

1

To the Graduate Council:

I am submitting herewith a dissertation written by Mark William Noakes entitled
“Telerobotic Sensor-based Tool Control Derived From Behavior-based Robotics
Concepts.” I have examined the final electronic copy of this dissertation for form and
content and recommend that it be accepted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy, with a major in Mechanical Engineering.

 William R. Hamel , Major Professor

We have read this dissertation
and recommend its acceptance:

J. Wesley Hines

Lynne E. Parker

Gary V. Smith

 Accepted for the Council:

 Carolyn R. Hodges
 Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

TELEROBOTIC SENSOR-BASED TOOL CONTROL DERIVED FROM

BEHAVIOR-BASED ROBOTICS CONCEPTS

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Mark William Noakes

May 2011

ii

Copyright © 2011 by Mark William Noakes

All rights reserved.

iii

Acknowledgements

I would like to thank William R. Hamel, my advisor for his patience and guidance

through this too long process. I would like to thank my committee—J. Wesley Hines,

Lynne E. Parker, and Gary V. Smith—for their direction in, review of, and input to my

dissertation. I would like to thank fellow graduate student, Andrzej Nycz, for his input to

my work and for his extensive ownership of the baseline system as “keeper of the high

level controller” (HLC) that I used for my work. I would also like to thank Rob Gibbons

for his valuable Linux counsel during my implementation of the new HLC. I am grateful

to the Oak Ridge National Laboratory for their permission to use some of the

photographs contained in this document. The Division of Work and Industry, National

Museum of American History, Behring Center, Smithsonian Institution provided

permission to use robot historical photographs. My management at Oak Ridge National

Laboratory, François Pin and Ken Tobin, supported my decision to pursue school even

though it wasn’t convenient to their needs. To my parents, I would like to say thank you

for an upbringing that insisted on hard work and a refusal to give up. Finally I would like

to thank my family—my wife Clemence and my twin nine year old sons Sean and

David—for their support and patience in the pursuit of this degree even though it meant

time not spent with them that can never be recovered and far too many things left undone

for too long.

iv

Abstract

Teleoperated task execution for hazardous environments is slow and requires highly

skilled operators. Attempts to implement telerobotic assists to improve efficiency have

been demonstrated in constrained laboratory environments but are not being used in the

field because they are not appropriate for use on actual remote systems operating in

complex unstructured environments using typical operators. This	 work	 describes	 a	

methodology	 for	 combining	 select	 concepts	 from	 behavior-‐based	 systems	 with	

telerobotic	 tool	 control	 in	 a	 way	 that	 is	 compatible	 with	 existing	 manipulator	

architectures	 used	 by	 remote	 systems	 typical	 to	 operations	 in	 hazardous	

environment.	 The purpose of the approach is to minimize the task instance modeling in

favor of a priori task type models while using sensor information to register the task type

model to the task instance. The	 concept	 was	 demonstrated	 for	 two	 tools	 useful	 to	

decontamination	 &	 dismantlement	 type	 operations—a	 reciprocating	 saw	 and	 a	

powered	 socket	 tool.	 The	 experimental	 results	 demonstrated	 that	 the	 approach	

works	 to	 facilitate	 traded	 control	 telerobotic	 tooling	 execution	 by	 enabling	 difficult	

tasks	 and	 by	 limiting	 tool	 damage.	 The role of the tools and tasks as drivers to the

telerobotic implementation was better understood in the need for thorough task

decomposition and the discovery and examination of the tool process signature. The

contributions of this work include: (1) the	 exploration	 and	 evaluation	 of	 select	

features	 of	 behavior-‐based	 robotics	 to	 create	 a	 new	 methodology	 for	 integrating	

telerobotic	 tool	 control	 with	 positional	 teleoperation	 in	 the	 execution	 of	 complex	

tool-‐centric	 remote	 tasks,	 (2)	 the simplification of task decomposition and the

implementation of sensor-based tool control in such a way that eliminates the need for the

creation of a task instance model for telerobotic task execution, and (3) the discovery,

demonstrated use, and documentation of characteristic tool process signatures that have

general value in the investigation of other tool control, tool maintenance, and tool

development strategies above and beyond the benefit sustained for the methodology

described in this work.

v

Table of Contents

Chapter 1 Introduction..1
1.1 Motivation..1
1.2 Contributions...2
1.3 Outline of the Dissertation ...4

Chapter 2 Background..5
2.1 Introduction...5
2.2 Teleoperation...5
2.3 Robotics .. 14
2.4 Telerobotics... 15
2.5 Behavior-based Robotics (BBR).. 17
2.6 Application Areas.. 20

Chapter 3 Relevant Work ... 22
3.1 Introduction... 22
3.2 Teleoperated Tooling Tasks... 22
3.3 Telerobotic Tooling Tasks ... 24
3.4 BBR Tooling Tasks ... 32
3.5 Tool Disturbances.. 36
3.6 Summary... 37

Chapter 4 Testbed Description, Capabilities, and Limitations 39
4.1 Introduction... 39
4.2 Hardware Overview... 39
4.3 Software Architecture and Implementation .. 42
4.4 HLC Interface.. 46
4.5 Tooling Interfaces.. 47
4.6 System Limitations.. 48

Chapter 5 Telerobotic Tool Control Methodology Derived From Behavior-based
Concepts ... 49

5.1 Introduction... 49
5.2 Identification of the Tool Set and Applicability of Technique 51
5.3 Behavior Selection Methods and Impact on Technique Development 55
5.4 Description of Methodology .. 57
5.5 Implementation Guidelines.. 63
5.6 Managing Human or Robot to Telerobotic Interaction ... 66

Chapter 6 Functional Implementation... 67
6.1 Introduction... 67
6.2 Cutting a Horizontal Pipe With a Reciprocating Saw ... 67

6.2.1 Task Definition... 67
6.2.2 Tool Selection and Description ... 70
6.2.3 Subtask Definition .. 74
6.2.4 Sensor Selection ... 75
6.2.5 Saw Experimentation, Function Definition, and Implementation................... 76

vi

6.2.6 Testing to Establish Saw Thresholds and Control Approaches....................... 79
6.3 Removing a Bolt With a Powered Socket Tool .. 93

6.3.1 Task Definition... 93
6.3.2 Tool Selection and Description ... 94
6.3.3 Subtask Definition .. 98
6.3.4 Sensor Selection ... 98
6.3.5 Socket Experimentation, Function Definition, and Implementation............... 99
6.3.6 Testing to Establish Socket Thresholds and Control Approaches................. 100

6.4 A Note on Expansion to Other Tools ... 102
Chapter 7 Experimental Results.. 105

7.1 Discussion of Overall Telerobotic Reciprocating Saw Results 105
7.2 Examination of Specific Saw Tool Representative Test Cases 109
7.3 Discussion of Overall Telerobotic Socket Tool Results...................................... 113
7.4 Examination of Specific Representative Socket Tool Test Cases........................ 114

Chapter 8 Summary and Future Work .. 118
8.1 Summary... 118
8.2 Review of Contributions.. 119
8.3 Future Work .. 121

Chapter 9 Conclusions.. 123
List of References ... 126
Appendices ... 134
Appendix A Software... 135
Appendix B Mechanical Drawings ... 229
Appendix C Schematics ... 237
Vita... 241

vii

List of Tables

Table 1. Remote Systems Efficiencies. ..6
Table 2. D&D Tool Summary. .. 52
Table 3. Reciprocating Saw Specifications Summary. ... 72
Table 4. Reciprocating Saw Event Tabulation. .. 80
Table 5. Socket Tool (Drill) Specifications Summary.. 96
Table 6. Socket Tool Event Tabulation.. 100
Table 7. Reciprocating Saw Data... 107
Table 8. bCut128S Internal Performance Data... 108
Table 9. bApproachB Socket Tool Composite Results... 115

viii

List of Figures

Figure 1. Early Long Handle Tools..7
Figure 2. Early Mechanical Manipulator Prototype..8
Figure 3. Commercial Through-the-Wall Manipulators. ..8
Figure 4. Commercial Power Manipulators Resemble Robots. ..9
Figure 5. M-2 Servomanipulator.. 10
Figure 6. Telerob State-of-the-art Commercial Teleoperator.. 11
Figure 7. Advanced Servomanipulator Remotely Maintainable Manipulator. 11
Figure 8. Advanced Integrated Maintenance System Master Control Station. 12
Figure 9. Dual Arm Work Platform Using Schilling Hydraulic Manipulators. 12
Figure 10. Schilling Smart Tooling Demonstration.. 13
Figure 11. Barrett Wraptor Mounted on Schilling Manipulator at UTK. 14
Figure 12. Unimate Robot. .. 16
Figure 13. Machina Speculatrix Cybernetic Tortoise Replica... 18
Figure 14. Telerobotics Test Bed... 41
Figure 15. PC/104 Manipulator Controller... 41
Figure 16. Telerobotics Operator station.. 42
Figure 17. Test Bed System Level Block Diagram. ... 43
Figure 18. HLC Graphical Monitor. .. 47
Figure 19. Smart Tool Behavior Development Methodology Block Diagram. 58
Figure 20. Concept Block Diagram. .. 64
Figure 21. Behavior Selection Sequencing... 65
Figure 22. Horizontal Pipe Task. ... 68
Figure 23. Real World Piping Arrays and Viewing Limitations. 68
Figure 24. Pipe End Section. ... 69
Figure 25. Hand Held Reciprocating Saw.. 71
Figure 26. Reciprocating Saw Smart Tool. .. 73
Figure 27. Reciprocating Saw Mounted in Gripper. ... 73
Figure 28. Smart Tool Force-Torque Sensor Axes. .. 76
Figure 29. Sample bApproachH Plot of Forces and Torques.. 82
Figure 30. Sample bBackH Plot of Forces and Torques. .. 84
Figure 31. Sample bApproachV Plot of Forces and Torques.. 86
Figure 32. Sample bBackV Plot of Forces and Torques. .. 87
Figure 33. Unfiltered Cut Forces and Torques. .. 90
Figure 34. Example 1 Filtered Ry.. 91
Figure 35. Example 2 Filtered Ry.. 91
Figure 36. Disassembly Mockup. .. 94
Figure 37. Electric Drill for Socket Tool.. 95
Figure 38. Smart Socket Tool. ... 97
Figure 39. Smart Socket Tool Mounted in Gripper. ... 97
Figure 40. Cut Data From Shortest Duration Cut. .. 111
Figure 41. Cut Data From Longest Duration Cut. .. 112

ix

Figure 42. Sample Approach Forces and Torques, Fx Used for Event Monitoring. 116
Figure 43. Sample Unbolt Forces and Torques, fxfilt Used for Event Monitoring. 117

1

Chapter 1

Introduction

1.1 Motivation

The US Department of Energy (DOE) has a stated need for improved remote systems

technology that will assist in removing workers from hazardous environments while

improving productivity [1], [2]. Due to current limitations of remotely operated systems

and autonomous robotics, the vast majority of hazardous material operations is still

performed by human workers dressed in protective equipment and sent into the hazardous

environment to complete activities manually. One of the most pressing hazardous

operations categories is the decontamination and decommissioning (D&D) of

contaminated DOE nuclear facilities. Remote technology has been used successfully, but

many D&D operation organizations have complained that the equipment available today

is not sufficiently suited to their needs [1]. Remote systems as they now exist are too

costly in terms of procurement, facility burden, and the requirement for skilled operators.

Remote systems are also typically described as being too slow in task completion time

and not capable of matching human dexterity. These same criticisms expressed by DOE

operations organizations also apply to remote systems everywhere in use: space

exploration, sub-sea exploration and oil rig maintenance and accident response, military

explosive ordnance disposal, and homeland security, to name a few.

Remote equipment dismantlement is a common theme as a need in the D&D community.

Contaminated process equipment and structural steel are common. Where possible, suited

humans are used to complete unbolting and cutting tasks, but there have proved to be

significant safety, health, and cost issues involved. Teleoperated remote systems have

also been used where radiation levels eliminate the possibility of using humans; however

system cost and task time completion are major issues in overall operating costs. A time-

efficient, cost-effective approach to safely complete D&D operations without placing

humans in the hazardous environment is a direct need. Telerobotic systems (teleoperated

2

remote systems that incorporate added automation to improve operational efficiency) are

one solution.

This dissertation addresses the problem of tool control and uncompensated errors in

teleoperated or robotic motion via the creation of a sensor-actuator control strategy by

identifying and using select relevant concepts from classical behavior-based robotics

(BBR) techniques to permit task execution in unstructured environments. The focus is not

on the advancement of or a rigid adherence to BBR techniques but rather on the

exploration of the “first principles” of behavior-based systems as a means to facilitate

tool control for improved viability of telerobotic manipulation in unstructured

environments from the perspective of the remote systems community. The research

includes experimental data collection and verification of theoretical development for

multiple tools for both human interactive and robotic task execution assists.

1.2 Contributions

The	 fundamental	 contributions	 of	 this	 dissertation	 are:	

	

1.	 The	 exploration	 and	 evaluation	 of	 behavior-‐based	 robotics	 for	 concepts	 to	 create	

a	 new	 methodology	 for	 integrating	 telerobotic	 tool	 control	 with	 positional	

teleoperation	 in	 the	 execution	 of	 complex	 tool-‐centric	 remote	 tasks	 such	 as	 those	

associated	 with	 remote	 nuclear	 operations.	 Successful	 experimental	 results	 with	

selected	 power	 tools	 and	 a	 full-‐scale	 telerobotics	 test	 bed	 have	 revealed	 the	

attractive	 combination	 of	 simple	 implementation	 and	 efficient/effective	 tooling	

operations.	 	

	

This	 methodology	 provides	 a	 workable	 clear	 path	 to	 implementation	 relevant	 to	 the	

existing	 architectures	 of	 typical	 teleoperator	 systems	 while	 addressing	 tasks	 that	

are	 currently	 difficult	 to	 automate	 due	 to	 complexity	 and	 limited	 registration	 to	

3

actual	 task	 hardware.	 Once	 the	 first	 couple	 of	 tool	 tasks	 were	 programmed,	 it	 was	

quite	 obvious	 that	 this	 technique	 has	 created	 a	 set	 of	 primitives	 that	 may	 be	

assembled	 in	 different	 ways	 or	 with	 slight	 modification	 to	 quickly	 produce	 new	

automated	 tooling	 tasks.	 This	 work	 represents	 the	 first	 known	 application	 of	 these	

techniques	 to	 power	 tooling	 tasks.	

	

2.	 The	 creation	 of	 a	 new	 tooling	 task	 modeling	 process	 that	 is	 general	 in	 nature	 and	

applicable	 to	 a	 wide	 range	 of	 power	 tools	 used	 in	 typical	 remote	 operations.	 This	

task	 type	 modeling	 can	 replace	 task	 instance	 modeling	 to	 reduce	 and	 simplify	 the	

application	 of	 the	 new	 behavior-‐based	 methods	 to	 complex	 telerobotic	 tooling	

applications.	 It	 was	 demonstrated	 that	 the	 task	 type	 model	 could	 be	 reliably	

encoded	 in	 a	 sequence	 of	 simple	 behavior-‐like	 reactive	 functions	 thereby	

alleviating	 the	 need	 for	 extensive	 a	 priori	 generation	 of	 a	 task	 instance	 model	 for	

each	 task	 execution.	 This	 reduces	 the	 modeling	 time	 needed	 for	 individual	 task	

automation	 making	 telerobotics	 more	 time	 competitive	 even	 with	 proficient	

operators.	

	

3.	 The	 generation	 of	 specific	 characteristic	 tooling	 data	 for	 reciprocating	 saw	 cutting	

and	 removal	 of	 bolts	 with	 a	 powered	 socket	 tool.	 These	 results	 have	 general	 value	

in	 that	 they	 are	 relevant	 to	 extensions	 of	 this	 work	 and	 in	 the	 pursuit	 of	 other	 tool	

control	 strategies.	 In	 particular,	 the	 force	 profile	 generated	 for	 pipe	 cutting	

produces	 a	 well-‐defined	 characteristic	 signature	 that	 should	 be	 broadly	 useful	

even	 outside	 of	 the	 telerobotics	 community.	 Progressive	 variation	 in	 the	 tool	

signature	 profiles	 over	 repeated	 test	 instances	 indicate	 that	 tool	 wear,	 maintenance	

prediction,	 and	 fault	 detection	 can	 probably	 be	 deduced	 from	 further	 study	 of	 the	

process	 signature.	

	

	

4

1.3 Outline of the Dissertation

The relevant definitions, history, and background of remote systems, teleoperation,

robotics, telerobotics, and behavior-based systems are presented in Chapter 2 along with

a remote systems perspective on applications. A survey of the relevant work is then

presented in Chapter 3. Chapter 4 provides a discussion of the testbed description,

capabilities, and limitations. Chapter 5 addresses the development of the methodology.

Chapter 6 describes the functional implementation of the two example test cases. The

experimental work is presented in Chapter 7. Chapter 8 outlines a summary of the work

presented and provides a discussion of future work. Chapter 9 provides a final conclusion

to the work. The appendices provide software, mechanical, and electrical/electronic

background documentation.

5

Chapter 2

Background

2.1 Introduction

This chapter presents the definitions and relevant history of remote systems—

teleoperation and robotics—from the vantage point of teleoperation. Since this

dissertation is concerned with enhanced dexterous manipulation, only minimal attention

as necessary will be given to the vast territory of mobile remote systems and robotics.

Application areas will also be discussed to frame the context of the rest of the

dissertation.

2.2 Teleoperation

Sheridan’s definition of teleoperation states:

Teleoperation is the extension of a person’s sensing and manipulation

capability to a remote location. A teleoperator includes at the minimum

artificial sensors, arms and hands, a vehicle for carrying these, and

communications channels to and from the human operator. The term

“teleoperation” refers most commonly to direct and continuous human

control of the teleoperator, but can also be used generally to encompass

“telerobotics”…as well [3].

For the purposes of this dissertation, high fidelity teleoperation will be further defined as

teleoperated manipulation receiving operator commands from a positional master

controller instead of from a high level supervisory control graphical operator interface or

from rate control joysticks.

6

Remotely operated systems have an inherent inefficiency of operations due to the limited

dexterity of the machine and the limited ability of the operator interface to support the

sensory needs of the operator. Table 1 communicates these operator inefficiencies

measured in task completion time ratios using varieties of remote systems compared to

bare “hands-on” task completion for various remote equipment and operator interface

configurations. High fidelity teleoperation is considered to be the best remote system

currently in use; however there is still great disparity between the performance of a

“good” teleoperator and human hands-on task execution.

Modern remote systems were developed out of the extreme needs of the World War II

Manhattan Project’s radioactive materials handling. The technology developmental

progression was from long handled tools to mechanical “master-slave” manipulators and

switchbox-controlled electric manipulators (the direct ancestor of industrial robot

manipulators) to analog servomanipulators and finally to digital servomanipulators.

Long-handled tools, such as is shown in Figure 1, have simple end-effectors and control

handles along with limited capability. While long-handled tools are slow, have limited

reach, and are not articulate enough for many tasks, they are still used today in some

cases.

Table 1. Remote Systems Efficiencies.

(used by permission of the author) [4]

Manipulator Type Task Completion Time Ratios
Skilled human operator (unencumbered) 1:1
Suited human (air suit or equal) 8:1
Force-reflecting servomanipulator or
master/slave manipulator (i.e., through the
wall type)

8:1

Non-force-reflecting electromechanical
manipulator (i.e., power-arm type)

20:1 – 50:1

Crane/impact wrench 50:1 – 500:1

7

Figure 1. Early Long Handle Tools.

(Courtesy of Oak Ridge National Laboratory)

The first real innovation was the development of mechanical “master-slave” manipulators

during the mid-1940s [5], [6], [7]. An early prototype is shown in Figure 2. These

systems could work through significant shielding (attenuating walls with oil-filled

viewing windows) to remove the operator from hazard exposure. Figure 3 shows a

commercial mechanical manipulator system; these types of systems are still used today

for stationary tasks such as in small hot cells where direct human access is not possible.

Remotely controlled electric manipulators were also developed by the late 1940s to

remove the working envelope constraints of the mechanical manipulators [6], [7]. These

systems used a switch box to control each individual joint, and motion was extremely

slow. The same control philosophy later became the commercial power manipulators

shown in Figure 4. These systems bear strong resemblance to robot manipulators except

that there is no computer control; an operator directly controls all joint motions.

8

Figure 2. Early Mechanical Manipulator Prototype.

(Courtesy of Oak Ridge National Laboratory)

Figure 3. Commercial Through-the-Wall Manipulators.

(Courtesy of Oak Ridge National Laboratory)

9

Figure 4. Commercial Power Manipulators Resemble Robots.

(Courtesy of Oak Ridge National Laboratory)

By the early 1950s, master-manipulator systems based on analog electric

servomechanisms were developed [6], [7], [8]. Typical deployment modes used overhead

transporters similar to bridge cranes. Some were mounted on mobile platforms. Analog

electronics-based teleoperation became highly developed and remained the state-of-the-

art baseline until about 1980 [9], [10], [11]. The systems worked well but were prone to

amplifier drift and had to be retuned regularly. Teleoperated manipulation began to

proliferate from the nuclear application area to space and subsea exploration from the

1950s through the 1980s and to medical use in the 1990s.

Oak Ridge National Laboratory (ORNL) worked with Central Research Laboratories to

produce what is believed to be the first microprocessor-based teleoperated system shown

in Figure 5. The technology has not significantly changed since that time. A current

commercial state-of-the-art system is shown in Figure 6. Most teleoperators of this type

have 6-DOF positional master controllers driving identical scale and configuration

(kinematic replica) manipulator systems. Force reflection, reflecting the contact forces

10

from the manipulator back to the master controller, is common but by no means

universal. Figures 7 and 8 illustrate a typical remote task execution and master controller

station.

In the 1990s the DOE seriously began to address its contaminated facilities and

hazardous waste problems. Two specific requirements were substantially different from

the high radiation hot cell environments for which the first electric servomanipulators

were developed. First the radiation environments were orders of magnitude weaker in

most (not all) hazardous waste sites. Second the tools needed for dismantlement and

cleanup were heavy and reflected large forces back into the manipulator systems during

operation. Electric teleoperators were too fragile for use with these tools. High payload

hydraulically-actuated manipulators developed for subsea teleoperation began to be used

in the 1990s at the various DOE sites for hazardous waste cleanup tasks that were too hot

for direct human hands-on work. One such application used for demolition of a nuclear

research reactor is shown in Figure 9.

Figure 5. M-2 Servomanipulator.

(Courtesy of Oak Ridge National Laboratory)

11

Figure 6. Telerob State-of-the-art Commercial Teleoperator.

(Courtesy of Oak Ridge National Laboratory)

Figure 7. Advanced Servomanipulator Remotely Maintainable Manipulator.

(Courtesy of Oak Ridge National Laboratory)

12

Figure 8. Advanced Integrated Maintenance System Master Control Station.

(Courtesy of Oak Ridge National Laboratory)

Figure 9. Dual Arm Work Platform Using Schilling Hydraulic Manipulators.

(Courtesy of Oak Ridge National Laboratory)

13

A major limitation of all real world teleoperators is the use of the two-finger parallel jaw

gripper with no or minimal sensing for grasping tasks. This dictates that tooling used by

the manipulator be modified with special fixturing to allow firm grasping. Tool operation

often must be completed without sensing useful to optimal operation. The use of smart

tooling to place some actuation and sensing on the tool has been a relatively recent

development that relieves the manipulator of some of the task dexterity requirements

[12]. Figure 10 shows a plasma torch smart tool application to cut structural steel.

Another approach that has been demonstrated is to modify the manipulators with multi-

finger end-effectors to improve dexterity such as in Figure 11; however robustness and

control issues have kept these types of manipulator hands from widespread use in D&D-

type applications to date, and multi-fingered end-effectors typically do not yet have

adequate sensing to support task completion [13].

Figure 10. Schilling Smart Tooling Demonstration.

(Courtesy of Oak Ridge National Laboratory)

14

Figure 11. Barrett Wraptor Mounted on Schilling Manipulator at UTK.

2.3 Robotics

Sheridan’s definition of a robot states:

A robot is an automatic apparatus or device that performs functions

ordinarily ascribed to human beings, or operates with what appears to be

almost human intelligence (adapted from Webster’s Third International

Dictionary.) …The Robot Institute of America has defined a robot as a

reprogrammable multi-functional manipulator designed to move material,

parts, tools, or specialized devices through variable programmed motions

for the performance of a variety of tasks [3].

Discounting mechanical toys and novelties that date back to ancient civilizations, the first

useful industrial robot manipulator was created by Engelberger and Devol in the 1950s.

Their thinking was directly inspired by nuclear manipulator systems, early numerical

control machining techniques, and Isaac Asimov’s science fiction stories of the 1940s

15

and 1950s [14]. Their Unimate® robot manipulator as shown in Figure 12 was the first

commercially available robot manipulator. It was completely pre-programmed and

automated for repetitive tasks. The robot manipulator as originally conceived is

essentially a teleoperated manipulator with a preprogrammed front end dictating all

motions in a predetermined sequence. Previously mentioned Figure 4 show remote

manipulators that could have been or could be used as robots with the addition of a

suitable front-end computer interface.

2.4 Telerobotics

Sheridan states that “a telerobot is an advanced form of teleoperator the behavior of

which a human operator supervises through a computer intermediary.” [3] This implies

an intermittent level of communication. However the approach and degree of emphasis

on either teleoperation or robotics can vary significantly. Hamel presented a notation to

describe this variation in emphasis [2]. Telerobotics can be defined as the fusion of

teleoperation (T) and robotics (R) to complete a task. Telerobotics expressed as “tR”

emphasizes robotics and is presented from a robot-centric perspective. This variety of

telerobotics tends to be oriented towards the use of industrial robots as the target

manipulator and generally relies on higher-level commands in a more supervisory control

mode where the operator is not in continuous control of the motions of the manipulator.

This is consistent with the Sheridan interpretation of telerobotics. “Tr” telerobotics

emphasizes teleoperation finesse but adds robotic functionality to the teleoperator for

improved task completion performance. Robotic functions in Tr typically use traded or

shared control in some form of operator assist. Shared control combines human-

controlled motions with robotic motions at the same time. Traded control sequences

human controlled motion and robotic motion with one or the other having control at any

one time [15], [16]. The approach presented in this dissertation best fits the Tr category

of telerobotics using traded control.

16

Figure 12. Unimate Robot.

(Courtesy of Division of Work & Industry, National Museum of American History,

Behring Center, Smithsonian Institution)

Beginning in the 1980s the hazardous materials handling community began to explore the

use of telerobotics in attempts to provide refined capability and reduced task completion

times. These capabilities added various automated robotic functions to human-guided

teleoperation. Typical functions include “software fixturing” to constrain manipulator

motions to a plane or line of motion (a form of shared control where the human operator

manages some aspects of motion while autonomous control manages others), traded

control where the human operator hands off control to automated execution of narrowly

defined sequences of tasks for a time and then receives it back after task execution is

completed, and supervisory control where the operator manages tasks at the higher level

instead of making every motion personally [3]. Except for some of the more simple

software fixturing, telerobotics is rarely used in real world D&D manipulator applications

17

due primarily to incompatibilities and implementation issues with both the manipulator

systems used and the unstructured environments encountered.

Smart tooling, a category of telerobotics whereby additional sensing and/or actuation is

added to manipulation in the tooling acquired by the end-effector to improve task

execution, has its roots in pick-and-place specialized remote tooling used by the nuclear

industry since its inception. Smart tooling, when grasped in an end-effector, adds

capability to limited manipulator systems. To date smart tooling systems are normally

highly task specialized.

2.5 Behavior-based Robotics (BBR)

A concise definition of BBR provided by Arkin follows:

Behavior-based systems are composed of multiple behaviors

(stimulus/response pairs suitable for a given environmental setting that is

modulated by attention and determined by intention) that tightly couple

perception and action to produce timely response in dynamic and

unstructured worlds. These behaviors are coordinated through many

possible mechanisms, including arbitration, fusion, and sequencing [17].

BBR is most typically associated with autonomous systems and sometimes with

supervisory control-oriented (type tR) telerobotic systems. To date, BBR is also more

often implemented on mobile platforms than with manipulation though manipulation has

been a component of BBR since the 1980s [18].

BBR grew out of the realization and frustration that the traditional artificial intelligence

(AI) schemes for robot control were not working outside of simplified laboratory test

environments. Recent research has expanded the definition of BBR significantly and

18

created a hybrid form by incorporating more traditional AI concepts as well as new

developments. However, this dissertation returns to the early foundations to explore

initial development in support of traded control of smart tooling for telerobotic assists.

The earliest true autonomous robots were actually mobile platforms designed for

psychological studies. These systems used what could be called a behavior-based control

scheme implemented directly in analog electronics. The earliest design concepts were

published in the 1930s [19], [20]. Contemporary concepts of the parallels and the

intertwining between machine intelligence, control systems, and the human nervous

system were expounded by Weiner as a new field of study, cybernetics, in 1948 [21]. The

Machina Speculatrix cybernetic tortoise, shown in Figure 13, was first implemented in

the late 1940s by W. Grey Walter for psychological studies [22], [23], [24].

Figure 13. Machina Speculatrix Cybernetic Tortoise Replica.

 (Courtesy of Division of Work and Industry, National Museum of American History,

Behring Center, Smithsonian Institution)

19

Behavior-based approaches then disappeared from the forefront of robotics research until

the 1980s when they resurfaced in similar form migrating to higher-level computer

control. The earliest modern implementation of the behavior-based approach was by

Brooks at MIT although Braitenberg also published some psychological mental

experiments in 1984 that appear to have been inspired by the earlier work [25], [26].

Several critical postulates can be put forward to describe the core of BBR. One of the

most important is that "the world is its own best model" [27]. The plan should not be to

model everything in the “world” and then attempt to calibrate the robot to that artificial

world when the exact representation of what the robot needs to interact with is right in

front of the robot. Sensors then become critical but the range of interaction is generally

localized permitting more accurate ranging on simpler object fields and accommodating

real-time updates which address flexibility and imprecision in the mobility/delivery

system. At its simplest, BBR is sensor-based reactive control. However, BBR, while

founded upon sensor-based reactive control, also requires an architecture of arbitration of

the various behaviors necessary to complete a task. Brooks used a layered approach,

labeled subsumption, of higher-level behaviors built on top of fundamental low-level

behaviors [25]. The higher-level behaviors subsume (override) the lower level behaviors

unless they fail for some reason; then the lower level behaviors can stand alone without

any of the higher level functionality. Interaction or prioritization between behaviors may

be via arbitration, fusion, and/or sequencing. Arkin labels behaviors as schema; each

schema has a characteristic artificial potential field associated with its function. The

fusion of behaviors is achieved by summing all of the schema potential fields into one

overall potential field [28]. Pin’s fuzzy logic-based BBR represents an approach to

arbitration common in both Europe and Japan [29].

Additional core concepts to the BBR philosophy include situatedness and embodiment.

Situatedness means that the robot is located in the world in which it is interacting; there is

only a minimal abstract description of that world. The environment directly affects the

actions of the robot. Embodiment means that the robots use sensors to “experience” the

20

world directly. Actions have direct consequence on the feedback of the robot's sensor

systems. From the terminology used, it is fairly obvious that BBR was devised around a

focus on autonomous robotics and not on human interactive telerobotics that is the focus

of this dissertation.

Although they have morphed considerably into more complex architectures than the

original concept, behavior-based systems have since become mainstream and taken over

the more practical autonomous robotic mobile platform implementations in the field.

Companies that sell small robotic devices, such as robot vacuum cleaners typically use

BBR approaches [30]. The primary application for behavior-based systems has been

autonomous robots, but they have also been applied to telerobotic systems of the

supervisory control variety (tR) [28], [31].

2.6 Application Areas

The application area for this dissertation is anywhere positional teleoperation is used and

especially where the manipulators need to handle substantial tooling to execute tasks. The

initial and key application area for teleoperated manipulators has been the handling of

radioactive materials, operational support of processes, and conducting maintenance for

nuclear research facilities and nuclear power industries where human access is not

possible. Especially within the last 20 years, teleoperated manipulation has been used at

the DOE sites for hazardous waste cleanup in areas where radiation levels are too high

for human presence, where contamination levels dictate the use of personal protective

equipment that limits human mobility, efficiency, and duration of operation, or where

chemical or physical hazards create too much of a liability to permit human presence.

Undersea and space applications grew out of the example created by the nuclear industry.

Sub-sea manipulation has become crucial to oceanographic and archeological scientific

investigations and off-shore oil exploration, oil rig maintenance, and accident mitigation.

21

A key difference in space-based applications is the significant time delay between

operator interface and remote manipulator caused by the extreme distances encountered

in space and by switching delays in communications equipment that relay the signals.

Real-time high fidelity positional teleoperated manipulation is not currently feasible for

space-based applications unless the master controller is in close proximity to the system

being controlled. This means that tR telerobotics is more applicable than Tr telerobotics

for most space-based applications.

Most recently teleoperated surgery or telesurgery has become a major application area.

Minimally invasive robotic laparoscopic surgery removes the head surgeon from the

operating table to an operator station directly adjacent to the surgery while the rest of the

surgical staff directly tends to the operation hands-on. These systems are commercially

available and expanding in use at hospitals across the U.S. Telesurgery where the surgeon

is separated a great distance from the operation and support staff has been demonstrated,

and full remote site telesurgery with no surgical staff on hand has been demonstrated by

the DARPA TraumaPod project where a nurse robot provided the surgical support staff

function [32], [33]. The result of this work should be applicable to power tool use in

telesurgery as well as the core focus of manipulation for any hazardous environment.

22

Chapter 3

Relevant Work

3.1 Introduction

This chapter examines previous work and the resulting literature in order to establish the

foundation and direction for this work. Unfortunately there is limited previous published

intersecting work that ties teleoperation, telerobotics, or behavior-based robotics

techniques to the use of tools and especially to the use of power tools and their interaction

with the target task. Also where behavior-based techniques are used in telerobotics, they

are typically of the tR type and not of the Tr type that is the focus of this dissertation.

Therefore the literature survey is expanded to include the basic topics to establish the

necessary foundation and to facilitate an extrapolation to tool-centric Tr-oriented

telerobotics enhanced with selected relevant behavior-based concepts.

3.2 Teleoperated Tooling Tasks

The development of teleoperated manipulation was a direct result of the need to handle

hazardous materials and to maintain process equipment during the World War II

Manhattan Project. Pick and place of objects has always been one aspect of hazardous

materials teleoperation, but the use of powered and hand tooling has always been a key

and dominant requirement for task completion [14]. Much of this accumulated remote

tooling design and application knowledge is not known outside of the DOE community

though published guidelines do exist.

The technology for teleoperated force-reflecting 6-DOF manipulators was well sorted out

and highly developed through the 1950s [6], [7], [34]. These manipulators primarily used

cable- or metal tape-driven joint actuation and a two-finger parallel jaw gripper

arrangement to articulate objects and deliver and operate tools to remote tasks. Where

23

servomanipulators had inadequate capacity or were too fragile to deploy the tooling

required, power manipulators resembling crane-deployed inverted industrial robots and

overhead crane-hook-deployed tools were used [4], [14].

These servomanipulators used joint-based analog control driven with kinematically

similar master controllers. The analog control loops had to be frequently tuned to

maintain optimal performance due to amplifier gain and zero offset drift. Since the

controls were analog, there was little opportunity to augment these systems with

automation. Many systems provided force reflection using a control loop scheme called

position-position bilateral force reflection [34]. There were no force sensors used in the

generation of force reflection. The per joint force reflected back to the master was

generated by controller response to the position difference between the joint position of

the remote manipulator and the corresponding joint position of the master controller [8].

Since teleoperated servomanipulators used a parallel jaw gripper end-effecter that was

not compatible with the irregular cylindrical shapes of most tools, custom tool fixturing

was typically required to grasp and articulate the various tools. Grip pads that captured

the fingers of the parallel jaw grippers were added. Depending on the reaction forces of

the tools and the inability of the operator to precisely align and position that tool,

compliant rubber links/pads were added to the tool fixturing. If the tool in question was

powered, remote actuation was then adapted to operate the tool. These modifications

drove cost and availability for remote tooling—more and more complicated

modifications meant that fewer tool instances could be afforded. As previously

mentioned, detailed guidelines have long existed for how to design, fixture, deploy, and

use remote tooling for teleoperation [4].

Sometimes particularly large tooling would be of the pick-and-place variety whereby the

manipulator system with the aid of an overhead crane would set a tool package in place

on a task. The automated or semi-automated remote tool (a predecessor to current

concepts of smart tooling) would then complete its specific task via remote control. Any

24

issues of tooling dynamics and control would be handled directly in the tool mechanical

design and would not impact the manipulator [4], [14].

In the 1970s analog servomanipulators were converted first to minicomputer and then to

microprocessor-based control [2], [35]. This minimized the analog drift problems and

allowed rudimentary automation (telerobotics) for the first time. Features that were

enhanced or added included motion scaling, variable force reflection ratios, and enhanced

master controller indexing. Commercial digital manipulator systems to this day are based

on the same control concepts as these first systems.

3.3 Telerobotic Tooling Tasks

As previously mentioned a telerobot is a system that beneficially combines human

interaction and automation in a single robot system; the fusion of teleoperation and

robotics is telerobotics. The key benefits typically sought are faster and/or better task

completion, and lower operator fatigue that permits longer operation and better efficiency

than would be possible with a pure teleoperated system. These desires all have relevance

in tool usage along with the need to minimize tool and manipulator system damage.

Early work included the addition of subtask automation to traditional (compliant)

teleoperated systems and had limited success [36], [37], [38]. To permit position-based

force reflection in traditional joint control teleoperation, the manipulator and master

controller joints require low actuation friction that tends toward high backlash and makes

overall joint control compliant and imprecise. The resultant positional errors are not an

issue for a human operator but are problematic for precise robotic positioning [36], [39].

Much telerobotics work after this time made use of industrial robots instead of

teleoperators to gain precision of positioning at the cost of quality of teleoperation.

25

The earliest useful telerobotics work appears to have been completed by Vertut et al. and

published in the mid-1980s [37]. Along with teach/playback-recorded motion, they also

implemented software jigs and fixtures to constrain teleoperation motions to make it

easier for an operator to use tools requiring precise alignment such as saws and drills.

Also in the 1980s there was a growing interest in breaking joint level control and

kinematically identical master controllers with a move to Cartesian control. Khatib

provided a thorough mathematical development of his operational space that has been

foundational ever since [40]. Researchers began to try to use industrial robots for

teleoperation and dissimilar master control schemes and multi-axis joysticks were tried

with varying levels of success [41], [42]. Much of what drove this was that research

communities did not have access to high fidelity servomanipulators due to their high cost.

(A high fidelity digital dual arm master-manipulator electric teleoperator system cost

approximately $1.5M in 2010 [43].) In general these dissimilar kinematic systems do not

compare favorably to traditional kinematic replica joint level teleoperation; however

work in this area done by the French Commissariat à l’Énergie Atomique et aux Énergies

Alternatives has made serious improvements in dissimilar Cartesian control through the

use of traditional teleoperator master controllers driving industrial robots with a force-

torque sensor in the slave manipulator base [44], [45], [46].

Chan et. al. at the University of Tennessee at Knoxville (UTK) attempted to expand on

Vertut’s work by focusing on various kinds of operator assists for tooling [47]. This work

required that complex compliance matrices be set up by hand for each task. Everett later

expanded on the operator assist efforts to include available sensor and model-based data

to improve the quality of operation [16], [48]. This work also required complex setup

procedures for each task. There is no question that operator assists add value to the

precision of operation. The difficulty comes in setting up parameters to execute these

tasks in a way that makes them useful and accessible. A key issue here is that the

programming and engineering intuition required to implement task automation is beyond

that of typical remote systems operators, and the amount of time required to configure the

26

system for a task may be longer than that required to struggle through the task via pure

teleoperation. While the use of tooling was the focus of some of this work, it did not

specifically incorporate tool/task interactions.

Space-based systems seem to be the only application area that has broadly adopted

joysticks for their highest grade of teleoperation, but they have unusual work space

constraints, motions must be slow to avoid imparting reactive forces in space-based

systems, and great distances induce time delay into control making traditional positional

teleoperation difficult [49]. Under these constraints a “fly-the-end-effector” approach to

control, which is also more natural for the typical astronaut with a pilot background, is

the most practical control architecture [42]. While mission specialists are no longer

typically pilots, they undergo extensive training on task mockups to achieve proficiency

with a limited set of tasks using the available control modes. D&D remote operators

generally receive little to no system level training or practice. Under these circumstances,

positional master controllers that function as an extension of the human operators hands

provide more natural teleoperation.

The US National Aeronautics and Space Adminstration (NASA) has always maintained

active research in teleoperation, telerobotics, and autonomous robotics [50], [51]. Early in

their planning stages NASA acknowledged that moving from teleoperated systems to

telerobotics (Tr) appeared to be the better approach although the National Bureau of

Standards had determined to start with industrial robots and move back towards

telerobotics (tR) by adding flexibility in operations and task programming. Hertzinger et.

al. developed and flew a series of telerobotic dextrous manipulation experiments called

the robot technology experiment (ROTEX) to explore master controller and control

system control modes [52], [53].

Backes et. al., Hyati, and Lee worked at NASA to address issues of telerobotic shared

and traded control for teleoperators [54], [15], [55]. This fundamental work does not

27

appear to have extended to the use of tooling for task completion or appreciably

distinguished whether one mode was better than the other.

More recent NASA work in telerobotics has focused on creating the anthropomorphic

Robonaut capable of articulating hand tools for space-based operations and potentially

geological surveys on other planets. While highly capable, Robonaut has different

operating parameters from those of earth-based D&D-type operations. It is relatively

slow moving and is not designed to handle power tools capable of reflecting large forces

back into the system [56]. Additionally, time-delayed operation issues due to distance and

communications relay technology place constraints on space-based teleoperation and

telerobotics that are not typically issues with earth-based D&D type operations. They are

addressing a different set of task constraints.

End-effecter tooling has always been a focus in the use of industrial robots where

welding, painting, and various machine type operations such as deburring are common.

Whitney et. al. did early work on robotic deburring solutions [57]. Solutions often did not

transfer well to telerobotics, however, since industrial robots are stiff and the majority of

teleoperators are not. In general Tr-oriented telerobotics requires solutions that

accommodate the flexibility of the manipulator and its delivery system.

The DOE pursued telerobotics throughout the 1990s with the purpose of improving the

efficiency of remediation operations where remote systems were required to protect

people from hazardous environments. The Robotics Technology Development Program

and later the Robotics Crosscut Program addressed issues in D&D, tank waste retrieval,

buried waste, mixed waste disposal, and laboratory automation [58]. Several of these

areas, in particular tanks waste retrieval and D&D, began to investigate relevant

telerobotic issues with respect to tooling usage.

One area of application included storage tank waste retrieval and remediation using

operator assists developed by Xi et. al. [59], [60]. They were concerned with integration

28

of human-based corrections into a preplanned robotic path to correct for path flaws and to

avoid obstacles. Here the robotic task is the main activity and any operator motion is the

assist. This approach was implemented and tested as an improvement for the tedious

process of using remote systems to remove hazardous waste from storage tanks including

scouring walls. The manipulator system was a large slender hydraulic manipulator with

sluicing tooling on the end-effecter. This system was controlled by a joystick and moved

slowly and so was not a high fidelity teleoperator. In this case, very specific and narrowly

defined telerobotic assists were defined and implemented as a means of reducing operator

fatigue.

DOE also pursued manipulation, telerobotics, and tooling for typical D&D-type tasks.

Since early testing showed that typical D&D tools such as hydraulic shears could reflect

more than 300 lbs (1334N) of force back into the manipulator system, hydraulic

teleoperated manipulators were substituted for the traditional but more fragile electric

servomanipulators. Position-position force reflection was replaced by a force-torque

sensor on the hydraulic manipulator in combination with dissimilar kinematic electric

force reflecting master controllers [61]. Early work studied with varying success circular

saws, band saws, reciprocating saws, sheet metal nibblers, and hydraulic shears with

minimal fixturing and no telerobotics in an attempt to dismantle process equipment and

the core of a research reactor. Substantial lessons learned on teleoperated tooling

implementation issues were collected [1].

Later work included telerobotic plasma torch cutting of structural components that would

be located in areas where accurate a priori models of the task would not be available [12].

This work involved smart tooling with both sensing and actuation and incorporated

realistic manipulator control constraints such as dealing with a closed “black box”

manipulator controller. Telerobotic functions included traditional robotics for pick-and-

place of tools, the use of a teleoperated sensor tool (ultrasonic and laser rangefinder to

establish edges and standoff distances and correlated with manipulator position) to

establish a short term task model with cut paths and standoff distances (plasma torch

29

cutting requires the maintenance of an approximately 3mm to 7mm of standoff for proper

cutting), and automated robotic use of a plasma torch cutting tool to execute the model

generated. Capability was demonstrated for flat plates and complex cuts on structural

angle iron. Each task instance was completely hand programmed using the generated

points.

Hamel at UTK has conducted extensive telerobotics work that has specifically been

oriented towards D&D-type cutting tasks and addresses the modeling issues via task-

specific sensor-based modeling where an operator used the robot task space analyzer

(RTSA) to identify and plan the task; task execution was model-based robotics using the

human-machine cooperative telerobotics (HMCT) system [62], [63], [64], [65], [66].

Under the RTSA operation strategy, an operator used sensor data from both video and

laser rangefinder to establish an object’s location in space to create a task model of the

particular D&D task to be completed, a task script was generated, and the task was

automatically executed in model-based robotic mode. There was no direct task feedback

during execution and no sensor-based registration of the manipulator to the task during

execution.

The technique and process has been tested and proven using a manipulator-held bandsaw

to cut mockup process piping. There are several remaining issues in this technology.

RTSA was one of the earliest techniques to recognize that a local task model would have

more utility than a world model. World models can take extreme amounts of time to

properly construct and register impacting the efficiency of operation, and the real world is

not static, especially in a D&D situation where all of the tasks are dismantling the

“world”. However RTSA’s foundational philosophical shift begs the question as to how

much of a task model is actually necessary to complete a task. This has not been fully

explored. Other remaining issues include dealing with the error bubble of a sensor system

mounted any appreciable distance from the target task that limits task and tool choices

and the complexity of dealing with various shapes in the task modeling [67]. The use of

tooling was a critical part of the operation, but tool disturbances were not incorporated.

30

Zhang furthered this work by focusing on tooling dynamics and disturbances of the band

saw cutting task to provide stable and more consistent cutting operation [68]. This

capability was added to the existing HMCT RTSA system but did not make use of the

RTSA capability. The goals of this work included the generation of a “universal tooling

interaction force prediction model” and a “grey prediction force/position parallel fuzzy

controller…that compensates for tooling interaction forces.” This work dealt with a

single hard programmed task in its demonstration and did not accommodate the ability to

reprogram tasks, task target locations, or more broadly accommodate other tools.

Working with the same system, Kim noted that “highly unstructured environments and

the continuous changing commands needed from the operator to counteract unexpected

events make it impossible to develop a force assistance function using control algorithms

based on any analytical form [65].” This was addressed with the incorporation of a fuzzy

logic compensator narrowly defined for a specific task. This work identified issues with

telerobotic tool fault detection that led to a series of efforts to find solutions using fuzzy

logic, discrete wavelets, and neural networks.

Most recently UTK has focused on the use of a multi-finger end-effecter to provide

generic grasping of unfixtured tools [13], [69]. Fixturing has always been an expensive

approach especially in situations such as cost-conscious D&D where tools wear out

quickly. While generally relevant to this work, a multi-fingered end-effecter was

considered to be a complication to first attempts at telerobotic tooling control and so was

not considered in this work.

Cannon launched a direction of work that examined grasping issues related to hand tools

for a version of “point-and-direct” high level telerobotics using “virtual tools” [70], [71],

[72], [73]. The ultimate goal was to provide supervisory level control of tools using in

manufacturing type tasks including force control. The primary focus of this work was to

31

define how to grasp tools and did not address how to manage contact with the target task

especially in the context of the use of tooling.

It is recognized that virtual fixturing as originally developed for teleoperated use of

tooling in the 1980s is not task-flexible. Fixturing is generally based on manipulator

coordinates and not on task coordinates. Aarno et. al. examined the use of adaptive

virtual fixtures; however the focus was on predicting intended operator motions to define

fixture adaptations and did not directly address accommodation of tooling [74].

Yu et. al. explored the possibility of using attractive and repulsive forces to align on a

target, avoid an obstacle, or to follow a path using a Hidden Markov Model in an attempt

to classify the apparent motions of a human operator to determine, select, and control the

manipulator motion [75]. The focus was on determining the intended motions of the

operator. The use of tooling contact issues during operation was not a concern or focus of

that work.

The advancement of medical manipulation of small surgical tools for the removal of

human operator tremor and to compensate for motion of the task is directly relevant to

D&D tasks because the task or manipulator deployment system will typically move

during task execution. Bebek and Cavusoglu used a whisker sensor to dynamically

compensate for tool-to-task motion during surgery on a beating heart [76]. The purpose

of the sensor system was to cancel relative motion between the surgical tools and the

target of the surgery.

Some medical systems work has recognized that smart tooling is an important aspect of

teleoperation and telerobotics. Saha under the guidance of Okamura examined the

addition of force sensing directly onto surgical tooling to provide more sensory feedback

to the surgeon remotely conducting the surgery with the purpose of improving the quality

of task execution [77]. This work focused on force sensing in support of teleoperation

32

only and did not address telerobotics or the use of power tools which greatly complicates

control schemes.

While not specifically telerobotics, the DARPA TraumaPod project to support surgical

teleoperation with a robotic nurse developed tool/task interaction strategies for a 7-DOF

robot manipulator that had to quickly interact with both compliant manipulators and rigid

non-optimally aligned surgical subsystems supplying tools and surgical supplies.

Insertion force limiting and incremental force-based calibration of subsystems in an outer

control loop around a “black box” robot controller provide relevant control concepts for

D&D telerobotics [32], [33].

There is some indication that interest is increasing in the use of smart tooling to facilitate

teleoperated task execution. Dario et. al. discussed smart tooling and its impact on

telesurgery and minimally invasive surgery [78]. This paper was a survey of potential

smart tooling usage and did not specifically address tooling usage itself or control modes.

There has been little implementation in this area to date.

3.4 BBR Tooling Tasks

Previous traditional autonomous robotic approaches to unstructured task environments

normally used a sense-model-plan-act sequence of events; and though there has been

progress there are still difficulties with most of these event stages in the context of real

world task execution [27]. In order for a robotic system to interact with its environment,

an adequate model must be made of the world or the specific task to be addressed. In the

context of early telerobotics, this model was generated manually in a computer-aided

drafting package using as-built drawings. This requires that expensive skilled technical

labor spend significant time to generate models of the environment to be dismantled.

33

A better way to do this is to use some sort of sensor system to automatically model the

robot’s world, and there have been many significant research activities along these lines,

and commercial systems now exist that will generate models with human operator

assistance [79], [80], [81], [82]. Key problems include cost, physical robustness in the

presence of tooling, accuracy, the process requirement for a containment dome over the

sensor system that is currently unworkable, and long scanning time or analysis times of

the various sensor systems (laser range finders and stereo or monocular video are the two

most common). Knowledge representation, or interpretation of the data into a model that

the robot can use in real time, is also an area requiring significant progress. Finally,

registration and calibration of the position of the robot to the task model to establish

where it and all the objects in the task are located is also critical.

Now consider that practical D&D systems are relatively large pieces of hardware,

movable and flexible and not rigidly mounted, and operating in highly unstructured

environments where complex objects reside in dirty low-contrast, low light environments

(vision is necessary but not sufficient). High remote system flexibility means that the

robot reference frames, normally taken to be fixed and rigid in a laboratory context,

cannot be trusted and dictates that these models must be updated as necessary to maintain

positional accuracy of the robot with respect to task objects. This could be nearly real-

time depending on the bandwidth of the disruption to the robot base frame location. Dark,

complex, and dirty facility environments tax sensors and recognition systems beyond

current state of the art. The research community has made relatively little deployable

progress in resolving these issues over the years [27].

While the primary focus of the BBR research community appears to be on mobile robot

platforms, manipulation has also been addressed. Since most of these systems focus on

total autonomy and not on human interaction, most of this work is marginally relevant to

the proposed research. However there is some work in telerobotic manipulation and

collaboration with human operators or peers.

34

Arkin, et. al., have participated in BBR research based on both reactive and hybrid

deliberative/reactive control approaches [28], [83], [84], [85], [86], [87], [31], [88], [89].

His work documents the evolution of the schema-based approach to reactive control and

its migration to a hierarchical hybrid deliberative/reactive architecture to take advantage

of a priori task knowledge. This body of work also lays the groundwork for schema-

based telerobotics, though the definition of telerobotics is typically kept at a fairly high

supervisory level (tR) and is applied primarily to mobility and not manipulation, and

especially not to power tooling. The example presented by Reactive Control as a

Substrate for Telerobotic Systems does present one possible conceptual model to create a

substrate for telemanipulation [28]. However this is tR-oriented telerobotics and would

require a complete rework of the teleoperation scheme that would be incompatible with

commercial positional teleoperation systems.

In work directly related to Arkin, Cameron et. al. and MacKenzie et. al., conducted

research related to manipulation and mobility [90], [91]. The focus was on autonomous

manipulation and not on interactive telerobotics. The most interesting concept here is the

identification of the manipulator Jacobian and its relationship between joint torques and

static forces at the end effector with the schema’s potential fields used to specify

behaviors. However this would require a complete change of approach to teleoperation

for implementation.

Connell at MIT appears to have published some of the earliest work related to BBR-

based manipulation [18]. The control system is based on Brook’s subsumption

architecture for behavior selection and is comprised of a collection of state machine-

based behaviors. The robot is completely autonomous and optimized for finding and

picking up soda cans. The key useful point here is the switching mode provided by the

state machines. One of the limitations of schema-based summed potential fields is that

they do not provide for mode switching that is provided by the subsumption state

machine.

35

Stein is one of the few that has addressed behavior-based telemanipulation [92]. The

primary focus here is time-delayed teleoperation for space-based operations. In this case

because of the time delay issues, it is important to make the BBR system the primary

mover and to add human level control as a secondary. While Stein refers to this approach

as teleoperation, it is in fact supervisory control at a fairly high level and barely even tR.

The control system behavior arbitration is based on subsumption.

Park et. al. of Argonne National Laboratory pursued BBR-based techniques for D&D-

related manipulation [93], [94], [95], [96], [97]. The context of this work focuses on dual

arm manipulation and task execution based on structured light sources and video

processing. This work follows the schema-based approach of Arkin and makes use of the

manipulator Jacobian in correlating manipulator action to the BBR schema. The sensor

scheme is to use structured lighting and video image processing for behavior feedback.

The intent of this work is to manipulate objects and tools, and while there is some

mention of possibly using force/torque or motor current sensors to detect loads and

anomalies, there are no sensors planned to address direct tooling-to-work-piece

interactions or optimization of tool action based on proximity and contact information.

This work is very much arm-centric, and the aspects of tool interaction are ignored. This

approach would encounter difficulties in task execution—tool alignment, wear, and

chattering—that would affect efficient task completion. As with almost all BBR type

implementations, it also treats teleoperation as a secondary mode and not as the primary

mode of operation.

Pettinaro explored the use of behavior-based techniques for the peg-in-hole insertion task

[98]. The premise of this work was to consider how a blind human might use sensing to

locate a hole and insert a peg. A zigzag and a hopping spiral pattern of motion were used

to locate the hole. These approaches may work well to find a hole in a plane but does not

translate well to the tooling tasks in three-dimensional space that may be surrounded by

similar task objects.

36

Wasik and Saffiotti explored behavior-based approaches to arm control and examined

previous work finding that much prior implementation of behavior-based systems for arm

control were based on the sequencing of behaviors which they considered to be too

limited to support generic grasping [99], [100]. Their work focused on vision-based

grasping for a collection of pick and place task primitives. Their approach is fully

autonomous and does not incorporate teleoperation, contact management, or concepts

related to tooling interaction with its environment.

Stoytchev noted that studies focusing on robotic tool use were uncommon and had not

been well addressed in the autonomous robotics community [101]. This is still true. He

examined the use of behavioral approaches to characterize tools with a focus on having

the robot learn the use characteristics of tools. The tools identified were simple items

such as sticks that could be grasped and used to poke or prod objects. This work is

preliminary. The focus was on learning how to use simple tools and not on the efficient

use of existing tools. It therefore does not address the use of power tools.

Though not related to tooling, Pin described a minimal modeling approach to mobile

robot navigation that used a fuzzy rule-based system [29], [102], [103]. Performance of a

small set of 20 fuzzy rules was able to exceed the performance of 30,000 lines of code

designed to attempt “crisp” image and sensor processing and navigation. The focus is on

automated rule generation. The resultant is that the concept of a minimum model has

value for real world implementation and that the use of a simple functional architecture

based on behaviors may be able to exceed the performance of a system using more

complex engineering models.

3.5 Tool Disturbances

Rapid oscillation of cutting teeth in conjunction with applied cutting force can produce

“chattering” between the tool and the work piece. High frequency machine tool and saw

37

tooth chatter have been extensively studied by many researchers though the process is

still not completely understood [104], [105], [106], [107], [108], [109], [110], [111],

[112]. It is best if the working frequency of the tool contact can be kept far beyond the

frequency that would normally impact manipulator dynamics; however, these tools

invariably use universal motors where the motor’s tendency to slow under increased load

can move its frequency of operation into a range where it will be of concern.

Noakes investigated a chatter/disturbance solution based on prior machine tool chatter

techniques that detect chatter with the ratio of variances of low and high accelerometer

signals generated by the saw during cutting [113]. This is an empirical approach and

thresholds must be established by experimental testing with the particular tool type.

Standard digital signal processing techniques are used to split the signal into high and low

frequency components for analysis. This approach only works to identify the presence of

saw blade chatter and disturbance and does not mitigate chatter. Once the disturbance is

detected, a procedure to modify operation to correct problem has to be devised that is

dependent on specific task and tool circumstances.

3.6 Summary

In summary, there has been nearly no work that combines telerobotics, behavior-based

concepts, and the use of power tooling in a way that is cognizant of the interactions

between the tool and the task. However some general direction may be derived from

previous work in the various non-intersecting subject areas.

For this work the use of a positional master controller in support of high fidelity

teleoperation is a primary goal. Telerobotic assists emphasizing Tr mode of operation are

desired so that teleoperation may be maintained as the primary mode of operation since

unplanned tasks and events will always occur during operation. This means that

supervisory modes of operation or those modes that might use joystick control to modify

38

an autonomous operation as has been previously done in some behavior-based

architectures are not desired. The behavior-based architectures also tend to supplant

rather than coexist with existing manipulator controllers which is also undesired.

A desire to maintain a standard teleoperation capability within an existing manipulator

controller architecture while integrating telerobotic operator assists points to a traded

control approach to permit switching between the control modes. This will also permit

coexistence and ready integration between traditional teleoperation, robotic motion, and

telerobotic assists. Traded control also affords the operator periodic breaks from

concentrated physical motion to relieve fatigue in a way that shared control does not

during longer operating sessions.

One of the most promising concepts from behavior-based techniques is to rely on sensor

information to capture local model context rather than generating an abstract model. This

is the concept of “the world is its own best model.” This offers significant promise in task

execution with minimal modeling of each individual task before execution.

While multi-fingered end-effecters are ultimately desirable, they are currently unreliable

for long-term operation and testing in the context of D&D tooling needs for this work.

The effects of grasp on sensors is also a diversion from the intended goals of this topic.

“Traditional” remote system tool fixturing is adopted for this work with the

understanding that more generic grasping should be addressed at some future point.

39

Chapter 4

Testbed Description, Capabilities, and Limitations

4.1 Introduction

This chapter defines the test bed used in this work. Much of this system was pre-existent

to this work though it has been extensively reworked. The current iteration of hardware

and software owes much to the foundational work of Renbin Zhou and substantial

ongoing work by Andrzej Nycz. A hardware description and the software architecture are

described. System capabilities and limitations are defined since they impact

implementation, performance, and test results.

4.2 Hardware Overview

The manipulator system used in this work, shown in Figure 14, consists of a pair of

manipulators that are mounted on a cross beam and then mounted to a pedestal base

bolted to the floor. The steel box beam is 1.22 m long and .203 m across the flats of the

square. The manipulators are mounted 1.054 m apart between the centers of their base

mounting points. The top of the box beam where the manipulators mount is located .845

m above the floor.

The manipulators used are Schilling Titan II hydraulic 6 degree-of-freedom (DOF)

manipulators. The shoulder pitch joint uses a linear actuator (hydraulic cylinder). The rest

of the joints are proprietary rotary designs. All joints except the gripper use resolvers for

position indication; the gripper uses a linear variable differential transformer. The

hydraulic system is described as 3000 psi (20,684 kPa) nominal with a flow rate of 1.5 –

5 gallons per minute (5.7 – 18.9 liters per minute). The manipulators are specifically

designed for sub-sea use and are designed to withstand underwater depths up to 7,000 m

below sea level. They are constructed of titanium for strength and corrosion resistance as

40

their most common use is off shore oil-rig maintenance. The use of these arms for

hazardous waste cleanup is due to their robustness and payload capacity.

From center of the manipulator base to the tip of the parallel jaw gripper, length of the

arm is 2.00 m. Payload capacity of the arm while at full extension is 109 kg; the mass of

the arm is 79 kg. The parallel jaw grippers open to 0.152 m, have serrated finger faces for

firm grasp and include a cylindrical T-shaped notch for positive grasp of tooling if

fixturing is designed to support the “T-handle” approach.

The Schilling controller has been replaced with a PC/104-based controller developed by

ORNL. The PC/104 controller was designed to provide basic teleoperation while

supporting further development; the original Schilling controller was a “black box” that

could not be modified and had limited means of control access. The controller, shown in

Figure 15, is an open architecture unit based on the QNX4 real time operating system.

The controller runs at a 200 Hz loop rate. It is essentially a joint position controller. UTK

previously modified the controller to communicate with external systems via Ethernet;

the original used a serial link to connect to the Schilling mini-master operator interface.

The operator station is shown in Figure 16. It consists of an Agile Engineering-supplied

compact remote operator console with control chair, viewing system, and computer

monitors. A Barrett Whole Arm Manipulator (WAM) configured as a 7-DOF master

controller is mounted on the left side of the console.

41

Figure 14. Telerobotics Test Bed.

Figure 15. PC/104 Manipulator Controller.

42

Figure 16. Telerobotics Operator station.

4.3 Software Architecture and Implementation

The system level block diagram is provided in Figure 17. The system resides on a total of

five computers interconnected with a dedicated Ethernet network. The system has no

external connection to the Internet; therefore there is no traffic on the network that is not

directly related to control. The collection of computers is a variety of hardware

configurations and run various operating systems running software at various loop rates.

The central machine is the high level controller (HLC). This desktop PC manages all

communications between the other machines, manages the Ethernet loop timing,

coordinates the passing of variables between systems and programs via shared memory,

and provides the forward kinematics for the WAM and the forward and inverse

kinematics for the Schilling. The interface for manual teleoperation and the BBR-inspired

controls also reside in the HLC.

43

Figure 17. Test Bed System Level Block Diagram.

44

The operating system for the HLC is based on CentOS linux. Real time loop timing is

synchronized via the rtc() system function call. Prior testing at UTK has indicated that

this approach is valid to at least 128 Hz loop rate [114]. The intersystem Ethernet loop

rate runs at approximately 32 Hz. The rtc() is provided to the main HLC program

server_hlcx() since it is the point of coordination and timing between all processes on all

of the networked systems.

The include file is rtc.h. The rtc() is configured as follows:

// required for the real time clock (rtc)

// rtc device file descriptor

 int rtc_fd;

 unsigned long dummy;

// variable for status response from /dev/rtc when interrupt returns

 unsigned long rtc_status;

// open the /dev/rtc device file

 rtc_fd = open("/dev/rtc", O_RDONLY);
 if(rtc_fd < 0) return -1;

// enable periodic interrupts, and set interval

if(ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) return -1;
if(ioctl(rtc_fd, RTC_IRQP_SET, 128) < 0) return -1; // set to power of 2 up to 8196
// sets the loop rate directly in Hz; currently set for 128Hz.

It is used in the loop as follows:

// LOOP

 while (1)

 {
 code inside loop here

// trigger the periodic rtc interrupt

 read(rtc_fd, &dummy, sizeof(unsigned long));

 }

Unfortunately only one process on the computer can have the rtc() at runtime, and the

server_hlcx process absorbs its full availability. This means that all other processes that

45

need to run in a timed loop must run using nanosleep(). Since loop timing is based on the

process run time plus the sleep time, it must be set empirically using an iterative process,

but this is not difficult to determine.

Usage of nanosleep() is managed as follows. The include file is time.h. Preliminary code

outside of the timed loop is:

// Loop timing management using nanosleep()

 struct timespec ts;
 ts.tv_sec = 0;
 // ts.tv_nsec = 31250000; // 32 hz, not calibrated

ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz

At the end of each loop the function is called as follows to delay the initiation of the next
loop as follows:

nanosleep(&ts, NULL);

The PC/104-based arm controller was described in the previous section. It is only

responsible for the Schilling arm control and communications to the network.

The WAM controller is a Linux® box running the open source real time application

interface (RTAI). It manages WAM control and its network interface only. Joint

information and gravity compensation data are collected at a 500 Hz rate. Since the

WAM runs as a master controller, joint motors are only used for the gravity

compensation on the four lower driven joints of the manipulator. The three wrist joints

are passive with position feedback only.

The WAM master controller and the Schilling manipulator are kinematically dissimilar;

therefore traditional joint-to-joint teleoperation is not viable. A Cartesian-to-Cartesian

control scheme is used to manage the dissimilar kinematics. This particular system has

46

been described previously in [115], [116]. The original system used an open loop forward

kinematic-reverse kinematic scheme that did not reflect actual position of the Schilling

manipulator. While it worked well for teleoperation since the operator provides additional

perception feedback, it was found to be problematic with robotics and was changed to a

closed loop kinematic approach by feeding back the Schilling Titan positions.

A separate Windows-based PC is used to run the RoboWorks® application that provides a

simulation of the Schilling manipulator. The HLC is capable of connecting to either the

actual Schilling manipulator or to the RoboWorks simulation of the Schilling. Using this

interface, the WAM master or robotics routines can run either simulation or real

manipulator. This feature is used only for checking software and visualization during

operation of the real hardware.

4.4 HLC Interface

The HLC program server_hlcx uses a keyboard interface for commands and displays

values on the screen indicating operating status of the system. See Figure 18. Important

commands include:

• I Idle mode and Index mode for the master manipulator

• C Cartesian teleoperation

• M Toggles between real arm control and control of the RoboWorks simulation

• H Toggles between teleoperation and behavior/robotics modes

Additionally there are a similar series of commands for individual joint or Cartesian

space motions. The original system did not have the capability for robotic motion; this

was implemented as part of this work.

47

Figure 18. HLC Graphical Monitor.

4.5 Tooling Interfaces

Tool control and sensor interfaces are managed by two National Instruments PCI-6034E

data acquistion cards located in the HLC. These cards have 16 single-ended analog input

channels (or 8 differential input channels) and eight bits of digital I/O programmable as

input or output bitwise. One card is dedicated to the ATI force/torque sensor interface.

The other card is available for the analog and digital I/O necessary for tool interfacing.

There is a custom built interface installed between the I/O cards and the smart tool. Block

diagrams and schematics are located in the Appendix.

Software interface to the cards is provided through the open source Comedi data

acquisition library for Linux. Comedi is also used to support reading of the force/torque

sensor along with a library of routines supplied by force/torque sensor vendor (ATI).

Software listings for the system support functions are provided in the Appendix.

48

4.6 System Limitations

There are several physical limitations to the test bed as implemented. The lab where the

manipulator system is located is small and the workspace is constrained. The Schilling

manipulators have several weaknesses in terms of their use for robotics. The test bed is

workable for that which it was used; however there are limits to the level of finesse that

can be demonstrated.

The lab where the manipulator system is located is a temporary installation. The room is

too small to manage the proper reach between the manipulators and the mockups

available for testing. While the setup appeared cramped on installation, issues did not

show up until testing. The manipulator was having difficulty reaching tasks while

maintaining full manipulability. The Schilling has an exceptionally long wrist link chain

instead of a spherical wrist. This means that the manipulator should not have been

mounted as close as it was to the mockups. However there was not additional space to

move the system back from the mockups.

The Schilling manipulators have a high payload; however, they also have fairly high

compliance, but the key weakness of the Schilling manipulators when used for robotics is

position resolution. At full extension with the resolution of the joint resolvers, one bit

change is equal to approximately 3mm. Therefore at best the controller can be expected

to manage ±3mm of positioning resolution with the arm at full extension.

Referring back to the Figure 17 block diagram and prior discussion it should be noted

that the smart tool force torque sensor is limited to reading at approximately 128 Hz and

that the network control update is limited to about 32 Hz. While this situation is highly

realistic in terms of systems that would actually be used in the D&D world, it also reveals

the limitations in terms of what can be done with various control techniques. Control

strategies and proposed solutions that require high feedback loop rates are not possible.

49

Chapter 5

Telerobotic Tool Control Methodology Derived From Behavior-based Concepts

 	

5.1 Introduction

 	

In the very general context of remote tool-based operations, power tools contact surfaces,

interact with, and change their environment in ways that normal grasping does not. Much

of this interaction is variable depending on materials used in the task components,

assembly torques of the target components, condition of the target components (such as

the existence of rust/corrosion), and wear of the tool as part of its process of acting upon

its environment. In general, these processes are not well understood, and previous

research used comparatively complex solutions that have implementation issues for

fieldable systems. The important issue is that the fundamental nature of the tooling and

the associated processes are the dominant elements of basic task execution. 	

	

Most previous attempts have been based on model-based approaches. These assume that

the task and tool delivery system may be completely and accurately modeled before the

task is executed, that task objects are located where they are supposed to be, and that the

manipulator system positioning the tooling goes where it is supposed to go. In actuality

sensor systems working at a distance from their target object have error bubbles (a

volume of measurement uncertainty) around the supposed target point. Manipulator

systems, especially teleoperators that tend to be more compliant, may have substantial

differences between where the control system intends to send the end-effecter and where

it actually goes. Finally the physical objects of interest in the task model must be

rendered in such a way as to capture necessary manufacturing and installation details and

variances. 	

	

The D&D “real world” is not composed of simple structures in orderly arrays of high

contrast objects. Lighting is often minimal. Target tasks are typically dirty and/or

corroded. As-built installations often use components that were not on the original

50

drawings or are installed in a more approximate fashion than design drawings might

imply. For a D&D system operating in a contaminated environment where human access

would not be possible, direct measurement of all of the variables necessary to define a

tooling task may not be practical or even possible. This is not to say that models are

unnecessary, or not useful, but rather that there is significant motivation to explore

simpler approaches to telerobotic tool usage in environments such as D&D that directly

measure the location of task objects while managing tool contact and the tool process.	

 	

An alternative and perhaps more desirable approach is to simplify the understanding of

tool interactions through task decomposition, to characterize each particular step, to

identify interactions that must be controlled, and to identify events that must be noted for

successful operations. Behavior-based systems provide one perspective for task

decomposition and a focus on interaction with the actual target task. Behavior-based

approaches use local sensor systems to interact directly with the target task object where

possible. Tasks are broken into simple sense-react motions that typically do only one

thing. Behaviors are then grouped together to complete more complex overall tasks. This

decomposition makes the overall approach simpler and readily implementable due to the

inherent iterative nature of the process/philosophy. Task complexity may be addressed

by adding additional behaviors to the existing set. Based on the literature review included

in this research, behavior-based methods have not previously been used in tooling-centric

situations and/or systems such as those used in remote handling and maintenance. 	

 	

Specifically, the hypothesis for this research is that behavior-based methods offer a

simple and effective way to implement telerobotic tool control within positional master

controller-based teleoperation of complex remote tasks. The goal is to identify and use

relevant concepts in behavior-based robotics to build task type models without the need

to build a task instance model and to execute the task type model with the resulting

implementation. A generalized methodology using selected behavior-based concepts

appropriate for telerobotics and applicable across a wide range of tools is described here

in terms of procedures and implementation rules.	

51

5.2 Identification of the Tool Set and Applicability of Technique

	

The primary focus of this work is improvement in the use of remote power tooling for

D&D of contaminated facilities. While the tool set is continually being reevaluated for

improvement, there are specific tools that are normally used for certain types of D&D

operations. A typical set of tools and their function is listed in Table 2. A majority of the

tools are cutting or disassembly tools of some type. Entire categories such as the range of

abrasive blasting processes have been excluded for now because large quantities of

individual particles moving in a wave against a task object cannot be individually

measured or controlled.	

 	

In the course of exploring this topic, it was discovered that all tools that interact with

their work piece have characteristic process signatures that are generally repeatable. The

tool signature is particularly identifiable if the tool process is operated at a constant rate

rather than by trying to control to a particular process variable. This signature may be

used to monitor task progress, to infer quality of operation, and to identify task

completion. The methodology pursued in this work requires a tool process that can be

readily monitored for feedback and control. Contact and force are the most likely

controllable tool parameters.

However, not all contact tools would be appropriate for this technique. The air chisel,

jack hammer, and plasma torch are examples of tools that would be a poor fit for this

technique. The air chisel, jack hammer, and sheet metal nibbler make high frequency

high impact contact with a target surface to break up or break loose the target object for

removal. Contact sensing and interpretation of impacts and generation of any type of

response trajectory based on a series of these types of impacts would be impractical and

exceedingly difficult. Tool interaction with the target surface is such that remote sensing

of progress would be of limited value.

52

	

Table 2. D&D Tool Summary.

Tool	 Target Object(s)/Task	 Contact Signature

Reciprocating Saw	 Sectioning pipes and smaller metal
structural components	

Band Saw	 Sectioning pipes and smaller metal
structural components (limited to
components where the ends are free)	

Circular Saw	 Sectioning flat plate and large diameter
vessels	

Hydraulic Shears	 Sectioning pipes and structural
components (limited use because it can
damage the manipulator delivery
system)	

Sheet Metal
Nibblers	

Sectioning sheet metal cabinets	

Milling
Head/Router	

Sectioning flat plate and large diameter
vessels	

Impact Wrench	 Bolt removal, large components	

Socket Tool/Nut
Runner	

Bolt removal, small components	

Drill	 Sample collection and creation of
drainage holes in pipes and vessels	

Air Chisel	 Removal of bonded stacked blocks—
concrete, graphite, etc.	

Jack Hammer	 Removal of concrete	

Plasma Torch	 Sectioning of metal structures	 No contact

	
	

53

Plasma torch cutting requires precise control of an air gap standoff. While sensing of this

control variable would be possible and relevant to the desired approach even though it is

not contact based, the cutting trajectory must also be maintained at a fixed rate to ensure

sectioning, and the cut path is predetermined a priori by an operator. This indicates that a

model-based known-start-point to known-end-point path is the most practical means of

control for the plasma torch, and therefore it is not a good fit for sensor-based techniques

focused on contact and behavior-based principles.	

 	

In summary tools that generate a contact process or identifiable tool signature with a

reasonable rate of repetition are the most likely application for the technique outlined in

this work. This would include all tools from the table not in the preceding two

paragraphs. Relevant tools rely on contact and management of forces to execute their

function and to prevent binding of the tool. Fixed path generation, if necessary, would

have to be considered as a higher-level function that would exist on top of the reactive

control-based telerobotic tool control.

	

Returning	 to	 Table	 2,	 the	 third	 column	 reveals	 that	 it	 is	 relatively	 straightforward	 to	

infer	 an	 expected	 process	 profile	 of	 the	 tool	 interacting	 with	 its	 task	 object	 in	 most	

cases	 and	 to	 distinguish	 between	 practical	 and	 impractical	 applications.	

Examination	 of	 the	 profile	 also	 points	 to	 what	 kinds	 of	 tool	 processes	 are	 amenable	

to	 certain	 types	 of	 control	 techniques.	 Note	 that	 the	 profile	 for	 cutting	 through	

objects	 such	 as	 pipe,	 structural	 elements,	 or	 drilling	 through	 objects	 indicates	 an	

initial	 contact	 followed	 by	 a	 process	 force	 or	 profile	 (actual	 to	 be	 determined	

experimentally),	 and	 then	 followed	 by	 a	 loss	 of	 contact.	 An	 impact	 wrench	 or	

powered	 socket	 tool	 will	 see	 a	 transition	 in	 forces	 as	 part	 of	 the	 tool	 process.	 This	

information	 can	 be	 used	 to	 establish	 a	 control	 sequence	 necessary	 to	 complete	 the	

desired	 task.	 This	 also	 points	 to	 the	 types	 and	 number	 of	 events	 that	 will	 need	 to	 be	

identified	 during	 task	 execution.	

	

54

While	 a	 tool	 process	 signature	 can	 be	 hypothesized,	 this	 must	 be	 checked	

experimentally	 to	 validate	 the	 technique	 and	 to	 compare	 the	 expectations	 against	

the	 actual	 observed	 tool	 process	 signature.	 Transition	 thresholds	 that	 signal	 events	

must	 also	 be	 established	 experimentally	 since	 it	 is	 unknown	 what	 level	 of	 process	

noise	 or	 variation	 between	 task	 instances	 may	 be	 encountered	 a	 priori.	 Especially	

during	 any	 process	 that	 modifies	 the	 task	 object,	 process	 noise	 can	 be	 a	 major	

overriding	 concern.	

	

While	 D&D	 tooling	 is	 the	 focus	 of	 this	 study	 and	 while	 validation	 of	 this	 work	

focused	 on	 contact	 sensing	 and	 force-‐torque	 profiles,	 the	 concept	 of	 monitoring	 tool	

process	 signatures	 on	 sensor	 measurement	 rather	 than	 trying	 to	 precisely	 maintain	

a	 process	 variable	 can	 be	 generalized	 to	 almost	 any	 tool	 process	 that	 interacts	 with	

its	 task	 object	 as	 long	 as	 a	 reliable	 means	 to	 measure	 the	 process	 variable	 can	 be	

established.	 Telerobotic	 use	 of	 power	 tools	 in	 task	 areas	 such	 as	 telesurgery,	 sub-‐sea	

exploration,	 and	 underwater	 oil	 rig	 maintenance	 are	 among	 the	 many	 potential	

expansions	 of	 this	 work.	 As	 long	 as	 an	 attempt	 is	 made	 to	 establish	 a	 constant	 rate	 of	

tool	 process	 progress,	 these	 techniques	 should	 also	 be	 applicable	 to	 non-‐powered	

hand	 tools	 such	 as	 saws,	 sanders,	 planes,	 knives—any	 tool	 application	 where	 there	

is	 a	 process	 and	 not	 simply	 an	 impact	 or	 contact	 that	 occurs	 between	 the	 tool	 and	 its	

task	 object.	 In	 summary,	 this	 approach	 is	 an	 alternate	 way	 of	 viewing	

manipulator/tool	 to	 task	 object	 interaction	 by	 expanding	 “contact”	 into	 a	

progressive	 process.	 The	 tool	 signature	 process	 is	 essentially	 a	 superset	 of	 “contact”.	

	

One	 key	 difficulty	 is	 the	 creation	 of	 local	 sensing	 systems	 capable	 of	 precise	 useful	

measurement	 that	 will	 survive	 the	 tool	 processes.	 Simple	 contact	 such	 as	 grasping	

may	 be	 detected	 and	 controlled	 with	 a	 wide	 range	 of	 existing	 sensors.	 Tool	

processes,	 on	 the	 other	 hand,	 can	 be	 quite	 dynamic	 and	 destructive	 to	 sensing	

systems.	 This	 issue	 poses	 one	 significant	 obstacle	 to	 the	 full	 implementation	 of	 these	

techniques.	 Global	 sensing,	 while	 safe	 from	 the	 tool	 process,	 will	 have	 issues	 with	

55

distance-‐to-‐target-‐based	 error	 bubbles.	 Local	 sensing	 designed	 to	 eliminate	 error	

bubbles	 may	 not	 survive	 even	 a	 single	 execution	 of	 the	 tool	 task	 due	 to	 vibration	 and	

impacts.	 This	 is	 particularly	 true	 of	 imaging	 cameras	 and	 rangefinders.	 Other	

sensors	 such	 as	 contact,	 inductive,	 capacitive,	 or	 electric	 fields	 may	 have	

vibration/impact	 issues	 but	 will	 also	 be	 susceptible	 to	 the	 electrical	 noise	 generated	

by	 the	 power	 tools	 in	 use.	 Tool	 signature	 monitoring	 is	 a	 more	 difficult	 problem	

than	 feedback	 for	 grasping.	

	

	

5.3 Behavior Selection Methods and Impact on Technique Development

	

As previously mentioned, Arkin describes behavior selection to be by the various means

of arbitration, fusion, or sequencing [17]. In BBR, arbitration is the switching that

controls which behavior is executed at what time under what circumstances. One

behavior is selected over another using a wide variety of prioritization schemes. Behavior

fusion is the summation of directive vectors supplied by multiple behaviors to determine

a cumulative path to goal. Sequencing is the preprogrammed selection of an order of

actions to complete a goal. However the context of the use of sequencing is more often in

the sense of sequenced assemblies of behaviors that use arbitration or fusion internally

rather than sequencing of individual behaviors.

An examination of the actual tool processes in combination with a desire to replace the

task instance model approach with a task type approach to the task execution reveals a

problem with the use of the behavior-based robotics concept. Tool processes, especially

those that are the focus of this activity, rely on a fixed sequence of subtasks for execution,

i.e. they are inherently model-based. Behavior-based robotics is a combination of

multiple sensor-based reactive functions and the intelligent behavior selection process

used to determine which behavior(s) is (are) active at any given time. Downgrading the

behavior selection process to an always repeated fixed sequence downgrades the degree

of adherence to the spirit of behavior-based robotics. Although sequencing is an

56

acceptable, if primitive, means of behavior selection,	 it	 may	 be	 a	 more	 correct	

taxonomy	 to	 classify	 the	 technique	 generated	 in	 this	 work	 as	 an	 assembly	 of	 hard	

sequenced	 reactive	 functions	 using	 concepts	 found	 in	 behavior-‐based	 robotics.	 	

	

The	 task	 type	 assembly	 itself	 is	 essentially	 an	 a	 priori	 model	 of	 the	 tool	 process	 that	

is	 executed	 the	 same	 every	 time.	 The	 reactive	 functions	 are	 used	 to	 locate	 the	 task	

object	 in	 space	 to	 anchor	 the	 task	 type	 model	 to	 its	 real	 task	 object	 instance	 and	 to	

control	 progress	 of	 the	 tool	 process	 itself.	 It	 has	 been	 quite	 common	 to	 find	 in	

implementation	 that	 reactive	 control	 augmented	 with	 available	 model-‐based	

information	 and	 planning	 provides	 a	 more	 suitable	 approach	 to	 task	 completion	

commonly	 known	 as	 hybrid	 deliberative/reactive	 control	 [117].	

	

While sequencing has been chosen to execute the tooling functions, a question that

should be asked is if there are places or instances where arbitration or fusion would be

practical for selection of the next action. If so, sequencing could still be used to switch in

and out groups of behaviors rather than individual behaviors.	 Sequencing itself could

even be implemented by arbitration with behavior priorities, but that would be a

contrivance more complicated than a sequence script since it would always execute the

same way every time.

A change in priority (arbitration) during task execution indicates a change in the task at

hand. Most tooling processes are concise and focused to a single task on a local task

object. One possible situation requiring a change in task would be an event such as saw

blade breakage that would render the task impossible to complete. Rather than have the

operator intervene, alternate behaviors could recognize the problem, stop the tool process,

and extract from the task. Behavior fusion has a more likely possibility of future use if

also tied to sequencing of groups of behaviors. One example could include minimization

of twisting moments on a circular saw blade in all three orientation axes while controlling

the forward cutting force as the saw cuts through its task object. This could be

57

implemented by six behaviors with each one controlling one degree of freedom of saw

motion all operating simultaneously to produce a six axis vector for motion of the saw.

5.4 Description of Methodology

	

This approach makes use of the human operator’s ability to teleoperate tools into the

tooling task vicinity, and then adds tool automation (operator assist functions) to

complete the task and returns control back to the operator when the specific tooling

operation has been completed The operator completes gross motion by essentially

pointing the business end of the tool towards the desired location of the task. Automation

operates in a traded control mode to autonomously control contact forces, tool functions,

and to reduce fatigue on the operator by giving them periodic breaks from physical

manipulation. The step-wise process is illustrated in Figure 19 and outlined below. 	

58

	

Figure 19. Smart Tool Behavior Development Methodology Block Diagram.

59

1. Describe the desired task characteristics and related constraints including what is

known and what is not known. Consider expected task variability. Consider the task

difficulty and the reason for the need to automate the task.

	

2. Select an appropriate tool based on task parameters. There may be several tool options

for any given task.

	

3. Break the tooling task down into subtasks identifying motivators and/or events for start

and end points of each subtask. Focus on minimal subtask complexity.

	

4. Choose preliminary sensing to identify events and control subtask processes while

accommodating task, tool, manipulator delivery system, and operator limitations.

	

5. Conduct experiments to identify and analyze the characteristics of the specific subtask

process to determine a suitable means of controlling that process.

	

6. Establish the requirements and characteristics for a set of sequenced functions to

execute the tool task.

	

7. Implement and test the functions, first individually and then as a complete set to verify

functionality. Iterate as necessary to previous steps to improve performance.	

	

First, a specific task is identified along with the limiting factors involved in executing

that task such as access to and clearances around the target object and material

composition and structural characteristics of the target object. Characteristics of the

operation that might make the task easier or harder to execute should also be identified at

this time. Though there are often various options as to what tool may be chosen to

implement a given tool task, task characteristics may point to a best option.

	

60

Tool operations are not random or arbitrary in terms of what happens when; they are

composed of a specific sequence of operations that are subtasks of the overall tool

process. Once the task has been defined and a specific tool has been selected, the tool

task is examined to segment it into subtasks that are as simple as possible. These should

include specific motions needed to approach and retract from the target task and how that

approach should be executed. How first contact between the tool and the target task is

made and what its purpose is in the tooling operation should also be identified at this

point. Standoff from the task object is common and should be defined if that is necessary

for tool operation and whether the distance is critical or convenient to operation.

	

 The core of the task is the actual tooling operation on the target component, such as

cutting a pipe, unbolting a bolt, drilling a specific material, or cutting a section of a tank.

Rates of operation, forces encountered, and position or orientation operational constraints

should be outlined. Questions such as the following must be answered. Is this a position-

based task, a force-based task, a combination of the two, or something else? How is task

completion defined?	

	

For each of the various subtasks, the need for sensing must be established. Sensors must

be selected to determine the required events. Sensor suitability is determined not only by

the ability to measure the appropriate event or process but also by survivability given the

tool characteristics (impacts, vibrations, forces, torques, the presence of fluids or other

process debris) and target task interference (clearances around the task object that

preclude local sensor mounting or that occlude the task target from sensing).

Environmental concerns such as available light levels or chemical or radiological hazards

that may constrain sensor choices must be identified. If a particular subtask function is

not event critical or is impractical to measure, a model-based time/distance parameter

should be investigated to determine suitability and whether its use would assist or hinder

robust task execution.

	

	

61

Sensor selection should also include awareness of the manipulator system’s capabilities

and limitations with regard to sensor-based controls. Can the sensor system be integrated

into the manipulator controller, or does it need to reside outside of the manipulator

controller? For D&D type systems in particular, smart tooling that applies sensors to an

external controller not directly part of the manipulator will be the norm due to cost

constraints on manipulator systems and the specific sensing requirements for a particular

tool and task. This affects the useful task bandwidth of the information that the sensor can

deliver to impact control outcomes.	

	

The next phase of implementation is the collection and analysis of experimental data in

order to design reactive functions that map to the corresponding tool subtasks. It is

necessary to establish this information experimentally because tooling data of this type

does not yet exist in published literature. The motivation for this effort is to determine

how the tool processes work, to identify events that would signal subtask start, stop, and

progress, and to identify any relevant information that should be tracked during execution

of a specific tool process. Required information would include what contact information

can practically be collected as far as locating and identifying a desired target in space and

what the tool process itself looks like to the available sensor suite. This information feeds

function implementation with contact thresholds or tool process characteristic signatures. 	

	

In order to complete these tests, the prototype smart tool must be assembled into a

package containing the tool, selected sensors, and any necessary fixturing to support

manipulator grasping. Trajectories are then programmed as predecessors to the subtask

reactive functions so that representative data may be collected. For example, a timed-

fixed rate trajectory to cut a horizontal pipe will generate a specific force profile as the

pipe is cut. The subtask may then be broken down into measurable segments or events

that can be controlled or identified as points of progress. 	

	

The complexity of the required sensing and associated control will be dependent on the

complexity of the tool process that is being controlled. More complicated tool processes

62

will require more complicated sensors and controls. Initial sensor selection is determined

by an estimation of what needs to be measured. In experimentation and analysis, it may

become apparent that additional or different sensing is required from what was initially

selected. If a tool process cannot be reasonably measured, estimates or alternatives based

on models of the subtask will have to be created.	

	

The end result of these development steps is a set of function requirements needed to

implement a set of sequenced reactive functions to execute the desired task with a given

tool, using selected sensors, and within the constraints of the available manipulator

system and operator skill sets. Reactive functions are then implemented according to

requirements, tested individually, and then combined successively into the overall

collection of behaviors to complete the tool task.	

	

Reactive functions are specifically matched to the subtasks of the task decomposition and

are generally designed to make one simple motion in response to a sensor value or until

some sensor measurement is reached. A motion in a certain direction until contact on a

target object would be one example. Another example would be a downward motion to

cut a horizontal pipe while monitoring forces encountered by the saw blade as it passes

through the pipe to determine progress and final success of the cut. These are specifically

closed loop in nature; there is direct sensor feedback from contact with objects in the tool

task space. 	

	

Open loop actions have value to provide functionality where sensor information is not

available or impractical to acquire (such as when sensors would be regularly damaged by

the tool process) or where the desired action is not critical and there is no hazard to the

open loop motion. An example would be to follow a move to contact behavior with a

predetermined standoff motion based on the kinematics of the manipulator rather than to

use stand off sensors. While interpretation and definition varies somewhat in the

behavior-based community, open loop behaviors, also known as “ballistic” behaviors, are

included in the accepted tool kit of functions. One interpretation considers that they are

63

essentially a timed model-based behavior where the robot executes a pre-programmed

motion for a predetermined amount of time. These can be applied to tool-based

telerobotics in limited circumstances though they are not reactive functions. 	

In summary, this section describes a new methodology for telerobotic tool control using

appropriate selected behavior-based concepts to enhance operation in unstructured

environments. Once the task is identified and the tool is selected, the tool task is broken

down into a series of sequenced tool subtasks that are decomposed to the simplest level

practical. Sensors are then selected to measure the interaction of the subtask with its

target object. Experiments are conducted to collect real world data as to how each subtask

interacts with its target in terms of contact information and tool processes. An analysis of

the experimental data is used to define function characteristics and possibly to modify

tool and sensor implementation. Finally the set of reactive functions is implemented and

tested first individually and then as a progressive sequenced collection to verify the

complete tool task as functional and robust for its given task and operating constraints. It

is believed that this methodology offers a simple, yet comprehensive, way of integrating

tooling operations in more efficient ways to the classes of teleoperators used in

unstructured and uncertain task environments.	

 	

5.5 Implementation Guidelines

 	

The outlined telerobotics concept is functionally illustrated in Figure 20. The operator

teleoperates tool delivery to the task by using the manipulator to maneuver the tool point

of contact oriented towards the task but without actual contact. Depending on the task

there may well be certain approach issues to consider. For example a saw blade must be

positioned such that the blade’s cutting surface is oriented correctly towards and above

the surface that it will be cutting.

	

64

	

Figure 20. Concept Block Diagram.

	

	

Once the gross positioning and pointing have been completed, control is “traded” to the

behaviors by the operator. The collection of functions then execute their task

automatically and return control of the system to a safe mode for the operator or high

level controller to take control and move on to the next location for task execution. A task

instance model is never generated, and the operator determines where to execute the tool

task. 	

The task instance model is replaced by a task type model that is encoded in the sequence

and function of the functions, both reactive and ballistic. Sequencing is managed by

65

calling the functions sequentially in a structured program that is essentially a script.

Functions are designed such that they terminate with a sensor event or control signal if

closed loop or a time limit if open loop. It also becomes easy to edit or add to the script

by inserting additional functions into the sequence. Each function may be tested

individually by using it alone in the script program. The format is then simply as follows

and as illustrated by Figure 21:	

	

task ()	

{	

 subtask();	

 subtask();	

 subtask();	

}	

 	

 	

	

Figure 21. Behavior Selection Sequencing.

	
	
The functions themselves are concise subtasks that do one thing based on a reactive

“sense-act” model with no planning involved during execution. Given a specific sensor

input, the output is predefined and preprogrammed. A function may be a control loop that

reads sensors and provides a scaled output, or it could be a generic move based on time

66

and/or initiated or terminated by sensor input. The functions in a task sequence may have

divergent approaches to achieve their ends; they are not necessarily homogeneous in

implementation approach. 	

	

	

5.6 Managing Human or Robot to Telerobotic Interaction

 	

The base mode for this work is teleoperation of the tool to complete the task with

telerobotic assistance afforded via traded control. The secondary mode of operation is

robotic tool delivery to task with assistance via traded control once the target region is

reached. Except for the details of how the tradeoff occurs, automated task execution is

managed in the same way for both operator and robotics via high-level supervisory

controller.	

 	

In telerobotic assistance, the human operator positions the teleoperated tool according to

best effort, points the tool tip at the target task, and manually triggers the execution of the

telerobotic task. When the task concludes, it automatically passes control back to the

operator in a safe IDLE mode. The operator then takes control manually of teleoperation

to move to the next task. This process happens whether task execution succeeds or fails.

If task execution succeeds, the operator simply moves on to another gross positioning of

a task of the same type. If task execution fails, the operator can reposition the end-

effecter and try again or choose to move to the next task regardless.	

 	

Autonomous robot switching to the local sensor-based task automation (telerobotics for

the human operator) is a simple transition based on completion of the preplanned

trajectory. When the trajectory is done, control is passed to the sequencer without any

operator interaction or direction. When the sequence of tool tasks is completed, control is

passed back to the robotic trajectory generator.	

 	

67

Chapter 6

Functional Implementation

	

6.1 Introduction

	

This chapter discusses concept implementation and elucidates the process with two

realistic D&D tooling tasks—cutting a horizontal pipe with a reciprocating saw and

removing a bolt with a powered socket tool. The assembly of reactive functions is

developed according to the process outlined in the chapter on methodology. Although

this chapter includes experimental testing to establish final function definition, the

following chapter addresses experimental testing of the system of functions for

performance evaluation, validation, and discussion of results.	

	

	

6.2 Cutting a Horizontal Pipe With a Reciprocating Saw

	

6.2.1 Task Definition

	

The first task selected is to cut a horizontal metal process pipe approximately two inches

in diameter, although the technique will actually accommodate a range of pipe sizes

automatically. A representative pipe task is shown in Figure 22. The mockup and

hardware located behind the mockup are somewhat representative of the level of clutter

that may be seen in the real world, except that the task light levels will typically be much

lower with much more shadow and dark background, reducing available image contrast.

An example of an actual remote viewing video image used by an operator to during

dismantlement of process piping via remote manipulator is shown in Figure 23. 	

	

	

	

68

	

Figure 22. Horizontal Pipe Task.

 	

 	

	

Figure 23. Real World Piping Arrays and Viewing Limitations.

(Courtesy of Oak Ridge National Laboratory)

69

Process piping occurs in standard sizes and materials. Piping sizes are based on

commercial standards and include various standardized diameters. The wall thickness is

defined by “schedule” such as schedule 40, and most process piping is either schedule 40

or 80. Standard 2-inch schedule 40 black iron pipe as used in the mockup available for

this work has an outside diameter of 60.3mm and a wall thickness of 5.5mm, yielding an

inside diameter of 49.9mm. An end view of the pipe is shown in Figure 24.	

 	

 	

	

Figure 24. Pipe End Section.

 	

70

6.2.2 Tool Selection and Description

	

Cutting process piping remotely is a difficult task. Small piping may be cut using a

hydraulic shear. Larger piping requires the use of a saw; however saws are problematic

with free hand positional teleoperation. Binding and maintenance of proper force levels

are common issues. Band saws have been used to some extent, but they create problems

when the two sides of the cut pipe capture the blade so that the saw cannot be removed

from the task. Reciprocating saws have generally not been successful in the field but

would be a serious asset to remote dismantlement and are a candidate for remote

execution if suitable telerobotic controls can be implemented to assist the operator. The

reciprocating saw is selected for this task in an attempt to provide new capability for

remote systems that currently have difficulty deploying that particular saw type.	

 	

The particular hand held reciprocating saw to be used for this study is shown in Figure

25. The saw is designed to be held by both hands when used by a human operator. A 120

volts (V) alternating current (AC) 1050W universal motor is sandwiched between a rear

grip and a front section covered with rubber to facilitate firm gripping of the tool by

hand. Universal motors slow substantially under load and will stall if sufficient force is

applied to them. As the saw slows it may excite the manipulator causing it to oscillate

uncontrollably. Force and/or cutting progression through the work piece must be

controlled such that the saw blade oscillating frequency stays high enough to be

significantly beyond the bandwidth of the manipulator.	

 	

 	

	

71

	

Figure 25. Hand Held Reciprocating Saw.

 	
 	

The length of the tool is 451mm from the tool foot (work piece contact point) to the end

of the handle or 572mm from the tip of the blade to the base of the handle with the blade

at full extension. The tool is about 76mm wide at its widest part. The mass of the tool is

3360g. The center of gravity of the tool is 191mm back from the tool foot. The motor

module (the best location for grasp fixturing due to shape) is located from 191mm inches

to 302mm from the tool foot. 	

The blade is 152.4mm (6 inches) long by 19mm (3/4 inches) wide by about 1.6mm thick

with 12 teeth per inch. Blade oscillation travel is 25.4mm (1 inch) at 2280 oscillations per

minute while under no load (38Hz for blade motion). This translates to 912 tooth cuts per

second on the work piece. The material to be cut determines the blade material and

number and configuration of the teeth per unit of blade length. Saw specifications are

summarized in Table 3.	

	

72

Table 3. Reciprocating Saw Specifications Summary.

Characteristic	 Specification	

 	 	

Tool body length	 451mm	

Tool length w/ blade	 572mm	

Tool width	 76mm	

Blade dimensions	 152.4mm long by 19mm high by 1.6mm thick	
(6 inches by .75 inch by 1/16 inch, 12 teeth/inch)	

 	 	

Mass	 3560g	

CG	 191mm back from tool foot	

Location for fixturing	 191mm to 302mm back from tool foot	

 	 	

Power	 120VAC, 1050W, universal motor	

No load blade speed	 2280 cycles/minute or 38 Hz, 912 teeth/second	

 	

 	

The reciprocating saw smart tool is shown in Figures 26 and 27 assembled with grasping

block and force/torque sensor. The force/torque sensor measures for load on the saw foot

for contact and load on the blade for cutting progress. Sensor signals and power are

routed back to the control computer through a bundled cable. As completed, the mass of

the saw smart tool with all fixturing is 14.38kg.	

	

73

	

Figure 26. Reciprocating Saw Smart Tool.

	

Figure 27. Reciprocating Saw Mounted in Gripper.

 	

74

6.2.3 Subtask Definition

Given selection of the task and the tool, the subtasks necessary to complete the overall

task must be defined by examining the process. These then become the functions or

subcomponents of the functions depending on best implementation method. A reasonable

assumption is made that an operator would be able to deliver the tool to reasonably close

proximity to the task within an error bubble of a few centimeters and can point the tool at

the task with the saw blade generally above the pipe to be cut. The goal is to have

automation manage contact and cutting progress.	

	

All	 actions	 are	 triggered	 by	 the	 sequencer	 as	 a	 starting	 event.	 Available	 sensor	

events	 are	 identified	 for	 each	 task/subtask.	

	

The first task is to find the pipe.

 Approach to contact roughly horizontally. (event = contact)	

 Back off to create standoff to prevent binding. (event = no contact)	

 Approach to contact to find the pipe roughly vertically. (event = contact)	

 Back off to permit starting saw blade without binding. (event = no contact)	

 	

The next task is to level the saw so that the cut is as square as practical. (event = level)

(It was later determined that practicality dictated that the saw be leveled at the start of the

process.)	

 	

The next task is to cut the pipe.	

 Start the saw blade free of the pipe.	

 Move to contact the pipe and note when contact is made. (event = contact)	

 Cut through the pipe. (monitor or control forces/torques)

Note when the cut is completed. (event = no contact)	

 Turn off the saw blade.	

75

The final task is to clear the pipe to return control back to the operator.	

 Move clear of the pipe.	

 Return control to the operator.

	

6.2.4 Sensor Selection

Next a sensor or sensors must be selected that can provide sufficient input for concept

validation and subtask completion. 	

 	

Though it is subject to placement accuracy and precision of the manipulator, Cartesian

“global positioning” of the tool in its task space is available from kinematic equations.

Behavior-based mobile platforms do not normally have access to global positioning

information; however, it is available here. Due to the kinematics of the Schilling

manipulator, the wrist roll joint position resolver can be used as a saw level indicator.	

 	

The business end of the tool moves and therefore is not amenable to direct placement of

local sensing at the point of contact as would be possible with finger contact sensors for

grasping. A six degree-of-freedom (DOF) force-torque sensor is available as mounted in

the generic tool fixture and is used for measurement of contact forces and moments.

While other sensors may be possible, sensor availability and robustness against damage

due to the tooling process drove sensor selection to the force-torque sensor as an example

to validate the concept.

Referring to Figure 28, contact in the forward direction of the tool is afforded by force

pushback in the -Fx direction and torque in the - Ry direction (rotation about y since the

tool is offset from the sensor face plate) of the force/torque sensor. Experimental testing

showed that the -Fx axis was sufficient to indicate contact. In addition force on the saw

blade is indicated by sensor signals in the +Ry direction of the force/torque sensor.	

76

	

	

Figure 28. Smart Tool Force-Torque Sensor Axes.

	

	

6.2.5 Saw Experimentation, Function Definition, and Implementation

	

Function prototypes are then generated that use preliminary thresholds to determine

reasonable bounds or collect data for further development. Experiments are then

conducted to establish the parameters for the function prototypes as needed.	

	

The first set of subtasks locates the pipe in space after the operator or higher level model-

based robotic system has managed gross position and pointing at the task.

 	

The prototype reactive function bApproachH is designed such that it moves toward the

pipe in Cartesian space according to the orientation pose of the end effecter (x-y-z) as

established by the operator. The function looks for contact against the foot of the saw via

77

the force-torque sensor. Since the operator should have positioned the tool in reasonably

close proximity, the function should time out and generate an error message if it goes

more than a certain distance without making contact since this condition should never

occur. A potential positioning error bubble of greater than 25mm should be expected.

Contact should occur in all instances on the foot of the saw. A reasonable contact

threshold should be established.	

 	

For this function the manipulator is divided into two planar manipulators to recover

decoupled end-effecter orientation—the global vertical x-z plane and the global

horizontal x-y plane. End-effecter yaw is a composite of shoulder azimuth (joint0) and

wrist yaw (joint4) in the x-y plane. Wrist pitch is a composite of shoulder pitch (joint1),

elbow pitch (joint2), and wrist pitch (joint3) in the x-z plane. The workspace axes are

defined such that +x is straight ahead from the robot towards the process piping mockup,

+y is to the left, and +z is up.	

 	

The increments in the Cartesian motion axes are modified with the composite potential

field created by the manipulator joint angles per the following equations: 	

 	

 (6.1)	

 (6.2)	

 (6.3)	

 	

where:	

 	

j = loop increment fixed to the time out limit,	

inc = fixed delta for each Cartesian axis to move,	

and the joint values are as previously described. Note that joint5, wrist roll, and joint6,

gripper, are not part of this function.	

 	

78

The 0.174 radians in equation 6.3 is a cumulative offset to position resolver errors that

was identified experimentally by setting the pitch joints to zero and measuring the actual

angle of each link with a digital level and the final end-effecter orientation. While this

error may be partially due to compliance in the arm joint actuators, the joint resolvers are

not installed with great accuracy as the manipulator used in this work is designed for

joint-by-joint level teleoperation where such calibration is not of concern. Joint zero

reference positions were also checked with the manipulator holding the tool at full

extension; the additional error was only 0.1°.	

 	

Approach reads the force/torque sensor to look for contact based on a threshold value and

will terminate on either contact or after a time limit is reached. While all axes are read,

the dominant axis is the x-axis of the force/torque sensor that aligns with the longitudinal

axis of the tool where contact is made. On completion control is passed to the next

function in the sequence.	

 	

Once contact is made the saw should back off from the pipe to clear contact to prevent

binding of the saw foot on the pipe and to permit the force-torque sensor to be used to

find the pipe vertically. Contact should be minimized, and a reasonable distance should

be defined. The prototype function is called bBackH.	

 	

The prototype function bApproachV is designed such that, given that the tool is already

aligned and in close enough proximity to the pipe so that the blade will make contact, a

downward vertical motion (-z) is used to locate the pipe vertically using the force-torque

sensor. Force cannot be excessive, or the blade will be damaged. A reasonable contact

threshold should be established. bApproachV is a variant of bApproachH.	

 	

The saw blade will bind if it is started while in contact with the pipe with any appreciable

force. Therefore, a standoff should be created to eliminate contact with the pipe so that

the cutting operation may begin. Contact should be minimized, and a reasonable distance

should be defined but is not critical. This functional is labeled bBackV.	

79

Before cutting, the saw should be made as level as practical to provide for a

perpendicular cut on a horizontal pipe. Given the kinematics of the manipulator, the wrist

roll joint is accurately used as the angle sensor for this task. bWristR levels the wrist roll

joint.	

 	

The next major task set is to cut the pipe. This requires turning on the saw, monitoring

the cutting process as the saw moves in the Cartesian –z direction, and turning off the

saw when done. The function is labeled bCutS and the details of the cutting process are

established by examining forces and torques during cutting.	

 	

The final major task is to clear the pipe cut task so that control may be returned to the

operator or higher level system. This requires a motion roughly the opposite of the

original horizontal approach motion bApproachH. There is no significant need for

sensing since the saw should return roughly to the starting point at the beginning of the

automated telerobotic task, and it is known to be clear since that is where the operator

initially positioned the tool. The prototype function is labeled bRetractS.	

 	

The equations of motion for bRetractS are as follows:	

 	

 (6.4)	

 (6.5)	

 (6.6)	

	

6.2.6 Testing to Establish Saw Thresholds and Control Approaches.

Table	 4	 summarizes	 the	 results	 of	 developmental	 testing	 to	 determine	 thresholds	

for	 the	 various	 functions.	 Relevant	 implementation	 notes	 follow	 the	 table.	

80

Table 4. Reciprocating Saw Event Tabulation.

Function Name	 Action	 Event	 Variable(s)	 Threshold	
 	 	 	 	 	

bWristR	 Start via
sequencer	

Function call	 N/A	 N/A	

bWristR	 Level saw
blade	

Terminate at
joint value	

Wrist roll
position	

= -1.604185	

 	 	 	 	 	
bApproachH	 Start via

sequencer	
Function call	 N/A	 N/A	

bApproachH	 Move to pipe
horizontally	

Terminate on
threshold	

Force-torque
sensor fx-axis	

> 30N	

 	 	 	 	 	
bBackH	 Start via

sequencer	
Function call	 N/A	 N/A	

bBackH	 Back off
horizontally	

Terminate on
force + coast	

Force-torque
sensor fx-axis	

> 20N	
 	

 	 	 	 	 	
bApproachV	 Start via

sequencer	
Function call	 N/A	 N/A	

bApproachV	 Move to pipe
vertically	

Terminate on
threshold	

Force-torque
sensor ry-axis	

> .5N-m	

 	 	 	 	 	
bBackV	 Start via

sequencer	
Function call	 N/A	 N/A	

bBackV	 Back off
horizontally	

Terminate on
torque + coast	

Force-torque
sensor ry-axis	

< 0.0	
 	

 	 	 	 	 	
bCut128S	 Start via

sequencer	
Function call	 N/A	 N/A	

bCut128S	 Motion to cut
pipe	

Closed loop	 Force-torque
sensor ry-axis	

10N-m, P+F	
 	

bCut128S	 Log contact	 Store contact	 Force-torque
sensor abs(ry)	

> 1N-m	
 	

bCut128S	 Log rise of first
peak	

Store trigger &
set variables	

Force-torque
sensor abs(ry)	

> 10N-m	
 	

bCut128S	 Stop cutting
when done	

Terminate on
torque + coast	

Force-torque
sensor abs(ry)	

< 1N-m	
 	

 	 	 	 	 	
bRetractS	 Start via

sequencer	
Function call	 N/A	 N/A	

bRetractS	 Extract saw	 Count limit	 Time via counts	 Time = 8s	

81

bWristR	

	

The level position was measured experimentally under joint level control with the wrist

in a horizontal position establishing a target value for the function action of -1.604185

radians. This is different from the expected value of -1.570796 radians. The difference is

due to vendor placement tolerances of the position sensor and reinforces the need to

validate sensor and system performance experimentally. bWristR uses a calculated

quintic trajectory equation starting from the initial arbitrary teleoperated position to the

desired indicated “level” position using the manipulator joint controller to close the loop

on position.	

 	

 	

bApproachH (find the pipe horizontally in space)	

 	

Force, torques, and manipulator Cartesian positions are collected in a data file that also

records start/terminate times for the function. A typical plot of contact forces and torques

is shown in Figure 29. As previously mentioned, the most practical axes for event

monitoring would be the Fx force axis or the Ry torque axis. Since Fx indicates the larger

value that would be less subject to noise, it is selected for the variable to use for the

threshold.	

 	

Threshold value determination is somewhat subjective. In this case a firm contact to the

pipe was desired to avoid contact noise and uncertainty. After multiple trials, 30N was

selected such that as soon as the magnitude of Fx is greater than 30N, the function

terminates on the next loop and passes control on to the next function.	

 	

82

	

Figure 29. Sample bApproachH Plot of Forces and Torques.

83

bBackH	

 	

Once contact is established, the desire is to move back along the approach vector away

from the pipe to a noncontact standoff distance so that the pipe may be located vertically

in the task space without interference or distortion from existing contact. Standoff also

facilitates cutting by removing a potential for the foot of the saw to bind on the pipe

during the cutting process and corrupting force-torque sensor values. The equations of

motion are the negative of the approach equations:	

 	

 (6.7)	

 (6.8)	

 (6.9)	

 	

The goal is to break contact and move to an approximate standoff clear of the pipe. This

is accomplished by monitoring the Fx force-torque axis to a threshold value. However,

the force-torque sensor is initialized while in contact with the pipe, giving the sensor a

starting preload (offset). To achieve an approximate standoff from the pipe, motion is

given a momentum “coast” such that it continues to move a small distance after reaching

the threshold. Since it was found that the final Fx value could vary substantially between

approximately 25N to more than 60N, 20N was selected as the threshold value (Fx > 20).

On threshold trigger, the simulated momentum coast provides for an additional free space

standoff of less than 13mm, depending on how far the force continues above the 20N

threshold. Actual distance is not significant; only that contact is cleared. One data set for

bBackH is shown in Figure 30. There is significant distortion of the forces and torques as

the manipulator moves to clear contact.	

84

	

Figure 30. Sample bBackH Plot of Forces and Torques.

85

bApproachV	

 	

After bApproachH has located the pipe horizontally, bApproachV locates the pipe

vertically. Given the amount of standoff provided by bApproachH, the saw blade is

guaranteed to act as a finger to contact the pipe when the tool is moved down in the

manipulator base frame z-axis. The behavior terminates upon contact threshold. From

multiple tests, it was determined that the Ry force-torque sensor axis was most

appropriate and that a threshold of .5N-m (Ry > .5) would succeed in all cases. Force-

torque data for one instance of bApproachV is shown in Figure 31. 	

 	

Since a low threshold value was used, the loop increment motion rate was decreased to

0.1mm. The equation of motion for the single Cartesian axis move is simply:	

 	

 (6.10)	

	

bBackV	

 	

bBackV moves back along the vertical approach vector away from the pipe to a non-

contact standoff distance so that the saw blade will not bind on startup. Since contact was

established by Ry in bApproachV, Ry is used as the control in bBackV. As in bBackH,

the force-torque sensor is initialized with a contact preload that must be reflected in the

threshold value. Also as in bBackH, a momentum coast is used after the threshold has

been reached to create a standoff from the pipe of less than 4mm. Inspection of multiple

runs revealed that Ry < 0.0 would reliably terminate the behavior. Sample bBackV data is

shown in Figure 32.	

86

	

Figure 31. Sample bApproachV Plot of Forces and Torques.

87

	

Figure 32. Sample bBackV Plot of Forces and Torques.

88

There is significant distortion in all axes of force and torque as the manipulator moves

vertically away from the pipe. This is due to compliance in the manipulator elbow joint

aggravated by the weight of the tool package. However, the value of Ry settles to the

negative value of the initial Ry axis preload, permitting the aforementioned Ry < 0.0

threshold.	

 	

The motion increment for bBackV is the same as for bApproachV and the single axis

equation of motion is:	

 	

 (6.11)	

 	

In summary, bBackV executes a Cartesian move in the manipulator base frame +z

direction. An event generated when Ry < 0.0 terminates the function after a momentum

coast on the order of 4mm.	

	

bCut128S	

 	

bCut128S is the core reactive function that actually cuts the pipe. The prototype of this

function used a time-based position trajectory to experimentally define a tool process

signature of the cutting process based on cutting forces. It collects force-torque data at

128 Hz to ensure that sampling occurs at greater than twice the saw reciprocating

frequency. The equation of motion for testing purposes is as follows:	

 	

 (6.12)	

 	

The forces and torques from a sample time/position-based cut are shown in Figure 33. It

is immediately obvious that the sensor signals are unusable as is for control or

monitoring. Since the primary cutting value should be offered by the Ry axis of the force-

89

torque sensor, a filter is applied to that axis according to the following equations in an

attempt to recover useful data:

	

 (6.13)	

 (6.14)	

 	

Two examples of resulting data are shown in Figures 34 and 35. Although the

magnitudes can vary widely and there is significant variation in the details of the

waveform, there is a distinct signature to the pipe cutting process that can be used to

determine progress through the pipe and to determine when the cut is done. This

information is used to regulate the bCut128S reactive function.	

 	

bCut128S uses filtered measured Ry axis force-torque sensor readings (ryFilt) to control

motion in the manipulator’s base frame z-axis to cut the pipe. The selected position +

force (P + F) controller is bounded such that the rate of z motion varies from

approximately 6mm/second – 19mm/second centered about a 10N-m controller set point.

The P + F control is not designed to tightly control the force of the saw blade on the pipe

since that would mask the tool process signature and since it is not practical given the

control architecture bandwidth. Rather, it is designed to protect the saw blade and to

provide faster motion when moving in free space in order to shorten the task. The lower

bound is maintained to avoid damage to the saw blade due to excessive force; the upper

bound provides higher velocity motion in free space and prevents premature trigger of

terminating thresholds during contact. 	

90

	

Figure 33. Unfiltered Cut Forces and Torques.

91

	

Figure 34. Example 1 Filtered Ry.

 	

 	

	

Figure 35. Example 2 Filtered Ry.

 	

 	

92

Along with the primary cutting action of the function, multiple events are used to monitor

and terminate the process. When the magnitude of the absolute value of the Ry-axis of

the force-torque sensor (ryFiltAbs) reaches 1N-m, this is logged as first contact with the

pipe and is stored for data analysis. This is a data analysis event and not a control event.

ryFiltAbs is used to ensure that any spurious negative values, which are rare but did

occasionally occur in testing, would not excessively lower the value of the filtered signal.	

	 	

When the value of ryFiltAbs reaches 10N-m, the pipe cut signature is rising to its first

force peak, signaling the major portion of the cut. If ryFiltAbs drops below 10N-m after

this event, a simulated momentum/coast of 1 second is initiated to carry through any

oscillations generating low values of the controlled variable that may occur during cutting

and while the P+F controller is accelerating to maximum velocity to increase the cutting

force. Whenever ryFiltAbs rises above 10N-m, the momentum variable is set back to

maximum.	

	 	

When the value of ryFiltAbs drops below 1N-m and when the 1 second momentum/coast

has expired to verify that the cut actually is done and that the low value is not due to

oscillation during cutting, the behavior terminates and logs end time.	

	

bRetractS	

 	

The motion executed by bRetractS is an incremental Cartesian motion in the manipulator

base frame x, y, and z-axes in the negative direction of the approach vector established by

the end-effecter pose. Since the saw blade has vertically cleared the pipe as part of the

cutting operation, no z-axis motion is necessary.	 bRetractS is specifically a ballistic

function, meaning that it has no local task space sensor feedback. It executes a quintic

trajectory at a specific rate for a fixed time and then terminates by returning control to the

operator.	

93

6.3 Removing a Bolt With a Powered Socket Tool

	

6.3.1 Task Definition

The second task selected is to remove a bolt from a process assembly. The key concern

and motivation for automating this task is to limit the forces applied so that the tool,

manipulator, and task components are not damaged. The mockup available for this

dissertation, shown in Figure 36, is based on remote maintenance guidelines and uses

captured cone head bolts that have a 30° taper on extended heads. The bolt on the process

mockup is 23.8mm (standard 15/16-inch) in size; the tapers on the bolt head and the

socket permit a misalignment of about 12.7mm inch.

	

The cone head bolt has a capture mechanism such that the bolt is loosely contained when

removed; it can drop about 10° when the unbolted bolt is extracted to its maximum travel

of 50.8mm (2 inches), but it will not fall out. The bolt must be extracted at least 15.9mm

(5/8-inch) to be considered loosened.	

 	

For the process mockup, the bolts are on a 101.6mm (4-inch) diameter bolt circle with

three bolts separated by 120°. A 31.7mm (1¼-inch) outside diameter stainless steel pipe

comes out from the flange perpendicularly and turns right 90°, coming within 12.7mm

(1/2-inch) of two of the three flange bolts (see previous Figure 18), restricting access to

these bolts and occluding view of the bolts, depending on the ability of the manipulator to

be positioned for disassembly. 	

94

	

Figure 36. Disassembly Mockup.

	

6.3.2 Tool Selection and Description

Tools for this task may involve electric or pneumatic impact wrenches, motorized socket

tools based on drills, and even hand tools though remote hand tool use is fatiguing and

not time efficient. Given that the purpose of this work is to demonstrate concept validity

for smart tooling, a motorized socket tool with an appropriately sized socket is selected.

For this work, a standard 3/8-inch electric drill fitted with a standard 1/2-inch socket

drive and modified to provide remote actuation is shown in Figure 37 prior to fixturing

for remote use. Specifications for the socket tool are collected into Table 5.	

 	
The socket smart tool is shown in Figures 38 and 39, assembled with grasping block and

force/torque sensor. The force/torque sensor measures contact loads and operating

torques. Sensor signals and power are also routed back to the control computer through a

95

bundled cable. Much of the cabling and interface is common with the saw tool. As

completed, the mass of the smart socket tool is 11.48kg.

While the saw uses a simple on/off relay controlled by the smart tool electronics interface

at the computer, the socket tool requires additional control at the tool itself to change

direction. This was the preferred solution over bringing a much larger bundle of wires

back to the electronics interface. (Cabling handling is always a significant and

problematic issue with remote tooling.) At the design phase it was not known that

changing direction would not be a significant issue for capturing the socket, but the

capability facilitated tightening as well as loosening bolts.	

 	
Contact in the forward direction of the tool is afforded by force in the -Fx direction and

torque in the - Ry direction (negative moment about the Cartesian y-axis since the tool is

offset from the sensor face plate) of the force/torque sensor. Experimental testing showed

that force in the -Fx direction was sufficient to indicate contact. 	

	

	

	

Figure 37. Electric Drill for Socket Tool.

96

	

Table 5. Socket Tool (Drill) Specifications Summary.

Characteristic	 Specification	

 	 	

Tool body length	 222mm	

Tool length w/ socket	 323mm	

Tool width	 67mm	

Socket dimensions
including drive	

15/16-inch: 30mm outside diameter by 67mm long	
3/4-inch: 29mm outside diameter by 67mm long	

 	 	

Mass	 1444g	

CG	 121mm back from tip of drill chuck	

Location for fixturing	 89mm to 191mm back from tip of drill chuck	

 	 	

Power	 120VAC, 264W, universal motor, 7.5n-m	

No load speed	 1200 rpm maximum	

 	
 	

 	

 	

97

	

Figure 38. Smart Socket Tool.

 	

	

Figure 39. Smart Socket Tool Mounted in Gripper.

98

6.3.3 Subtask Definition

As before with the reciprocating saw tool, an assumption is made that the operator can

deliver the tool tip to within reasonable proximity of the target bolt head while also

pointing the tool tip towards the intended target. The task problem (motivation for

automation) is to limit forces on the tool to prevent damage.	

 	

As with the reciprocating saw tool, the subtasks with notable events are defined and

outlined for experimental development. 	

 	

The first task is to find the bolt head in space.	

 Approach to contact according to the pose of the end effecter. (event = contact)	

	

The next task is to undo the bolt.	

 Turn on the motor.	

 Monitor motion to determine if the bolt is adequately undone. (event = relative

motion)	

 Turn off the motor.	

 	

The final task is to clear the task to return control back to the operator.	

 Move clear of the bolt/process assembly.	

 Return control to the operator.	

	

6.3.4 Sensor Selection

Available sensing will be considered to be the same as for the reciprocating saw.

Manipulator joint sensing provides a type of Cartesian global position system. The 6DOF

force-torque sensor provides contact and force management information.	

99

6.3.5 Socket Experimentation, Function Definition, and Implementation

The prototypes functions requiring experimental development are listed below.	

 	

The first task is to locate the bolt head in space. This can be done by moving forward

along a vector defined by the pose of the end effecter. This would involve motion in all

Cartesian position axes (x-y-z). Motion should stop upon reaching a certain threshold

preload of the socket on the bolt head. The function should time out and generate an error

message if it goes more than a certain distance without making contact. If acquisition

fails, the operator should be given another chance to reposition for a retry. The prototype

function is a derivative of the saw approach function and is labeled bApproachB. The

equations of motion are the same as for the saw function bApproachH. Contact threshold

is the only notable difference between the two functions.	

	

The next task is actual removal of the bolt. To do this the motor must be turned on.

Forces and torques are monitored to determine task progress. Once complete, the motor is

turned off. The prototype function is labeled as bUnboltB. Time-based operation is used

to look for a characteristic signature.

	

The final major task is to clear the socket tool task so that control may be returned to the

operator or higher level system. The best approach is to return roughly to the starting

position of the entire task along the lines of the original approach vector. The exception is

that a captured bolt will extend the required motion to clear the task. The prototype

function is labeled bRetractB and is a minor variation on bRetractS.

Approach and retract functions run at 32Hz; the unbolt function operates at 128Hz.	

	

	

100

6.3.6 Testing to Establish Socket Thresholds and Control Approaches.

Table	 6	 summarizes	 the	 results	 of	 developmental	 testing	 to	 determine	 thresholds	

for	 the	 various	 functions.	 Relevant	 implementation	 notes	 follow	 the	 table	 in	 the	

same	 manner	 as	 for	 the	 saw.	

	

	

Table 6. Socket Tool Event Tabulation.

Function Name	 Action	 Event	 Variable(s)	 Threshold	
 	 	 	 	 	

bApproachB	 Start via
sequencer	

Function call	 N/A	 N/A	

bApproachB	 Move to bolt
horizontally	

Terminate on
threshold	

Force-torque
sensor Fx-axis	

< - 40N	

 	 	 	 	 	
bUnboltB	 Start via

sequencer	
Function call	 N/A	 N/A	

bUnboltB	 “Push back” on
bolt	

Terminate
timed 2 second
motion bursts
on threshold	

fabs(fxstop –
fxstart)
(both start and
stop come from
fxFilt)	

>100N	
 	

 	 	 	 	 	
bRetractB	 Start via

sequencer	
Function call	 N/A	 N/A	

bRetractB	 Extract socket	 Count limit	 Time via counts	 Time = 8s	

101

bApproachB (find the bolt head horizontally in space given approximate alignment)	

 	

Force, torques, and manipulator Cartesian positions are collected in a data file that also

records start/terminate times for the function. As previously mentioned for saw data

collection, the most practical axes for event monitoring would be the x force axis (Fx) or

the y torque axis (Ry). Since Fx indicates the larger value that would be less subject to

noise, it is selected for the variable to use for the threshold. See Figure 42 in section 7.4

for a plot of bApproachB.	

	

Similar to the reciprocating saw threshold, value determination is somewhat subjective. A

firm contact to the bolt was desired to avoid contact noise and uncertainty and to ensure

that the unbolting operation would successful due to a firmly seated socket; however,

excessive force that might cause binding during bolt removal needed to be avoided. After

multiple trials, - 40N was selected such that as soon as the magnitude of Fx is less than

- 40N, the function terminates on the next loop and passes control on to the next function.	

	

bUnboltB 	

 	

Force, torques, and manipulator Cartesian positions are collected in a data file that also

records start/terminate times for the function. For unbolting, the most practical axes for

event monitoring would be the x force axis (Fx) or the y torque axis (Ry), since the

unbolting operation creates a “push back” force as it is backed out. Fx is chosen.	

 	

Threshold value determination required heavy filtering of Fx as with the saw tool. The

same filter was used as expressed in equations 6.13 and 6.14. The terminating threshold

was set to 1000N so that the loop would run on till manually ended. Start/stop forces

were accommodated by the equation:

fabs(fxstop – fxstart) > 100 (6.15)	

102

where:

fabs is the absolute value of the function,

fxstop is the final filtered pushback force at the end of the tool burst, and

fxstart is the beginning filtered pushback force before the start of the tool burst.

After multiple trials, 100N was selected such that as soon as the magnitude of equation

6.14 is greater than 100N, the function terminates and passes control on to the next

function. Actually any significant push back of the bolt as it was unscrewed was a good

measure of success for the task. Ranges from 20N to 120N proved successful in

indicating success. See Figure 43 in section 7.4 for a plot of bUnboltB unfiltered and

filtered values.

bRetractB	

 	

Mentioning the last function first, motion executed by bRetractB is an incremental

Cartesian motion in the manipulator base frame x, y, and z-axes in the negative direction

of the approach vector established by the end-effecter pose. bRetractB is specifically a

ballistic function, meaning that it has no local task space sensor feedback. It executes a

quintic trajectory at a specific rate for a fixed time and then terminates by returning

control to the operator. In testing it was found that retracting in all three Cartesian

position axes often caused the socket to snag on the unbolted but captured bolt. This was

addressed by eliminating the z axis motion in the retract function.	

	

	

6.4 A Note on Expansion to Other Tools

	

Sensing requirement and reactive function development complexity is directly

proportional to the complexity of the tool process. More complex tooling operations

require more sensing and control. Note that the socket tool only required three functions

103

to meet its automation needs; however, the reciprocating saw required seven functions to

meet its automation needs. Note also that many of these functions assemble repeatedly in

minor variations, indicating that they may serve as primitives with which to build new

tool controllers.

An impact wrench would use the same sequence of functions as the socket driver;

however, it should be expected that the process “noise” thresholds and possibly the push

back profile would be different. Drilling would use the approach and retract of the socket

tool in conjunction with a process cut similar to the reciprocating saw.

A milling head cutter would be similar to a reciprocating saw in that it would require a

horizontal and vertical approach. It would be different in that the cut motion is in a

different plane and that cutting a uniform metal plate would not have the same signature

that a cutting a hollow pipe would have, but the cut process could be managed in the

same manner. Retract would most likely best be completed by raising the milling head

out of the cut and then back as with the saw. Most of the functions in the sequence could

be identical to those of the reciprocating saw with different threshold values. A band saw

would use a simplified version of the reciprocating saw sequence and would not have the

same difficulties with process noise.

The circular saw may be the most complicated D&D-type tool to control due to its need

to prevent binding of the rigid blade in multiple axes while the cut progresses through the

task object, as described in section 5.3. This tool sequencer would have all of the

functions of the reciprocating saw but would also have to use command fusion to

maintain orientation and position of the five axes that were not aligned with the direction

of the cut in the task object.

While D&D power tooling has been the focus of this effort, this collection of function

primitives could be expanded and applied to any power tooling and even cutting and

104

friction-based hand tools. It has merit wherever a process signature is created between the

tool and its task object.	

105

 Chapter 7

Experimental Results

7.1 Discussion of Overall Telerobotic Reciprocating Saw Results

	

Data collection for validation of the telerobotic reciprocating saw task was accomplished

by running 15 instances of the task on a horizontal pipe. Tool placement to the task target

area was via a sequence of robotic moves to a targeted end point in task space.

Positioning repeatability of the manipulator delivery system is known to be on the order

of ± 6mm in the Cartesian x, y, and z axes. Pipe placement in the process rack was

intentionally not precisely aligned for each incremental test with variations in vertical

(Cartesian z) and depth/distance away (Cartesian x) task axes on the order of ± 6mm.

There was minimal attempt to fight the inherent variability in the task mockup or the tool

placement as that was an opportunity to test the ability of telerobotic task execution to

adapt to manipulator and task placement uncertainty.	

 	

For the 15 trials, successful completion of the cutting task was 100% with no faults.

Experimental data is presented in Table 6 for the 15 trials. The functions are presented in

each column with the maximum number of loops possible and the loop rate noted. None

of the functions hit their maximum value indicating that all reactive functions terminated

on sensor events and did not time out. The function bWristR is not included in the table

since it executes a fixed 2-second closed loop trajectory to level the saw so that it is

perpendicular to the horizontal pipe. (The wrist roll position sensor is used as the level

sensor.) The function bRetractS is not included in the table since it is a time-limited (8s)

ballistic function designed to extract the tool from the task area along a vector established

by the end-effector pose so that the operator will not be concerned about trapping the saw

blade in nearby piping or structures. However the fixed execution times of these

functions are figured into the final telerobotic execution times noted in the last column.

Total task execution times are computed from time stamps collected from the high-level

106

controller system clock initiating at the start of bWristR and terminating with the final

time stamp on bRetractS.

	

For each function column, the highest count (longest execution time in green) and lowest

count (shortest execution time in red) are noted along with an average function execution

time at the bottom of the column. “Times” are noted in counts for most entries except for

minimum, maximum, and average where execution times in seconds appear in

parentheses.	

 	

The saw blade was inspected periodically looking for worn or broken teeth or any other

damage to the blade. It was changed on test 11 as a precaution since several teeth had

broken or acquired hardened debris. Prior experimentation had shown that the teeth

would eventually wear to the point that cutting forces would increase significantly.	

 	

Table 7 provides additional detail to the internal workings of the bCut128S function.

Except for minimum, maximum, and average execution times, the data is presented in

counts from start with 128 counts per second in the control loop. “First Contact” indicates

when the force/torque sensor reaches contact from the starting stand off of the saw blade

from the pipe. “Cut Threshold Reached” indicates when the control point of 10N is

reached on the cutting forces. “Cut Completed” is measured at the completion of the

threshold rule conditions at the close of the bCut128S fucntion and includes the time

required for move to contact. 	

 	

Note that First Contact and Cut Threshold Reached are paired; time to contact links to

time to threshold reached. However, these two do not drive total cut completion time

since the highest and lowest actual cut completion times do not follow from the highest

and lowest values of the contact and threshold values. The last column “Total Actual Cut

Time” is the completion time minus the time to contact.	

107

Table 7. Reciprocating Saw Data.

 	 ApproachH	
 	

BackH	 ApproachV	 BackV	 Cut128S	 Total	
Time	

Max	
Loop	
Count	

320	 64	 640	 320	 12000	 	

Loop
Rate	

32 Hz	 32 Hz	 32 Hz	 32 Hz	 128 Hz	 	

Test #	 	 	 	 	 	 	
1	 266	 35	 323	 132

(4.13s)	
7411	 90s	

2	 245	 35	 294	 124	 7189
(56.16s)	

89s	

3	 234 (7.31s)	 36	 244 (7.63s)	 130	 7376	 87s	
4	 264	 35	 368	 119	 7244	 90s	
5	 261	 35	 267	 112	 7588	 90s	
6	 261	 35	 289	 112	 7504	 90s	
7	 261	 35	 297	 107	 7539	 88s	
8	 260	 35	 288	 104	 7762	 93s	
9	 264	 35	 361	 107	 7397	 93s	

10	 249	 34 (1.06s)	 244	 100	 7793	 90s	
11	 258	 36	 344	 95 (2.97s)	 7670	 92s	
12	 265	 36	 370	 107	 7616	 94s	
13	 271	 36	 437

(13.66s)	
108	 7512	 93s	

14	 266	 37 (1.16s)	 334	 107	 7934	 94s	
15	 277 (8.66s)	 35	 309	 104	 8032

(62.75s)	
91s	

Average	 260.13
(8.13s)	

35.33
(1.10s)	

317.93
(9.94s)	

111.20
(3.48s)	

7571.13
(59.15s)	

90.93s	

 	
 	

108

Table 8. bCut128S Internal Performance Data.

Test
Run	

First
Contact
Counts	

 	

Cut
Threshold
Reached
Counts	

Cut
Completed

Counts	

Total	
Actual

Cut
Time	

1	 247	 966	 7411	 55.97s	
2	 362	 1019	 7189

(56.16s)	
53.33s	

3	 544 (4.25s)	 1230
(9.61s)	

7376	 53.37s	

4	 224	 870	 7244	 54.84s	
5	 265	 948	 7588	 57.21s	
6	 238	 835	 7504	 56.76s	
7	 268	 880	 7539	 56.80s	
8	 354	 993	 7762	 57.87s	
9	 262	 822	 7397	 55.74s	

10	 223	 867	 7793	 59.14s	
11	 200	 1083	 7670	 58.36s	
12	 304	 1093	 7616	 57.12s	
13	 179 (1.40s)	 772

(6.03s)	
7512	 57.29s	

14	 356	 1097	 7934	 59.20s	
15	 279	 1056	 8032

(62.75s)	
60.57s	

Average	
 	

287 (2.24s)	 968.73
(7.57s)	

7571.13
(59.15s)	

56.91s	

 	
 	

109

It was noted after testing that the pipe has a welded seam along its length as part of its

manufacturing process. As the pipe was moved to facilitate additional cutting, it was

typically rotated to facilitate motion in the pipe clamps. This randomly moved the

location of the weld in the cut profile probably impacting cut time somewhat due to a

change in hardness of the metal being cut.	

 	

7.2 Examination of Specific Saw Tool Representative Test Cases

	

The shortest and longest duration cut data files are examined for variations. The z-axis

graph in each figure plots z motion vertically against counts horizontally. Counts

translates to time with 128 counts/second. The vertical axis is expressed in inches

according to what the manipulator controller generates. The second graph for each figure

is moment in N-m about the force-torque sensor y-axis. Test 2, shown in Figure 40, had

the shortest execution time. It took about 2000 counts (15.62s) to reach the first peak

while cutting the upper section of the pipe with about 4600 counts (35.94s) between the

two peaks. There is minor oscillation of force in the main body of the cut that is

commonly seen. Note that the peak forces are about 22N-m and 25N-m, respectively.

Test 15, shown in Figure 41, has significantly higher forces and much more oscillation

during the cutting process. While minimal oscillation is indicated in the z-axis motion of

Test 2, there is obvious distortion in the z-axis motion of Test 15. The oscillation

appeared to significantly delay the rise to first peak that is the indicator of successful

cutting through the top of the pipe. Actual peak-to-peak time is shorter despite the

oscillations at 4100 counts (32.03s). Despite the variations, both end cleanly and in

similar fashion. The forces for Test 15 range from approximately 64% higher for peak 2,

to 68% higher for peak 1, and 92% higher for the mid section of the pipe.	 	

	

110

Post-test examination noted that there was a slight but noticeable pitch angle to the saw

blade in the saw. This angle was corrected as much as possible (the vendor mounting

method does not adequately fix the blade angle), and another post-trial test was

completed. Overall completion time dropped from 60.57s to 55.28s with no other

changes. Saw blade condition is critical to time-to-complete performance.

Referring back to Table 2 and the column containing the expected tool process signature

for the reciprocating saw, the actual signatures of Figures 40 and 41 resemble but are not

exactly like the proposed profile and show variation even from the experimental data

taken to determine thresholds. However, the control technique still worked at 100%.

Even with the variations, initial contact, closing loss of contact, and transitions through

thicker and thinner walled sections of the pipe may be discerned. The intended process

signature proved valid for control.

111

	

Figure 40. Cut Data From Shortest Duration Cut.

112

Figure 41. Cut Data From Longest Duration Cut.	

	

113

7.3 Discussion of Overall Telerobotic Socket Tool Results

	

Data collection for validation of the telerobotic socket tool task was accomplished by

running 20 instances of the task on a process mockup cone head bolt mounted

horizontally. As with the saw tool task, tool placement to the task target area was via a

sequence of robotic moves to a targeted end point in task space. Also as mentioned for

the saw tool task, positioning repeatability of the manipulator delivery system is known

to be on the order of ± 6mm in the Cartesian x, y, and z axes. Since the process module

containing the bolt was rigidly mounted, its position in space was consistent and

repeatable for all tests.	

 	

For the 20 trial runs, there were 16 successful completions and four failures. Success was

defined as the bolt being loose enough in its captured bolt fixture to slide out to full

extension by hand without twisting it. There were three types of failures including:

	

• Minor capture of the bolt by its last thread such that it was easily removed by hand with

less than a 90° twist. The terminating threshold was triggered and operation completed.

This should be considered a soft failure since after bolt removal a remote system could

probably shake the component loose without further tool action. Quantity of failures = 2.

	

• Major capture of the bolt such that it was too tight to rotate by hand. The threshold

condition was met and operation terminated normally. This is a hard failure. Quantity of

failures = 1.

	

• Threshold value never reached despite moving bolt. Terminated by operator. This is a

hard failure. Quantity of failures = 1.	

 	

Table 9 outlines the composite performance of bApproachB for a representative subset of

eight of the 20 tests. If the threshold is never reached, the behavior would run for 320

counts or 10s while moving a distance of 127mm. All bApproachB functions triggered

114

successfully well before the counter limit. Thresholds of 40N and 50N for the Fx axis

were tried in the series of tests with no noticeable difference in performance of the

bUnboltB function.	

 	

The bUnboltB function runs in 2-second bursts and then checks for bolt pushback in the

Fx axis to verify that motion has occurred. Although designed such that it could operate

for multiple bursts, in actual operation, in all cases except the run-on failure requiring

operator intervention, the function successfully terminated after one burst of the socket

tool even given a wide range of examined thresholds. Therefore, an examination of

counts and run time is not relevant for bUnboltB. The best measure of performance is the

rate of success (16) /failure (4) out of the full number of tests (20) previously mentioned.

7.4 Examination of Specific Representative Socket Tool Test Cases

	

Example test cases are presented to more specifically illustrate individual function

performance. Figure 42 shows the Fx axis event trigger upon reaching preload of 40N.

Although other axes increase in force and torque, Fx is the axis that represents the

preload on the bolt to prepare for removal. Figure 43 shows the actual unbolt process for

all six axes of force and torque, with the main axis of interest being the Fx axis. Due to

the process noise on this signal, filtering (fxfilt) is used to monitor the Fx axis of the

force-torque sensor to determine push back into the manipulator system, indicating that

the bolt has moved out during the unbolt operation.	

	

	

	

	

	

	

115

	

Table 9. bApproachB Socket Tool Composite Results.

 	 Loop Counts	 Motion	 Time	

Theoretical limit	 320	 127mm	 10.0s	

Actual low	 26	 10.32mm	 .81s	

Actual high	 74	 29.37mm	 2.31s	

Average	 56.9	 22.58mm	 1.78s	

 	

 	

 	

 	

 	

 	

116

	

Figure 42. Sample Approach Forces and Torques, Fx Used for Event Monitoring.

117

	

Figure 43. Sample Unbolt Forces and Torques, fxfilt Used for Event Monitoring.

118

 Chapter 8

Summary and Future Work

This work has examined the possibilities of integrating behavior-based concepts into

teleoperation and robotics to provide efficient real world-usable telerobotic tooling

assists. The concept was implemented and demonstrated for two tools common to remote

D&D activities. In summary the basic approach works and has some merit but also has

some limitations specifically related to the usefulness of behavior concepts.

8.1 Summary

As described in the previous chapter, both of the representative D&D tasks were

implemented successfully. Performance of the saw task was 100% successful across the

sample set. For the socket tool sample set, successful runs were completed 80% of the

time with the given implementation.

Referring back to Table 2 D&D Tool Summary, column three Contact Signatures are

verified to approximate expectations. In both cases the raw signals contain so much

process noise that they are unrecognizable and unusable as is. However, heavy filtering is

possible to discern usable profiles that resemble those found in Table 2. In neither case is

the replication exact, but it is sufficient to work reliably.

Closed loop dynamic control using these signals would be difficult, but the reactive

function-based approach achieved consistent successful results. The task decomposition

technique derived from behavior-based concepts provided manageable subtasks that

facilitated overall task completion.

One aspect of smart tooling is that it is expensive to implement due to multiple expensive

sets of sensors. While a force-torque sensor was used for each tool implementation,

119

limiting the event and process axes to one or two axes indicates clearly that successful

operation is possible with a reduced sensing set such as one or two load cells per tool that

would reduced the cost of smart tool sensing roughly by an order of magnitude.

Another advantage to the approach presented in this work is that complicated kinematic

or dynamics-based solutions are not necessary. Transformation of the force-torque sensor

to manipulator kinematics was not even necessary. Each signal used was used

independently of kinematic reference.

Most importantly the behavior-derived technique functioned as desired to calibrate an a

priori task model to a point of execution on the task mockup target point. Task instance

modeling was eliminated. The task type was “calibrated” to the location of the task object

in space permitting reliable telerobotic task execution.

While successful, limitations were also found that made complete adherence to a

behavior-based approach inappropriate for telerobotic use of power tooling. Tool tasks

are inherently sequential in nature. Sequential behavior selection is considered the most

primitive form and least desirable means of switching; however, it is most appropriate to

telerobotic tooling. Also there are times when open loop robotic motions are the most

efficient and practical means of task execution. These “ballistic” behaviors are accepted

but discouraged in behavior-based approaches. These practicalities of implementation for

telerobotic tooling reduce the “purity” of the behavior-based approach to more of an

approach based on concepts derived from behavior-based techniques.	

8.2 Review of Contributions

The	 fundamental	 contributions	 of	 this	 dissertation	 are	 summarized	 here:	

	

	

120

1.	 The	 exploration	 and	 evaluation	 of	 behavior-‐based	 robotics	 for	 concepts	 to	 create	

a	 new	 methodology	 for	 integrating	 telerobotic	 tool	 control	 with	 positional	

teleoperation	 in	 the	 execution	 of	 complex	 tool-‐centric	 remote	 tasks	 such	 as	 those	

associated	 with	 remote	 nuclear	 operations.	 Successful	 experimental	 results	 with	

selected	 power	 tools	 and	 a	 full-‐scale	 telerobotics	 test	 bed	 have	 revealed	 the	

attractive	 combination	 of	 simple	 implementation	 and	 efficient/effective	 tooling	

operations.	 	

	

This	 methodology	 provides	 a	 workable	 clear	 path	 to	 implementation	 relevant	 to	 the	

existing	 architectures	 of	 typical	 teleoperator	 systems	 while	 addressing	 tasks	 that	

are	 currently	 difficult	 to	 automate	 due	 to	 complexity	 and	 limited	 registration	 to	

actual	 task	 hardware.	 Once	 the	 first	 couple	 of	 tool	 tasks	 were	 programmed,	 it	 was	

quite	 obvious	 that	 this	 technique	 has	 created	 a	 set	 of	 primitives	 that	 may	 be	

assembled	 in	 different	 ways	 or	 with	 slight	 modification	 to	 quickly	 produce	 new	

automated	 tooling	 tasks.	 This	 work	 represents	 the	 first	 known	 application	 of	 these	

techniques	 to	 power	 tooling	 tasks.	

	

2.	 The	 creation	 of	 a	 new	 tooling	 task	 modeling	 process	 that	 is	 general	 in	 nature	 and	

applicable	 to	 a	 wide	 range	 of	 power	 tools	 used	 in	 typical	 remote	 operations.	 This	

task	 type	 modeling	 can	 replace	 task	 instance	 modeling	 to	 reduce	 and	 simplify	 the	

application	 of	 the	 new	 behavior-‐based	 methods	 to	 complex	 telerobotic	 tooling	

applications.	 It	 was	 demonstrated	 that	 the	 task	 type	 model	 could	 be	 reliably	

encoded	 in	 a	 sequence	 of	 simple	 behavior-‐like	 reactive	 functions,	 thereby	

alleviating	 the	 need	 for	 extensive	 a	 priori	 generation	 of	 a	 task	 instance	 model	 for	

each	 task	 execution.	 This	 reduces	 the	 modeling	 time	 needed	 for	 individual	 task	

automation	 making	 telerobotics	 more	 time	 competitive	 even	 with	 proficient	

operators.	

	

	

121

3.	 The	 generation	 of	 specific	 characteristic	 tooling	 data	 for	 reciprocating	 saw	 cutting	

and	 removal	 of	 bolts	 with	 a	 powered	 socket	 tool.	 These	 results	 have	 general	 value	

in	 that	 they	 are	 relevant	 to	 extensions	 of	 this	 work	 and	 in	 the	 pursuit	 of	 other	 tool	

control	 strategies.	 In	 particular,	 the	 force	 profile	 generated	 for	 pipe	 cutting	

produces	 a	 well-‐defined	 characteristic	 signature	 that	 should	 be	 broadly	 useful	

even	 outside	 of	 the	 telerobotics	 community.	 Progressive	 variation	 in	 the	 tool	

signature	 profiles	 over	 repeated	 test	 instances	 indicate	 that	 tool	 wear,	 maintenance	

prediction,	 and	 fault	 detection	 can	 probably	 be	 deduced	 from	 further	 study	 of	 the	

process	 signature.	

8.3 Future Work

There	 are	 several	 possibilities	 to	 consider	 for	 future	 work	 building	 on	 the	 research	

presented	 in	 this	 dissertation.	 	

	

One	 topic	 of	 particular	 interest	 is	 to	 investigate	 how	 these	 techniques	 can	 be	 used	

to	 track	 and	 compensate	 for	 tool	 wear,	 to	 indicate	 component	 end	 of	 life,	 and	 to	

identify	 operational	 faults.	 Tool	 signatures	 were	 found	 to	 vary	 according	 to	 wear	 in	

the	 primary	 contact	 medium	 executing	 the	 tool	 task	 (such	 as	 a	 saw	 blade	 in	 a	 pipe).	

Higher	 and	 more	 rounded	 force	 levels	 in	 the	 saw	 process	 signature	 indicate	 a	 worn	

blade	 with	 dull	 or	 broken	 teeth.	 This	 should	 make	 it	 possible	 to	 determine	 at	 what	

point	 a	 tool	 piece	 should	 be	 changed	 out	 facilitating	 maintenance	 scheduling.	 	

	

The	 basic	 framework	 is	 now	 in	 place	 to	 pursue	 dynamic	 motion	 of	 the	 manipulator	

base	 or	 the	 task	 object	 during	 task	 execution.	 This	 will	 require	 the	 development	 of	

new	 position	 sensing	 capabilities	 that	 can	 tolerate	 the	 vibrations,	 forces,	 and	

moments	 imposed	 by	 tooling	 operations.	 However	 this	 would	 afford	 the	 possibility	

of	 cutting	 operations	 even	 when	 the	 manipulator	 and	 task	 object	 are	 shaking	 and	

122

vibrating	 in	 response	 to	 the	 cutting	 operation.	 This	 is	 a	 common	 task	 problem	 in	

D&D	 activities.	

	

Success	 was	 shown	 to	 be	 possible	 using	 sensor	 data	 collected	 from	 sensors	

mounted	 in	 a	 common	 tool	 fixturing	 point.	 This	 indicates	 that	 it	 should	 be	 possible	

to	 move	 to	 a	 multi-‐fingered	 end-‐effecter	 with	 a	 wrist	 mounted	 force-‐torque	 sensor	

and	 achieve	 similar	 success	 by	 also	 addressing	 tool	 position	 and	 orientation	 when	

grasping	 the	 tool.	 This	 is	 important	 because	 common	 sensing	 could	 be	 provided	

without	 the	 cost	 of	 bolting	 tools	 into	 a	 smart	 tool	 fixture.	

	

Another	 area	 worthy	 of	 further	 investigation	 would	 be	 to	 consider	 how	 to	 apply	

these	 techniques	 to	 tool	 process	 that	 are	 essentially	 impact-‐based	 such	 as	 the	 jack	

hammer,	 air	 chisel,	 and	 sheet	 metal	 nibbler.	 Rapid	 motion	 of	 the	 tool	 coupled	 with	 a	

wide	 range	 of	 ways	 that	 the	 target	 object	 may	 react	 to	 the	 tool	 impact	 will	 make	

this	 a	 difficult	 study	 probably	 requiring	 extensive	 analytical	 and	 experimental	

development.	 Due	 to	 the	 rate	 of	 impacts	 and	 the	 forces	 encountered	 in	 the	 process,	

data	 acquisition	 and	 process	 control	 sample	 rates	 would	 have	 to	 be	 far	 higher	 than	

is	 typically	 used	 in	 manipulator	 control.	

	

As	 with	 other	 early	 implementations	 using	 behavior-‐based	 concepts,	 the	

implementation	 process	 tends	 to	 be	 tedious,	 incremental,	 and	 leans	 heavily	 on	

experimental	 development.	 While	 this	 was	 intentional	 for	 this	 work	 in	 order	 to	

start	 from	 first	 principles,	 various	 learning	 techniques	 under	 development	 in	 the	

behavior-‐based	 community	 should	 be	 considered	 to	 provide	 automated	 assistance	

in	 the	 reactive	 function	 development	 process.	

	

123

Chapter 9

Conclusions

This	 dissertation	 has	 described	 a	 methodology	 for	 combining	 concepts	 from	

behavior-‐based	 systems	 with	 telerobotic	 tool	 control	 in	 a	 way	 that	 is	 compatible	

with	 existing	 manipulator	 architectures	 used	 by	 remote	 systems	 typical	 to	 the	 D&D	

and	 remote	 operations	 environments.	 The	 concept	 was	 implemented	 and	

demonstrated	 for	 two	 tools	 useful	 to	 D&D	 type	 operations—a	 reciprocating	 saw	

and	 a	 powered	 socket	 tool.	 The	 experimental	 results	 demonstrated	 that	 the	

approach	 works	 to	 facilitate	 traded	 control	 telerobotic	 tooling	 execution	 by	

enabling	 difficult	 tasks	 and	 by	 limiting	 tool	 damage.	

The original concept was intended as a means of adding telerobotic assists for human

operators (1) to permit task tooling operation where it is currently difficult or impossible

or (2) to relieve fatigue where the tool operation is tedious. For this purpose it appears to

work either exceptionally well (reciprocating saw) or adequately (socket tool). The

reciprocating saw task was impossible with freehand teleoperation on the test bed but

readily achievable via the reactive function assists. The socket tool concept works well

enough to use in conjunction with teleoperation since the operator has the capability to

retarget and retry if the initial targeting fails.

The reactive functions formed a set of simple move primitives that can be readily

assembled into new tooling tasks with relatively little difficulty. Knowledge of the task,

task execution sequence, and tool characteristics are needed. A majority of the functions

needed for the socket tool were directly derived from the saw tool. Having done the

reciprocating saw and socket tool, a band saw, circular saw, and drill would be relatively

easy to complete. The approach should expand readily to other D&D type tools as well as

tools in other task sets such as small scale medical tooling for minimally invasive

surgery.

124

There is no a priori modeling of a specific task instance. A task type model is embedded

into the sequence of reactive functions and the actions of the functions themselves.

Contact sensing is used to establish the location of the task object on which the tooling

task executes. The point of interest for the task is established by the operator or a higher

level robotic program. There is no abstract representation of the specific task instance

stored anywhere in the system.

Initial investigation showed that telerobotic use of power tooling did not completely

conform to the tenets of the behavior-based approach. Tooling tasks are almost entirely

sequential and deterministic or can be made that way with minimal planning. This

decreases the behaviorism content of the concept since behavior arbitration essentially

goes away in favor of the sequential execution of reactive behaviors. It may be best to

consider this as a BBR-inspired or derived technique rather than a pure behavior-based

robotics technique.

The most advantageous component to this work that would facilitate complete robotic

task execution is what has been learned about task decomposition to make what appears

to be an exceedingly difficult task relatively easy by breaking it down into a set of simple

moves and looking for target object contact and tool task signatures. The discovery of the

tool process signatures and how they may be used to manage the tool process was an

unexpected benefit of this work. It opens the door to the difficult to address needs of tool

fault identification and recovery, predictive tool maintenance, and more extensive

dynamics-based control techniques.

In summary the purpose of this work was to explore the use of behavior-based robotics

concepts to determine techniques relevant to the use of telerobotic assists in D&D type

tool tasks with a purpose of minimizing the task instance modeling in favor of a priori

task type models while using sensor information to register the task type model to the

task instance. An approach was implemented and tested for two tools with variation to

the usual behavior selection process by using fixed sequencing of the reactive functions.

125

The task type model was embedded into the sequencing of the functions and the functions

themselves. There is no abstract representation used to build a specific task instance.

Both tool implementations worked well. In the case of the reciprocating saw, the

implementation was an enabling technology. The role of the tools and tasks as drivers to

the telerobotic implementation was better understood in the need for thorough task

decomposition. This work has been successful enough that it can be implemented and

used near term on real world systems.

	

126

List of References

[1] M. W. Noakes, "CP5 Reactor Remote Dismantlement Activities: Lessons Learned

in the Integration of New Technology in an Operations Environment," presented
at the Advanced Robotics Beyond 2000, 29th International Symposium on
Robotics, Birmingham, UK, 1998.

[2] W. R. Hamel, "Sensor-Based Planning and Control in Telerobotics (Chapter 10),"
in Control in Robotics and Automation: Sensor-based Integration, B. K. Ghosh,
et al., Eds., ed: Academic Press, 1999, pp. 285 - 309.

[3] T. B. Sheridan, Telerobotics, Automation, and Human Supervisory Control: The
MIT Press, 1992.

[4] T. W. Burgess, et al., "Design Guidelines for Remotely Maintained Equipment,"
Oak Ridge National Laboratory ORNL/TM-10864, November 1988.

[5] R. C. Goertz. (November 1952, November) Fundamentals of General-Purpose
Remote Manipulators. Nucleonics. 36 - 42.

[6] R. C. Goertz, "Manipulator Systems Development at ANL," in 12th Conference
on Remote Systems Technology, 1964, pp. 117 - 136.

[7] R. C. Goertz, "Some Work on Manipulator Systems at ANL Past, Present, and a
Look at the Future," in 1964 Seminars on Remotely Operated Special Equipment,
Germantown, Maryland, 1964, pp. 27 - 69.

[8] R. C. Goertz and F. Bevilacqua. (November 1952) A Force-reflecting Positional
Servomechanism. Nucleonics. 43 - 45.

[9] C. R. Flateau, "Development of Servo Manipulators for High Energy Accelerator
Requirements," in 13th Conference on Remote Systems Technology, 1965, pp. 29
- 35.

[10] C. R. Flateau, "Compact Servo Master-slave Manipulator with Optimized
Communication Links," in 17th Conference on Remote Systems Technology,
1969, pp. 154 - 164.

[11] J. W. Clark, "Mobotry: The New Art of Remote Handling," IRE Transactions on
Vehicular Communications, vol. 10, pp. 12 - 24, 1961.

[12] M. W. Noakes, et al., "Telerobotic Planning and Control for DOE D&D
Operations," in 2002 IEEE International Conference on Robotics and
Automation, 2002, pp. 3485 - 3492.

[13] H. C. Humphreys, et al., "Large Scale Multi-fingered End-effector Manipulation,"
presented at the 2nd International Joint Topical Meeting on Emergency
Preparedness & Response and Robotics & Remote Systems, Albuquerque NM,
2008.

[14] T. W. Burgess and M. W. Noakes, "US Robotics and Remote Systems in the
Nuclear Field," presented at the 1st PREFIT (Preparing Remote Handling
Engineers for ITER) Workshop, Culham Science Center, Culham Laboratory,
Abingdon UK, 2007.

[15] S. Hyati, et al., "A Testbed for a Unified Teleoperated-autonomous Dual-arm
Robotic System," in 1990 IEEE International Conference on Robotics and
Automation, 1990, pp. 1090 - 1095.

127

[16] S. E. Everett and R. V. Dubey, "Human-machine Cooperative Telerobotics Using
Uncertain Sensor or Model Data," in 1998 IEEE International Conference on
Robotics & Automation, 1998, pp. 1615 - 1622.

[17] R. C. Arkin and L. E. Parker, "personal communication on a concise definition of
behavior-based systems relayed via Lynne E. Parker," M. W. Noakes, Ed., ed,
2006.

[18] J. H. Connell, "A Behavior-based Arm Controller," IEEE Transactions on
Robotics and Automation, vol. 5, pp. 784 - 791, 1989.

[19] E. C. Tolman, "Prediction of Vicarious Trial and Error by Means of the
Schematic Sowbug," Psychological Review, vol. 46, pp. 318-336, 1939.

[20] E. Yoichiro and R. C. Arkin, "Implementing Tolman's Schematic Sowbug:
Behavior-based Robotics in the 1930's," in 2001 IEEE International Conference
on Robotics and Automation, Seoul Korea, 2001, pp. 477 - 484.

[21] N. Weiner. (1948, November 1948) Cybernetics. Scientific American. 14 - 19.
[22] W. G. Walter. (May 1950) An Imitation of LIfe. Scientific American. 42-45.
[23] W. G. Walter. (August 1951) A Machine That Learns. Scientific American. 60-63.
[24] W. G. Walter, The Living Brain. New York NY: Norton & Company, Inc, 1953.
[25] R. A. Brooks, "A Robust Layered Control System for a Mobile Robot," IEEE

Journal of Robotics and Automation, vol. RA-2, pp. 14 - 23, 1986.
[26] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology. Cambridge MA:

The MIT Press, 1984.
[27] R. A. Brooks, Cambrian Intelligence: The Early History of the New AI: The MIT

Press, 1999.
[28] R. C. Arkin, "Reactive Control as a Substrate for Telerobotic Systems," in IEEE

1991 National Telesystems Conference, Atlanta GA, 1991, pp. 309 - 314.
[29] F. G. Pin, "A Fuzzy Behaviorist Approach to Sensor-based Reasoning and Robot

Navigation," in Control in Robotics and Automation: Sensor-based Integration,
B. K. Ghosh, et al., Eds., ed: Academic Press, 1999.

[30] B. D. Tribelhorn, Z., "Evaluating the Roomba: A Low-cost, Ubiquitous Platform
for Robotics Research and Education," in 2007 IEEE International Conference on
Robotics and Automation, Roma, Italy, 2007, pp. 1393 - 1399.

[31] R. C. Arkin and K. S. Ali, "Integration of Reactive and Telerobotic Control in
Multi-agent Robotic Systems, From Animals to Animats," in Third International
Conference on the Simulation of Adaptive Behavior, Brighton UK, 1994, pp. 473 -
478.

[32] P. Garcia, et al., "Trauma Pod: A Semi-automated Telerobotic Surgical System,"
The International Journal of Medical Robotics and Computer Assisted Surgery,
vol. 5, pp. 136 - 146, 16 February 2009.

[33] M. W. Noakes, et al., "Development of a Remote Trauma Care Assist Robot," in
IROS 2009: The 2009 IEEE/RSJ International Conference on intelligent Robots
and Systems, St. Louis, MO, 2009, pp. 2580 - 2585.

[34] R. C. Arzbaecher, "Servomechanisms With Force Feedback," PhD, University of
Illinois, 1960.

128

[35] J. Vertut, "Advances in Remote Manipulation," in International Conference on
World Nuclear Energy - A Status Report, Washington, D. C., 1976, pp. 503-505.

[36] M. W. Noakes, "Experiments in Teach-Playback Robotics with the Advanced
Servomanipulator," Oak Ridge National Laboratory1987.

[37] J. Vertut and P. Coiffet, Teleoperators and Robotics, Evolution and Development,
Robot Technology vol. 3A: Hermes Publishing, 1985.

[38] G. K. Corbett, et al., "Modifying A Telerobotic System to Include Robotic
Operation by Means of Dyanmic Modeling," presented at the IEEE International
Conference On Robotics and Automation, Scottsdale, Arizona, 1989.

[39] T. W. Burgess, "Discussion on Limitations of Teleoperation," ed, 2009.
[40] O. Khatib, "Real-time Control of Manipulators in Operational Space," presented

at the 1984 ASQC 28th Annual Stanford Conference, Stanford, CA, 1984.
[41] P. Garrac, "Discussions on Dissimilar Kinematic Cartesian Controls," M. W.

Noakes, Ed., ed. Oak Ridge, Tennessee, 2010.
[42] J. V. Draper and M. W. Noakes, "Fundamental Issues in the Application of

Teleoperation, Robotics, and Supervisory Control," presented at the American
Nuclear Society Sixth Topical Meeting on Robotics and Remote Systems,
Monterey, California, 1995.

[43] T. W. Burgess, "Cost of Commercial Servomanipulator Systems," M. W. Noakes,
Ed., ed. Oak Ridge TN, 2010.

[44] P. Garrec, "Discussions on Dissimilar Kinematic Cartesian Controls," M. W.
Noakes, Ed., ed. Oak Ridge, Tennessee, 2010.

[45] P. Garrec, et al., "Evaulation Tests of the Telerobotic System MT200-TAO in
AREVA-NC/LA Hague Hot Cells," in European Nuclear Conference (ENC
2007), Brussels, Belgium, 2007, pp. 1-7.

[46] F. Geffard, et al., "On the Use of a Base Force/Torque Sensor in Teleoperation,"
in 2000 IEEE International Conference on Robotics and Automation, San
Francisco, California, 2000, pp. 2677-2683.

[47] T. F. Chan, et al., "Generalized Bilateral Control for Dissimilar Kinematic
Teleoperators and Application to D&D Type Tasks," presented at the American
Nuclear Society Sixth Topical Meeting on Robotics and Remote Systems,
Monterey, CA, 1995.

[48] S. E. Everett, "Human-machine Cooperative Telerobotics Using Uncertain Sensor
and Model Data," PhD, Mechanical Engineering, University of Tennessee at
Knoxville, 1998.

[49] T. B. Sheridan, "Space Teleoperation Through Time Delay: Review and
Prognosis," IEEE Transactions on Robotics and Automation, vol. 9, pp. 592 -
606, October 1993 1993.

[50] M. Montemerlo, "NASA's Automation and Robotics Technology Development
Program," in 1986 IEEE International Conference on Robotics and Automation,
1986, pp. 977 - 986.

[51] C. R. Weisbin and M. Montemerlo, "NASA's Telerobotics Research Program," in
1992 IEEE International Conference on Robotics and Automation, Nice FR,
1992, pp. 2653 - 2666.

129

[52] G. Hirzinger, et al., "Sensor-based Space Robotics_ROTEX and Its Telerobotic
Features," IEEE Transactions on Robotics and Automation, vol. 9, pp. 649 - 663,
October 1993.

[53] G. Hirzinger, et al., "Teleoperating Space Robots. Impact for the Design of
Industrial Robots," in ISIE '97: IEEE International Symposium on Industrial
Electronics, 1997, pp. SS250 - SS256.

[54] P. Backes, et al., "A Local-remote Telerobot System for Time-delayed Traded
and Shared Control," presented at the Fifth International Conference on Advanced
Robotics, 1991, Pisa, Italy, 1991.

[55] S. Lee. (1993, June 1993) Intelligent Sensing and Control for Advanced
Teleoperation. Control Systems Magazine, IEEE. 19-28.

[56] R. O. Ambrose, et al. (2000, July - August) Robonaut: NASA's Space Humanoid.
IEEE Intelligent Systems and Their Applications. 57 - 63.

[57] D. E. Whitney, "Development and Control of an Automated Robotic Weld Bead
Grinding System," Journal of Dynamical Systems, Measurement, and Control,
vol. 112, pp. 166 - 176, June 1990.

[58] (2003, October 18). DOE Robotics Crosscutting Program.
[59] N. Xi and T. J. Tarn, "Sensor-Based Planning and Control for Robotic Systems:

An Event-based Approach," in Control in Robotics and Automation: Sensor-
based Integration, B. K. Ghosh, et al., Eds., ed: Academic Press, 1999, pp. 3 - 55.

[60] N. Xi, "Event-based Motion Planning and Control for Robotic Systems," PhD
PhD, Washington University, 1993.

[61] M. W. Noakes and W. E. Dixon, "Application of a Selective Equipment Removal
System to D&D Tasks," presented at the American Nuclear Society Sixth Topical
Meeting on Robitcs and Remote Systems, Monterey, California, 1995.

[62] W. R. Hamel and R. L. Kress, "Elements of Telerobotics Necessary for Waste
Cleanup Automation," in 2001 IEEE International Conference on Robotics &
Automation, 2001, pp. 393 - 400.

[63] W. R. Hamel, et al., "A Real-time Controller for Human-machine Cooperative
Telerobotics," in 2002 IEEE International Conference on Robotics and
Automation, 2002, pp. 2880 - 2885.

[64] S. Kim and W. R. Hamel, "Design of Supervisory Control Scheme for Fault
Tolerant Control of Telerobotics System in Operational Space," in 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, pp.
2803 - 2807.

[65] S. Kim and W. R. Hamel, "Force Assistance Function for Human Machine
Cooperative Telerobotics Using Fuzzy Logic," in 2002 IEEE International
Conference on Robotics and Automation, 2002, pp. 2165 - 2170.

[66] S. Kim and W. R. Hamel, "Operational Fault Detection for Telerobotic Systems
Using Discrete Wavelet Transform (DWT) and AC Analysis of Position Data," in
2004 IEEE International Conference on Robotics and Automation, 2004, pp. 5001
- 5006.

130

[67] A. Nycz and W. R. Hamel, "Robot Task Space Analyzer System Calibration," in
1st Joint Emergency Preparedness and Response and Robotic and Remote
Systems, Salt Lake City, Utah, 2006.

[68] G. Zhang, "An Adaptive Tool-based Telerobotic Control System," PhD PhD,
Mechanical Engineering, University of Tennessee at Knoxville, December 2004.

[69] W. R. Hamel, et al., "Large Scale Multi-fingered End-effector Teleoperation," in
IEEE/RSJ 2009 International Conference on Intelligent Robots and Systems,
2009, pp. 3304 - 3310.

[70] T. Kesavadas and D. J. CAnnon, "Virtual Tools With Attributes for Robotic
Based Intermediate Manufacturing Processes," in 1996 IEEE International
Conference on Robotics and Automation, Minneapolis, Minnesota, 1996, pp. 1845
- 1850.

[71] M. Hwan Yun, et al., "An Instrumented Glove for Grasp Specification in Virtual-
Reality-Based Point-and-Direct Telerobotics," IEEE Transactions on Systems,
Man, and Cybernetics, vol. 27, pp. 835-846, 1997 1997.

[72] C. Wang, et al., "Human-Machine Collaboration in Robotics: Integrating Virtual
Tools with a Collision Avoidance Concept using Conglomerates of Spheres,"
Journal of Intelligent and Robotic Systems, pp. 1-31, 1997.

[73] D. J. Cannon and G. Thomas, "Virtual Tools for Supervisory and Collaborative
Control of Robots," Presence, vol. 6, pp. 1-28, 1997.

[74] D. Aarno, et al., "Adaptive Virtual Fixtures for Machine-Assisted Teleoperation
Tasks," in 2005 IEEE International Conference on Robotics and Automation,
Barcelona, Spain, 2005, pp. 1151 - 1156.

[75] W. Yu, et al., "Telemanipulation Assistance Based on Motion Intention
Recognition," in 2005 IEEE International Conference on Robotics and
Automation, Barcelona, Spain, 2005, pp. 1133 - 1138.

[76] O. Bebek and M. C. Cavusoglu, "Whisker Sensor Design for Three Dimensional
Position Measurement in Robotic Assisted Beating Heart Surgery," in 2007 IEEE
International Conference on Robotics and Automation, Roma Italy, 2007, pp. 225
- 231.

[77] S. Saha, "Appropriate Degrees of Freedom of Force Sensing in Robot-assisted
Minimally Invasive Surgery," Master of Science MS, Johns Hopkins University,
Baltimore, MD, 2005.

[78] P. Dario, et al., "Smart Surgical Tools and Augmenting Devices," IEEE
Transactions on Robotics and Automation, vol. 19, pp. 782-792, October 2003
2003.

[79] J. S. Albus, "A Theory of Intelligent Systems," in 5th IEEE International
Symposium on Intelligent Control, 1990, pp. 866 - 875.

[80] E. Angelopoulou, et al., "World Model Representation for Mobile Robots," in
1992 Symposium on Intelligent Vehicles, 1992, pp. 293 - 297.

[81] R. E. Barry, et al., "Rapid World Modeling From a Mobile Platform," in 1997
IEEE International Conference on Robotics and Automation, 1997, pp. 72 - 77.

[82] InnovMetric. (2010, October 18). PolyWorks V11, The Universal 3D Metrology
Software Platform.

131

[83] R. C. Arkin, "Motor Schema-based Mobile Robot Navigation," International
Journal of Robotics Research, vol. 8, pp. 92 - 112, August 1989.

[84] A. Stoytchev and R. C. Arkin, "Combining Deliberation, Reactivity, and
Motivation in the Context of a Behavior-based Robot Architecture," in IEEE
International Symposium on Computational Intelligence in Robotics and
Automation, 2001, pp. 290 - 295.

[85] R. C. Arkin and D. C. Mackenzie, "Planning to Behave: A Hybrid
Deliberative/Reactive Control Architecture for Mobile Manipulation," in 1994
International Symposium on Robotics and Manufacturing, Maui HI, 1994, pp. 5 -
12.

[86] R. C. Arkin, "Towards the Unification of Navigational Planning and Reactive
Control," in working notes of the AAI Spring Symposium on Robot Navigation,
Stanford University, 1989.

[87] D. C. Bentivegna, et al., "Design and Implementation of a Teleautonomous
Hummer," presented at the Mobile Robots XII, Pittsburgh PA, 1997.

[88] K. S. Ali and R. C. Arkin, "Multiagent Teleautonomous Behavioral Control,"
Machine Intelligence and Robotic Control, vol. 1, pp. 3 - 10, 2000.

[89] R. Arkin, "Reactive Robotic Systems," College of Computing, Georgia Institute
of Technology1995.

[90] J. M. Cameron, et al., "Reactive Control for Mobile Manipulation," in 1993 IEEE
International Conference on Robotics and Automation, 1993, pp. 228 - 235.

[91] D. C. MacKenzie and R. C. Arkin, "Behavior-based Mobile Manipulation for
Drum Sampling," in 1996 IEEE International Conference on Robotics and
Automation, Minneapolis, MN, 1996, pp. 2389 - 2395.

[92] M. R. Stein and R. P. Paul, "Operator Interaction, for Time-delayed
Teleoperation, With a Behavior-based Controller," in 1994 IEEE International
Conference on Robotics and Automation, 1994, pp. 231 - 236.

[93] Y. S. Park, "Structured Beam Projection for Semi-automatic Teleoperation," in
SPIE Optomechatronic Systems, Photonics East 2000: Intelligent Systems and
Advanced Manufacturing, Boston MA, 2000, pp. 192 - 201.

[94] Y. S. Park and e. al., "Perceptual Basis for Reactive Teleoperation," in SPIE
Optomechatronic Systems II, Photonics Boston: Intelligent Systems and Advanced
Manufacturing 2001, Newton MA, 2001, pp. 115 - 122.

[95] Y. S. Park, et al., "Agent-based Dual Arm Motion Planning for Semi-automatic
Teleoperation," presented at the ANS 9th International Topical Meeting on
Robotics and Remote Systems, Seattle WA, 2001.

[96] Y. S. Park, et al., "Enhanced Teleoperation for D&D," in 2004 IEEE
International Conference on Robotics and Automation, New Orleans LA, 2004,
pp. 3702 - 3707.

[97] H. Kang, et al., "Visually and Haptically Augmented Teleoperation in D&D
Tasks using Virtual Fixtures," in 10th Robotics & Remote Systems Meeting,
Gainesville FL, 2004, pp. 466 - 471.

[98] G. C. Pettinaro, "Behavior-based Peg in Hole," Robotica, vol. 17, pp. 189 - 201,
March - April 1999.

132

[99] Z. Wasik and A. Saffiotti, "A Fuzzy Behavior-based Control System for
Manipulation," in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2002, pp. 1596 - 1601.

[100] Z. Wasik and A. Saffiotti, "A Hierarchical Behavior-Based Approach to
Manipulation Tasks," in IEEE International Conference on Robotics and
Automation (ICRA), Taipei, TW, 2003, pp. 2780 - 2785.

[101] A. Stoytchev, "Behavior-grounded Representation of Tool Affordances," in 2005
IEEE International Conference on Robotics and Automation, 2005, pp. 3060 -
3065.

[102] F. G. Pin and Y. Watanable, "Navigation of Mobile Robots Using a Fuzzy
Behaviorist Approach and Custom-designed Fuzzy Inference Boards," Robotica,
vol. 12, pp. 491 - 503, 1994.

[103] F. G. Pin and Y. Watanable, "Automatic Generation of Fuzzy Rules Using the
Fuzzy Behaviorist Approach: the Case of Sensor-based Robot Navigation,"
Intelligent Automation and Soft Computing, vol. 1, pp. 161 - 178, 1995.

[104] M. W. Noakes, "Solution to Remote Cutting "Tool Chatter" Via Tool-oriented,
Sensor-based Control," Oak Ridge National Laboratory/DOE EM50September
2003.

[105] D. C. Haley and M. W. Noakes, "Solution to Remote Cutting "Tool Chatter" via
Tool-oriented Sensor-based Control," ed, 2003.

[106] S. A. Tobias, Machine-tool Vibration. New York NY: Blackie & Son Ltd., 1965.
[107] R. N. Arnold, "Mechanism of Tool Vibration in Cutting of Steel," Proceedings of

Institution of Mehcanical Engineers, vol. 154, p. 261, 1946.
[108] R. S. Hahn, "Metal Cutting Chatter and Its Elimination," Transactions of th

ASME, vol. 35, p. 1073, 1953.
[109] L. Le-Ngoc and H. McCallion, "Self-induced Vibration of Bandsaw Blades

During Cutting," Proceedings of Institution of Mehcanical Engineers, vol. 213,
pp. 371 - 380, 1999.

[110] C. Andersson, et al., "Bandsawing. Part I: Cutting Force Model Including Effects
of Position Errors, Tool Dynamics, and Wear," International Journal of Machine
Tools & Manufacture, vol. 41, pp. 227 - 236, 2001.

[111] C. Andersson, et al., "Bandsawing. Part II: Detecting Positional Errors, Tool
Dynamics and Wear by Cutting Force Measurement," International Journal of
Machine Tools & Manufacture, vol. 41, pp. 237 - 253, 2001.

[112] S. Y. Liang, et al., "Machining Process Monitoring and Control: The State-of-the-
Art," presented at the Proceedings of IMECE2002, ASME International
Mechanical Engineering Congress & Exposition, New Orleans LA, 2002.

[113] M. W. Noakes, "Saw Blade Chatter Detection and Correction--Developing the
Smart Tooling Concept for Remote Manipulation," presented at the American
Nuclear Society Tenth Interational Topical Meeting on Robotics and Remote
Systems for Hazardous Environments, Gainesville, Florida, 2004.

[114] M. Smith, "RealTime Performance of the Linux 2.2 Kernel," University of
Tennessee, Knoxville, Tennessee, 1999.

133

[115] R. Zhou, et al., "Using the WAM as a Master Controller," presented at the 1st
Joint Emergency Preparedness and Response/Robotic and Remote Systems
Topical Meeting, Salt Lake City UT, 2006.

[116] A. Nycz and W. R. Hamel, "Whole Arm Manipulator as a Universal Master
Controller," in 2nd International Joint Topical Meeting on Emergency
Preparedness & Response and Robotics & Remote Systems, Albuquerque, New
Mexico, 2008.

[117] R. Arkin, Behavior-based Robotics. Cambridge, Massachusetts: MIT Press, 1998.

134

Appendices

135

Appendix A

Software

136

The software for this dissertation was written using GNU open source tools for the Linux
environment. Except for some system level interactions that use C++, all files are written
in C without the use of object-oriented techniques. Functions are meant to be stand-alone
as much as possible to facilitate individual testing and regrouping for other tools with
minimal function modification; however there are groups of functions that are quite
similar as outlined below. Vestigial code for the interface of analog sensors not used is
left intact to facilitate future expansion and as documentation to those conducting follow-
on work in our lab.

bApproachB, bApproachH, and bApproachV, though using slightly different trajectory
generation, are similar. bBackH and bBackV are likewise similar to each other and
derived from the Approach functions. moveHome is included as representative of a
family of robotic moves used in this work to go to preprogrammed targets. bWristR is a
similar robotic move function to moveHome and its category of motions. bCut128S and
bUnboltB are each unique to their tooling operation. The included files are listed below
in order of presentation in this appendix. No attempt has been made to include all of the
many MATLAB files used for analysis in this work, but all of those techniques are
straightforward engineering exercises. References to comediFT.h refer to a support file
available from ATI. References to newChild.h and child2() indicate software borrowed
from Andrzej Nycz’s UTK Robotics Laboratory system software and are also therefore
not included here.

robot.h.

read_writeIO.h
read_writeIO2.c

runbSaw.c
runbSocketS1.c

bApproachB.c
bApproachH.c
bApproachV.c
bBackH.c
bBackV.c
bRetractB.c
bRetractS.c

bWristR.c
bCut128S.c
bUnboltB.c

functGoIdle.c
functMoveHome.c

137

/**
*
* robot.h
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical, Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
***/

#include <time.h>
#include <math.h>
#include <stdio.h>
#include <unistd.h>

// Calculate for each DOF; numbers in inches, used in trajectory calcs.

double qZero[6]; // Start point of robotic move
double qFinal[6]; // Finish point of robotic move
double qNow[6]; // Current calculated point in robotic trajectory

float FT[6]; // Force torque sensor values

// Stored Cartesian position, from Approach --> Retract

double cStored[6] = {0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000};

// Stored instantaneous joint positions

double qJoints[7] = {0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000};

// Following joint positions are ordered as follows:
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw, wrist roll

// Right T2 home joint positions.

double qHome[7] = {0.0000, 0.8800, -2.5436, 0.3889, 0.0000, -1.4653, 0.0000};

// Socket robotic move target T2 joint positions.

double qSocket[7] = {-0.0859, 0.8183, -2.1817, 1.0144, -1.3175, -1.3866,
 0.0000};

// Saw robotic move target T2 joint positions.

double qSaw1[7] = {-0.705671, 0.484300, -2.542479, 1.476005, 0.381025,
 -1.802548, 0.0000};
double qSaw2[7] = {-0.675950, 0.994828, -2.060330, 0.996445, 0.547078,
 -1.602363, 0.0000};
double qSaw3[7] = {-0.539330, 0.989076, -2.371632, 1.358752, 0.513427,
 -1.587311, 0.0000};
double qPipe[7] = {-0.286702, 0.453717, -2.124469, 1.469198, 0.235584,
 -1.650875, 0.0000};

138

// Position increment instead of time but run at sample time.

int posInc;

// Function prototypes

int read_writeIO(void);

int functMoveHome(void);
int functMoveSocket(void);
int functMoveSocket1(void);

int storeCartesian(void);
int functApproach(void);
int functApproachD(void);
int functRetract(void);
int functRetractD(void);
int functGoIdle(void);

int functMoveSaw1(void);
int functMoveSaw2(void);
int functMoveSaw3(void);
int functMovePipe(void);

int bWristR(void);
int bApproachB(void);
int bApproachH(void);
int bApproachV(void);
int bBack(void);
int bBackH(void);
int bBackV(void);
int bCut128S(void);
int bRetractB(void);
int bRetractS(void);
int bUnboltB(void);

139

/***
*
* Filename = read_writeIO2.h
* Support for digital and analog I/O
*
* Obligatory GNU Comedi acknowledgment
*
* Derived from Comedilib, tut1.c
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org>
*
* This file may be freely modified, distributed, and combined with
* other software, as long as proper attribution is given in the
* source code.
*
* NOTES
*
* subdev 0 = analog input port
* subdev 2 = digital I/O port, note that there are many ports including
* several digital ports and it's easy to get confused as to what does what.
*
* Much of this is now vestigial code but required to read I/O anyway.
*
**/

#include <stdio.h>
#include <comedi.h>
#include <comedilib.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <getopt.h>
#include <ctype.h>
#include <signal.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include </usr/src/linux-2.6.23/include/linux/rtc.h>

#include "examples.h"

// Reciprocating saw sensor inputs = left and right, horizontal and
//vertical, slide and touch inputs.

double sawRHslidePos;
double sawRHtouchPos;
double sawRVslidePos;
double sawRVtouchPos;
double sawLHslidePos;
double sawLHtouchPos;
double sawLVslidePos;
double sawLVtouchPos;

// Power supply monitoring

double checkPlusTen;
double checkMinusTen;
double checkFive;

int bits[8];

140

// Digital outputs for smart tool on comedi0

int toolOn; // toolOn = 1 is on; use as either on/off or PWM.
int toolDir; // toolDir = 0 is forward as default; reverse is 1.

// Digital inputs for smart tool on comedi1

int toolOnIN; // toolOn input
int toolDirIN; // toolDir input

141

/***
*
* Filename = read_writeIO2.c
*
* This file is the function to read and write analog and digital IO from
* the National Instruments 6034E for the HLC. It does not do the
* force/torque sensor.
*
* Obligatory GNU comedi acknowledgment
*
* Derived from Comedilib, tut1.c
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org>
*
* This file may be freely modified, distributed, and combined with
* other software, as long as proper attribution is given in the
* source code.
*
* NOTES
*
* subdev 0 = analog input port
* subdev 2 = digital I/O port, note that there are many ports including
* several digital ports and it's easy to get confused as to what does what.
*
**/

#include "read_writeIO2.h"

int read_writeIO(void)
{

 int subdev = 0; // varies depending on analog/digital port
 int chan = 0; // varies under this application
 int range = 0; // 0 = +/10, still have to use for digital
 int aref = AREF_GROUND; // AREF_GROUND for SE; AREF_DIFF for DE

 int n_chans0;
 int maxdata0;

 double voltage[16];

 comedi_t *device0;
 comedi_t *device1;

 lsampl_t data0;
 lsampl_t bits0 = 0;

 int ret;

 lsampl_t data1;

// comedi0 smart tooling I/O

 device0 = comedi_open("/dev/comedi0");

 n_chans0 = comedi_get_n_channels(device0, subdev);

 for(chan = 0; chan < n_chans0; ++chan){

 maxdata0 = comedi_get_maxdata(device0, subdev, chan);

 comedi_data_read(device0, subdev, chan, range, aref, &data0);

142

 voltage[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,
 chan, range), maxdata0);

 }

// Smart tool position sensors, +/- 10VDC to mm,
// NOTE: Calibration on voltage only

 sawRHslidePos = 1.016 * voltage[0] - .119;
 sawRHtouchPos = 1.016 * voltage[1] - .119;
 sawRVslidePos = 1.016 * voltage[2] - .119;
 sawRVtouchPos = 1.016 * voltage[3] - .119;
 sawLHslidePos = 1.016 * voltage[4] - .119;
 sawLHtouchPos = 1.016 * voltage[5] - .119;
 sawLVslidePos = 1.016 * voltage[6] - .119;
 sawLVtouchPos = 1.016 * voltage[7] - .119;

// Power supply checks for diagnostics and scaling
// --> Calibrated DC voltages

 checkPlusTen = 1.016 * voltage[13] - .119;
 checkMinusTen = 1.016 * voltage[14] - .119;
 checkFive = 1.016 * voltage[15] - .119;

// Digital input

 for(chan = 4; chan < 8; ++chan){

 comedi_data_read(device0, 2, chan,range, aref, &bits0);

 bits[chan] = bits0;

 }

// Reads inputs and assign to outputs.

// toolOnIN = bits[4]; // change for manual vs. auto input
// toolDirIN = bits[5]; // change for manual vs. auto input

 bits[0] = ! toolOnIN; // ! fixes inverted logic.
 bits[1] = ! toolDirIN; // ! fixes inverted logic.

// Digital output

 for(chan = 0; chan < 4; ++chan)

 {

 comedi_data_write(device0, 2, chan, range, aref, bits[chan]);

 }

 comedi_close(device0);

 return 0;
}

143

/**
*
* runbSaw.c
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical, Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
**/

#include "robot.h"

int main(void)

{
 functMoveHome(); // Joint motion move to home for consistent starting position.

 printf("move home ok\n\n");

 functMoveSaw1(); // Joint level move to Saw way point.

 printf("move saw 1 ok\n\n");

 functMoveSaw2(); // Joint level move to Saw way point.

 printf("move saw 2 ok\n\n");

 functMoveSaw3(); // Joint level move to Saw way point.

 printf("move saw 3 ok\n\n");

// BBR Start //

 bWristR(); // Level wrist roll to horizontal before cutting.

 printf("wrist roll ok\n\n");

 bApproachH(); // Cartesian approach to target along EE to contact

 printf("approachH ok\n\n");

 bBackH(); // Cartesian motion along the EE vector to stand off

 printf("backH ok\n\n");

 bApproachV(); // Cartesian approach to target along EE to contact

 printf("approachV ok\n\n");

 bBackV(); // Cartesian motion along the EE vector to stand off

 printf("backV ok\n\n");

 bCut128S(); // Cartesian -Z for time/distance

 printf("cut ok\n\n");

 bRetractS(); // Retract along line to clear area.

144

 printf("retract ok\n\n");

// BBR conclude ///

 functMoveSaw2(); // Joint level move to Saw way point.

 printf("move saw 2 ok\n\n");

 functMoveSaw1(); // Joint level move to Saw way point.

 printf("move saw 1 ok\n\n");

 functMoveHome(); // Joint motion move to home.

 printf("move home ok\n\n");

 functGoIdle(); // Set control state via shared memory to Idle.

 printf("idle ok\n\n");

 return 0;

}

145

/**
*
* runbSocketS1.c
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical, Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
**/

#include "robot.h"

int main(void)

{
 functMoveHome(); // Joint motion move to home for consistent starting position.

 printf("move home ok\n\n");

 sleep(1);

 functMoveSocket(); // Joint level move to Socket task start point.

 printf("move socket ok\n\n");

 sleep(1);

 functMoveSocket1(); // Joint level move to conehead socket task start point.

 printf("move cone1 ok\n\n");

 sleep(1);

// BBR Start //

 bApproachB(); // Cartesian approach to target along EE to contact

 printf("approach ok\n\n");

 sleep(1);

 bUnboltB();

 printf("unbolt ok\n\n");

 bRetractB(); // Retract along line to clear area.

 printf("retract ok\n\n");

 sleep(1);

// BBR End //

 functMoveHome(); // Joint motion move to home for consistent starting position.

 printf("move home ok\n\n");

 sleep(1);

146

 functGoIdle(); // Set control state via shared memory to Idle.

 printf("idle ok\n\n");

 sleep(1);

 return 0;

}

147

/**
*
* bApproachB.c
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical, Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
*
*
**/

/***
*
* Obligatory Acknowledgements for libraries used in this file.
*
* ATIDAQ F/T C Library
* v1.0.1
* Copyright (c) 2001 ATI Industrial Automation
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software")
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**/

/**
*
* Comedilib
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org>
*
* This file may be freely modified, distributed, and combined with
* other software, as long as proper attribution is given in the
* source code.
*
**/

#include "newChild.h"

#include <time.h>
#include <math.h>

148

#include "comediFT.h"

static int biasFlag = 1; // for sampleBias switching to initialize F/T

int read_writeIO(void); // reads comedi0 analog/digital IO

int bApproachB(void)
{

// System level communications

int QUIT = 0;

int shmidR,shmidRW, semid; // IPC idenfitiers
key_t key_memRW,key_memR, key_sem; // keys for shared mem and semphores.
struct sembuf sb; // semaphore control structure

//***

void safe_quit(void)
{
 QUIT=1;
}

//***

//***

int grabSem(int semNum, struct sembuf *sb, int semid)
 //semNum should be zero for this program so far.
{
 sb->sem_op=-1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 // make sure you're using the semaphore when it is necessary.
 {
 perror("semaphore access problem");
 QUIT=1;

 }
 return 1;
}

//***

int retSem(int semNum, struct sembuf *sb, int semid)
 //semNum should be zero for this program so far.
{
 sb->sem_op=1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 {
 perror("semaphore return problem ");
 QUIT=1;
 }
 return 1;
}

//***

// Calculate for each DOF; numbers in inches, used in trajectory calcs.

149

double qZero[6]; // Start point of robotic move
 // (where you are now)

double qNow[6]; // Current calculated point in
 // robotic trajectory

double qNowV[6]; // Incremental velocity for wrist
 // orientations--warning not functional

double qNowOld[6]; // Used for incremental velocity calcs

// Stored instantaneous joint positions

double qJoints[7];

// Following joint positions are ordered as follows:
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,
// wrist roll

double Data[6]; // current manipulator position

int senseContact = 0;

// Loop timing management using nanosleep()

 struct timespec ts;
 ts.tv_sec = 0;
// ts.tv_nsec = 31250000; // 32 hz, not calibrated
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz

// time-stamping variables

 time_t time(time_t *tp);

 time_t now;

// file for data capture

 FILE *fp;

 if ((fp = fopen("approachB_data", "wb"))==NULL)

 {
 printf("Cannot open file.\n");
 exit(1);
 }

// Setup shared memory

 child2();

// Loop Variables

 int i = 0;
 int j = 0;

 double inc = .015625; // .5 in/sec @ 32 hz
 float contactThreshold = -40.00;

 // Set constraints and scaling.

150

 // Note that positions use 1; orientations use 0.

 for (i=0;i<6;i++) //initialize memory
 {
 parmRW->armCtrl.axesConstr[i]=1.0;
 parmRW->armCtrl.axesScal[i]=1.0;
 parmRW->armCtrl.armMode=IDLE;
 parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i];
 if(i>2)
 {
 parmRW->armCtrl.cartesCtrl[i]=0.0;
 }

 }

// Read the starting Cartesian position (where you are now) from
// shared memory.

 for (i = 0; i < 6; i++)
 {
 qZero[i] = parmR->armRightCar[i];
 }

// Read the starting joint angles (where you are now) from shared memory.
// This is for end-effecter orientation calculations.

 for (i = 0; i < 6; i++)
 {
 qJoints[i] = parmR->armRight[i];
 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// Set up Force/Torque Sensor

 char *calfilepath; // name of calibration file
 unsigned short index; // index of calibration in file
 Calibration *cal; // struct containing calibration information
 short sts; // return value from functions

 // ATI F/T sensor variables

 float SampleBias[7]; // measures preloads on sensor before task

 float SampleReading[7]; // raw sensor values as read from comedi1

 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform
 // Translate along/about {x translate, y translate, z translate,
 // x rotate, y rotate, z rotate}

 float FT[6]={0,0,0,0,0,0}; // array to hold the resultant
 // force/torque vector.

 // comedi1 variables

151

 int subdev = 0; // analog port (comedi1 not used for anything
 // other than F/T sensor)
 int range = 0; // 0 = +/10VDC
 int aref = AREF_DIFF; // Differential Input

 int n_chans0;
 int maxdata0;
 comedi_t *device0;
 int chan=0;
 lsampl_t data0;

 device0 = comedi_open("/dev/comedi1");

 n_chans0 = comedi_get_n_channels(device0, subdev);

 for(chan = 0; chan < n_chans0; ++chan)
 {
 maxdata0 = comedi_get_maxdata(device0, subdev, chan);
 comedi_data_read(device0, subdev, chan, range, aref, &data0);

SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,
chan, range), maxdata0);

 }

 // Set up ATI functions

 calfilepath="FT5240.cal";
 index = 1;

 // create Calibration

 cal=createCalibration(calfilepath,index);
 if (cal==NULL) {
 printf("\nSpecified calibration could not be loaded.\n");
 scanf(".");
 return 0;
 }

 // NOTE: BELOW FT SETUP KEPT IN EVENT OF FUTURE USE!

 // Set force units.
 // This step is optional; by default, the units are inherited from
 // the calibration file.

 sts=SetForceUnits(cal,"N");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid force units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set torque units.
 // This step is optional; by default, the units are inherited from the
 // calibration file.

 sts=SetTorqueUnits(cal,"N-m");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid torque units"); return 0;

152

 default: printf("Unknown error"); return 0;
 }

 // Set tool transform.
 // This line is only required if you want to move or rotate the
 // sensor's coordinate system.

 sts=SetToolTransform(cal,SampleTT,"mm","degrees");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid distance units"); return 0;
 case 3: printf("Invalid angle units"); return 0;
 default: printf("Unknown error"); return 0;
 }

// Trajectory begins here.///

 for (j = 0; j < 320; j++) // 320 points = 32hz X 10 seconds

 {

// Check forces/torques for contact; terminate if contact above threshold

 for(chan = 0; chan < n_chans0; ++chan)
 {

 maxdata0 = comedi_get_maxdata(device0, subdev, chan);

 comedi_data_read_delayed(device0, subdev, chan, range, aref,
 &data0, 10000);

 SampleReading[chan] = comedi_to_phys(data0, \
 comedi_get_range(device0, subdev, chan, range), maxdata0);

 }

 // Bias the sensor once only.

 if(biasFlag==1)
 {
 for (i = 0; i < 6; i++)

 {

 SampleBias[i] = SampleReading[i];

 }

 Bias(cal, SampleBias);

 biasFlag = 0;
 }

 // convert a loaded measurement into forces and torques

 ConvertToFT(cal,SampleReading,FT);

// read current Titan position and write to data file

 for (i = 0; i < 6; i++)

153

 {

 Data[i] = parmR->armRightCar[i];

 }

 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f
 %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], FT[2], FT[3], FT[4],
 FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], Data[5]);

// Check forces/torques for contact; terminate if contact above threshold

 if (FT[0] < contactThreshold)

 {
 senseContact = 1;

 printf("FT trip values\n");

 printf("FT:\n");
 printf("%f %f %f %f %f %f\n\n", \
 FT[0], FT[1], FT[2], FT[3], FT[4], FT[5]);

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

 break;
 }

 // Calculate incremental positions once through each loop.

 qNow[0] = qZero[0] + j * inc * cos(qJoints[0] + qJoints[4]); // X

 qNow[1] = qZero[1] + j * inc * sin(qJoints[0] + qJoints[4]); // Y

 qNow[2] = qZero[2] + j * inc * \
 sin(qJoints[1] + qJoints[2] + qJoints[3] -.0174); // Z
 // (note cumulative joint error offset)

 // Don't move the wrist joints

 qNow[3] = qZero[3]; // rX stays the same
 qNow[4] = qZero[4]; // rY stays the same
 qNow[5] = qZero[5]; // rZ stays the same

 // Write joint positions back to shared memory.

 for (i = 0; i < 6; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];

 }

 // Calculate delta position once through each loop (for wrist).
 // WARNING: HELD TO ZERO CHANGE.

 for (i = 0; i < 6; i++)

154

 {
 qNowV[i] = qNow[i] - qNowOld[i];
 }

 // Write joint positions back to shared memory.
 // Position uses qNow; orientation uses qNowV.
 // 0, 1, 2 are qNow for positions, 3, 4, 5 are qNowV for
 // velocities.

 for (i = 0; i < 3; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];
 }

 for (i = 3; i < 6; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i];
 }

 // Flag and write to Cartesian

 grabSem(0,&sb,semid);
 parmRW->armCtrl.updFlag=1;
 parmRW->armCtrl.armMode=CART;

 // Xfer current new positions to old positions

 for (i = 0; i < 6; i++)
 {
 qNowOld[i] = qNow[i];
 }

 // Return semaphore

 retSem(0,&sb, semid);

 // Delay to control loop rate

 nanosleep(&ts, NULL);

 // Loop until j = 320 or trigger

 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// exit mode...clean up and get out

 grabSem(0,&sb,semid);

 parmRW->armCtrl.armMode=IDLE;

 retSem(0,&sb, semid);

// free memory allocated to Calibration structure

 destroyCalibration(cal);

155

 comedi_close(device0);

return 0;

}

156

/**
*
* bApproachH.c
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical, Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
*
*
**/

/***
*
* Obligatory Acknowledgements for libraries used in this file.
*
* ATIDAQ F/T C Library
* v1.0.1
* Copyright (c) 2001 ATI Industrial Automation
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software")
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
***/

/***
* Comedilib
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org>
*
* This file may be freely modified, distributed, and combined with
* other software, as long as proper attribution is given in the
* source code.
*
**/

#include "newChild.h"

#include <time.h>
#include <math.h>

#include "comediFT.h"

157

static int biasFlag = 1; // for sampleBias switching to initialize F/T

int read_writeIO(void); // reads comedi0 analog/digital IO

int bApproachH(void)
{

// System level communications

int QUIT = 0;

int shmidR,shmidRW, semid; // IPC idenfitiers
key_t key_memRW,key_memR, key_sem; // keys for shared mem and semphores.
struct sembuf sb; // semaphore control structure

//***

void safe_quit(void)
{
 QUIT=1;
}

//***

//***

int grabSem(int semNum, struct sembuf *sb, int semid)
 //semNum should be zero for this program so far.
{
 sb->sem_op=-1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 // make sure you're using the semaphore when it is necessary.
 {
 perror("semaphore access problem");
 QUIT=1;

 }
 return 1;
}

//***

int retSem(int semNum, struct sembuf *sb, int semid)
 //semNum should be zero for this program so far.
{
 sb->sem_op=1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 {
 perror("semaphore return problem ");
 QUIT=1;
 }
 return 1;
}

//***

158

// Calculate for each DOF; numbers in inches, used in trajectory calcs.

double qZero[6]; // Start point of robotic move
 // (where you are now)

double qNow[6]; // Current calculated point in
 // robotic trajectory

double qNowV[6]; // Incremental velocity for wrist
 // orientations--warning not functional

double qNowOld[6]; // Used for incremental velocity calcs

// Stored instantaneous joint positions

double qJoints[7];

// Following joint positions are ordered as follows:
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,
// wrist roll

double Data[6]; // current manipulator position

int senseContact = 0;

// Loop timing management using nanosleep()

 struct timespec ts;
 ts.tv_sec = 0;
// ts.tv_nsec = 31250000; // 32 hz, not calibrated
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz

// time-stamping variables

 time_t time(time_t *tp);

 time_t now;

// file for data capture

 FILE *fp;

 if ((fp = fopen("approachH_data", "wb"))==NULL)

 {
 printf("Cannot open file.\n");
 exit(1);
 }

// Setup shared memory

 child2();

// Loop Variables

 int i = 0;
 int j = 0;

 double inc = .015625; // .5 in/sec @ 32 hz
 float contactThreshold = 30.00;

159

 // Set constraints and scaling.
 // Note that positions use 1; orientations use 0.

 for (i=0;i<6;i++) //initialize memory
 {
 parmRW->armCtrl.axesConstr[i]=1.0;
 parmRW->armCtrl.axesScal[i]=1.0;
 parmRW->armCtrl.armMode=IDLE;
 parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i];
 if(i>2)
 {
 parmRW->armCtrl.cartesCtrl[i]=0.0;
 }

 }

// Read the starting Cartesian position (where you are now) from
// shared memory.

 for (i = 0; i < 6; i++)
 {
 qZero[i] = parmR->armRightCar[i];
 }

// Read the starting joint angles (where you are now) from shared memory.
// This is for end-effecter orientation calculations.

 for (i = 0; i < 6; i++)
 {
 qJoints[i] = parmR->armRight[i];
 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// Set up Force/Torque Sensor

 char *calfilepath; // name of calibration file
 unsigned short index; // index of calibration in file
 Calibration *cal; // struct containing calibration information
// unsigned short i; // loop variable used to print results
 short sts; // return value from functions

 // ATI F/T sensor variables

 float SampleBias[7]; // measures preloads on sensor before starting task

 float SampleReading[7]; // raw sensor values as read from comedi1

 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform
 // Translate along/about {x translate, y translate, z translate,
 // x rotate, y rotate, z rotate}

 float FT[6]={0,0,0,0,0,0}; // array to hold the resultant
 // force/torque vector.

160

// comedi1 variables

 int subdev = 0; // analog port (comedi1 not used for anything
 // other than F/T sensor)
 int range = 0; // 0 = +/10VDC
 int aref = AREF_DIFF; // Differential Input

 int n_chans0;
 int maxdata0;
 comedi_t *device0;
 int chan=0;
 lsampl_t data0;

 device0 = comedi_open("/dev/comedi1");

 n_chans0 = comedi_get_n_channels(device0, subdev);

 for(chan = 0; chan < n_chans0; ++chan)
 {
 maxdata0 = comedi_get_maxdata(device0, subdev, chan);
 comedi_data_read(device0, subdev, chan, range, aref, &data0);
 SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,
 chan, range), maxdata0);
 }

 // Set up ATI functions

 calfilepath="FT5240.cal";
 index = 1;

 // create Calibration

 cal=createCalibration(calfilepath,index);
 if (cal==NULL) {
 printf("\nSpecified calibration could not be loaded.\n");
 scanf(".");
 return 0;
 }

 // NOTE: BELOW FT SETUP KEPT IN EVENT OF FUTURE USE!

 // Set force units.
 // This step is optional; by default, the units are inherited from
 // the calibration file.

 sts=SetForceUnits(cal,"N");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid force units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set torque units.
 // This step is optional; by default, the units are inherited from the
 // calibration file.

 sts=SetTorqueUnits(cal,"N-m");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;

161

 case 2: printf("Invalid torque units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set tool transform.
 // This line is only required if you want to move or rotate the
 // sensor's coordinate system.

 sts=SetToolTransform(cal,SampleTT,"mm","degrees");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid distance units"); return 0;
 case 3: printf("Invalid angle units"); return 0;
 default: printf("Unknown error"); return 0;
 }

// Trajectory begins here.///

 for (j = 0; j < 320; j++) // 320 points = 32hz X 10 seconds

 {

// Check forces/torques for contact; terminate if contact above threshold

 for(chan = 0; chan < n_chans0; ++chan)
 {

 maxdata0 = comedi_get_maxdata(device0, subdev, chan);

 comedi_data_read_delayed(device0, subdev, chan, range, aref,
 &data0, 10000);

 SampleReading[chan] = comedi_to_phys(data0, \
 comedi_get_range(device0, subdev, chan, range), maxdata0);

 }

 // Bias the sensor once only.

 if(biasFlag==1)
 {
 for (i = 0; i < 6; i++)

 {

 SampleBias[i] = SampleReading[i];

 }

 Bias(cal, SampleBias);

 biasFlag = 0;
 }

 // convert a loaded measurement into forces and torques

 ConvertToFT(cal,SampleReading,FT);

162

// read current Titan position and write to data file

 for (i = 0; i < 6; i++)

 {

 Data[i] = parmR->armRightCar[i];

 }

 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f
 %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], FT[2], FT[3], FT[4],
 FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], Data[5]);

 // Calculate incremental positions once through each loop.

 qNow[0] = qZero[0] + j * inc * cos(qJoints[0] + qJoints[4]); // X

 qNow[1] = qZero[1] + j * inc * sin(qJoints[0] + qJoints[4]); // Y

 qNow[2] = qZero[2] + j * inc * \
 sin(qJoints[1] + qJoints[2] + qJoints[3] -.0174); // Z
 // (note cumulative joint error offset)

 // Don't move the wrist joints

 qNow[3] = qZero[3]; // rX stays the same
 qNow[4] = qZero[4]; // rY stays the same
 qNow[5] = qZero[5]; // rZ stays the same

 // Write joint positions back to shared memory.

 for (i = 0; i < 6; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];

 }

 // Calculate delta position once through each loop (for wrist).
 // WARNING: NOT FUNCTIONAL AT THIS TIME; HELD TO ZERO CHANGE.

 for (i = 0; i < 6; i++)
 {
 qNowV[i] = qNow[i] - qNowOld[i];
 }

 // Write joint positions back to shared memory.

 for (i = 0; i < 3; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];
 }

 for (i = 3; i < 6; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i];
 }

163

 // Flag and write to Cartesian

 grabSem(0,&sb,semid);
 parmRW->armCtrl.updFlag=1;
 parmRW->armCtrl.armMode=CART;

 // Xfer current new positions to old positions

 for (i = 0; i < 6; i++)
 {
 qNowOld[i] = qNow[i];
 }

 // Return semaphore

 retSem(0,&sb, semid);

 // Delay to control loop rate

 nanosleep(&ts, NULL);

// Check forces/torques for contact; terminate if contact above threshold

 if (((fabs(FT[0])) > contactThreshold) || ((fabs(FT[1])) > contactThreshold) ||
((fabs(FT[2])) > contactThreshold))

 {
 senseContact = 1;

 printf("FT trip values\n");

 printf("FT:\n");
 printf("%f %f %f %f %f %f\n\n", \
 FT[0], FT[1], FT[2], FT[3], FT[4], FT[5]);

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

 j = 320;
 }

 // Loop

 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// exit mode...clean up and get out

 grabSem(0,&sb,semid);

 parmRW->armCtrl.armMode=IDLE;

164

 retSem(0,&sb, semid);

// free memory allocated to Calibration structure

 destroyCalibration(cal);

 comedi_close(device0);

return 0;

}

165

/**
*
* bApproachV.c
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical, Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
*
*
**/

/***
*
* Obligatory Acknowledgements for libraries used in this file.
*
* ATIDAQ F/T C Library
* v1.0.1
* Copyright (c) 2001 ATI Industrial Automation
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software")
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
***/

/**
* Comedilib
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org>
*
* This file may be freely modified, distributed, and combined with
* other software, as long as proper attribution is given in the
* source code.
*
**/

#include "newChild.h"

#include <time.h>
#include <math.h>

#include "comediFT.h"

166

static int biasFlag = 1; // for sampleBias switching initializing the F/T

int read_writeIO(void); // reads comedi0 analog/digital IO

int bApproachV(void)
{

// System level communications

int QUIT = 0;

 int shmidR,shmidRW, semid; // IPC idenfitiers
 key_t key_memRW,key_memR, key_sem;// keys for shared mem and semphores.
 struct sembuf sb; // semaphore control structure

//***

void safe_quit(void)
{
 QUIT=1;
}

//***

//***

int grabSem(int semNum, struct sembuf *sb, int semid)
 //semNum should be zero for this program so far.
{
 sb->sem_op=-1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 // make sure you're using the semaphore when it is necessary.
 {
 perror("semaphore access problem");
 QUIT=1;

 }
 return 1;
}

//***

int retSem(int semNum, struct sembuf *sb, int semid)
 //semNum should be zero for this program so far.
{
 sb->sem_op=1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 {
 perror("semaphore return problem ");
 QUIT=1;
 }
 return 1;
}

//***

// Calculate for each DOF; numbers in inches, used in trajectory calcs.

167

double qZero[6]; // Start point of robotic move
 // (where you are now)

double qNow[6]; // Current calculated point in
 // robotic trajectory

double qNowV[6]; // Incremental velocity for wrist
 // orientations--warning not functional

double qNowOld[6]; // Used for incremental velocity calcs

// Stored instantaneous joint positions

extern double qJoints[7];

// Following joint positions are ordered as follows:
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,
// wrist roll

 double Data[6]; // current manipulator position

 int senseContact = 0;

// Loop timing management using nanosleep()

 struct timespec ts;
 ts.tv_sec = 0;
// ts.tv_nsec = 31250000; // 32 hz, not calibrated
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz

// time-stamping variables

 time_t time(time_t *tp);

 time_t now;

// file for data capture

 FILE *fp;

 if ((fp = fopen("approachV_data", "wb"))==NULL)

 {
 printf("Cannot open file.\n");
 exit(1);
 }

// Setup shared memory

 child2();

// Loop Variables

 int i = 0;
 int j = 0;

 double inc = .015625; // .5 in/sec @ 32 hz
 float contactThreshold = .50;

 // Set constraints and scaling.
 // Note that positions use 1; orientations use 0.

168

 for (i=0;i<6;i++) //initialize memory
 {
 parmRW->armCtrl.axesConstr[i]=1.0;
 parmRW->armCtrl.axesScal[i]=1.0;
 parmRW->armCtrl.armMode=IDLE;
 parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i];
 if(i>2)
 {
 parmRW->armCtrl.cartesCtrl[i]=0.0;
 }

 }

// Read the starting Cartesian position (where you are now) from
// shared memory.

 for (i = 0; i < 6; i++)
 {
 qZero[i] = parmR->armRightCar[i];
 }

// Read the starting joint angles (where you are now) from shared memory.
// This is for end-effecter orientation calculations.

 for (i = 0; i < 6; i++)
 {
 qJoints[i] = parmR->armRight[i];
 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// Set up Force/Torque Sensor

 char *calfilepath; // name of calibration file
 unsigned short index; // index of calibration in file (second parameter;
 // default = 1)
 Calibration *cal; // struct containing calibration information
// unsigned short i; // loop variable used to print results
 short sts; // return value from functions

 // ATI F/T sensor variables

 float SampleBias[7]; // measures preloads on sensor before starting task

 float SampleReading[7]; // raw sensor values as read from comedi1

 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform
 // Translate along/about {x translate, y translate, z translate,
 // x rotate, y rotate, z rotate}

 float FT[6]={0,0,0,0,0,0}; // array to hold the resultant
 // force/torque vector.

169

 // comedi1 variables

 int subdev = 0; // analog port (comedi1 not used for anything
 // other than F/T sensor)
 int range = 0; // 0 = +/10VDC
 int aref = AREF_DIFF; // Differential Input

 int n_chans0;
 int maxdata0;
 comedi_t *device0;
 int chan=0;
 lsampl_t data0;

 device0 = comedi_open("/dev/comedi1");

 n_chans0 = comedi_get_n_channels(device0, subdev);

 for(chan = 0; chan < n_chans0; ++chan)
 {
 maxdata0 = comedi_get_maxdata(device0, subdev, chan);
 comedi_data_read(device0, subdev, chan, range, aref, &data0);
 SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,
chan, range), maxdata0);
 }

 // Set up ATI functions

 calfilepath="FT5240.cal";
 index = 1;

 // create Calibration

 cal=createCalibration(calfilepath,index);
 if (cal==NULL) {
 printf("\nSpecified calibration could not be loaded.\n");
 scanf(".");
 return 0;
 }

 // NOTE: BELOW FT SETUP KEPT IN EVENT OF FUTURE USE!

 // Set force units.
 // This step is optional; by default, the units are inherited from
 // the calibration file.

 sts=SetForceUnits(cal,"N");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid force units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set torque units.
 // This step is optional; by default, the units are inherited from the
 // calibration file.

 sts=SetTorqueUnits(cal,"N-m");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;

170

 case 2: printf("Invalid torque units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set tool transform.
 // This line is only required if you want to move or rotate the
 // sensor's coordinate system.

 sts=SetToolTransform(cal,SampleTT,"mm","degrees");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid distance units"); return 0;
 case 3: printf("Invalid angle units"); return 0;
 default: printf("Unknown error"); return 0;
 }

// Trajectory begins here.///

 for (j = 0; j < 640; j++) // 640 points = 32hz X 20 seconds

 {

// Check forces/torques for contact; terminate if contact above threshold

 for(chan = 0; chan < n_chans0; ++chan)
 {

 maxdata0 = comedi_get_maxdata(device0, subdev, chan);

 comedi_data_read_delayed(device0, subdev, chan, range, aref,
 &data0, 10000);

 SampleReading[chan] = comedi_to_phys(data0, \
 comedi_get_range(device0, subdev, chan, range), maxdata0);

 }

 // Bias the sensor once only.

 if(biasFlag==1)
 {
 for (i = 0; i < 6; i++)

 {

 SampleBias[i] = SampleReading[i];

 }

 Bias(cal, SampleBias);

 biasFlag = 0;
 }

 // convert a loaded measurement into forces and torques

 ConvertToFT(cal,SampleReading,FT);

// read current Titan position and write to data file

171

 for (i = 0; i < 6; i++)

 {

 Data[i] = parmR->armRightCar[i];

 }

 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f
 %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], FT[2], FT[3], FT[4],
 FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], Data[5]);

 // Calculate incremental positions once through each loop.

 qNow[0] = qZero[0]; // X

 qNow[1] = qZero[1]; // Y

 qNow[2] = qZero[2] - j * (inc/4.0); // Z
 // (note cumulative joint error offset)

 // Don't move the wrist joints

 qNow[3] = qZero[3]; // rX stays the same
 qNow[4] = qZero[4]; // rY stays the same
 qNow[5] = qZero[5]; // rZ stays the same

 // Write joint positions back to shared memory.

 for (i = 0; i < 6; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];

 }

 // Calculate delta position once through each loop (for wrist).
 // WARNING: NOT FUNCTIONAL AT THIS TIME; HELD TO ZERO CHANGE.

 for (i = 0; i < 6; i++)
 {
 qNowV[i] = qNow[i] - qNowOld[i];
 }

 // Write joint positions back to shared memory.

 for (i = 0; i < 3; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];
 }

 for (i = 3; i < 6; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i];
 }

 // Flag and write to Cartesian

 grabSem(0,&sb,semid);
 parmRW->armCtrl.updFlag=1;
 parmRW->armCtrl.armMode=CART;

172

 // Xfer current new positions to old positions

 for (i = 0; i < 6; i++)
 {
 qNowOld[i] = qNow[i];
 }

 // Return semaphore

 retSem(0,&sb, semid);

 // Delay to control loop rate

// Check forces/torques for contact; terminate if contact above threshold

 if (FT[4] > contactThreshold)

 {
 senseContact = 1;

 printf("FT trip values\n");

 printf("FT:\n");
 printf("%f %f %f %f %f %f\n\n", \
 FT[0], FT[1], FT[2], FT[3], FT[4], FT[5]);

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

 j = 640;
 }

 nanosleep(&ts, NULL);

 // Loop until j = 640

 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// exit mode...clean up and get out

 grabSem(0,&sb,semid);

 parmRW->armCtrl.armMode=IDLE;

 retSem(0,&sb, semid);

// free memory allocated to Calibration structure

 destroyCalibration(cal);

173

 comedi_close(device0);

return 0;

}

174

/**
*
* bBackH.c
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical, Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
**/

/***
*
* Obligatory Acknowledgements for libraries used in this file.
*
* ATIDAQ F/T C Library
* v1.0.1
* Copyright (c) 2001 ATI Industrial Automation
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software")
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**/

/**
* Comedilib
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org>
*
* This file may be freely modified, distributed, and combined with
* other software, as long as proper attribution is given in the
* source code.
*
**/

#include "newChild.h"

#include <time.h>
#include <math.h>

#include "comediFT.h"

175

static int biasFlag = 1; // for sampleBias switching initializing F/T

int read_writeIO(void); // reads comedi0 analog/digital IO

int bBackH(void)
{

int QUIT = 0;

 int shmidR,shmidRW, semid; // IPC idenfitiers
 key_t key_memRW,key_memR, key_sem; // keys for shared mem and semphores.
 struct sembuf sb; // semaphore control structure

 //**

void safe_quit(void)
{
 QUIT=1;
}

//***

//***

int grabSem(int semNum, struct sembuf *sb, int semid)
//semNum should be zero for this program so far.
{
 sb->sem_op=-1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 // make sure you're using the semaphore when it is necessary.
 {
 perror("semaphore access problem");
 QUIT=1;

 }
 return 1;
}

//***

int retSem(int semNum, struct sembuf *sb, int semid)
//semNum should be zero for this program so far.
{
 sb->sem_op=1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 {
 perror("semaphore return problem ");
 QUIT=1;
 }
 return 1;
}

//***

// Calculate for each DOF; numbers in inches, used in trajectory calcs.

double qZero[6]; // Start point of robotic move
 // (where you are now)

176

double qNow[6]; // Current calculated point in
 // robotic trajectory

double qNowV[6]; // Incremental velocity for wrist
 // orientations

double qNowOld[6]; // Used for incremental velocity calcs

// Stored instantaneous joint positions

double qJoints[7];

// Following joint positions are ordered as follows:
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,
// wrist roll

double Data[6]; // current manipulator position

// Position increment instead of time but run at sample time.

int senseContact = 0;

// Loop timing management using nanosleep()

 struct timespec ts;
 ts.tv_sec = 0;
// ts.tv_nsec = 31250000; // set to 32 hz
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz

// time-stamping variables

 time_t time(time_t *tp);

 time_t now;

// file for data capture

 FILE *fp;

 if ((fp = fopen("backH_data", "wb"))==NULL)

 {
 printf("Cannot open file.\n");
 exit(1);
 }

// Setup shared memory

 child2();

// Set up Force/Torque Sensor

 char *calfilepath; // name of calibration file
 unsigned short index; // index of calibration in file
 Calibration *cal; // struct containing calibration information
 short sts; // return value from functions

177

// ATI F/T sensor variables

 float SampleBias[7]; // measures preloads on sensor before starting

 float SampleReading[7]; // raw sensor values as read from comedi1

 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform
 // Translate along/about {x translate, y translate, z translate,
 // x rotate, y rotate, z rotate}

 float FT[6]={0,0,0,0,0,0}; // array to hold the resultant
 // force/torque vector.

 // comedi1 variables

 int subdev = 0; // analog port (comedi1 not used for anything
 // other than F/T sensor)
 int range = 0; // 0 = +/10VDC
 int aref = AREF_DIFF; // Differential Input

 int n_chans0;
 int maxdata0;
 comedi_t *device0;
 int chan=0;
 lsampl_t data0;

 device0 = comedi_open("/dev/comedi1");

 n_chans0 = comedi_get_n_channels(device0, subdev);

 for(chan = 0; chan < n_chans0; ++chan)
 {
 maxdata0 = comedi_get_maxdata(device0, subdev, chan);
 comedi_data_read(device0, subdev, chan, range, aref, &data0);
 SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,
 chan, range), maxdata0);
 }

// Set up ATI functions

 calfilepath="FT5240.cal";
 index = 1;

// create Calibration

 cal=createCalibration(calfilepath,index);
 if (cal==NULL) {
 printf("\nSpecified calibration could not be loaded.\n");
 scanf(".");
 return 0;
 }

 // NOTE: BELOW FT SETUP KEPT IN EVENT OF FUTURE USE!

 // Set force units.
 // This step is optional; by default, the units are inherited from
 // the calibration file.

 sts=SetForceUnits(cal,"N");
 switch (sts) {
 case 0: break; // successful completion

178

 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid force units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set torque units.
 // This step is optional; by default, the units are inherited from the
 // calibration file.

 sts=SetTorqueUnits(cal,"N-m");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid torque units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set tool transform.
 // This line is only required if you want to move or rotate the
 // sensor's coordinate system.

 sts=SetToolTransform(cal,SampleTT,"mm","degrees");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid distance units"); return 0;
 case 3: printf("Invalid angle units"); return 0;
 default: printf("Unknown error"); return 0;
 }

// Variables

 int i = 0;
 int j = 0;
 int k = 16;

 double inc = .015625; // .5 in/sec @ 32 hz
 float contactThreshold = 20.00;

 // Set constraints and scaling. Note that positions use 1;
 // orientations use 0.

 for (i=0;i<6;i++) //initialize memory
 {
 parmRW->armCtrl.axesConstr[i]=1.0;
 parmRW->armCtrl.axesScal[i]=1.0;
 parmRW->armCtrl.armMode=IDLE;
 parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i];
 if(i>2)
 {
 parmRW->armCtrl.cartesCtrl[i]=0.0;
 }

 }

// Read the starting Cartesian position (where you are now) from
// shared memory.

 for (i = 0; i < 6; i++)
 {

179

 qZero[i] = parmR->armRightCar[i];
 }

// Read the starting joint angles (where you are now) from shared memory.
// This is for end-effecter orientation calculations.

 for (i = 0; i < 6; i++)
 {
 qJoints[i] = parmR->armRight[i];
 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// Trajectory begins here.///

 for (j = 0; j < 64; j++) // back away from pipe after contact
 {

 // Check forces/torques for contact; terminate if contact above
 // threshold and minimum distance is reached.

 for(chan = 0; chan < n_chans0; ++chan)
 {

 maxdata0 = comedi_get_maxdata(device0, subdev, chan);

 comedi_data_read_delayed(device0, subdev, chan, range, aref, &data0,
 10000);

 SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0,
 subdev, chan, range), maxdata0);

 }

 // Bias the sensor once only.

 if(biasFlag==1)
 {
 for (i = 0; i < 6; i++)

 {

 SampleBias[i] = SampleReading[i];

 }

 Bias(cal, SampleBias);

 biasFlag = 0;
 }

 // convert a loaded measurement into forces and torques

 ConvertToFT(cal,SampleReading,FT);

// read current Titan position and write to data file

180

 for (i = 0; i < 6; i++)

 {

 Data[i] = parmR->armRightCar[i];

 }

 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f
 %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], FT[2], FT[3], FT[4],
 FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], Data[5]);

 // Calculate incremental positions once through each loop.

 qNow[0] = qZero[0] - j * inc * cos(qJoints[0] + qJoints[4]); // X

 qNow[1] = qZero[1] - j * inc * sin(qJoints[0] + qJoints[4]); // Y

 qNow[2] = qZero[2] - j * inc * \
 sin(qJoints[1] + qJoints[2] + qJoints[3] -.0174); // Z
 // (note cumulative joint error offset)

 // Don't move the wrist joints

 qNow[3] = qZero[3]; // rX stays the same
 qNow[4] = qZero[4]; // rY stays the same
 qNow[5] = qZero[5]; // rZ stays the same

 // Write joint positions back to shared memory.

 for (i = 0; i < 6; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];

 }

 // Calculate delta position once through each loop (for wrist).

 for (i = 0; i < 6; i++)
 {
 qNowV[i] = qNow[i] - qNowOld[i];
 }

 // Write joint positions back to shared memory.
 // Position uses qNow; orientation uses qNowV.
 // 0, 1, 2 are qNow for positions;
 // 3, 4, 5 are qNowV for velocities.

 for (i = 0; i < 3; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];
 }

 for (i = 3; i < 6; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i];
 }

181

 // Flag and write to Cartesian

 grabSem(0,&sb,semid);
 parmRW->armCtrl.updFlag=1;
 parmRW->armCtrl.armMode=CART;

 // Xfer current new positions to old positions

 for (i = 0; i < 6; i++)
 {
 qNowOld[i] = qNow[i];
 }

 // Return semaphore

 retSem(0,&sb, semid);

// Check forces/torques for contact; terminate if contact above threshold

 if (FT[0] > contactThreshold)

 {

 if (senseContact == 0)

 {

 printf("FT trip values\n");

 printf("FT:\n");
 printf("%d %f %f %f %f %f %f\n\n", \
 j, FT[0], FT[1], FT[2], FT[3], FT[4], FT[5]);

 // timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

 senseContact = 1;

 }

 if (k == 0)

 {

 j = 64;

 }

 k = k - 1;

 }

 // Delay to control loop rate

 nanosleep(&ts, NULL);

 // Loop

182

 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// exit mode...clean up and get out

grabSem(0,&sb,semid);
parmRW->armCtrl.armMode=IDLE;
retSem(0,&sb, semid);

}

183

/**
*
* bBackV.c
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical, Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
**/

/***
*
* Obligatory Acknowledgements for libraries used in this file.
*
* ATIDAQ F/T C Library
* v1.0.1
* Copyright (c) 2001 ATI Industrial Automation
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software")
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
***/

/**
* Comedilib
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org>
*
* This file may be freely modified, distributed, and combined with
* other software, as long as proper attribution is given in the
* source code.
*
***/

#include "newChild.h"

#include <time.h>
#include <math.h>

#include "comediFT.h"

184

static int biasFlag = 1; // for sampleBias switching initializing F/T

int read_writeIO(void); // reads comedi0 analog/digital IO

int bBackV(void)
{

int QUIT = 0;

 int shmidR,shmidRW, semid; // IPC idenfitiers
 key_t key_memRW,key_memR, key_sem; // keys for shared mem and semphores.
 struct sembuf sb; // semaphore control structure

 //**

void safe_quit(void)
{
 QUIT=1;
}

//***

//***

int grabSem(int semNum, struct sembuf *sb, int semid)
//semNum should be zero for this program so far.
{
 sb->sem_op=-1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 // make sure you're using the semaphore when it is necessary.
 {
 perror("semaphore access problem");
 QUIT=1;

 }
 return 1;
}

//***

int retSem(int semNum, struct sembuf *sb, int semid)
//semNum should be zero for this program so far.
{
 sb->sem_op=1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 {
 perror("semaphore return problem ");
 QUIT=1;
 }
 return 1;
}

//***

185

// Calculate for each DOF; numbers in inches, used in trajectory calcs.

double qZero[6]; // Start point of robotic move
 // (where you are now)

double qNow[6]; // Current calculated point in
 // robotic trajectory

double qNowV[6]; // Incremental velocity for wrist
 // orientations

double qNowOld[6]; // Used for incremental velocity calcs

// Stored instantaneous joint positions

double qJoints[7];

// Following joint positions are ordered as follows:
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,
// wrist roll

 double Data[6]; // current manipulator position

// Position increment instead of time but run at sample time.

 int senseContact = 0;

// Loop timing management using nanosleep()

 struct timespec ts;
 ts.tv_sec = 0;
// ts.tv_nsec = 31250000; // set to 32 hz
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz

// time-stamping variables

 time_t time(time_t *tp);

 time_t now;

// file for data capture

 FILE *fp;

 if ((fp = fopen("backV_data", "wb"))==NULL)

 {
 printf("Cannot open file.\n");
 exit(1);
 }

// Setup shared memory

 child2();

186

// Set up Force/Torque Sensor

 char *calfilepath; // name of calibration file
 unsigned short index; // index of calibration in file
 Calibration *cal; // struct containing calibration information

 short sts; // return value from functions

// ATI F/T sensor variables

 float SampleBias[7]; // measures preloads on sensor before starting

 float SampleReading[7]; // raw sensor values as read from comedi1

 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform
 // Translate along/about {x translate, y translate, z translate,
 // x rotate, y rotate, z rotate}

 float FT[6]={0,0,0,0,0,0}; // array to hold the resultant
 // force/torque vector.

 // comedi1 variables

 int subdev = 0; // analog port (comedi1 not used for anything
 // other than F/T sensor)
 int range = 0; // 0 = +/10VDC
 int aref = AREF_DIFF; // Differential Input

 int n_chans0;
 int maxdata0;
 comedi_t *device0;
 int chan=0;
 lsampl_t data0;

 device0 = comedi_open("/dev/comedi1");

 n_chans0 = comedi_get_n_channels(device0, subdev);

 for(chan = 0; chan < n_chans0; ++chan)
 {
 maxdata0 = comedi_get_maxdata(device0, subdev, chan);
 comedi_data_read(device0, subdev, chan, range, aref, &data0);
 SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,
 chan, range), maxdata0);
 }

 // Set up ATI functions

 calfilepath="FT5240.cal";
 index = 1;

 // create Calibration

 cal=createCalibration(calfilepath,index);
 if (cal==NULL) {
 printf("\nSpecified calibration could not be loaded.\n");
 scanf(".");
 return 0;
 }

187

 // NOTE: BELOW FT SETUP KEPT IN EVENT OF FUTURE USE!

 // Set force units.
 // This step is optional; by default, the units are inherited from
 // the calibration file.

 sts=SetForceUnits(cal,"N");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid force units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set torque units.
 // This step is optional; by default, the units are inherited from the
 // calibration file.

 sts=SetTorqueUnits(cal,"N-m");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid torque units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set tool transform.
 // This line is only required if you want to move or rotate the
 // sensor's coordinate system.

 sts=SetToolTransform(cal,SampleTT,"mm","degrees");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid distance units"); return 0;
 case 3: printf("Invalid angle units"); return 0;
 default: printf("Unknown error"); return 0;
 }

// Variables

 int i = 0;
 int j = 0;
 int k = 32;

 double inc = .015625; // .5 in/sec @ 32 hz
 float contactThreshold = 0.00; //

 // Set constraints and scaling. Note that positions use 1; orientations
 // use 0.

 for (i=0;i<6;i++) //initialize memory
 {
 parmRW->armCtrl.axesConstr[i]=1.0;
 parmRW->armCtrl.axesScal[i]=1.0;
 parmRW->armCtrl.armMode=IDLE;
 parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i];
 if(i>2)
 {

188

 parmRW->armCtrl.cartesCtrl[i]=0.0;
 }

 }

// Read the starting Cartesian position (where you are now) from
// shared memory.

 for (i = 0; i < 6; i++)
 {
 qZero[i] = parmR->armRightCar[i];
 }

// Read the starting joint angles (where you are now) from shared memory.
// This is for end-effecter orientation calculations.

 for (i = 0; i < 6; i++)
 {
 qJoints[i] = parmR->armRight[i];
 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// Trajectory begins here.///

 for (j = 0; j < 320; j++) // back away from pipe after contact

 {

// Check forces/torques for contact; terminate if contact above threshold

 for(chan = 0; chan < n_chans0; ++chan)
 {

 maxdata0 = comedi_get_maxdata(device0, subdev, chan);

 comedi_data_read_delayed(device0, subdev, chan, range, aref, &data0,
 10000);

 SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0,
 subdev, chan, range), maxdata0);

 }

 // Bias the sensor once only.

 if(biasFlag==1)
 {
 for (i = 0; i < 6; i++)

 {

 SampleBias[i] = SampleReading[i];

 }

 Bias(cal, SampleBias);

189

 biasFlag = 0;
 }

 // convert a loaded measurement into forces and torques

 ConvertToFT(cal,SampleReading,FT);

// read current Titan position and write to data file

 for (i = 0; i < 6; i++)

 {

 Data[i] = parmR->armRightCar[i];

 }

 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f
 %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], FT[2], FT[3], FT[4],
 FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], Data[5]);

 // Calculate incremental positions once through each loop.

 qNow[0] = qZero[0]; // X stays the same

 qNow[1] = qZero[1]; // Y stays the same

 qNow[2] = qZero[2] + j * (inc/4.0); // Z moves positive

 // Don't move the wrist joints

 qNow[3] = qZero[3]; // rX stays the same
 qNow[4] = qZero[4]; // rY stays the same
 qNow[5] = qZero[5]; // rZ stays the same

 // Write joint positions back to shared memory.

 for (i = 0; i < 6; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];

 }

 // Calculate delta position once through each loop (for wrist).

 for (i = 0; i < 6; i++)
 {
 qNowV[i] = qNow[i] - qNowOld[i];
 }

 // Write joint positions back to shared memory.
 // Position uses qNow; orientation uses qNowV.
 // 0, 1, 2 are qNow for positions, 3, 4, 5 are qNowV for
 // velocities.

 for (i = 0; i < 3; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];
 }

190

 for (i = 3; i < 6; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i];
 }

 // Flag and write to Cartesian

 grabSem(0,&sb,semid);
 parmRW->armCtrl.updFlag=1;
 parmRW->armCtrl.armMode=CART;

 // Xfer current new positions to old positions

 for (i = 0; i < 6; i++)
 {
 qNowOld[i] = qNow[i];
 }

 // Return semaphore

 retSem(0,&sb, semid);

// Check forces/torques for contact
// Terminate if contact above threshold and momentum goes to 0

 if (FT[4] < contactThreshold)

 {
 if (senseContact == 0)

 {

 printf("FT trip values\n");

 printf("FT:\n");
 printf("%d %f %f %f %f %f %f\n\n", \
 j, FT[0], FT[1], FT[2], FT[3], FT[4], FT[5]);

 // timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

 senseContact = 1;

 }

 if (k == 0)

 {

 j = 320;

 }

 k = k - 1; // Simulates momentum to guarantee FT sensor
 // clear of contact

191

 }

 // Delay to control loop rate

 nanosleep(&ts, NULL);

 // Loop

 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// exit mode...clean up and get out

grabSem(0,&sb,semid);
parmRW->armCtrl.armMode=IDLE;
retSem(0,&sb, semid);

return 0;

}

192

/**
*
* bRetractB.c
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical,
Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
**/

#include "newChild.h"

#include <time.h>
#include <math.h>

int read_writeIO(void); // reads comedi0 analog/digital IO

int bRetractB(void)
{

int QUIT = 0;

 int shmidR,shmidRW, semid; // IPC idenfitiers
 key_t key_memRW,key_memR, key_sem; // keys for shared mem and semphores.
 struct sembuf sb; // semaphore control structure

 //**

void safe_quit(void)
{
 QUIT=1;
}

//***

//***

int grabSem(int semNum, struct sembuf *sb, int semid)
//semNum should be zero for this program.
{
 sb->sem_op=-1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)

 {
 perror("semaphore access problem");
 QUIT=1;

 }
 return 1;
}

193

//***

int retSem(int semNum, struct sembuf *sb, int semid)
//semNum should be zero for this program.

{
 sb->sem_op=1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 {
 perror("semaphore return problem ");
 QUIT=1;
 }
 return 1;
}

//***

// Calculate for each DOF; numbers in inches, used in trajectory calcs.

double qZero[6]; // Start point of robotic move
 // (where you are now)

double qNow[6]; // Current calculated point in
 // robotic trajectory

double qNowV[6]; // Incremental velocity for wrist
 // orientations

double qNowOld[6]; // Used for incremental velocity calcs

// Stored instantaneous joint positions

double qJoints[7];

// Following joint positions are ordered as follows:
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,
// wrist roll

double Data[6]; // variable for data capture.

// Digital outputs for smart tool from comedi0

extern int toolOnIN; // tool control variables from read_writeIO()
extern int toolDirIN;

extern int toolOn; // toolOn = 1 is on; use as either on/off or PWM.
extern int toolDir; // toolDir = 0 is forward as default; reverse is 1.

// Loop timing management using nanosleep()

 struct timespec ts;
 ts.tv_sec = 0;
// ts.tv_nsec = 31250000; // set to 32 hz
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz

// time-stamping variables

 time_t time(time_t *tp);

 time_t now;

194

// file for data capture

 FILE *fp;

 if ((fp = fopen("retract_data", "wb"))==NULL)

 {
 printf("Cannot open file.\n");
 exit(1);
 }

// Setup shared memory

 child2();

// Variables

 int i = 0;
 int j = 0;

 double inc = .015625; // .5 in/sec @ 32 hz

 // Set constraints and scaling. Note that positions use 1; orientations use 0.

 for (i=0;i<6;i++) //initialize memory
 {
 parmRW->armCtrl.axesConstr[i]=1.0;
 parmRW->armCtrl.axesScal[i]=1.0;
 parmRW->armCtrl.armMode=IDLE;
 parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i];
 if(i>2)
 {
 parmRW->armCtrl.cartesCtrl[i]=0.0;
 }

 }

// Read the starting Cartesian position (where you are now) from
// shared memory.

 for (i = 0; i < 6; i++)
 {
 qZero[i] = parmR->armRightCar[i];
 }

// Read the starting joint angles (where you are now) from shared memory.
// This is for end-effecter orientation calculations.

 for (i = 0; i < 6; i++)
 {
 qJoints[i] = parmR->armRight[i];
 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// Trajectory begins here.///

195

 for (j = 0; j < 256; j++) // 256 points = 32hz X 8 seconds
 // move enough to clear task

 {

// read current Titan position and write to data file

 for (i = 0; i < 6; i++)

 {

 Data[i] = parmR->armRightCar[i];

 }

 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f\n", j, toolOnIN,
 Data[0], Data[1], Data[2], Data[3], Data[4], Data[5]);

 // Calculate incremental positions once through each loop.

 qNow[0] = qZero[0] - j * inc * cos(qJoints[0] + qJoints[4]); // X

 qNow[1] = qZero[1] - j * inc * sin(qJoints[0] + qJoints[4]); // Y

 // Don't move the wrist joints or Z motion.

 qNow[2] = qZero[2]; // Z stays the same
 qNow[3] = qZero[3]; // rX stays the same
 qNow[4] = qZero[4]; // rY stays the same
 qNow[5] = qZero[5]; // rZ stays the same

 // Write joint positions back to shared memory.

 for (i = 0; i < 6; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];

 }

 // Calculate delta position once through each loop (for wrist).

 for (i = 0; i < 6; i++)
 {
 qNowV[i] = qNow[i] - qNowOld[i];
 }

 // Write joint positions back to shared memory.
 // Position uses qNow; orientation uses qNowV.
 // 0, 1, 2 are qNow for positions, 3, 4, 5 are qNowV for velocities.

 for (i = 0; i < 3; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];
 }

 for (i = 3; i < 6; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i];
 }

196

 // Flag and write to Cartesian

 grabSem(0,&sb,semid);
 parmRW->armCtrl.updFlag=1;
 parmRW->armCtrl.armMode=CART;

 // Xfer current new positions to old positions

 for (i = 0; i < 6; i++)
 {
 qNowOld[i] = qNow[i];
 }

 // Return semaphore

 retSem(0,&sb, semid);

 // Delay to control loop rate

 nanosleep(&ts, NULL);

 // Loop //

 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// exit mode...clean up and get out

grabSem(0,&sb,semid);
parmRW->armCtrl.armMode=IDLE;
retSem(0,&sb, semid);

}

197

/**
*
* bRetractS.c
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical, Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
**/

#include "newChild.h"

#include <time.h>
#include <math.h>

#include "comediFT.h"

int read_writeIO(void); // reads comedi0 analog/digital IO

int bRetractS(void)
{

int QUIT = 0;

 int shmidR,shmidRW, semid; // IPC idenfitiers
 key_t key_memRW,key_memR, key_sem; // keys for shared mem and semphores.
 struct sembuf sb; // semaphore control structure

 //**

void safe_quit(void)
{
 QUIT=1;
}

//***

//***

int grabSem(int semNum, struct sembuf *sb, int semid)
//semNum should be zero for this program.
{
 sb->sem_op=-1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 // make sure you're using the semaphore when it is necessary.
 {
 perror("semaphore access problem");
 QUIT=1;

 }
 return 1;
}

//***

198

int retSem(int semNum, struct sembuf *sb, int semid)
//semNum should be zero for this program so far.
{
 sb->sem_op=1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 {
 perror("semaphore return problem ");
 QUIT=1;
 }
 return 1;
}

//**

// Calculate for each DOF; numbers in inches, used in trajectory calcs.

extern double qZero[6]; // Start point of robotic move
 // (where you are now)

extern double qNow[6]; // Current calculated point in
 // robotic trajectory

double qNowV[6]; // Incremental velocity for wrist
 // orientations

double qNowOld[6]; // Used for incremental velocity calcs

// Stored instantaneous joint positions

extern double qJoints[7];

// Following joint positions are ordered as follows:
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,
// wrist roll

 double Data[6]; // current manipulator position

// Digital outputs for smart tool from comedi0

 extern int toolOnIN; // tool control variables from read_writeIO()
 extern int toolDirIN;

 extern int toolOn; // toolOn = 1 is on; use as either on/off or PWM.
 extern int toolDir; // toolDir = 0 is forward as default; reverse is 1.

// Loop timing management using nanosleep()

 struct timespec ts;
 ts.tv_sec = 0;
// ts.tv_nsec = 31250000; // set to 32 hz
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz

// time-stamping variables

 time_t time(time_t *tp);

 time_t now;

199

// file for data capture

 FILE *fp;

 if ((fp = fopen("retract_data", "wb"))==NULL)

 {
 printf("Cannot open file.\n");
 exit(1);
 }

// Setup shared memory

 child2();

// Set up Force/Torque Sensor

 char *calfilepath; // name of calibration file
 unsigned short index; // index of calibration in file (second parameter;
default = 1)
 Calibration *cal; // struct containing calibration information
 short sts; // return value from functions

 // ATI F/T sensor variables--Note: Many for future use!

 float SampleBias[7]; // measures preloads on sensor before starting task

 float SampleReading[7]; // raw sensor values as read from comedi1

 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform
 // Translate along/about {x translate, y translate, z translate, x rotate, y
rotate, z rotate}

 float FT[6]; // array to hold the resultant force/torque vector.

 // comedi1 variables

 int subdev = 0; // analog port (comedi1 not used for anything other than
F/T sensor)
 int range = 0; // 0 = +/10VDC
 int aref = AREF_DIFF; // Differential Input

 int n_chans0;
 int maxdata0;
 comedi_t *device0;
 int chan=0;
 lsampl_t data0;

 device0 = comedi_open("/dev/comedi1");

 n_chans0 = comedi_get_n_channels(device0, subdev);

 for(chan = 0; chan < n_chans0; ++chan)
 {
 maxdata0 = comedi_get_maxdata(device0, subdev, chan);
 comedi_data_read(device0, subdev, chan, range, aref, &data0);
 SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,
 chan, range), maxdata0);
 }

200

 // Set up ATI functions

 calfilepath="FT5240.cal";
 index = 1;

 // create Calibration

 cal=createCalibration(calfilepath,index);
 if (cal==NULL) {
 printf("\nSpecified calibration could not be loaded.\n");
 scanf(".");
 return 0;
 }

 // NOTE: BELOW FT SETUP KEPT IN EVENT OF FUTURE USE!

 // Set force units.
 // This step is optional; by default, the units are inherited from the
 // calibration file.

 sts=SetForceUnits(cal,"N");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid force units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set torque units.
 // This step is optional; by default, the units are inherited from the
calibration file.
 sts=SetTorqueUnits(cal,"N-m");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid torque units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set tool transform.
 // This line is only required if you want to move or rotate the sensor's
 // coordinate system.
 // This example tool transform translates the coordinate system 20 mm along the
 // Z-axis
 // and rotates it 45 degrees about the X-axis.
 sts=SetToolTransform(cal,SampleTT,"mm","degrees");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid distance units"); return 0;
 case 3: printf("Invalid angle units"); return 0;
 default: printf("Unknown error"); return 0;
 }

// Variables

 int i = 0;
 int j = 0;

 double inc = .015625; // .5 in/sec @ 32 hz

201

 // Set constraints and scaling. Note that positions use 1; orientations use 0.

 for (i=0;i<6;i++) //initialize memory
 {
 parmRW->armCtrl.axesConstr[i]=1.0;
 parmRW->armCtrl.axesScal[i]=1.0;
 parmRW->armCtrl.armMode=IDLE;
 parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i];
 if(i>2)
 {
 parmRW->armCtrl.cartesCtrl[i]=0.0;
 }

 }

// Read the starting Cartesian position (where you are now) from
// shared memory.

 for (i = 0; i < 6; i++)
 {
 qZero[i] = parmR->armRightCar[i];
 }

// Read the starting joint angles (where you are now) from shared memory.
// This is for end-effecter orientation calculations.

 for (i = 0; i < 6; i++)
 {
 qJoints[i] = parmR->armRight[i];
 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// Trajectory begins here.///

 for (j = 0; j < 256; j++) // 256 points = 32hz X 8 seconds
 // move enough to clear task

 {

// read current Titan position and write to data file

 for (i = 0; i < 6; i++)

 {

 Data[i] = parmR->armRightCar[i];

 }

 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f
 %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], FT[2], FT[3], FT[4],
 FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], Data[5]);

202

 // Calculate incremental positions once through each loop.

 qNow[0] = qZero[0] - j * inc * cos(qJoints[0] + qJoints[4]); // X

 qNow[1] = qZero[1] - j * inc * sin(qJoints[0] + qJoints[4]); // Y

 qNow[2] = qZero[2]; // Z, no motion necessary since the blade
 // cleared the pipe during cutting.

 // Don't move the wrist joints

 qNow[2] = qZero[2]; // rX stays the same
 qNow[3] = qZero[3]; // rX stays the same
 qNow[4] = qZero[4]; // rY stays the same
 qNow[5] = qZero[5]; // rZ stays the same

 // Write joint positions back to shared memory.

 for (i = 0; i < 6; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];

 }

 // Calculate delta position once through each loop (for wrist).

 for (i = 0; i < 6; i++)
 {
 qNowV[i] = qNow[i] - qNowOld[i];
 }

 // Write joint positions back to shared memory.
 // Position uses qNow; orientation uses qNowV.
 // 0, 1, 2 are qNow for positions, 3, 4, 5 are qNowV for velocities.

 for (i = 0; i < 3; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];
 }

 for (i = 3; i < 6; i++)
 {
 parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i];
 }

 // Flag and write to Cartesian

 grabSem(0,&sb,semid);
 parmRW->armCtrl.updFlag=1;
 parmRW->armCtrl.armMode=CART;

 // Xfer current new positions to old positions

 for (i = 0; i < 6; i++)
 {
 qNowOld[i] = qNow[i];
 }

 // Return semaphore

 retSem(0,&sb, semid);

203

 // Delay to control loop rate

 nanosleep(&ts, NULL);

 // Loop //

 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// exit mode...clean up and get out

grabSem(0,&sb,semid);
parmRW->armCtrl.armMode=IDLE;
retSem(0,&sb, semid);

}

204

/**
*
* bWristR.c
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical, Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
**/

#include "newChild.h"

#include <time.h>
#include <math.h>

int bWristR(void)
{

 int QUIT = 0;

//***

void safe_quit(void)
{
 QUIT=1;
}
//***

//***

int grabSem(int semNum, struct sembuf *sb, int semid)
//semNum should be zero for this program.
{
 sb->sem_op=-1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 // make sure you're using the semaphore when it is necessary.
 {
 // perror("semaphore access problem");
 QUIT=1;

 }
 return 1;
}

//***

int retSem(int semNum, struct sembuf *sb, int semid)
//semNum should be zero for this program.
{
 sb->sem_op=1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 {
 perror("semaphore return problem ");
 QUIT=1;
 }
 return 1;

205

}

//***

// Loop timing management using nanosleep()

 struct timespec ts;
 ts.tv_sec = 0;
// ts.tv_nsec = 31250000; // set to 32 hz
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz

// Setup shared memory

 child2();

// Variables

 int i = 0;
 int j = 0;

// global variables

extern double qZero[6];
extern double qFinal[6];
extern double qNow[6];

// Read the starting position (where you are now) from shared memory.

 for (i = 0; i < 6; i++)
 {
 qZero[i] = parmR->armRight[i];
 }

// Set the target position (where you want to go) per stored memory.

 for (i = 0; i < 6; i++)
 {
 qFinal[i] = qZero[i]; // no motion except in specified joint.
 }

 qFinal[5] = -1.604185; // level wrist roll

// Set joint control mode

 parmRW->armCtrl.armMode = 4; // mode = JOINT

// Trajectory begins here.///

 for (j = 0; j < 64; j++) // 64 points = 32hz X 2 seconds

 {

// Calculate incremental positions once through each loop.

// Quintic Trajectory Equation

 for (i = 0; i < 6; i++)
 {
 // Quintic equation

 qNow[i] = qZero[i]

206

 + 25 * ((qFinal[i] - qZero[i]) / 65536.0) * pow(j, 3)\
 - 75 * ((qFinal[i] - qZero[i]) / 8388608.0) * pow(j,4)\
 + 15 * ((qFinal[i] - qZero[i]) / 268435456.0) * pow(j,5);
 }

// Write joint positions back to shared memory.

 for (i = 0; i < 6; i++)
 {
 parmRW->armCtrl.jointCtrl[i] = qNow[i];

 }

// Delay to control loop rate

 nanosleep(&ts, NULL);

// Loop //

 }

// Set joint control mode

 parmRW->armCtrl.armMode = 0; // mode = IDLE

return(0);

}

207

/**
*
* bCut128S.c
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical, Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
* 128 Hz loop rate to examine saw freq data
*
**/

/***
*
* Obligatory Acknowledgements for open source libraries
*
* ATIDAQ F/T C Library
* v1.0.1
* Copyright (c) 2001 ATI Industrial Automation
*
* The MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
///
*
* Comedilib
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org>
*
* This file may be freely modified, distributed, and combined with
* other software, as long as proper attribution is given in the
* source code.
*
**/

#include "newChild.h"

#include <time.h>
#include <math.h>

#include "comediFT.h"

208

int read_writeIO(void); // reads comedi0 analog/digital IO

int bCut128S(void)
{

// System level communications

int QUIT = 0;

 int shmidR,shmidRW, semid; // IPC idenfitiers
 key_t key_memRW,key_memR, key_sem; // keys for shared mem and semphores.
 struct sembuf sb; // semaphore control structure

 //**
void safe_quit(void)
{
 QUIT=1;
}
//***

//***
int grabSem(int semNum, struct sembuf *sb, int semid)
 //semNum should be zero for this program so far.
{
 sb->sem_op=-1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 // make sure you're using the semaphore when it is necessary.
 {
 perror("semaphore access problem");
 QUIT=1;

 }
 return 1;
}
//***
int retSem(int semNum, struct sembuf *sb, int semid)
 //semNum should be zero for this program so far.
{
 sb->sem_op=1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 {
 perror("semaphore return problem ");
 QUIT=1;
 }
 return 1;
}
//***

// Calculate for each DOF; numbers in inches, used in trajectory calcs.

double qZero[6]; // Start point of robotic move
 // (where you are now)

double qNow[6]; // Current calculated point in
 // robotic trajectory

double qNowV[6]; // Incremental velocity for wrist
 // orientations

209

double qNowOld[6]; // Used for incremental velocity calcs

// Stored instantaneous joint positions

double qJoints[7];

// Following joint positions are ordered as follows:
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,
// wrist roll

double Data[6]; // current manipulator position

// Recursive Filter variables

float ryFilt = 0;
float ryFiltOld = 0;

// Data Analysis Variables

float ryFiltAbs = 0;

// for sampleBias switching initializing the F/T

static int biasFlag = 1;

// Signature Analysis Variables

int CONTACT1 = 0;
int senseContact = 0;

// Force control variables

float setpoint = 10.0;
float error = 0.0;
float gain = .02;
float controlF = 0.0;
float control = 0.0;
float controlFFilt = 0.0;
float controlFFiltOld = 0.0;

// Digital outputs for smart tool from comedi0

extern int toolOnIN; // tool control variables from read_writeIO()
extern int toolDirIN;

// Loop timing management using nanosleep()

 struct timespec ts;
 ts.tv_sec = 0;
 ts.tv_nsec = 2405555; // calibrated runtime 128 hz

// time-stamping variables

 time_t time(time_t *tp);

 time_t now;

// file for data capture

210

 FILE *fp;

 if ((fp = fopen("cut_data128", "wb"))==NULL)

 {
 printf("Cannot open file.\n");
 exit(1);
 }

// Setup shared memory

 child2();

// Variables

 int i = 0;
 int j = 0;
 int k = 128;

 double inc = .015625; // .5 in/sec @ 32 hz
 float contactThreshold = 500.00; // set to avoid tripping

 // Set constraints and scaling.
 // Note that positions use 1; orientations use 0.

 for (i=0;i<6;i++) //initialize memory
 {
 parmRW->armCtrl.axesConstr[i]=1.0;
 parmRW->armCtrl.axesScal[i]=1.0;
 parmRW->armCtrl.armMode=IDLE;
 parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i];
 if(i>2)
 {
 parmRW->armCtrl.cartesCtrl[i]=0.0;
 }

 }

// Read the starting Cartesian position (where you are now) from
// shared memory.

 for (i = 0; i < 6; i++)
 {
 qZero[i] = parmR->armRightCar[i];
 }

// Read the starting joint angles (where you are now) from shared memory.
// This is for end-effecter orientation calculations.

 for (i = 0; i < 6; i++)
 {
 qJoints[i] = parmR->armRight[i];
 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

211

// Set up Force/Torque Sensor--NOTE: much of this not used in
// current iteration

 char *calfilepath; // name of calibration file
 unsigned short index; // index of calibration in file
 // (second parameter; default = 1)
 Calibration *cal; // struct containing calibration information
 short sts; // return value from functions

 // ATI F/T sensor variables

 float SampleBias[7]; // measures preloads on sensor before
 // starting task

 float SampleReading[7]; // raw sensor values as read from comedi1

 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform

 float FT[6]; // array to hold the resultant force/torque
 // vector.

 // comedi1 variables

 int subdev = 0; // analog port (comedi1 not used for anything
 // other than F/T sensor)
 int range = 0; // 0 = +/10VDC
 int aref = AREF_DIFF; // Differential Input

 int n_chans0;
 int maxdata0;
 comedi_t *device0;
 int chan=0;
 lsampl_t data0;

 device0 = comedi_open("/dev/comedi1");

 n_chans0 = comedi_get_n_channels(device0, subdev);

 for(chan = 0; chan < n_chans0; ++chan)
 {
 maxdata0 = comedi_get_maxdata(device0, subdev, chan);
 comedi_data_read(device0, subdev, chan, range, aref, &data0);
 SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,
chan, range), maxdata0);
 }

 // Set up ATI functions

 calfilepath="FT5240.cal";
 index = 1;

 cal=createCalibration(calfilepath,index);
 if (cal==NULL) {
 printf("\nSpecified calibration could not be loaded.\n");
 scanf(".");
 return 0;
 }

 // Set force units.
 // This step is optional; by default, the units are inherited from the
 // calibration file.

212

 sts=SetForceUnits(cal,"N");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid force units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set torque units.
 // This step is optional; by default, the units are inherited from the
 // calibration file.
 sts=SetTorqueUnits(cal,"N-m");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid torque units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set tool transform.
 // This line is only required if you want to move or rotate the
 // sensor's coordinate system.

 sts=SetToolTransform(cal,SampleTT,"mm","degrees");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid distance units"); return 0;
 case 3: printf("Invalid angle units"); return 0;
 default: printf("Unknown error"); return 0;
 }

// Trajectory begins here.///

 for (j = 0; j < 12000; j++) // Governs increments and times out if
 // thresholds go wrong.

 {

// Check forces/torques for contact; terminate if contact above threshold

 for(chan = 0; chan < n_chans0; ++chan)
 {

 maxdata0 = comedi_get_maxdata(device0, subdev, chan);

 comedi_data_read_delayed(device0, subdev, chan, range, aref, &data0,
 10000);

 SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0,
 subdev, chan, range), maxdata0);

 }

 // Bias the sensor once only.

 if(biasFlag==1)
 {
 for (i = 0; i < 6; i++)

 {

213

 SampleBias[i] = SampleReading[i];

 }

 Bias(cal, SampleBias);

 biasFlag = 0;
 }

// convert a loaded measurement into forces and torques

 ConvertToFT(cal,SampleReading,FT);

// Recursive filter on ry axis, saw blade torque, for 128hz

 ryFilt = (1.0/128.0) * FT[4] + (127.0/128.0) * ryFiltOld;

 ryFiltOld = ryFilt;

 ryFiltAbs = fabs(ryFilt);

// Turn Saw ON after initializing the FT

 toolOnIN = 0;
 toolDirIN = 0; //0 = unbolt, 1 = bolt

 read_writeIO();

// Read current joint angles from shared memory.

 for (i = 0; i < 6; i++)
 {
 qJoints[i] = parmR->armRight[i];
 }

// read current Titan position and write to data file

 for (i = 0; i < 6; i++)

 {

 Data[i] = parmR->armRightCar[i];

 }

 // Force-based Trajectory Control

 error = setpoint - ryFilt;
 controlF = gain * error;
 control = inc/32.0 + controlF;

// read current Titan position and write to data file

 for (i = 0; i < 6; i++)

 {

 Data[i] = parmR->armRightCar[i];

214

 }

 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f
 %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1],
 FT[2], FT[3], FT[4], FT[5], Data[0], Data[1], Data[2], Data[3], Data[4],
 Data[5], ryFilt, ryFiltAbs, controlF, control);

 // Calculate incremental positions once through each loop.

 // Only motion in -Z

 qNow[0] = qZero[0]; // X stays the same
 qNow[1] = qZero[1]; // Y stays the same

 qNow[2] = qZero[2] - j * inc/32.0 - controlF; // Z motion, P + F

 // Fixed orientation

 qNow[3] = qZero[3]; // rX stays the same
 qNow[4] = qZero[4]; // rY stays the same
 qNow[5] = qZero[5]; // rZ stays the same

 // Write joint positions back to shared memory.

 for (i = 0; i < 6; i++)

 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];

 }

 // Calculate delta position once through each loop (for wrist).

 for (i = 0; i < 6; i++)
 {
 qNowV[i] = qNow[i] - qNowOld[i];
 }

 // Write joint positions back to shared memory.
 // Position uses qNow; orientation uses qNowV.
 // 0, 1, 2 are qNow for positions, 3, 4, 5 are qNowV for velocities.

 for (i = 0; i < 3; i++)

 {
 parmRW->armCtrl.cartesCtrl[i] = qNow[i];
 }

 for (i = 3; i < 6; i++)

 {
 parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i];
 }

 // Flag and write to Cartesian

 grabSem(0,&sb,semid);
 parmRW->armCtrl.updFlag=1;
 parmRW->armCtrl.armMode=CART;

215

 // Xfer current new positions to old positions

 for (i = 0; i < 6; i++)
 {
 qNowOld[i] = qNow[i];
 }

 // Return semaphore

 retSem(0,&sb, semid);

 // Delay to control loop rate

 nanosleep(&ts, NULL);

// Logic rules to control cutting

 // Detect pipe contact.

 if(ryFiltAbs > 1.0 && senseContact == 0)

 {

 senseContact = 1;

 printf("\nj= %d, pipe contact \n", j);
 }

 // Announce cut threshold reached.

 if(ryFiltAbs > 10.0 && CONTACT1 == 0)

 {

 CONTACT1 = 1;

 printf("\nj= %d, cut threshold reached\n", j);
 }

 // If fyFiltAbs goes high after going low, reset k to max.
 // Account for common condition on main pipe section.

 if(ryFiltAbs > 10.0)

 {

 k = 128;

 }

 // If threshold reached and k not 0, start count down.

 if(ryFiltAbs < 1.0 && CONTACT1 == 1 && k > 0)

 {

 k = k - 1;

 }

216

 // Quit loop if cut is done.

 if(ryFiltAbs < 1.0 && k==0)
 {

 toolOnIN = 1;
 toolDirIN = 1;

 read_writeIO();

 printf("\nj= %d, cut complete\n", j);

 j = 12000;

 }

 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// make sure saw is off in case of any errors

 toolOnIN = 1;
 toolDirIN = 1;

 read_writeIO();

// exit mode...clean up and get out

grabSem(0,&sb,semid);
parmRW->armCtrl.armMode=IDLE;

retSem(0,&sb, semid);

// free memory allocated to Calibration structure
 destroyCalibration(cal);

 comedi_close(device0);

return 0;

}

217

/**
*
* bUnboltB.c
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical, Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
**/

#include "newChild.h"

#include <time.h>
#include <math.h>
#include <stdlib.h>

#include "comediFT.h"

static int biasFlag = 1; // for sampleBias switching initializing F/T

int read_writeIO(void); // reads comedi0 analog/digital IO

int bUnboltB(void)
{

 int QUIT = 0;

 int shmidR,shmidRW, semid; // IPC idenfitiers
 key_t key_memRW,key_memR, key_sem; // keys for shared mem
 // and semphores.
 struct sembuf sb; // semaphore control structure

//***
 void safe_quit(void)
 {
 QUIT=1;
 }
//***

//***
 int grabSem(int semNum, struct sembuf *sb, int semid)
 //semNum should be zero for this program so far.
 {
 sb->sem_op=-1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 // make sure you're using the semaphore when it is necessary.
 {
 perror("semaphore access problem");
 QUIT=1;

 }
 return 1;
 }

218

//***
 int retSem(int semNum, struct sembuf *sb, int semid)
 //semNum should be zero for this program so far.
 {
 sb->sem_op=1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 {
 perror("semaphore return problem ");
 QUIT=1;
 }
 return 1;
 }
//***

// Variables

 int i = 0;
 int j = 0;

 int test = 1;
 int set = 0;

 float fxstart = 0;
 float fxstop = 0;

// Recursive Filter variables

 float fxFilt = 0;
 float fxFiltOld = 0;

 double contactThreshold = -1000.00; // bypass contactThreshold

 double Data[6]; // current manipulator position

// Position increment instead of time but run at sample time.

 int senseContact = 0;

// Digital outputs for smart tool from comedi0

 extern int toolOnIN; // tool control variables from read_writeIO()
 extern int toolDirIN;

 extern int toolOn; // toolOn = 1 is on; use as either on/off or PWM.
 extern int toolDir; // toolDir = 0 is forward as default; reverse is 1.

// Loop timing management using nanosleep()

 struct timespec ts;
 ts.tv_sec = 0;
 ts.tv_nsec = 2405555; // calibrated for 128 hz for FFT look

// time-stamping variables

 time_t time(time_t *tp);

 time_t now;

219

// file for data capture

 FILE *fp;

 if ((fp = fopen("unbolt_data", "wb"))==NULL)

 {
 printf("Cannot open file.\n");
 exit(1);
 }

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

// Setup shared memory

 child2();

// Set up Force/Torque Sensor

 char *calfilepath; // name of calibration file
 unsigned short index; // index of calibration in file
 // (second parameter; default = 1)
 Calibration *cal; // struct containing calibration information
 short sts; // return value from functions

 // ATI F/T sensor variables--Note: Many for future use!

 float SampleBias[7]; // measures preloads on sensor before starting task

 float SampleReading[7]; // raw sensor values as read from comedi1

 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform

 float FT[6]={0,0,0,0,0,0}; // array to hold the resultant
 // force/torque vector.

 // comedi1 variables

 int subdev = 0; // analog port (comedi1 not used for anything
 // other than F/T sensor)
 int range = 0; // 0 = +/10VDC
 int aref = AREF_DIFF; // Differential Input

 int n_chans0;
 int maxdata0;
 comedi_t *device0;
 int chan=0;
 lsampl_t data0;

 device0 = comedi_open("/dev/comedi1");

 n_chans0 = comedi_get_n_channels(device0, subdev);

 for(chan = 0; chan < n_chans0; ++chan)
 {
 maxdata0 = comedi_get_maxdata(device0, subdev, chan);

220

 comedi_data_read(device0, subdev, chan, range, aref, &data0);
 SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,
 chan, range), maxdata0);
 }

 // Set up ATI functions

 calfilepath="FT5240.cal";
 index = 1;

 // create Calibration

 cal=createCalibration(calfilepath,index);
 if (cal==NULL) {
 printf("\nSpecified calibration could not be loaded.\n");
 scanf(".");
 return 0;
 }

 // NOTE: BELOW FT SETUP KEPT IN EVENT OF FUTURE USE!

 // Set force units.
 // This step is optional; by default, the units are inherited
 // from the calibration file.

 sts=SetForceUnits(cal,"N");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid force units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set torque units.
 // This step is optional; by default, the units are inherited from the
 // calibration file.
 sts=SetTorqueUnits(cal,"N-m");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid torque units"); return 0;
 default: printf("Unknown error"); return 0;
 }

 // Set tool transform.
 // This line is only required if you want to move or rotate the sensor's
 // coordinate system.
 sts=SetToolTransform(cal,SampleTT,"mm","degrees");
 switch (sts) {
 case 0: break; // successful completion
 case 1: printf("Invalid Calibration struct"); return 0;
 case 2: printf("Invalid distance units"); return 0;
 case 3: printf("Invalid angle units"); return 0;
 default: printf("Unknown error"); return 0;
 }

221

// LOOP begins here ///

while(test==1)

{

 for (j = 0; j < 256; j++) // 128hz X 2 seconds

 {

// Check forces/torques

 for(chan = 0; chan < n_chans0; ++chan)
 {

 maxdata0 = comedi_get_maxdata(device0, subdev, chan);

 comedi_data_read_delayed(device0, subdev, chan, range, aref, &data0, 10000);

 SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,
 chan, range), maxdata0);

 }

 // Bias the sensor once only.

 if(biasFlag==1)
 {
 for (i = 0; i < 6; i++)

 {

 SampleBias[i] = SampleReading[i];

 }

 Bias(cal, SampleBias);

 biasFlag = 0;
 }

 // convert a loaded measurement into forces and torques

 ConvertToFT(cal,SampleReading,FT);

// Recursive filter on ry axis, saw blade torque, for 128hz

 fxFilt = (1.0/128.0) * FT[0] + (127.0/128.0) * fxFiltOld;

 fxFiltOld = fxFilt;

// Turn tool ON

 toolOnIN = 0;
 toolDirIN = 0; // 0 = unbolt, 1 = bolt

 read_writeIO();

// read current Titan position

 for (i = 0; i < 6; i++)

222

 {

 Data[i] = parmR->armRightCar[i];

 }

 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f
 %9.6f %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], FT[2], FT[3],
 FT[4], FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], Data[5],
 fxFilt);

// Delay to control loop rate

 nanosleep(&ts, NULL);

// Manage pushback variable

 if (j==1 && set==0)

 {

 fxstart = fxFilt;

 set = 1;

 printf("j= %d, fxstart = %f\n", j, fxstart);

 }

 if (j==255)

 {

 fxstop = fxFilt;

 printf("j= %d, fxstop = %f\n", j, fxstop);

 }

// Loop ///

 }

 // End test

 if(fabs(fxstop - fxstart) > 100.0)

 {

 test = 0;

 printf("unbolt done\n");

 }

}

223

 toolOnIN = 1;
 toolDirIN = 1;

 read_writeIO();

// timestamp

 now = time(NULL);

 fprintf(fp, "\n%s\n",ctime(&now));

 printf("return to operator\n");

 return 0;

}

224

/**
*
* functGoIdle.c
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical, Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
* Revision History
*
* Date Author Description
* ---
* 4/2010 Mark Noakes function to switch to Idle mode.
*
*
*
* ---
*
**/

#include "newChild.h"

int functGoIdle(void)
{

int QUIT = 0;

//**
void safe_quit(void)
{
 QUIT=1;
}
//***

//***
int grabSem(int semNum, struct sembuf *sb, int semid)
 //semNum should be zero for this program so far.
{
 sb->sem_op=-1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 // make sure you're using the semaphore when it is necessary.
 {
 perror("semaphore access problem");
 QUIT=1;

 }
 return 1;
}
//***
int retSem(int semNum, struct sembuf *sb, int semid)
 //semNum should be zero for this program so far.
{
 sb->sem_op=1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 {
 perror("semaphore return problem ");

225

 QUIT=1;
 }
 return 1;
}
//***

// Setup shared memory

 child2();

// Set joint control mode

 parmRW->armCtrl.armMode = 0; // mode = IDLE

return(0);

}

226

/**
*
* functMoveHome.c
*
* DISSERTATION SOFTWARE
*
* Behavior-based Telerobotic Tool Control
* Mark W. Noakes
* Dept of Mechanical, Aerospace, and Biomedical Engineering
* University of Tennessee at Knoxville
*
* Revision History
*
* Date Author Description
* ---
* 4/2010 Mark Noakes function for joint level move to Home
* position from any current location.
*
*
*
* ---
*
**/

#include "newChild.h"

#include <time.h>
#include <math.h>

int functMoveHome(void)
{

 int QUIT = 0;

//***
void safe_quit(void)
{
 QUIT=1;
}
//***

//***
int grabSem(int semNum, struct sembuf *sb, int semid)
 //semNum should be zero for this program so far.
{
 sb->sem_op=-1;
 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 // make sure you're using the semaphore when it is necessary.
 {
 perror("semaphore access problem");
 QUIT=1;

 }
 return 1;
}
//***
int retSem(int semNum, struct sembuf *sb, int semid)
 //semNum should be zero for this program so far.
{
 sb->sem_op=1;

227

 sb->sem_num=semNum;
 if(semop(semid, sb,1)==-1)
 {
 perror("semaphore return problem ");
 QUIT=1;
 }
 return 1;
}
//***

// Loop timing management using nanosleep()

 struct timespec ts;
 ts.tv_sec = 0;
 ts.tv_nsec = 31250000; // set to 32 hz

// Setup shared memory

 child2();

// Variables

 int i = 0;
 int j = 0;

// global variables

extern double qZero[6];
extern double qFinal[6];
extern double qHome[6];
extern double qNow[6];

// Read the starting position (where you are now) from shared memory.

 for (i = 0; i < 6; i++)
 {
 qZero[i] = parmR->armRight[i];
 }

// Set the target position (where you want to go) per stored memory.

 for (i = 0; i < 6; i++)
 {
 qFinal[i] = qHome[i];

 }

// Set joint control mode

 parmRW->armCtrl.armMode = 4; // mode = JOINT

// Trajectory begins here.///

 for (j = 0; j < 320; j++) // 32hz X 10 seconds

 {

228

// Calculate incremental positions once through each loop.

// Quintic Trajectory Equation

 for (i = 0; i < 6; i++)
 {
 // Quintic equation

 qNow[i] = qZero[i] + ((qFinal[i] - qZero[i]) / 3276800.0) *
 pow(j, 3) - 3 * ((qFinal[i] - qZero[i]) / 2097152000.0) *
 pow(j,4) + 3 * ((qFinal[i] - qZero[i]) / 1677721600000.0) *
 pow(j,5);
 }

// Write joint positions back to shared memory.

 for (i = 0; i < 6; i++)
 {
 parmRW->armCtrl.jointCtrl[i] = qNow[i];

 }

// Delay to control loop rate

 nanosleep(&ts, NULL);

// LOOP ///

 }

// Set joint control mode

 parmRW->armCtrl.armMode = 0; // mode = IDLE

return(0);

}

229

 Appendix B

Mechanical Drawings

230

231

232

233

234

235

236

237

 Appendix C

Schematics

238

239

240

241

Vita

Mark William Noakes was born in 1956 in upstate New York. He received his Bachelor’s

degree in Electrical Engineering from Tennessee Technological University (TTU) in

August 1979. He received a Master of Science degree in Electrical Engineering from the

University of Tennessee at Knoxville in December 1989. He received his professional

engineering license in Electrical Engineering in 1993. His employment as an engineer

began as a co-op student at NASA-Langley in Virginia in 1975 and 1976 working in the

Instrument Research Division, Flight Instrumentation Division, and the Flight Dynamics

and Controls Division. After graduating from TTU, he worked in industry for four years

first designing sensors and hybrid microelectronics for first generation automotive

computerized engine controls and later providing industrial and process controls, power

systems plant engineering, and industrial robotics and automation support to a large

chemical processing complex. He joined Oak Ridge National Laboratory in October 1983

and has worked as a research and development staff member since that time, specializing

in development, deployment, operations, and maintenance of teleoperated and telerobotic

systems, remote tooling, human-machine interfaces, facility and process design in

support of remote operations, and the adaptation of those technologies to other areas of

interest such as telesurgery.

