32 research outputs found

    Systematic Approach for the Development of Remote Handling System Concepts for High Energy Physics Research Facilities

    Get PDF
    Equipment maintenance is one of the most important areas in the life-cycle management of High Energy Physics (HEP) facilities. In HEP facilities (such as CERN, ISOLDE, GSI/FAIR,GANIL, FRIB and ESS), beam intensities are increasing. Ionizing radiation is a significant hazard. The ionizing radiation directly affects the health of radiation workers and therefore it is desirable to reduce human intervention through robotic operations. The Facility of Antiproton and Ion Research (FAIR), a HEP facility under construction in Darmstadt, Germany, will house the world’s most powerful Super Fragment Separator(Super-FRS) facility, which will require remote maintenance. One section of the Super-FRS is termed the main tunnel. This is 160m long and has four focal planes. The Super-FRS beamline inserts will require remote maintenance and remote inspection. To carry out these Remote Handling (RH) tasks, a RH system for the Super-FRS main tunnel is essential.RH equipment for HEP facilities are complex systems. They must operate within an intricate environment with multiple interfaces. However, there is very limited literature on how to approach the development and evaluation of RH concepts at HEP facilities even though various facilities have developed RH systems tailored to their individual environments.This thesis proposes new systematic approach for developing and evaluation of RH concept designs targeted to help maintenance procedures at HEP facilities. The systematic approach is composed of Systems Engineering (SE) State of the Art practices molded to fit HEP facilities needs and requirements. The SE approach for HEP facilities focuses on finding optimum RH solution by exploiting HEP facilities limited resources available compared to nuclear power production industry. The systematic approach is tested to develop the RH maintenance solution for Super-FRS main tunnel scenario for FAIR facility. The practice carried out during this research work resulted in the best possible RH solution for Super-FRS and is currently under development for the Super-FRS facility.The research work to develop systematic approach for development of RH system was based on a very critical State of the Art study that has not been carried for HEP facilities till now. The State of the Art studies explores the HEP facilities in detail and results in: classification of HEP facilities RH environments, classification of RH equipment currently used at HEP facilities and present status of SE knowledge integration within HEP facilities. The systematic approach to develop RH system and knowledge attained during State of the Art studies are utilized to develop three RH system concept designs that fulfill the Super-FRS RH requirements. This research work focuses on collaborating between RH experts to conduct reliable and creditable trade-off analysis for RH system concepts evaluation. The aim of collaboration with RH experts is to develop diversify the systematic approach for RH system concept development. The collaboration and the State of the Art studies enable the model to formalize the procedures that will ensure the integration of RH needs into facility’s development by classifying (Commercial Off-the–Shelf (COTS)) RH equipment and by identifying key steps in the development of RH concepts.The developed RH concepts for Super-FRS are evaluated for requirements traceability, functional analysis, radiation dose analysis, possible system failure scenarios, including cost estimates, and task sequence optimization analysis. The result of trade-off analysis is delivered in the form of optimal RH system design that fulfills the RH requirements and will be developed to carry out RH tasks at Super-FRS facility.This thesis provides details concerning each concept design’s merits and demerits, along with suggestions for design changes needed to improve RH system’s flexibility and performance. The systematic approach used to develop the RH concepts was used to identify and address the critical issues with Super-FRS tunnel layout, beamline insert designs, storage / transport of activated parts, and remote maintenance integration at very early stage of HEP facility design.The research work in this thesis paves the way for the future systematic RH systems concepts design, and development practices; by moving beyond the classical approaches to develop concept designs at the HEP facilities. The conclusion will also present a summary design comparison, relevant technologies, advantages, limitations and future research work opportunities.<br/

    An Adaptive Tool-Based Telerobot Control System

    Get PDF
    Modern telerobotics concepts seek to improve the work efficiency and quality of remote operations. The unstructured nature of typical remote operational environments makes autonomous operation of telerobotic systems difficult to achieve. Thus, human operators must always remain in the control loop for safety reasons. Remote operations involve tooling interactions with task environment. These interactions can be strong enough to promote unstable operation sometimes leading to system failures. Interestingly, manipulator/tooling dynamic interactions have not been studied in detail. This dissertation introduces a human-machine cooperative telerobotic (HMCTR) system architecture that has the ability to incorporate tooling interaction control and other computer assistance functions into the overall control system. A universal tooling interaction force prediction model has been created and implemented using grey system theory. Finally, a grey prediction force/position parallel fuzzy controller has been developed that compensates for the tooling interaction forces. Detailed experiments using a full-scale telerobotics testbed indicate: (i) the feasibility of the developed methodologies, and (ii) dramatic improvements in the stability of manipulator – based on band saw cutting operations. These results are foundational toward the further enhancement and development of telerobot

    Telerobotic Sensor-based Tool Control Derived From Behavior-based Robotics Concepts

    Get PDF
    @font-face { font-family: TimesNewRoman ; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0in 0in 0.0001pt; font-size: 12pt; font-family: Times New Roman ; }div.Section1 { page: Section1; } Teleoperated task execution for hazardous environments is slow and requires highly skilled operators. Attempts to implement telerobotic assists to improve efficiency have been demonstrated in constrained laboratory environments but are not being used in the field because they are not appropriate for use on actual remote systems operating in complex unstructured environments using typical operators. This work describes a methodology for combining select concepts from behavior-based systems with telerobotic tool control in a way that is compatible with existing manipulator architectures used by remote systems typical to operations in hazardous environment. The purpose of the approach is to minimize the task instance modeling in favor of a priori task type models while using sensor information to register the task type model to the task instance. The concept was demonstrated for two tools useful to decontamination & dismantlement type operations—a reciprocating saw and a powered socket tool. The experimental results demonstrated that the approach works to facilitate traded control telerobotic tooling execution by enabling difficult tasks and by limiting tool damage. The role of the tools and tasks as drivers to the telerobotic implementation was better understood in the need for thorough task decomposition and the discovery and examination of the tool process signature. The contributions of this work include: (1) the exploration and evaluation of select features of behavior-based robotics to create a new methodology for integrating telerobotic tool control with positional teleoperation in the execution of complex tool-centric remote tasks, (2) the simplification of task decomposition and the implementation of sensor-based tool control in such a way that eliminates the need for the creation of a task instance model for telerobotic task execution, and (3) the discovery, demonstrated use, and documentation of characteristic tool process signatures that have general value in the investigation of other tool control, tool maintenance, and tool development strategies above and beyond the benefit sustained for the methodology described in this work

    Robotics Technology Crosscutting Program. Technology summary

    Full text link

    Human factors issues in telerobotic decommissioning of legacy nuclear facilities

    Get PDF
    This thesis investigates the problems of enabling human workers to control remote robots, to achieve decommissioning of contaminated nuclear facilities, which are hazardous for human workers to enter. The mainstream robotics literature predominantly reports novel mechanisms and novel control algorithms. In contrast, this thesis proposes experimental methodologies for objectively evaluating the performance of both a robot and its remote human operator, when challenged with carrying out industrially relevant remote manipulation tasks. Initial experiments use a variety of metrics to evaluate the performance of human test-subjects. Results show that: conventional telemanipulation is extremely slow and difficult; metrics for usability of such technology can be conflicting and hard to interpret; aptitude for telemanipulation varies significantly between individuals; however such aptitude may be rendered predictable by using simple spatial awareness tests. Additional experiments suggest that autonomous robotics methods (e.g. vision-guided grasping) can significantly assist the operator. A novel approach to telemanipulation is proposed, in which an ``orbital camera`` enables the human operator to select arbitrary views of the scene, with the robot's motions transformed into the orbital view coordinate frame. This approach is useful for overcoming the severe depth perception problems of conventional fixed camera views. Finally, a novel computer vision algorithm is proposed for target tracking. Such an algorithm could be used to enable an unmanned aerial vehicle (UAV) to fixate on part of the workspace, e.g. a manipulated object, to provide the proposed orbital camera view

    Automation and robotics human performance

    Get PDF
    The scope of this report is limited to the following: (1) assessing the feasibility of the assumptions for crew productivity during the intra-vehicular activities and extra-vehicular activities; (2) estimating the appropriate level of automation and robotics to accomplish balanced man-machine, cost-effective operations in space; (3) identifying areas where conceptually different approaches to the use of people and machines can leverage the benefits of the scenarios; and (4) recommending modifications to scenarios or developing new scenarios that will improve the expected benefits. The FY89 special assessments are grouped into the five categories shown in the report. The high level system analyses for Automation & Robotics (A&R) and Human Performance (HP) were performed under the Case Studies Technology Assessment category, whereas the detailed analyses for the critical systems and high leverage development areas were performed under the appropriate operations categories (In-Space Vehicle Operations or Planetary Surface Operations). The analysis activities planned for the Science Operations technology areas were deferred to FY90 studies. The remaining activities such as analytic tool development, graphics/video demonstrations and intelligent communicating systems software architecture were performed under the Simulation & Validations category
    corecore