SonographySam-

ples directory contains many video clips of all the gestures in each of the locations, for one

participant.

The latter part of this chapter that addresses the gel coupling problem of ultrasonography is

mostly taken from work that I have published in the Proceedings of the 2017 ACM International

Conference on Interactive Surfaces and Spaces (ISS ’17): "Improving the Feasibility of Ultrasonic

Hand Tracking Wearables" [79].
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5.2. RELATED WORK

5.2 Related Work

In this section we focus on describing previous work on ultrasound to support interactive applica-

tions. As with the previous chapter, we will forgo describing other sensing technologies due to

them being described in the literature review, in chapter 3. The relevant ultrasound related work

is re-iterated here for ease of reading, but a more thorough review can be found in section 3.5,

within the literature review.

5.2.1 Ultrasound (without 2D imaging)

Sonomyography is the use of ultrasound imaging to create 1-dimensional scans (A-scans). An

early study by Hodges et al. [56] proved that muscle contraction of the tibia, biceps and abdomen

can be measured with an ultrasound sensor. Later, Zheng et al. [133] showed that it is also

possible to infer the wrist angle with an mean error of 7.2%. They defined Sonomyography as

measuring the dimensional change of muscles with ultrasound sensors.

Sonomyography has the advantage of using simple hardware because it only needs one

transducer element per A-scan; current ultrasonic probes have more than 128 elements and are

becoming the standard for ultrasound imaging. Sonomyography can also be used to continuously

detect the opening and closing of the hand with an RMS of 12.8% [22] and recently to detect 6

common gestures with an accuracy of 74% [55]. The latter study used a wearable device and a

bracelet with five transducers. Comparisons between EMG and sonomyography were favourable

for the latter in detecting continuous wrist flexion [51] and hand grasping force [52].

Sonomyography is an appropriate method to detect a reduced set of gestures, but provides

limited information and lacks the possibilities offered by modern phased arrays of ultrasound

transducers for more detailed imaging.

Mujibiya et al. presented a device that is capable of detecting arm grasps and other on-body

touch interactions, using a band of ultrasonic transducers around the forearm and fingers [87].

This device has the advantage of working at much lower frequencies and with fewer transducers

than imaging devices, but the drawback is that it can only detect interactions when one hand

is touching the arm of the other. Detecting hand movements involving only one hand is a

requirement for certain situations [64].

5.2.2 Ultrasound Imaging

Ultrasound imaging has been used previously to infer the position of the foot by tracking the

muscle displacement [77]. An image of the muscles and tendons was taken and the insertions of

the tendons into the muscle were used as markers to track. A comparison between the estimated

position and the ground truth (metallic plate inserted in the tendon) showed errors of less than

10 micrometers or the equivalent of 0.7 degrees on the ankle rotation. Markers were tracked
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using cross-correlation. Later, this technique was used to track the tendon in the wrist with an

error of 80 micrometers [70].

Castellini et al. estimated continuously changing finger angles by analysing ultrasonic images

of the forearm [18, 19], obtaining an NRMSE of approximately 2%. This technique was also

extended to determine the force that the fingers were exerting [47]. They captured ultrasound

images at the wrist and divided them into regions. Then, the features from each region were used

in a linear regressor to establish a relationship between the features and the angle or force of

each finger. In more recent work, it was shown that it is possible to recognise 4 different grasps

with 80% accuracy, and also 3 levels of strength with 60% accuracy [94].

Sikdar et al. focused their work on recognising discrete hand gestures by imaging the muscles

mid-forearm. They divided the image and calculated the average brightness change per region

to create different activity patterns for each gesture. A Nearest Neighbour search was able to

classify input gestures correctly with 98% accuracy for the flexion of 4 fingers [116] and 91% for

15 gestures [3]. Another group of researchers used an optical flow algorithm to determine the

movement of the extensor muscles [113], but they were only able to qualitatively detect different

finger flexions.

The results from Castellini and Sikdar demonstrate the capabilities of modern ultrasound

imaging in gesture detection, but did not explore probe location or apply recent machine learning

techniques. Considering that the anatomy can vary a lot between different locations, there is

likely to be some variation in performance. Cross-session accuracies have also not yet been

studied, though it is vital for practical use. Given the importance of location to interactive

wearables, further research is required to know whether probe location significantly effects the

recognition accuracy. We shall also examine the effects of cross-session performance for each of

these different locations.

5.3 Ultrasound Imaging Principles

Sound is a mechanical wave that travels by sequential compression and expansion (rarefaction)

of the medium. The frequency describes the number of times the molecules expand and contract

per second whereas the amplitude refers to the amount of compression.

Sound travels at a speed that depends on the temperature, pressure and the medium (e.g.

340m/s in air and 1500m/s in water under normal conditions). The product of the density of the

medium and the speed of sound through it is called the acoustic impedance. When a sound wave

passes from one medium to another with a different acoustic impedance, some of the energy is

reflected at the boundary. The proportion that gets reflected is proportional to the mismatch in

impedance between the two media. Our forearms are made up of many complex tissues with

different acoustic impedances. The reflections from these tissues allow us to see the boundaries

between them.
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The most basic idea of ultrasonic imaging is to emit a short wave (pulse) and reading back

the different reflections from the tissues. The pulse will get partially reflected at different depths

of the body, the delay in arrival will be proportional to the distance whereas the intensity will

indicate the type of tissue since different tissues have characteristic acoustic impedance.

An ultrasonic transducer or probe is a device which houses one or several piezoelectric

elements. The elements can transform an electric pulse into a mechanical pulse to generate a

wave. The elements can also transduce the mechanical energy from the reflected pulse into electric

signals. These phenomena are referred to as the inverse and forward piezoelectric effect and

support pulsing and reading with the same probe by quickly switching the electronic components.

Modern ultrasound imaging devices use algorithms to form images, applying beamforming and

harmonic imaging to increase resolution.

Ultrasonography typically uses sound waves with frequencies in the order of MHz. The higher

the frequency, the better the resolution that can be attained, however the attenuation is higher

and therefore imaging depth is reduced. In this paper we image musculoskeletal tissue using

transducers with a central frequency ranging from 8 to 12MHz for good resolution and enough

image depth.

Figure 5.1: A transversal scan of the mid-forearm, anterior aspect. Labelled in red are the various
muscles, and the bones in green.
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5.4 Hand anatomy

The muscles which control the hand can be categorised into extrinsic muscles which originate in

the upper/mid forearm, and intrinsic muscles which originate within the hand itself. The extrinsic

muscles control wrist motions and some digit movements. The intrinsic muscles are used for

finer motor control of the hand, for example pinch gestures and finger adduction/abduction. The

extrinsic muscles can be further categorised into flexor and extensor muscles which bend or

straighten the digits respectively and, in combination, move the wrist from side to side.

In this paper we exclusively image the extrinsic muscles at positions from the wrist to

the forearm. These locations provide a position for the probe that will not interfere with hand

movements. However, it will not be possible to capture hand movements that use intrinsic

muscles, and this is a tracking limitation for all systems that measure muscle movement at the

forearm level.

The muscles that are principally responsible for the flexion and extension of the fingers are

the digitorum muscles (Fig. 5.1, FDS, FDP). These also assist with flexing and extending at the

wrist, however the main muscles for the wrist are the carpi radialis/ulnaris (Fig. 5.1, FCR, FCU).

In addition, the carpi radialis and ulnaris assist with adduction and abduction of the wrist. The

thumb is controlled by the pollicis muscles (Fig. 5.1, FPL).

Hand movements change the musculature of the forearm due to contractions of the muscles.

These contractions expand the size of the muscles and pull the tendons, and these changes are

reflected in the US image. Furthermore, a particular hand movement changes the image at the

specific areas where the involved tendons and muscles are located. Depending on the position of

the probe (e.g. wrist or forearm) the observed muscles and tendons will be quite different.

5.5 Study Design and Pilot

The objective of our study is to analyse the best mounting locations of a wearable device for

discrete gesture recognition, cross-session accuracy and detection of continuous flexion angle.

The wearable uses ultrasound imaging to track the muscles and tendons inside the forearm and

with that infer hand pose. There were several variables to consider in the study; the main ones

are locations and gesture sets. In order to make the study feasible we ran a pilot study to discard

the options that were clearly inferior or not viable, which is presented after this section.

5.5.1 Locations

There are three parameters to consider when deciding the placement of the probe: orientations,

proximity to the elbow, and anterior/posterior placement. The following explains each of these

variables in more detail:
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Figure 5.2: The mounting positions of the probe that were compared with their corresponding
ultrasound image. a. Transverse, b. Longitudinal, c. Diagonal, d. Wrist, e. Posterior.

Orientation Clinical US scans are usually performed either Transversally (Fig. 5.2a) or

Longitudinally (Fig. 5.2b) along the length of the forearm. In transverse mode, a larger

range of muscles can be seen, however the muscle fibre displacement cannot be observed as

well as in the longitudinal scan. It is medically uncommon to use the probe Diagonally
(Fig. 5.2c) but we wanted to test if this position could image a large range of muscles and

still observe the displacement of muscle fibres.

Proximal/Distal The muscles are more predominant at the Proximal mid-forearm (Fig. 5.2a),

whereas the tendons are more visible at the Distal wrist location (Fig. 5.2d).

Anterior/Posterior The flexor muscles/tendons are located on the Anterior (inside) of the

forearm and extensors on the Posterior (outside) of the forearm (Fig. 5.2e).

We chose 5 locations to initially test: Transverse, Longitudinal, Diagonal, Wrist and Posterior.

These locations are illustrated in Fig. 5.2, along with their corresponding ultrasound images. The

figure shows how different the US images look between positions. Although it cannot be seen

from static images, the muscle fibre movement differs greatly with the orientation of the probe.

Fig. 5.5.3.2a shows the fibre movement when the probe is oriented perpendicular to the flow of

the muscle movement (Transverse), whereas Fig. 5.5.3.2b shows that the general movement is

along the axis of the forearm in a Longitudinal scan.
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Transverse mounting was used by Sikdar et al. [3, 116], Wrist was the location employed

by Castellini et al. [18, 19] and a preliminary study tested Posterior [113]. Here, we compare

those locations that were used in previous research and we introduce Longitudinal and Diagonal.

Longitudinal is the only image that is completely parallel to the muscle and tendon movement.

In a preliminary study for continuously detecting ankle angles it showed good accuracy [77]

but we expect it to show poor performance for classifying a variety of gestures since there is less

coverage of the muscles. We expected Diagonal to be a good compromise between continuous and

discrete tracking.

For the purposes of dynamic assessment, clinical radiologists rarely look at images in the

axial plane of the wrist, as it is difficult to identify individual tendons and the movement is not

as easily appreciated as in the muscle. This was especially true of the the extensor tendons in the

posterior compartment of the wrist, as the tendons here are too compact, and very little motion

can be observed when compared to the anterior side. Since the wrist is normally considered to

be the most ergonomic location to place a wearable device, we included the transverse distal

anterior location to have at least one wrist location. If the tendons provide sufficient information

for effective gesture recognition, this technique can be integrated with wrist-worn wearables.

In contrast to EMG, in US imaging we are also able to observe muscle relaxation. This means

that it is not crucial to image both the anterior and posterior parts as it is possible to infer motion

in both directions by inspecting either the flexor or extensor muscles. Consequently, we did not

repeat posterior positions with anterior positions.

5.5.2 Gestures

In ultrasound images it is possible to observe the muscles and tendons which control the fingers,

thumb and wrist at all locations, albeit more clearly in some locations than others. Consequently,

for our gesture set we mixed a representative collection of single digit flexions, multi-finger

flexion, wrist flexion and adduction.

We discarded movements that primarily involve intrinsic hand muscles such as pinch gestures

and adduction of the fingers. Perhaps these gestures can be detected in the forearm because they

are usually accompanied by other characteristic involuntary movements. However, we decided

to remove those gestures from this study and focus on the gestures that involve a unique set

of muscle movements that originate in the forearm. Fig. 5.3 shows the selected gesture set. We

split each of these gestures into flexion and extension phases producing a total of 20 discrete

movements.

There are numerous ways to flex a digit since they have at least two joints. We instructed the

users to perform a natural flexion which usually involves all the joints but with more emphasis

on the proximal interphalangeal joint. We thought that this would hinder the angle estimation

since the finger is bent at several positions, different to previous studies in which the fingers

were held with splints to force flexion at only one joint [19]. We wanted to avoid unnatural or
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Figure 5.3: The set of gestures from top to bottom and left to right: thumb, index, middle, ring,
fist, point, gun, call, wrist adduction and flexion.

uncomfortable gestures as they would not be used in a real situation. For the same reason, we

also discarded individual pinky flexion.

With US imaging it is feasible to see the separation between the deep and the superficial mus-

cles. For instance, the boundary between the flexor digitorum superficialis (FDS) and the flexor

digitorum profundus (FDP) can be seen as a bright horizontal line in Fig. 5.2b . Consequently, it

should be possible to differentiate between flexing of the digit at the metacarpophalangeal and

the interphalangeal joints (ie different knuckles).

5.5.3 System

5.5.3.1 Hardware

We used a Toshiba Aplio 80 US imaging machine with a flat, linear probe with an 8MHz central

frequency and 12MHz harmonic imaging mode. We used the default musculoskeletal settings

with 1 focal point and 4cm of depth imaging for all the positions, except for the Wrist condition

where we used 3cm. The machine was an ex-clinical machine but its deficiencies compared to the

state of the art reflect the likely limitations of a mobile ultrasound device in resolution and image

quality. In order to mount the probe onto the users forearm, we used a 3D printed structure to

hold the transducer in place and to strap it around the user’s forearm (Fig. 5.4a). We recorded
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the images from the US machine via a video capture card (Fig. 5.4d). Anagel US gel was applied

for coupling between the probe and the user’s skin.

In order to measure the ground truth of the hand pose, we created a sensor glove (Fig. 5.4b).

We used 5 Spectra Symbol Flex Sensors [41] which were sewn onto each digit of the glove. We

used an Arduino to read the resistivity values of each sensor and to transfer the data to the PC.

This data was only used for the continuous angle tracking studies. We found that the sensor

readings matched the amount of finger flexion linearly.

Figure 5.4: The setup of the experiment: a. Transducer, b. Sensor glove, c. Computer d. Video
capture device.

5.5.3.2 Software

Since a gesture is actuated by a specific set of muscles, the gestures have unique patterns of

activity within the US images. The type of motion depends on the location of the probe, and
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Figure 5.5: Optical flow for the Transverse po-
sition during a thumb gesture.

Figure 5.6: Summation of the magnitudes of
the flow vectors representing the activity pat-
tern of the index gesture.

the observed motion is caused by reflections/scattering from the muscle fibres. In a longitudinal

scan, the motion is primarily along the main axis of the probe, whereas transversal scans have a

variety of different motions including rotations or elevations (Fig. 5.5.3.2). Nevertheless, there are

patterns in the images wherever the probe is placed. The motion seemed therefore an appropriate

feature to classify discrete gestures with.

Several operations must be performed with the ultrasound videos in order to classify discrete

gestures or estimate finger angles. A reduced set of features are extracted from a collection

of frames and then used to train a machine learning classifier. Later, this trained classifier

determines the gesture or angles from a sample set of features derived from unseen images.

For the discrete classification, the first step is to segment the video stream into either flexions

or extensions from the neutral position. Then, we extract features for each of the frames and

these features are averaged per segment. In the continuous angle inference, the machine is a

regressor that is trained with both the features at each frame and the angles from the data glove.

Segmenting the videos for discrete classification was performed by calculating the sum of the

magnitudes of the dense optical flow vectors for each pixel of every frame, using Farnebäck’s algo-

rithm [40]. A Gaussian blur with a kernel size of 15 pixels was applied beforehand. Fig. 5.5.3.2a

shows the sampled points of the optical flow during the index flexing gesture and Fig. 5.7 plots

the magnitude of the optical flow against the data glove values. The latter graph shows that the

optical flow produces little or no activity during the period of time when the hand is not moving

in the flexion hand pose, unlike EMG signals. The videos were split based on a plot such as this,

where each gesture can easily be seen with two peaks at the beginning and end. Each gesture in

the training set then has a video clip associated to show participants the gesture.

The machine learning algorithms cannot process all the information contained in an image

and thus need a reduced feature set. For the discrete gesture classification, Sikdar et al. used the
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Figure 5.7: The blue line is a plot of the magnitudes of the flow vectors from an ultrasound video
of the index finger repeatedly being flexed. The other lines represent the sensor data from the
glove. Each channel is a 1D time signal.

accumulated difference in brightness level [3, 116]. In our experiments we used the vertical and

horizontal components of the optical flow. For each frame of a video clip, the dense optical flow

was calculated, and then the horizontal and vertical optical flow values were averaged within

each region based on a grid with 20 pixel spacing. Then the optical flow values were accumulated

over every frame in the video clip, giving a final feature vector with a length in the order of

hundreds of values. In continuous detection of finger angles, Castellini et al. used the first order

surface as features [18], we calculated the moments for each frame (m00, m20 and m21-m12)

which are equivalent but more standard in the computer vision community. The moments are

computed for each frame, and the regressor trained on moments of each frame with the data

glove data.

For machine learning in the discrete gesture recognition task, Sikdar et al. used Nearest

Neighbour algorithms [3, 116]. We tested Support Vector Machine’s (SVM) since it was shown

that they gave better results for discrete gesture discrimination in another study [105]. We also

tested a type of Neural Network called Multi-Layer Perceptrons (MLP) since they have often

shown very good results and have yet to be applied in this technology. In the continuous angle

detection, Castellini et al. used Linear Ridge Regression but suggested to use SVMs as they

may yield better results [18]. In addition to testing SVMs for the regression task, we also test a

multi-layer perceptron regressor. The accuracies of these algorithms are compared in the pilot

study.

A shift correction was used to improve the accuracy for cross-session studies. These errors

occur because the wearable can be placed slightly differently to the first time it was worn and

thus the anatomical features are not in the same position. To correct this shift, we computed the

optical flow between the first frame of a training set and the first frame on the current session.
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Classifier Diag. Long. Wrist Trans. Post.

MLP 99.875 99.5 99.5 99.25 97.875
SVM 99.625 99.125 99.375 98.75 97.5

Table 5.1: Results for the average discrete gesture classification accuracies for each position,
using different classification algorithms.

Classifier Diag. Long. Wrist Trans.

Participant 1 99.5 97.0 94.0 98.5
Participant 2 98.5 97.0 97.0 98.0

Average 99.0 97.0 95.5 98.25

Table 5.2: 10-fold cross validation classification accuracies for finger flexing at different joints.

The flow was averaged to get a 2D translation and this transformation was applied to the current

video to better align the training and sample features.

We used OpenCV [14] for processing the videos and Scikit [97] for the machine learning

implementations.

5.5.4 Pilot Study

We eliminated some of the variables from our main experiment through a pilot study, including

the least valuable locations, gestures and algorithms. For this pilot, 2 participants performed each

of the 10 gestures (with both flexion and extension of each) 20 times at each of the 5 locations. We

compared the accuracy of MLP and SVM, with different classifier parameters to find a suitably

accurate configuration. We used 10-fold cross validation on the data set in order to have a simple

and reliable measure of the accuracy for each case. Table 5.1 is a table of results for the average

cross validation accuracy for each location, given a particular classifier, for the discrete gesture

recognition case.

Our initial results demonstrated that MLPs had a slight advantage over SVMs in every

location, so our main study used MLPs. Our best MLP configuration had 15 neurons in the

hidden layer, alpha=0.001 and BFGS for weight optimization. After initial exploration, it was

very difficult to find a position for the posterior location that gave good coverage of all the required

muscles. This is due to the arrangement of muscles and bones around the posterior side of the

arm and the larger surface area, and is likely to be the reason for the Posterior location’s weaker

performance.

In our regression tests for this same data set, the same outcome was mirrored: Posterior

location showed the worst performance, and the MLP neural network regressor surpassed the

SVM. For this reason, we eliminated the Posterior position from our main study. The best MLP

regressor configuration we used for this had 15 neurons in the hidden layer, alpha=0.0001 and

Adam for weight optimization. The Posterior position is also the usual location for screens and
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interactive elements of wearables (e.g., watch face). Therefore our decision to ignore this location

is appropriate for ergonomics as well as efficiency.

We also asked these participants to perform flexions for each of the 5 digits 10 times, flexing

at the metacarpo-phalangeal joint and again at the interphalangeal joints. For each of these

10 video clips, they were again split into flexion and extension gestures. Analysis of this data

indicated that it was in fact possible to differentiate between flexing at different joints, with an

average accuracy of 97.4% across all positions. The different types of flexing exhibit unique areas

of muscle activity across the superficial and deep muscles. This shows the potential for US to

detect finer differences in hand pose, a feature that is difficult to achieve with EMG since it is

difficult to differentiate between signals from the superficial and the deep flexors.

The ability to differentiate between different levels of pressure has been demonstrated in

previous studies with ultrasound imaging [47, 94]. We also found discernible differences in the

images and could qualitatively infer the amount of pressure with the changes in the ultrasound

images.

5.6 User Study

5.6.1 Participants

12 participants aged between 20 and 50 years were recruited to take part in the user study; 8

were male and 4 female.

5.6.2 Task

The participants were asked to sit in front of a computer, wear the sensor glove and the probe

mount on the right hand and then to follow the instructions shown on the monitor (Fig. 5.4c). The

arm position was as depicted in (Fig. 5.4a). The video showed the user which gesture to perform

and an indicator at the bottom gave visual cues for the timing of the gestures.

At each location the participant had to perform a total of 10 gestures, 10 times each. Each

5-second gesture clip prompted the flexion and extension phases, which were then split into

those two halves for a total of 10 flexion and extension gestures. Therefore the study involved:

12 participants X 3 locations X 10 gestures X 10 repetitions = 3600 gesture performances. The

average study lasted 45 minutes including the time taken to explain the procedure to the

participants and to equip the user with the sensors. The data collected from the participants

were analysed offline. The data from the pilot study was not used in the main study.

5.6.3 Experimental Design

The conditions for the experiment were the locations of the probe: Diagonal, Longitudinal, Wrist

and Transverse. Each of the 12 participants were assigned a pair of conditions (there are 12
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ways of picking 2 out of 4 with order) and repeated the last condition. Therefore, each participant

performed the gestures on three locations, the second and third locations were the same for

testing cross-session performance. At each location, the probe was removed and placed again

after a short rest, without any attempt to recalibrate using the US images. In this regard, the

short time in between may not seem sufficient for a cross-session study. However, we presume the

main issue for cross-session performance is sensor misalignment (as is the case with EMG [7]),

as the significant changes in the US images are likely to cause classification problems. A short

delay between sessions is enough to simulate the misalignment that would occur with extended

delays, and this way we focus solely on the calibration mechanism without interferences from

other variables.

5.6.4 Results

Different measures of accuracy were calculated for discrete recognition and continuous angle

detection. All experiments are within-user.

Cross validation was performed on the data, using the MLP classifier described in the pilot

study to produce classifications. We employed a 10-fold leave-one-out cross-validation strategy,

with each fold containing one instance of every gesture, of which there are 20 of. Since we split

gestures into flexion and extension, gestures instances of the same type were not temporally

adjacent. The average classification percentages for each location are shown in Fig. 5.8. The

confusion matrix for the Longitudinal location is shown in Fig. 5.10.

A one-way mixed Analysis of Variance (ANOVA) was conducted to compare the main effect of

sensor location on 10-fold MLP classification performance in Diagonal, Longitudinal, Wrist and

Traversal conditions. There was a significant effect of location, F(3,6)=14.44, p<0.01. Post hoc

pairwise comparisons used t-tests with Bonferroni corrections to account for multiple comparisons.

There was a significant difference between Diagonal (M=99.78, SD=0.09) and Longitudinal

(M=97.94, SD=0.38), t=5.67, p<0.01; Diagonal and Transverse (M=98.94, SD=0.19), t=4.08,

p<0.05; Longitudinal and Wrist (M=99.78, SD=0.12), t=-4.30, p<0.01; and Wrist and Transverse,

t=4.08, p<0.05. There was no significant difference between Diagonal and Wrist, or Longitudinal

and Transverse. From these results we can establish that for classification accuracy the Diagonal

and Wrist conditions were best, followed by Transverse, with the Longitudinal condition last.

The cross-session accuracy is shown in Fig. 5.9 divided by location for both the raw videos

and the shift-corrected videos. The cross-session accuracy is obtained by training the classifier

with the data from the second session and then classifying the data from the third session which

belonged to the same location.

For the continuous detection of finger angles, the main metric was the Normalised Root

Mean Square Error (NRMSE) of the predicted angle compared to the real angle. The value was

averaged over the five fingers since the errors were similar for all the digits. These values are

shown for each location in Fig. 5.11.
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Figure 5.8: Accuracy of the discrete gesture classification. Average 10-fold cross-validation for
each location across all participants. Error bars represent standard error.

Figure 5.9: A graph plotting the average classification accuracies for the cross-session data at
different locations.
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Figure 5.10: A confusion matrix for the Longitudinal position.

5.7 Discussion

The accuracy in discrete gesture recognition is very high, with the average of all locations being

above 99%. The Longitudinal position has been statistically shown to perform the worst for

this task. A more limited range of muscles are within the view of the probe at this position,

supported by the fact that the gun and ring gestures were usually confused (for both flexion and

extension - Fig. 5.10) since they involve a common muscle. Other locations showed similar issues,

however the issue was more marked in the Longitudinal images. This may also be indicative of

inconsistent or insufficient information about the fifth digit muscle across all the locations. In our

observations of the images, the thumb and pinky muscles were at the extremities of the images,

and it is likely that the pinky could have been out of view. Unexpectedly, the Wrist location

offered good results, even when the images seemed to show little movement in comparison to the

proximal locations. One possible reason for this is the good coverage of the tendons by the probe,
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Figure 5.11: NRMSE values of the continuous digit flexion predictions averaged over all digits
and for all participants. Error bars represent standard error.

which can easily cover the central part of the wrist due to the smaller surface area. The tendons

that move the fingers and wrist have to pass through the carpal tunnel in the wrist making it a

concentrated area of information, in contrast to the proximal locations where the muscles and

tendons are spread across a larger area.

The cross-session results show that the loss in accuracy due to probe displacement between

sessions affects each location differently. Prior to shift compensation, Transverse and Longitudinal

had worse cross-session accuracy when compared to the other locations. This suggests that large

shifts occurred between sessions for these positions, and that it may be more difficult to place

the probe in the same place between sessions. The shift compensation algorithm improves the

cross session accuracy for every location, but this improvement is much larger for Transverse. In

contrast, Wrist only improves slightly but that position already offered high cross-session accuracy.

This is likely because the smaller size of the wrist allowed less variation in the placement of

the probe. Although there were large cross-session errors for Transverse and Longitudinal, the

shift can only be compensated well for Transverse. The image shift with Longitudinal cannot be

recovered because the image changes differently when the probe shifts laterally, and a simple 2d

translation is not enough to correct this change. The other locations are more robust to image

changes as displacements perpendicular to the probe do not affect the images significantly.
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In summary, the results from the study suggest that there is no significant difference between

Diagonal and Wrist in discrete gesture classification, but these are superior to other locations.

For ergonomic reasons, Wrist seems like the best location for discrete gestures. For continuous

detection of digit angles both Diagonal and Transverse offer the best results. Therefore, the best

position for both requirements is Diagonal but if ergonomics is an important factor the Wrist

location could be selected for discrete gesture or Transverse for continuous angle detection.

5.8 Limitations and Future Work

There are issues with practicality which are yet to be solved before this method is viable as a

wearable gesture recognition device. In this section, we will address these limitations and provide

information about the current state of research for each of these problems.

Gel is needed to couple the transducer to the skin and facilitate the transmission of ultrasound

into the body. It may not be practical to use gel with an everyday wearable, but there have been

recent developments which show that hydrogel pads can be used as an alternative coupling

medium [59, 100].

Participants were sedentary during our experiments. Different postures will change the

muscular disposition inside the forearm and shift the features. There have been some preliminary

studies that investigates classification rates for different arm positions, which show that they do

not seem to significantly compromise reliability [3]. Further comprehensive research is required

to analyse and mitigate the effects of arm movement during everyday activities. It may be possible

to use a similar method to our cross-session calibration for this purpose. Also, with inferences of

posture from other sensors (e.g. IMU), specific calibration schemes could be applied.

In our experiments, we used a decade old ex-clinical scanner, we are aware of the elevated

price and bulky size of these machines. Recently, emergency point of care ultrasonography has

created a need for cheaper and smaller pocket-sized scanners; in fact, several portable devices

exist [124]. These handheld devices utilise the power of mobile phones to process the raw data.

Although they are quite small, they are still not small enough yet for integration with wearables.

The image quality of these portable devices are comparable to the machine used in our studies.

These devices are expensive (>$2k) but will decrease in price with acquisition boards integrated

into a chip, and as research in transducer technology progresses [12]. As with most electronics,

the cost of the raw materials of these devices is low, but the long and difficult fabrication process

makes it expensive.

Since the wrist requires a shorter imaging depth, it is possible to use a probe with a higher

frequency. This higher frequency may yield better results with the increase in resolution. Higher

frequency probes can be smaller in size, making it easier to integrate with wearables.

The probe that was used in this study was large and rigid, hindering its utilisation in wearable

scenarios. Transducer fabrication research has developed small and flexible thin-film probes,
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which should help to reduce the size. Currently, it is possible to build a flexible probe with

multiple elements that can be wrapped around the thumb [129]. This technology may also help

to alleviate the aforementioned arm movement artefacts. It would seem more suitable if the

probe was designed in a way which fits the curvature of the forearm. It has also been shown

that piezoelectric elements can be 3D printed, which may allow for a custom-tailored design of a

wearable transducer device[25].

The US probe that we used is linear; that is, it has the elements arranged in one dimension.

2D probes that can image 3D volumes (while not moving) is a current interest in ultrasonography

research. These probes could improve robustness to shifts in the positioning of the probe, as well

as providing more features to classify with.

Always-on gesture detection is desirable for real use. We do not have a dedicated study for

proof of gesture spotting, but we found that high levels of activity can be measured by integrating

the magnitudes of the optical flow vectors. While we only used this method to split our data, it

may also be used as a variable for segmentation. However, this simple approach could be brittle

and remains to be tested under realistic conditions, where motion artifacts may cause problems.

Power is a concern for wearable ultrasound imaging devices at the moment. The portable

GE Vscan [34] lasts for 1̃ hour of continuous use. Battery improvements are expected in the

future, but a more interesting approach is to only activate full imaging during gestures, for

instance pulsing ultrasound with fewer elements, effectively providing a low-res image to detect

gesture onset. A more complete system could have other low-power sensors integrated, such as

myoelectric sensors to initially spot the gesture using existing segmentation techniques.

All of the presented experiments are within-user. Much like electromyographic devices,

anatomical differences between users creates an interesting challenge for cross-participant use of

US wearables. Perhaps a more elaborate classifier and calibration scheme that takes into account

the common anatomical features between users, could lead to an effective user-independent

system.

Bio identification is could also be another possibility with ultrasound imaging. The veins

and other anatomical features are detectable with high frequency probes; previously, it has been

shown that the structure of the veins can be used as an unique characteristic for identification

[68]. This technique could be used to identify the wearer and load their preferences, without the

need for external validation.

5.9 Reflection on Findings and the Key Problems

We have presented a solution for detecting discrete gestures and tracking continuous angles

of the fingers using ultrasound images captured from a probe mounted on the forearm. Our

novel contributions include findings on the variation in performance between different mounting

locations. In contrast to previous studies, we provide results for the cross-session accuracy
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decrease, and show that a simple calibration algorithm can improve the accuracy, and highlights

the usefulness for future work. In conclusion, the performance variation across the tested locations

vary somewhat insignificantly, meaning that an ergonomic location such as the wrist may be

chosen as the desired location for a wearable US device. However, there are some differences in

robustness and continuous angle recognition, and depending on the requirements other locations

may be more desirable.

As discussed, the size, complexity and cost of current state-of-the-art devices are still an

issue for wearable applications. There is hope that with the current trends of continued decrease

in cost and size of these devices, ultrasound imaging for gesture detection will become more

feasible in the future. In the next section, we will look into this issue in more depth. We present

an alternative probe design that is far smaller and simpler in complexity, which may be an

alternative to imaging that still provides enough information for accurate hand pose detection.

The ultrasonic gel that we discussed as a limitation, is actually a key practicality issue of this

method. Unfortunately, this is largely ignored by those studying ultrasonography for non-medical

purposes. Of course for clinical purposes, the application of gel suffices for the quick scanning

time necessary for medical diagnosis by the radiographer. For applications such as wearable

device control, this is obviously an issue if the device is to be used for extended periods of time.

With EMG, coupling is also an issue, but the difference is there have been dry electrode designs

that have been tested successfully. However, there is much less evidence for a dry alternative

with US. The closest such work on rigid coupling mediums are polyacrylamide gels [100] for

focused ultrasound therapy (not sensing). On the other hand, there are many patents that can

be found for partially rigid coupling mediums. Due to the lack of information of rigid gels for

ultrasonic coupling (for sensing), we investigate this ourselves in the next part of this chapter.

5.10 Improving the Feasibility of Ultrasonic Hand Tracking
Wearables

Ultrasonic imaging suffers from a couple of issues: First and foremost, the propagation of

ultrasound into flesh suffers greatly without a suitable coupling medium; Secondly, the complexity

of the driving circuitry for medical grade imaging currently renders a wearable version of this

infeasible. In part 2 of this chapter, we aim to address these two problems by finding a rigid

coupling medium that lasts for significantly longer periods of time; and devising a new sensor

configuration to reduce the device complexity, while still retaining the benefits of the technique.

Furthermore, a comparison between high and low frequency systems reveal that different devices

can be created with this technique for better resolution or convenience respectively.

The main practicality problems of ultrasound are stated below:

1. An ultrasonic coupling medium. Due to the gaps of air and large difference in acoustic

impedance between the skin and the imaging probe, most of the signal is lost. This effect

95



CHAPTER 5. ULTRASONOGRAPHY

Figure 5.12: The GE Vscan, a modern portable ultrasonic imaging machine.

is greater at higher frequencies, which are used in ultrasonic imaging. To attain a clear

image, a liquid gel is typically applied to facilitate the coupling between the skin and

the transducer. The gel usually dries up within 20 minutes. Thus any device based on

ultrasound imaging will surely be limited by this impracticality, if intended to work for

longer periods of time.

2. The sheer complexity of an imaging transducer creates an enormous challenge in reducing

the size to a wearable form factor. Commercially available portable scanning machines that

can be bought today are still too large for a wearable device [34] (Fig. 5.12). Furthermore,

the power consumption and computational complexity of these units are still far too high

for today’s battery and processing technology.

While one may argue that (2) could eventually be solved with enough time and engineering, (1)

presents a fundamental problem of the technique that cannot be solved without further research.

Thus, it can be said that (1) is a more critical problem.

The contributions of this work are summarised as follows:

• A rigid hydrogel couplant is found to increase the transmission of ultrasound into flesh.

The hydrogel can be used for extended periods of time, for up to 3 hours.

• A new sensor configuration that uses fewer sensors is proposed. This configuration requires

far less in terms of computation, efficiency, driving circuitry complexity and cost.
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Figure 5.13: A simulation to show the refraction of the main ray from the piezoelectric elements
into the flesh.

5.11 Hardware

For the ultrasonic transmitter and receiver, we used 1MHz 10mm diameter piezoceramic discs,

with wrap-around electrodes available from Noliac [91] (Also has resonant frequency at 200KHz).

The discs needed to be encased in an insulator in order to prevent shortages between the

electrodes, for this we used epoxy. For our experiments, we used separate pulse and receive

machinery, and thus also separate transmitting and receiving piezo elements.

Consequently, the piezo’s needed to propagate the sound waves at an angle into the forearm.

After inspecting the anatomy of the forearm through ultrasonic images, we found estimates for

the depth where muscle activity can be measured. We then developed software to approximate

these angles, and created a silicone mould with the shape and size of wedges determined by the

software (Fig. 5.13). The mould was created by first cutting a piece of acrylic with the desired

shape, then using silicone (EasyMold) around all but one face. We then cast the epoxy into these
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Figure 5.14: Piezoelectric discs, encased in epoxy that are shaped into wedges that are determined
by the software.

moulds, with the piezo resting on the open face (Fig. 5.14). We 3D printed a structure to separate

elements but hold them at a fixed orientation and distance apart (Fig. 5.16).

For the equipment to generate ultrasonic pulses, we used an Agilent 33220A arbitrary

waveform generator (set to pulse 10 periods, sinusoidal, 10V pk-pk). The pulse sync was set to

trigger the oscilloscope, Agilent DSO-X 2024A, so that the output of the receiving transducer

could be seen directly after the pulse was sent.

5.12 Experiments

5.12.1 Hydrogel

There are many types of hydrogels, but they are all capable of absorbing large quantities of water

within their structure (sometimes over 99%) [2]. They retain this water for long periods of time,

which is an ideal property for ultrasonic applications that require long scanning times (unlike

clinical scans).

Here, we test a calcium alginate hydrogel. This is comprised of alginic acid and calcium

chloride. The alginic acid is in fact a biopolymer, which means that it is biodegradable, renewable

and food safe. The calcium chloride is the cross-linker, which connects between the negative

polymers. We tested numerous quantities of each and settled on using a mixture of 450mg of

alginic acid to a 15ml solution of CaCl with water (∼0.01 Molar). The mixture was mixed together

gradually using a magnetic stirrer. This mixture is then left to hydrate for 24h, after which the

mixture is then quite viscous. The mixture is cast into shape using sheets of acrylic, then exposed

to a higher concentration of CaCl for a further 24h (approximately 10x higher concentration).

The gel is then left in water for 24h to get rid of any unbonded calcium ions. This results in a

hydrogel that is mechanically strong enough for our desired application (Fig. 5.15).
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Figure 5.15: Alginate hydrogel.

Figure 5.16: The prototype and experimental setup, the piezo discs inside wedges, held together
with 3d printed housing, with hydrogels beneath them.
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Figure 5.17: 200KHz received signal, without
hydrogel.

Figure 5.18: 200KHz received signal, with hy-
drogel.

Figure 5.19: 1MHz received signal, without
hydrogel.

Figure 5.20: 1MHz received signal, with hydro-
gel.

Figure 5.21: Testing the effectiveness of a hydrogel coupling medium at 200KHz and 1MHz. The
line underneath shows the trigger duration from the pulser.

Table 5.3 shows our tests with the hydrogel on the wrist. We compare the peak-peak voltage

of the received echo with and without the hydrogel. The signal captured from the oscilloscope can

be seen in Fig. 5.21. The hydrogel was measured after every hour, for 3 hours.

5.12.2 Finger flexion

The signal varies quite significantly between the different frequencies. On one hand, the 1MHz

signal captures many more features of the muscles due to the higher resolution. However, the

signal to noise ratio is better when 200KHz is used. Therefore, the system is likely to be more

robust when using lower frequencies. In either case, flexing an individual finger results in a

gradual change in the signal whether using 200KHz or 1MHz.

Fig. 5.22 shows the scope readings when exciting the transducers at 1MHz, using the hydrogel

couplant. The line at the top shows when the hand is open, and progressive flexing of the index

finger are measured until it is fully flexed (bottom line). The purple rectangles highlight the
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Without hydrogel With hydrogel
200KHz 11.3mV 19.5mV
1MHz < 2mV 17.1mV

1 hours later
200KHz n/a 18.1mV
1MHz n/a 12.5mV

2 hours later
200KHz n/a 15.3mV
1MHz n/a 7.8mV

3 hours later
200KHz n/a 11.8mV
1MHz n/a 4.0mV

Table 5.3: The highest peak-peak voltage of the received signal

Figure 5.22: Gradual flexing of the index finger, from relaxed (top) to fully flex (bottom).

peaks of the first reflection; a slight shift in phase can be seen throughout flexing. There are also

other signs in the signal that infer changes in muscle activity, as highlighted by the red square.

This qualitatively shows that it is possible to detect finger flexion with a single pair of emitting

and receiving piezo elements, unlike imaging transducers which are comprised of hundreds of

elements [81].
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5.13 Discussion and Future Work

The hydrogel experiments confirmed what was previously known about higher frequency ul-

trasound applications, which is that without gel, the signal cannot be observed. The hydrogel

improves the signal to noise ratio for both 200KHz and 1MHz, but importantly the signal can be

clearly seen at 1MHz. The hydrogel does decrease in performance over long duration’s and would

require a method of re-hydration for day to day usage, but this is a large improvement on the

current standard which dries rapidly. Future work in this area should look into other types of

hydrogels, and vary parameters to improve the working duration.

The single emitter and receiver configuration demonstrates the possibility for a system to

accurately determine the amount of digit flexion. This is a starting point for what could be a

highly accurate hand tracking wearable and would be very useful for high fidelity hand tracking

applications like augmented reality, where a wearable system could be a necessity. Such a system

would also be far less complex than medical ultrasonic imaging systems, which uses hundreds

of elements. However, the question remains as to whether it is possible to use multiple pairs of

emitters and receivers in order to estimate the angles for each finger individually. This is the

obvious next step for such a system. The next iteration of the system would probably use smaller

piezos, so that they can be formed into a line along the wrist, where each piezo pair concentrates

on a particular digit.

When the device is used at 200KHz, the received signal might lack detail for individual

finger flexion across multiple fingers, but would probably still work for discrete gesture detection.

Surprisingly, the signal can still be seen relatively clearly without the gel at this low frequency.

This opens up two separate branches of the technology: one for discrete gesture detection without

the need for gel; another for higher fidelity hand tracking for AR/VR, continuous variable control

or implicit gesture detection (weakly performed) but requires gel.

5.14 Conclusion of Feasibility Experiments

We have shown that there are alternatives to traditional transducer design and liquid gels,

with experiments to show their benefits. These alternatives give greater hope regarding the

feasibility of high fidelity wearable ultrasonic hand tracking wearables. This work provides other

researchers the opportunity to explore multiple avenues of research. Low frequency ultrasonic

systems up to 200KHz can be explored for convenient gesture detection without gel. High

frequency systems affording higher resolution hand tracking can be pursued, requiring further

research into hydrogel and signal processing.
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5.15 Reflection and adjustments to the requirements

The main findings of this chapter were that ultrasonographic device placement is not a significant

variable and therefore many positions and orientations performs well. Importantly, this includes

the wrist location, even performing favourably in some tests. We confirmed it’s effectiveness in

detecting continuous finger angles, which provides utility in the applications that EMG performs

poorly at. As mentioned at the end of the previous chapter, these are applications that involve

implicit gesture detection, weakly performed or subtle gestures and control of continuous hand

tracking for control of continuous variables or for interaction in AR/VR. Then we went further to

show that US systems are fairly robust, with a simple algorithm to mitigate device shifting when

used between sessions.

This is what we initially set out to investigate, but perhaps the more unique and interesting

findings stem from the analysis of whether current state of the art systems can integrate with

wearable form factors yet. The answer to this was no: it is clear that US imaging systems are

very complicated and required a lot of electronics to drive the transducers. A more fundamental

problem with ultrasound devices was identified, which is the use of gel coupling. Gel coupling is

absolutely necessary to get any images from the device when used at high frequencies, which

are typically used in musculoskeletal imaging. While gradual improvements to engineering may

eventually allow integration of high frequency, high element-count transducers into wearables,

the issue of gel is one which does not seem to change in time without active research into

material science of rigid gels. With very little knowledge of material science, but with the help

of colleagues familiar with hydrogels, I was able to fabricate my own and report findings which

indicate the possibilities of using a partially rigid coupling, longer lasting medium for ultrasonic

imaging. Coupled with the findings of using lower-frequency piezoelectric transducers in different

configurations, the feasibility of integrating such a device with wearables is now not such a

far-fetched idea. But a fully working prototype that uses rigid and non-wet gels is still far away

from complete.

The issue of device coupling to the skin is not an issue that is limited to EMG and ultrasound.

Looking more deeply into the literature, there are also coupling issues with pressure sensing

and also infrared devices. But in particular, dry electrodes that are used in EMG and EIT, must

be very tight against the skin in order to maintain good electrical conductivity. Furthermore,

any loosening in tightness will affect the measurements, likely inducing a worse signal to noise

ratio as we noticed ourselves during the pilot study in the EMG chapter. Unfortunately, this

phenomenon has not been reported in much of the research in EMG or EIT. Although, there are a

few examples of work that try to increase the comfort of dry electrodes over extended periods of

time, since the pressure of the electrodes onto the skin are so tight (but necessarily so) that they

leave a mark [24]. Thus far, we have not considered the comfort of the wearable to be of much

variation between the different methods. However, given: how different the coupling requirements

are between methods; the different options (dry vs wet) within methods, the trade-off between
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Technique Mobility Placement & Size Fidelity Comfort Complexity
EMG Average Wrist Good Poor Simple

Ultrasound Poor Wrist Very good Poor Very complex
Infrared Highly Thin & wrist Poor ??? Very simple
Pressure Highly Thin & wrist Poor Poor Very simple

EIT Highly Thin & wrist Average Poor Fairly complex
Optical Average Wrist (but obtrusive) Limited Good Fairly complex
Glove Highly Obtrusive Excellent Good Simple

Table 5.4: An updated table of analysis for gesture recognition techniques, with respect to the
requirements.

device tightness and signal quality, we must now consider this to be one of the requirements.

Therefore, we add a new requirement to our previously amended list of requirements, changes

marked in bold:

• Mobility → Wearable.

• Placement & Size → Ergonomics, practicality and social acceptability.

• Accuracy & Range of Gestures & Continuous and Weak → Usefulness.

• Continuous control or subtly performed gestures.

• Device tightness → Comfort.

• Complexity → Immediate feasibility.

We will now update our table of analysis with this new requirement, but also with our findings

from the earlier parts of this chapter.

Admittedly, the device tightness may not be the only factor that affects comfort, but it is the

main factor that we have observed during our hands-on experiences with the technologies. We

will assume that the dry electrode approach is the only reasonable option for wearable devices.

Therefore, in the table, EMG and ultrasound methods have been categorised as having poor

comfort due to the electrodes requiring tight skin contact. EIT use dry electrodes similar to EMG

and have also been marked as requiring tight skin contact. During our testing with pressure

sensors, we also noticed that the sensors needed to be pressed tightly against the skin or else

the measurements would be less reliable. Of course with the camera/optical approach, there is

no need for coupling of the sensor to the forearm, therefore it is good in this regard. Similarly

with the glove. However, we did not have any hands on experience with infrared, so whether this

technology works well without requiring a tight coupling of sensors to the skin is question to be

answered. Therefore, our next logical step looks into filling in this blank spot in the table, i.e.,

investigating whether infrared can be used without being worn so tightly. In addition, we also

look to see if we can improve the accuracy and range of gestures using infrared, as the fidelity is

poorer when compared to EMG, US or EIT.
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6.1 Introduction

Having discovered that the coupling of electrodes to the skin is often too tight, this challenges

EMG, ultrasound and EIT as technologies that are comfortable for long term use. This is evidenced

in Chen et al. work as they design for softer, more comfortable electrodes [24]. Although this

problem is often ignored by researchers in this field, it is sometimes picked up by reviewers of

off-the-shelf devices. For instance, here is an excerpt from a review of the "Myo" armband, by

Thalmic Labs1:

"The sensors need to be tight against the skin to provide accurate feedback ... And

when I say the fit need to be tight I mean it. It’s comfortable enough to wear initially,

but I do find myself itching to get it off after half an hour or so. When you do you’re

left with a skin imprint resembling a tribal tattoo from the ’90s."

"Verdict: It’s not very comfortable and sometimes the controls aren’t particularly

refined"

The Myo (at the least in the version that is reviewed here, reviewed in 11/2015), uses dry

electrodes in order to circumvent the practicality and longevity issues of gel electrodes. As the

reviewer points out, based on his experience, the electrodes need to be tightly pressed against

the skin in order to work sufficiently well. After using the device somewhat uncomfortably, an

imprint is left on the skin, as seen in figure 6.1.

1An excerpt from a user review of the Myo armband, accessed 05/04/2018: http://www.trustedreviews.com/
reviews/myo
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Figure 6.1: An imprint of the dry electrodes on the skin of the user, after having it worn it for a
short session (less than 1 hour).

Infrared sensing technology for gesture detection is different because it does not require good

contact for electrical conductivity or acoustic impedance matching. However, whether infrared

works with skin-tight contact remains a question that is to be answered within this chapter.

In the following sections, we present SensIR, a bracelet that uses near-infrared sensing to

infer hand gestures. The bracelet is composed of pairs of infrared emitters and receivers that are

used to measure both the transmission and reflection of light through/off the wrist.

Previous work have used arrays of infrared (IR) emitters and receivers around the wrist

to measure the amount of reflected infrared light to infer wrist deformations. However, these

systems only take a single receiver measurement per emitter. We propose to take measurements

between all the possible combinations of emitters and receivers, capturing not only the reflected

light but also the amount of light transmitted through the wrist. Transmission of infrared light

through human tissue is relatively high and does not pose any danger at the levels that we use.

Unlike systems such as EMG or EIT, infrared does not rely on high electrical conductivity

between the sensor and the skin. This allows infrared systems to be far more comfortable, as we

show in this paper, the sensors do not need to be skin-tight, nor do they need to occupy much

space.

In the following sections, we present the hardware and software behind SensIR. We conducted

a user study in which the system provided an accuracy of 93% for 12 gestures. We demonstrate the

importance of including the transmitted light features and analyse the performance of different

bracelet arrangements to guide the design of wearable gesture recognisers that use SensIR’s

approach. Finally, we explore robustness issues that should be considered for using the device in

real scenarios.
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The content of this chapter is a revised version of work I have published in the Proceedings

of the 2017 UIST Proceedings of the 30th Annual ACM Symposium on User Interface Software

and Technology (UIST ’17): "SensIR: Detecting Hand Gestures with a Wearable Bracelet using

Infrared Transmission and Reflection" [80].

6.2 Related Work

In this section we focus on describing previous work on infrared gesture detection devices.

Detailed descriptions of the related work can be found in chapter 3.

Although we name the technique infrared, this is different to what we call "optical" methods

(as we have defined in this thesis at least), which use cameras and can be used to determine the

position and flexion of fingers [101]. For instance, Digits [65] uses an IR camera attached to

the wrist. A problem of these approaches is that the camera requires a direct line of sight to the

fingers and therefore camera approaches suffer from occlusions by the hand.

While performing gestures, the shape of our wrist and forearm changes. This can be measured

to infer hand gestures. A more detailed explanation of this can be found in the literature review

in section 3.1.1, as well as an overview of methods reliant on wrist deformations.

Infrared distance sensors have been utilised in past work in order to detect such wrist

deformations. Fukui et al. created a prototype with 150 pairs of emitter-receivers were placed

around the wrist to detect 5 gestures with 70% accuracy [42]. Hamid et al. [53] showed

qualitatively that it would be possible to differentiate between 10 gestures. Ogata et al. [92]

augmented a smartwatch with 12 sensors to detect 9 different skin deformations around the

watch. Gong et al. [46] placed 12 sensors around the wrist for detecting 8 gestures with 89%

accuracy. IR sensors are inexpensive and easy to integrate into small wearable systems and have

better robustness against coupling conditions. However, the accuracy and amount of gestures

seem limited compared to other methods.

Previous IR approaches only emit and receive with the same sensor. In this work, we demon-

strate that using infrared light enables a novel possibility that can be used to improve accuracy.

Infrared is a non-ionizing radiation and penetrates through flesh with relatively high transmis-

sion (Fig. 6.2). We propose to emit and receive with all possible combinations of transmitters and

receivers as light passes diffusely through human tissue, obtaining exponentially more features

to analyse.

Near-infrared diffuse tomography is a medical imaging technique [132] in which infrared

lasers are pulsed at picoseconds periods through optical fibers to image human tissue with

low-resolution. We think that a similar principle can be applied to obtain a wearable gesture

detector that is accurate, inexpensive, ergonomic and resistant to bad coupling.
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Figure 6.2: Images captured with a camera sensitive to infrared. On the left there is no in-
frared illumination, on the right an infrared source is placed behind the hand, showing partial
transmission through the hand (a) and wrist (b).

Figure 6.3: a) SensIR worn by the user. b) An emitter is on and all the receivers capture the light
level. c) This is repeated for all the emitters to produce a full matrix of data.

6.3 SensIR

SensIR is a bracelet made of 14 segments that is placed around the users wrist (Fig. 6.3.a) Each

segment has an infrared emitter and receiver, measurements between all possible pairs are

captured (196 measurements) (Fig. 6.3.b). When the emitter/receiver pair are close, most of the

light is reflected from the skin. When they are opposite to each other, the light transmits diffusely

through the body. The light levels (i.e. features) are fed into a neural network that infers the

current gesture.
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Figure 6.4: a) bracelet made of 14 segments. b) individual segments with an emitter and receiver.
c) circuit board used to amplify, sample and send the received signals to the computer.

6.3.1 Hardware

In this section, we will describe the hardware of the system. This will hopefully serve as a guide

for people to follow should they wish to replicate our prototype. To this end, we recommend they

use the supplementary material found in the ACM digital library2. This material contains design

files and software which will be referenced in the following paragraphs.

The bracelet was lasercut in one piece of laser rubber (Hobarts) with holes for the emit-

ters and receivers. Each segment had a pattern of curls to permit stretching and bending

of the bracelet (Fig. 6.4.a). The design file for this can be found in the source materials as

"bracelet_cut_rubber.ai". The emitting elements were LEDs (Osram Opto SFH 4556P,

860nm) and the receiving elements photodiodes (Osram Opto BPW34 FA IR) (Fig. 6.4.b) Opamps

(LM324N) with a gain of 1M were used as trans-impedance amplifiers to measure the current

2Found under "Source Materials": https://doi.org/10.1145/3126594.3126604
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from the diodes, a transistor array was used to amplify the control signal for the LEDs. A Teensy

3.6 was used to control the LEDs and read the values from the photodiodes (Fig. 6.4.c) using its

internal ADC of 16 bits and a reference voltage of 3.3V. We waited 10ms to enable the LEDs to

reach full power and then read with the photodiodes. All 196 measurements were taken 20 times

per second. The system consumes 110mA operating at 4.5V (450mW) and 63% of the consumption

comes from the microcontroller.

6.3.2 Software

The Teensy microcontroller controlled the switching of the LEDs and the sampling from the

photodiodes. The measurements are sent to a PC running a neural network algorithm to classify

the features into gestures. We used a multilayer-perceptron (MLP) classifier in one-versus-rest

mode (Scikit-learn) with 1 hidden layer of 24 neurons, L-BFGS training algorithm and an alpha

parameter of 0.05.

6.4 User Studies

6.4.1 Main Study

6.4.1.1 Procedure

Our main study explored the accuracy of the system in different configurations.

6.4.1.2 Participants

10 participants took part in the study, aged between 24 and 32 (6 male, 4 female).

6.4.1.3 Task

They were seated in a chair with the bracelet worn on the wrist of their dominant hand. They

were asked to perform the gestures, in the sequence shown in Fig. 6.5, 10 times. That is, 10

participants X 12 gestures X 10 repetitions = 1200 gestures.

6.4.1.4 Experimental Design

The study and analysis of the data was performed within-user, and training of the classifier is

user dependent due to anatomical differences between users. We chose to use a variety of finger

and wrist gestures that are commonly found in related work.

6.4.1.5 Data Processing

Cross validation was performed using the MLP classifier described earlier employing a 10-fold

leave-one-out cross-validation scheme, with each fold containing one instance of every gesture.
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Figure 6.5: Gesture set used for the study.

Since the gestures were performed in sequence, gestures were not temporally adjacent across the

test and training sets.

6.4.1.6 Results

The obtained accuracy was 93.3% (SD=3.49), the confusion matrix is shown in Fig. 6.6. Most

confusions were between the pinch gestures, presumably due to their common muscle groups

used to perform them. Surprisingly, misclassifications occurred between the open palm and pinch

gestures. This suggests that the features for the pinch gestures are also less pronounced, we

noticed that during the study some participants performed the pinch gestures with less emphasis

than others.

The accuracy for different arrangements and number of sensors is presented in Fig. 6.7. For

each configuration there are two results, in the first one all the features were used (i.e. both

reflective and transmissive); in the other, only the reflective features were used (as used in

previous work). The accuracy was significantly greater using all the features 93.3%(SD=3.4)

than with only reflective 68.3%(SD=27.0), t(9)=2.964, p=0.016 for 14-segments, 89.0%(SD=5.9)

> 63%(SD=26.9), t(9)=2.921, p=0.017 for the Smartwatch, 84.0%(SD=9.6) > 50.8%(SD=29.9),
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Figure 6.6: Confusion matrix for all gesture classifications accumulated in the cross-validation.

t(9)=3.002, p=0.015 for 7-segments, and not significant 51.6%(SD=15.6) <> 40.6%(SD=24.5),

t(9)=0.948, p=0.368 for 4-segments. Although the 14-segments configuration obtained the best

results, the Smartwatch and 7-segments arrangements still provide good accuracy. This could

enable integrating SensIR into the strap of existing wearables or to reduce the cost and power

usage with 7-segments. For all the arrangements, using all the features provided significantly

better results than using only reflection, except for the 4-segments configuration in which both

accuracies were not adequate for usage in a real system.

6.4.2 Secondary Studies

These additional preliminary investigations into practicality issues that would be encountered

during real scenarios. For these studies, we used data from a single participant only (Male, aged

25).
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Figure 6.7: Accuracy in gesture recognition for different arrangements. For each, the accuracy is
split into a system that uses all the features (like SensIR) and a system that only uses reflective
measures (like previous systems). Error bars represent standard deviation.

6.4.2.1 Non-Sedentary Study

Procedure
In a real scenario, the users are likely to move their arm around. As an initial investigation

into the performance reduction due to arm movements, we conducted a study which purposefully

introduced arm elevations and rotations as part of the classifier training procedure. We tested for

3 different arm elevations: arm pointed towards the floor, at 45 degrees, and perpendicular to the

floor.

Results
The classifier was still able to detect the same 12 gestures with 86.1% accuracy. We used 4

training rounds at each of the 3 arm positions, using a 12-fold cross validation method. For 3

different forearm rotations (palms facing upwards, facing inwards and facing downwards), the

accuracy drops to 79.2%. The forearm rotation causes greater classification error likely due to

stronger morphological changes inside the wrist.

6.4.2.2 Calibration

Procedure
Small sensors misalignment happen while the bracelet is worn or when the user takes off

the wristband and puts it back again, this shifts the features causing errors in the classifier. We

included a study to determine if the open palm position can be used to calibrate the orientation of
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Figure 6.8: A plot of the averages of the orientation shift estimation.

the device. We gathered data from 12 different placements rotating the bracelet on the wrist with

displacements of 2.5mm over a range of 3cm.

Results
We used a neural network regressor to estimate the orientation, giving an NRMSD of 0.186

(Fig. 6.8). This suggests that it is possible to determine the orientation of the bracelet and thus

correct for small shifts in the sensors alignment.

6.4.2.3 Coupling

Procedure
Infrared systems are inherently more resistant to bad coupling than EMG, pressure, impedance

or ultrasonic methods, since neither emitting or receiving components require direct contact with

the skin. To test this, we lifted the entire array off the skin in numerous ways: by using rubber

bands between the skin and the array and wearing the bracelet on top of thick, clear latex.

Results
Neither of these additions to the experimental procedure seemed to affect the accuracy, both

still achieving an accuracy of above 90%.

6.5 Discussion

Our results indicate that using all the combinations of emitters and receivers outperforms

previous configurations where only one measurement is taken per emitter/receiver pair. The

additional data provided by this new configuration provides extra reflective measurements when

the emitter/receiver pair are close, and transmission measurements which indicate orientation

and distances between distant emitters and receivers.

SensIR seems comparable in accuracy and gesture sets to EMG or electrical impedance

tomography with the added advantage of robustness against bad coupling. However, there are

many factors such as the machine learning algorithm, number of sensors and study differences

that affect the classification outcome. We only claim that SensIR is an improvement over previous
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IR methods. However, more research should still be conducted with this approach such as

cross-session and cross-participant studies.

Good cross-session performance is an important requirement often ignored. As found in

similar techniques, the main difficulty is sensor misalignment between different sessions. An

algorithm to detect and correct placement shift would improve this significantly. Given the

accuracy of the calibration shown in the last study, it would be feasible to estimate the orientation

of the device and rotate the measurements accordingly.

Commonly in gesture recognition studies, the effects of arm movements that occur in non-

sedentary scenarios are ignored. We have shown that the system is still capable of recognising a

high number of gestures under conditions that might occur in real situations, by including such

data during training. Further work is required here to make the system more robust to these

motion artefacts, especially regarding arm rotations.

Even a tightly fitted band could be insufficient to prevent interference’s from powerful sources

of infrared like the sun. A solution could be to take a measurement of the receivers without

emitting, and then use the differential to cancel out background IR.

6.6 Conclusion

We have presented a novel technique for detecting hand gestures using a wearable bracelet,

designed to be integrated with wrist form-factor devices. The bracelet is composed of 14 segments,

each of them able to emit and measure infrared light. Our user study has shown that measuring

with all the possible combinations of emitter/receiver is superior to previous IR systems that

capture only reflections. Additional preliminary studies highlight areas for future improvement

in robustness and coupling, with suggested solutions for calibration. We anticipate that this work

will stimulate more research using SensIR since it leads to a significant increase in accuracy

without additional hardware.

6.7 Reflection and final adjustments to the requirements

In this chapter, we’ve demonstrated that the accuracy and range of infrared gesture recognition

devices are close to EMG. In this work we achieved 93.3% accuracy for 12 gestures against the

86.6% for 15 gestures of EMG (note: only EMG, not combined EMG and FSR, from chapter 4).

Although the narrative of the paper "SensIR" had more emphasis on the accuracy improvement

due to the novelty of transmission and reflection, the greater implications of the work - at least

in the context of this thesis - are in the small findings towards the latter parts of the paper. As

we originally set out to investigate, we did find that the infrared sensing mechanism was largely

undisturbed by a loosening of the bracelet. This was tested by introducing a 1mm gap between

the skin and the bracelet, and also tested by putting a variety of clear materials underneath the

bracelet. Although we cannot prove with certainty that this is more comfortable without a user
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Technique Mobility Placement & Size Fidelity Comfort Complexity
EMG Average Wrist Good Poor Simple

Ultrasound Poor Wrist Very good Poor Very complex
Infrared Highly Thin & wrist Good Good Very simple
Pressure Highly Thin & wrist Poor Poor Very simple

EIT Highly Thin & wrist Average Poor Fairly complex
Optical Average Wrist (but obtrusive) Limited Good Fairly complex
Glove Highly Obtrusive Excellent Good Simple

Table 6.1: An updated table of analysis for gesture recognition techniques, with respect to the
requirements.

study to acquire feedback on the comfort of the device, it is reasonable to assume that a device

that is less tight than electrode-type devices (which leave imprints on the skin) is preferable. This

has great implications for where the technology sits from a practicality point of view. We will

explain these implications in more detail in the final discussion chapter. For now, we will update

the table of analysis to include our findings about infra-red regarding it’s increased accuracy

(from "poor" to "good") and better comfort due to our findings. As per usual, the changes are

marked in bold:

We also investigated device robustness in these last two chapters. Robustness was tested here

in two ways. The first was to test sensor shifting, which happens primarily between sessions (as

the device is placed slightly differently each time it is worn), but shifting of the sensor position

can also happen during a session. The second way is testing against natural movement, which

puts the body into different postures that may affect the readings. As tested with the infrared

prototype, different arm positions indeed lowers the overall accuracy of system. The robustness

of the device is also a factor to consider in the requirements. However, the required robustness

is likely to change depending on the application. For example, if the device is to be used during

sports where the body moves a lot, of course then robustness is of importance here. But for all

applications, a certain level of robustness is required, as none of the envisioned applications

assume that the body is sedentary. Also, for any application, cross-session shifts will be a problem.

Therefore, although we haven’t accounted for robustness into our analysis yet, this should be

a requirement to be considered in future work. Our final list of requirements are updated here

accordingly:

• Mobility → Wearable.

• Placement & Size → Ergonomics, practicality and social acceptability.

• Accuracy & Range of Gestures & Continuous and Weak → Usefulness.

• Continuous control or subtly performed gestures.

• Device tightness → Comfort.
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• Robustness to movement and cross-session.

• Complexity → Immediate feasibility.

In the next chapter, we will discuss more about the implications of our final table of analysis

and requirements. Following this, we will give important future work for each of the methods

described within this thesis, with a particular interest to their practical weaknesses that are

highlighted in the table of analysis.
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DISCUSSION

7.1 Final Analysis of Techniques

We now have the final revision of the requirements and table of analysis. This is by no means

exhaustive, but takes into account the most prevalent methods and important aspects of the

requirements that have been found through experimentation. The table has been re-stated below

for ease of viewing. The optical and glove methods are faded because the placement of these

devices cannot conform to socially acceptable form factors, as desired by people [96]. If this is not

an issue however, then the glove is still by far the best method.

7.1.1 Overall Best Method

By rather simply inspecting the comfort column, there is a clear winner in this category. None

of the alternatives have yet overcome the problem of device tightness. In fact, the infrared

method performs at least as well as any other method in mobility, complexity, placement and size.

The fidelity of this method doesn’t quite reach the levels that ultrasound imaging can achieve,

but in this regard it is still fairly good for discrete gesture recognition. At present, the most

practical method with the highest accuracy is therefore infrared sensing. If comfort is ignored

as a requirement here, infrared is still a very good choice, above EMG and EIT all-around. It

should still be noted that EMG can support better fidelity, at the expense of a large number of

electrodes covering a large surface area. However, such a spread of electrodes goes against the

placement and size constraints that make it a practical and unobtrusive device. EIT has also

only very recently been applied to gesture recognition. By measuring the internal structures of

the forearm, this should be able to attain high levels of accuracy, although this has not yet been

demonstrated to the levels of fidelity that infrared or EMG have shown.
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Technique Mobility Placement & Size Fidelity Comfort Complexity
EMG Average Wrist Good Poor Simple

Ultrasound Poor Wrist Very good Poor Very complex
Infrared Highly Thin & wrist Good Good Very simple
Pressure Highly Thin & wrist Poor Poor Very simple

EIT Highly Thin & wrist Average Poor Fairly complex
Optical Average Wrist (but obtrusive) Limited Good Fairly complex
Glove Highly Obtrusive Excellent Good Simple

Table 7.1: The final table of analysis for wearable gesture recognition techniques, with respect to
the requirements.

One criticism of the infrared method is that we have not tested nor seen literature that shows

this method is able to track continuous hand movements or weakly performed gestures. The

only technique that is able to support this well enough at the minute, is ultrasound. Ultrasound

imaging has the most promising technology for the future, but there are still serious practical

issues that need to be fixed as discussed in chapter 5. We will discuss future directions for

ultrasound towards the end of this chapter.

7.2 Areas for future improvement

Using this table, we can see the weaknesses of each method with respect to the requirements. For

each method, we will briefly talk about the issues that need improvement, in order of importance:

7.2.1 EMG

Comfort As pointed out in the previous chapter, the dry electrodes need to be very tight

against the skin, making the device uncomfortable to use for extended periods of time.

This fundamental issue is shared across numerous techniques, yet the problem is often

disregarded. Material science seems to be the only approach so far that is tackling this

problem [24].

Placement & Size The next important aspect is the size of an EMG device. Even though

we tested it at the wrist, the prototype was not thin enough to be integrated with the typical

widths of watch straps or bracelets. Further research into the minimum inter-electrode

distances will be necessary to tell the absolute minimum width of a strap or bracelet.

Mobility EMG still uses quite a bit of power, and the size of the electrodes and circuitry

make current prototypes or even off-the-shelf systems fairly large. Advancements in power

and circuit design should alleviate some of these problems.

Fidelity Denser electrode designs (which also depends on minimum inter-electrode dis-

tances at the wrist) should enable higher numbers of electrodes. This creates more features

with which to classify with, which improves the overall classification rate [7].
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7.2.2 Ultrasound

Comfort Although not strictly a comfort issue, it is still an issue that is related to coupling

between the skin and the sensor. The fundamental issue with ultrasound is with the

necessity of the coupling gel. As we found out, partially rigid hydrogels could be a solution

to this. However, further research in this area is definitely a priority for enabling wearable

ultrasonic imaging devices. Such research is not only beneficial to HCI, but there are also

clinical benefits for wearable ultrasound devices. Commercially available is the "ProbeFix"

create by Usono, bringing "lengthy and stable fixation of an ultrasound probe to the body.

The device facilitates hands-off workflow, continuous measurement and reproducibility of

the ultrasound image." [121].

Complexity The other main issue with ultrasound systems is the complexity of the device.

The circuits are difficult to design and fabricate, as are the probes themselves. This process

makes the device costly, far more than would be reasonable for a technology that is only

part of a wearable device. Further engineering to reduce the size and design of better

integrated circuitry are expected to continue. These engineering efforts are mostly driven

by the recent demands for point of care ultrasound for clinical use [34].

Mobility The devices are large, due to the same reasons as described above for complexity.

7.2.3 Infrared

Fidelity The only part which should be improved on is the accuracy and range of gestures.

Currently only supports discrete gestures, whether this can track continuous movements

is a big question. A tomographic approach that creates images of the forearm, similar to

EIT, should be possible, especially because diffuse optical tomorgraphy is already a well

known technique. Perhaps also to be investigated further is the robustness of the device

with respect to: natural body movements which change the arm pose; shifting of the device

due to it being loose or cross-session shifting; external noise. Otherwise, a solid technology

that is good in every other aspect.

7.2.4 Pressure

Fidelity Pressure sensing methods seem poor in fidelity when used by themselves, at

least when compared to the state of the art in EMG [7]. Perhaps a higher resolution array

of sensors are able to push this boundary higher. As it stands, this technology seems to

be a good complementary technique. As we discovered in chapter 4, EMG and pressure

are complementary sensing techniques. Adding pressure sensing to electrodes could be a

simple way to add an extra dimension of features for other methods such as EMG, EIT, or

ultrasound.
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Comfort On the other hand, in order for pressure sensing to work well, there has to be

some tightness between the sensors and the skin. This is necessary because without any

baseline pressure, the sensors have nothing to measure the differences of. This inherent

tightness of the pressure sensing technology makes this somewhat impractical for long

term usage.

7.2.5 EIT

Comfort Similarly with EMG, the electrode tightness against the skin is a clear issue for

comfort. The same improvements in material science for dry EMG electrodes could pave

way for a solution here as well.

Fidelity The accuracy and range of gestures with this technique have not yet reached

the levels attained by EMG or infrared. However, the data acquired from the deformations

within the forearm seem to be detailed. With further improvements to the hardware,

imaging algorithm and gesture classification algorithm, we should expect improvements in

fidelity.

7.2.6 Optical

Placement & Size As explained in section 3.2, the protrusion of the camera makes the

device conspicuous. This is a physical limit with camera based devices. Additionally there

are a limit range of gestures that can be captures with this method.

7.2.7 Glove

Placement & Size The glove has obvious issues with conspicuity.

Accuracy & Range of Gestures The glove can replicate many degrees of freedom of the

hand. However, there is still not a single implementation that is able to track every degree

of freedom of the hand, which remains the ultimate challenge.

7.3 Limitations

We have previously discussed the limitations of individual techniques. Here, we explain the issues

that were common to most, if not all of them. This includes some problems that we investigated,

such as sensor misalignment between sessions, also those that we did not acknowledge such as

user-independent usage.
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7.3.1 Robustness

In our previous two chapters, we investigated robustness issues. The robustness of the device in

this context implies that there are common factors that affect the measurements of the sensors,

which ultimately affects the recognition of gestures. There are robustness issues that are common

to almost all technologies, such as calibration of the device placement. Then there are issues that

only affect some techniques.

7.3.1.1 Sensor Misalignment Between Sessions

Robustness concerns that are common among all techniques is the placement of the device, which

is likely to differ each time the device is worn. This is also known as "cross-session", "between-

session" and also "inter-session". For optical and glove type devices, this is not much of a concern

since the hand is measured directly, visually or through contact with the appendages respectively.

However, for many of the techniques we investigated, a slight displacement of the device can

produce a large change in the measured area of the forearm. Using EMG as an example of this,

the sensors are placed in areas close to muscles of interest. In current work in this area, classifiers

are trained on prior data collected from a specific position. Thus, an offset in position has an

affect on the classification of hand poses, due to the sensors now collecting data from different

sets of muscles.

This issue can be formulated as a calibration problem. Indeed, in chapter 5, we showed

that a calibration to detect the amount of shifting is trivial in the case of ultrasonography; the

calibration mechanism being a simple image analysis for transformations. We also demonstrated

that with the infra-red system, a change in orientation of the device between sessions can be

detected to a certain degree of accuracy, depending on the density of the sensors. However, for

EMG this is a more difficult problem, requiring far more complex calibration mechanisms. The

latest research in EMG using deep neural networks has tried to improve cross-session gesture

recognition accuracy through the use of deep domain adaptation [32].

Calibration due to shifting of the sensors is still to be explored in electrical impedance

tomography and pressure sensing techniques.

7.3.1.2 Sensor or Musculature Shifting During a Session

Movement of the device during a session can also occur if the device is worn loosely, or if the

user is doing a highly physical activity. This phenomenon is more difficult to test, with so many

varieties of human movement that can affect how the device moves. In addition to this, the

calibration needs to happen quickly and on-the-fly, if there is a requirement to detect gestures

during the activity.

Not only can the sensors shift during a session, but simply by moving the arms position -

such as it’s elevation - can affect the musculature inside the forearm [61]. This in turn can have

123



CHAPTER 7. DISCUSSION

an effect on the classification of gestures, especially those that rely on images as is the case

with ultrasonography or electrical impedance tomography. We confirmed in our previous chapter,

that forearm elevation and rotation have a negative impact on gesture recognition performance.

Rotations seemed to have a stronger negative influence, which makes sense intuitively due to the

much bigger morphological changes than happen within the forearm.

This is no doubt the more difficult robustness problem of the two. There needs to be research

in this area in the future if there is to be progress made towards making these technologies

practical in the real world. Inertial Measurement Unit’s will be of great utility when developing

systems to compensate for the natural movement of the arm, i.e. knowing the arms elevation and

rotation.

7.3.2 Anatomical Uniqueness and It’s Effect on Cross-Participant
Performance

There is no doubt a significant difference in the anatomy across individuals. There are obvious

differences such as the size of the muscles and bones, thickness of fat, but there are also missing

muscles or tendons [110] amongst certain individuals, which is just an example of just how unique

the anatomy can be per individual. This creates challenges in creating a gesture recognition

device that works across all kinds of people. Not only is this a challenge for recognition software,

but also in designing and fabricating a device that is able to fit anyone. Even in form factors

such as gloves, it is not trivial to design a device that can fit different sized hands and maintain

similar levels of tracking precision across them. Most gloves with high fidelity tracking often

place sensors on or around the joints in the fingers, which of course are shifted in people with

differently sized hands.

One possible solution to this problem would be to scan the individuals anatomy as part

of an initial setup procedure, and find the closest such anatomy in a database of pre-existing

training data. This might broadly categorise traits such as gender, age and body fat percentage.

However, this is a challenge in research due to the necessity of needing a large enough data set of

participants to test this principle.

Such scanning would be possible using ultrasonography that gives detailed images of the

underlying muscular structure. Data taken from sensors can give inferences for similarities

between anatomies, but cannot be better than a direct imaging technique such as US.

This is a major challenge that is yet to be tackled in any of the methods that depend on

information from forearm musculature.

7.4 Trade-off: Sensor Surface Area vs Accuracy

There is a clear theme that occurs in many of the techniques, where more sensors lead to an

increase in performance. This is an expected relationship, nonetheless there is evidence of this in
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Figure 7.1: A diagram to illustrate the axis in which the device could expand in to improve
performance, at the cost of ergonomics.

state-of-the-art high density EMG [7], and also own studies in this thesis support this idea (in

chapter 6, testing different arrangements of infrared sensors).

It is far easier to add more sensors in the infrared setup than it is for EMG. This is in part

due to the fact that EMG requires a minimum distance between electrodes for effective use [28].

In addition to this, EMG would benefit more from being placed on a different muscle group. This

means that more EMG sensors placed within the same surface area benefits less than if it were

spread out. This creates challenges in effective EMG design for increasing performance in this

way.

Infrared, ultrasound, pressure and EIT are all better in this regard due to the minimum

spacing being less of an issue. Especially for ultrasound, the piezoelectric elements are very

small, allowing many of them to be packed within a tighter space. It is exciting to think about

the opportunities that 3D imaging may bring to hand pose detectiong, as we briefly mentioned in

the literature review (chapter 3,section 3.5). This kind of imaging can be done in a stationary

manner using densely packed probes. Of course, with this increase in complexity, the feasibility

of a mobile and wearable device using this technology decreases even further.

Another example of highly dense ultrasound scanners, are those found in mobile phones

for fingerprint detection. These highly dense ultrasound scanners, used in the most recently

manufactured phones, scan the contours of the skin of the user. These sensors work at extremely

high frequencies in order to image features as small as fingerprints. The high frequency also

means that the ultrasound does not penetrate beyond the skin. The sensors have actually been

developed as a chip, which is what allows them to be integrated into phones [119]. This is a result

of low power usage and low fidelity of the images produced. Perhaps in some future work, there

could be a similar chip, but a bit larger in size and works at a slightly lower frequency. Such a

chip may enable imaging of superficial tendons or muscles in a small and efficient package.

Fukui et al. already proved that an extremely dense band of infrared sensors can be fabricated
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with current technology, creating a band of 150 infrared sensors [42]. At the time of writing, this

work was published 7 years ago. The physical limits of this are still to be tested with today’s

technology.

However, if the thinness of the device is not of utmost importance, then performance increase

may be created by expanding along the axis of the forearm, as depicted in figure 7.1. Different

form factors, such as integration with sleeves of clothing, may benefit from experimentation in

this way, since the ergonomy of the device is not compromised.

7.5 Benchmarks for Gesture Recognition and Threshold for
Accuracy

Benchmarks have been created for certain techniques, such as CapgMyo, a database of EMG

data using a high density array of electrodes [33]. This allows people to use different algorithms

with the data to compare to other work. Throughout this thesis, we have similarly compared

within each technique using the same gesture set and in some cases, the same data.

But we also had different sets of gestures across techniques. In hindsight, this makes it

difficult to compare between different techniques. The reason for the changes of gesture sets is

due to experiential findings of participants having difficulty in performing particular gestures

during studies. Part of the difficulty in choosing a benchmark for gesture recognition is because

of the varying degrees of control that people have with their hands. For some, the individual

movement of all digits is easy, but for some, due to a lack of training or anatomy, is very difficult

or impossible. It is for this reason that we removed the pinky flexing only gesture in the latter

chapters due to the extreme variation in performance. The differences in anatomy is also a factor

that must be taken into account when comparing techniques. Even if the same benchmark is

used between studies, if one is performed with participants that have good hand dexterity and

the other is not, it becomes impossible to draw any meaningful conclusions.

Therefore, as it stands, to have a fair benchmark, it must be done with the same participants.

To avoid this, there may be a scheme that allows one to assess the dexterity of the participant.

For example, one may imagine a simple test to see whether they are able to make all the gestures

precisely enough. The study description of participant information may also include details of the

participants body fat percentage and age.

So then what gestures should be chosen? This depends entirely on the envisioned application.

For explicit control, some minor set of discrete gestures might suffice. On the other hand, implicit

interaction might require recognition of more subtle and difficult to detect gestures. In the

end, we should be claiming that one technique is better than another but only in the desired

application. Even in this thesis, although we do not make direct comparisons using data, we have

made observations that lead us to believe that ultrasound is better for applications that require

continuous control.
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Technique Mobility Placement & Size Fidelity Comfort Complexity
EMG Average Wrist Good Poor Simple

Ultrasound Poor Wrist Very good Poor Very complex
Infrared Highly Thin & wrist Good Good Very simple
Pressure Highly Thin & wrist Poor Poor Very simple

EIT Highly Thin & wrist Average Poor Fairly complex
Optical Average Wrist (but obtrusive) Limited Good Fairly complex
Glove Highly Obtrusive Excellent Good Simple

Table 7.2: The final table of analysis for wearable gesture recognition techniques, with respect to
the requirements.

Then we must consider what an acceptable accuracy threshold should be. Certainly for a low

number of discrete gestures, we would expect recognition rates of 100% to be acceptable. It is not

clear whether users would be happy if recognition rates were only 99%. Would the 1 in 100 times

when it goes wrong, be so much to make the user avoid using the technology? Certainly in the

technology that we use today, we are perhaps not 100% accurate in the way that we use it. This

is an open question for gesture research.

As more discrete gestures get introduced, there is also the possibility of the user having

difficulty in performing the gestures in the same manner, potentially making the boundary

between gestures difficult to carve out. In this case, a 100% recognition rate is probably beyond

what is to be expected. It may also be difficult for the user to recognise whether it is a fault of the

system, or the fault of the user not performing the gesture in the correct way.

7.6 Contributions

To give a quick overview of the work that has been carried out in this thesis, we will highlight in

the table of analysis (Table 7.2) which aspects we have improved for each of the three techniques

we worked on.

For EMG, we demonstrated that it works at the wrist position. We also improved the accuracy

by adding pressure sensors. We explored ultrasound imaging the most out of the three technolo-

gies. We examined the differences in position and orientation, showed excellent performance at

discrete and continuous gesture classification at every location including the wrist. We found

critical practicality issues that prevents such a device from being realised today. We went further

to investigate these issues of sensor coupling and complexity, showing possible approaches to

mitigate these issues. For infrared, we vastly improved the accuracy using a novel technological

innovation. We then showed that it is possible to use this device without it being air-tight against

the skin. In addition to these, we improved cross-session shifts for ultrasound and infrared, and

also investigated non-sedentary positions for infrared.

Besides these individual contributions within each technique, we created a holistic view of

all current technologies in the literature review. This view particularly criticises the practicality
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concerns of each technology. We used this to guide us to either fill in the unknown gaps in the

literature or to improve aspects such as the accuracy. We hope that this table of analysis can

be used by others. Primarily for the field of research, our intentions are to let researchers in

this field at least see the practicality issues and at least discuss them in any future work. Even

more hopeful, is the idea that researchers are able to use this table to produce important future

work that tackles the weaknesses of these techniques, as described above. People who wish to

use gesture recognition wearables can also use this table as a guideline for which technology

to use, given their requirements. Sadly, we have come to the conclusion that there is not yet

a viable method that enables applications in implicit gesture interaction, subtle interaction or

continuous control. We also go into detail at the end of the three chapters for future work in each

of the methods. This includes sensor fusion, different arrangements of sensors, further measures

against issues of robustness. We highlight the difficulties in approaching the robustness concerns

that are also critical to the use of this technology in the real world.
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CONCLUSION

At the beginning of the thesis, we formulated some requirements for satisfying a wearable gesture

recogniser. We then analysed existing techniques in the literature review and created a table,

which in comparison to our final table, looked very different and uncertain on some aspects. The

work conducted in this thesis has now made clear these open questions regarding performance

changes due to positional variation. By the end of the thesis, the landscape of gesture recognition

techniques has changed tremendously through our findings.

Our contributions to infrared sensing and identification of key practicality issues that have

not been mentioned elsewhere in literature, led us to conclude that infrared is currently the best

method (and by best, we mean the one that satisfies every criteria in the table to a good level).

It also happens to be the only technique that does not suffer from skin coupling tightness. This

technique shows great commercial viability, as the complexity of the system is low and easy to

fabricate.

We discussed robustness issues that we observed during some of our experiments. These

occur either because of movement of the sensors or morphological shifting of the musculature due

to arm elevation or rotation. In ultrasonography and infrared, we find methods to mitigate these

effects on gesture classification accuracy. These robustness problems, that we clearly identify in

the discussion, are an important area to investigate in the future.

Towards the end of the thesis, we also discuss the problem of anatomical uniqueness. Not

only does this uniqueness create obvious challenges in fabricating devices per user, but also

in classification of gestures across users. A solution to this problem would make user-specific

training minimal.

Some methods are only just emerging, e.g. EIT, mechanomyography. In time, it is likely

that new and novel methods are to be discovered. It is important to assess these new emerging
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technologies not just on their accuracy, but also in these other aspects of practicality. We hope that

this thesis provides a new perspective for others researching wearable hand gesture detection,

and gives guidance and inspiration to those seeking improvements to these methods
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