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Abstract 

 

Teleoperated task execution for hazardous environments is slow and requires highly 

skilled operators. Attempts to implement telerobotic assists to improve efficiency have 

been demonstrated in constrained laboratory environments but are not being used in the 

field because they are not appropriate for use on actual remote systems operating in 

complex unstructured environments using typical operators. This	   work	   describes	   a	  

methodology	   for	   combining	   select	   concepts	   from	   behavior-‐based	   systems	   with	  

telerobotic	   tool	   control	   in	   a	   way	   that	   is	   compatible	   with	   existing	   manipulator	  

architectures	   used	   by	   remote	   systems	   typical	   to	   operations	   in	   hazardous	  

environment.	  The purpose of the approach is to minimize the task instance modeling in 

favor of a priori task type models while using sensor information to register the task type 

model to the task instance. The	   concept	   was	   demonstrated	   for	   two	   tools	   useful	   to	  

decontamination	   &	   dismantlement	   type	   operations—a	   reciprocating	   saw	   and	   a	  

powered	   socket	   tool.	   The	   experimental	   results	   demonstrated	   that	   the	   approach	  

works	  to	   facilitate	   traded	  control	   telerobotic	   tooling	  execution	  by	  enabling	  difficult	  

tasks	   and	   by	   limiting	   tool	   damage.	  The role of the tools and tasks as drivers to the 

telerobotic implementation was better understood in the need for thorough task 

decomposition and the discovery and examination of the tool process signature. The 

contributions of this work include: (1) the	   exploration	   and	   evaluation	   of	   select	  

features	   of	   behavior-‐based	   robotics	   to	   create	   a	   new	  methodology	   for	   integrating	  

telerobotic	   tool	   control	   with	   positional	   teleoperation	   in	   the	   execution	   of	   complex	  

tool-‐centric	   remote	   tasks,	   (2)	   the simplification of task decomposition and the 

implementation of sensor-based tool control in such a way that eliminates the need for the 

creation of a task instance model for telerobotic task execution, and (3) the discovery, 

demonstrated use, and documentation of characteristic tool process signatures that have 

general value in the investigation of other tool control, tool maintenance, and tool 

development strategies above and beyond the benefit sustained for the methodology 

described in this work.  
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Chapter 1  

Introduction 

 

1.1 Motivation     

 

The US Department of Energy (DOE) has a stated need for improved remote systems 

technology that will assist in removing workers from hazardous environments while 

improving productivity [1], [2]. Due to current limitations of remotely operated systems 

and autonomous robotics, the vast majority of hazardous material operations is still 

performed by human workers dressed in protective equipment and sent into the hazardous 

environment to complete activities manually. One of the most pressing hazardous 

operations categories is the decontamination and decommissioning (D&D) of 

contaminated DOE nuclear facilities. Remote technology has been used successfully, but 

many D&D operation organizations have complained that the equipment available today 

is not sufficiently suited to their needs [1]. Remote systems as they now exist are too 

costly in terms of procurement, facility burden, and the requirement for skilled operators. 

Remote systems are also typically described as being too slow in task completion time 

and not capable of matching human dexterity. These same criticisms expressed by DOE 

operations organizations also apply to remote systems everywhere in use: space 

exploration, sub-sea exploration and oil rig maintenance and accident response, military 

explosive ordnance disposal, and homeland security, to name a few. 

 

Remote equipment dismantlement is a common theme as a need in the D&D community. 

Contaminated process equipment and structural steel are common. Where possible, suited 

humans are used to complete unbolting and cutting tasks, but there have proved to be 

significant safety, health, and cost issues involved. Teleoperated remote systems have 

also been used where radiation levels eliminate the possibility of using humans; however 

system cost and task time completion are major issues in overall operating costs. A time-

efficient, cost-effective approach to safely complete D&D operations without placing 

humans in the hazardous environment is a direct need. Telerobotic systems (teleoperated 
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remote systems that incorporate added automation to improve operational efficiency) are 

one solution.  

 

This dissertation addresses the problem of tool control and uncompensated errors in 

teleoperated or robotic motion via the creation of a sensor-actuator control strategy by 

identifying and using select relevant concepts from classical behavior-based robotics 

(BBR) techniques to permit task execution in unstructured environments. The focus is not 

on the advancement of or a rigid adherence to BBR techniques but rather on the 

exploration of the “first principles” of behavior-based systems as a means to facilitate 

tool control for improved viability of telerobotic manipulation in unstructured 

environments from the perspective of the remote systems community. The research 

includes experimental data collection and verification of theoretical development for 

multiple tools for both human interactive and robotic task execution assists. 

 

 

1.2 Contributions 

 

The	  fundamental	  contributions	  of	  this	  dissertation	  are:	  

	  

1.	  The	  exploration	  and	  evaluation	  of	  behavior-‐based	  robotics	  for	  concepts	  to	  create	  

a	   new	   methodology	   for	   integrating	   telerobotic	   tool	   control	   with	   positional	  

teleoperation	   in	   the	   execution	   of	   complex	   tool-‐centric	   remote	   tasks	   such	   as	   those	  

associated	   with	   remote	   nuclear	   operations.	   Successful	   experimental	   results	   with	  

selected	   power	   tools	   and	   a	   full-‐scale	   telerobotics	   test	   bed	   have	   revealed	   the	  

attractive	   combination	   of	   simple	   implementation	   and	   efficient/effective	   tooling	  

operations.	  	  

	  

This	  methodology	  provides	  a	  workable	  clear	  path	  to	  implementation	  relevant	  to	  the	  

existing	   architectures	   of	   typical	   teleoperator	   systems	  while	   addressing	   tasks	   that	  

are	   currently	   difficult	   to	   automate	   due	   to	   complexity	   and	   limited	   registration	   to	  
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actual	   task	  hardware.	  Once	  the	   first	  couple	  of	   tool	   tasks	  were	  programmed,	  it	  was	  

quite	   obvious	   that	   this	   technique	   has	   created	   a	   set	   of	   primitives	   that	   may	   be	  

assembled	   in	   different	   ways	   or	   with	   slight	   modification	   to	   quickly	   produce	   new	  

automated	  tooling	  tasks.	  This	  work	  represents	   the	   first	  known	  application	  of	   these	  

techniques	  to	  power	  tooling	  tasks.	  

	  

2.	  The	  creation	  of	  a	  new	  tooling	  task	  modeling	  process	  that	  is	  general	  in	  nature	  and	  

applicable	   to	   a	  wide	   range	   of	   power	   tools	   used	   in	   typical	   remote	  operations.	  This	  

task	   type	  modeling	   can	   replace	   task	   instance	  modeling	   to	   reduce	   and	  simplify	   the	  

application	   of	   the	   new	   behavior-‐based	   methods	   to	   complex	   telerobotic	   tooling	  

applications.	   It	   was	   demonstrated	   that	   the	   task	   type	   model	   could	   be	   reliably	  

encoded	   in	   a	   sequence	   of	   simple	   behavior-‐like	   reactive	   functions	   thereby	  

alleviating	   the	   need	   for	  extensive	   a	   priori	   generation	  of	   a	   task	   instance	  model	   for	  

each	   task	   execution.	   This	   reduces	   the	   modeling	   time	   needed	   for	   individual	   task	  

automation	   making	   telerobotics	   more	   time	   competitive	   even	   with	   proficient	  

operators.	  

	  

3.	  The	  generation	  of	  specific	  characteristic	  tooling	  data	  for	  reciprocating	  saw	  cutting	  

and	  removal	  of	  bolts	  with	  a	  powered	  socket	   tool.	  These	  results	  have	  general	  value	  

in	  that	  they	  are	  relevant	  to	  extensions	  of	  this	  work	  and	  in	  the	  pursuit	  of	  other	  tool	  

control	   strategies.	   In	   particular,	   the	   force	   profile	   generated	   for	   pipe	   cutting	  

produces	   a	   well-‐defined	   characteristic	   signature	   that	   should	   be	   broadly	   useful	  

even	   outside	   of	   the	   telerobotics	   community.	   Progressive	   variation	   in	   the	   tool	  

signature	  profiles	  over	  repeated	  test	  instances	  indicate	  that	  tool	  wear,	  maintenance	  

prediction,	  and	  fault	  detection	  can	  probably	  be	  deduced	  from	  further	  study	  of	  the	  

process	  signature.	  
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1.3 Outline of the Dissertation 

 

The relevant definitions, history, and background of remote systems, teleoperation, 

robotics, telerobotics, and behavior-based systems are presented in Chapter 2 along with 

a remote systems perspective on applications. A survey of the relevant work is then 

presented in Chapter 3. Chapter 4 provides a discussion of the testbed description, 

capabilities, and limitations. Chapter 5 addresses the development of the methodology. 

Chapter 6 describes the functional implementation of the two example test cases. The 

experimental work is presented in Chapter 7. Chapter 8 outlines a summary of the work 

presented and provides a discussion of future work. Chapter 9 provides a final conclusion 

to the work. The appendices provide software, mechanical, and electrical/electronic 

background documentation. 
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Chapter 2  

Background 

 

2.1 Introduction 

 

This chapter presents the definitions and relevant history of remote systems—

teleoperation and robotics—from the vantage point of teleoperation. Since this 

dissertation is concerned with enhanced dexterous manipulation, only minimal attention 

as necessary will be given to the vast territory of mobile remote systems and robotics. 

Application areas will also be discussed to frame the context of the rest of the 

dissertation.  

 

 

2.2 Teleoperation 

 
Sheridan’s definition of teleoperation states: 

 

Teleoperation is the extension of a person’s sensing and manipulation 

capability to a remote location. A teleoperator includes at the minimum 

artificial sensors, arms and hands, a vehicle for carrying these, and 

communications channels to and from the human operator. The term 

“teleoperation” refers most commonly to direct and continuous human 

control of the teleoperator, but can also be used generally to encompass 

“telerobotics”…as well [3]. 

 

For the purposes of this dissertation, high fidelity teleoperation will be further defined as 

teleoperated manipulation receiving operator commands from a positional master 

controller instead of from a high level supervisory control graphical operator interface or 

from rate control joysticks.  
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Remotely operated systems have an inherent inefficiency of operations due to the limited 

dexterity of the machine and the limited ability of the operator interface to support the 

sensory needs of the operator. Table 1 communicates these operator inefficiencies 

measured in task completion time ratios using varieties of remote systems compared to 

bare “hands-on” task completion for various remote equipment and operator interface 

configurations. High fidelity teleoperation is considered to be the best remote system 

currently in use; however there is still great disparity between the performance of a 

“good” teleoperator and human hands-on task execution.  

 

Modern remote systems were developed out of the extreme needs of the World War II 

Manhattan Project’s radioactive materials handling. The technology developmental 

progression was from long handled tools to mechanical “master-slave” manipulators and 

switchbox-controlled electric manipulators (the direct ancestor of industrial robot 

manipulators) to analog servomanipulators and finally to digital servomanipulators. 

 

Long-handled tools, such as is shown in Figure 1, have simple end-effectors and control 

handles along with limited capability. While long-handled tools are slow, have limited 

reach, and are not articulate enough for many tasks, they are still used today in some 

cases.  

 

Table 1. Remote Systems Efficiencies. 

(used by permission of the author) [4] 

Manipulator Type Task Completion Time Ratios 
Skilled human operator (unencumbered) 1:1 
Suited human (air suit or equal) 8:1 
Force-reflecting servomanipulator or 
master/slave manipulator (i.e., through the 
wall type) 

8:1 

Non-force-reflecting electromechanical 
manipulator (i.e., power-arm type) 

20:1 – 50:1 

Crane/impact wrench 50:1 – 500:1 
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Figure 1. Early Long Handle Tools.  

(Courtesy of Oak Ridge National Laboratory) 

 

 

The first real innovation was the development of mechanical “master-slave” manipulators 

during the mid-1940s [5], [6], [7]. An early prototype is shown in Figure 2. These 

systems could work through significant shielding (attenuating walls with oil-filled 

viewing windows) to remove the operator from hazard exposure. Figure 3 shows a 

commercial mechanical manipulator system; these types of systems are still used today 

for stationary tasks such as in small hot cells where direct human access is not possible.  

 

Remotely controlled electric manipulators were also developed by the late 1940s to 

remove the working envelope constraints of the mechanical manipulators [6], [7]. These 

systems used a switch box to control each individual joint, and motion was extremely 

slow. The same control philosophy later became the commercial power manipulators 

shown in Figure 4. These systems bear strong resemblance to robot manipulators except 

that there is no computer control; an operator directly controls all joint motions.  
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Figure 2. Early Mechanical Manipulator Prototype.  

(Courtesy of Oak Ridge National Laboratory) 

 

 

 

Figure 3. Commercial Through-the-Wall Manipulators. 

(Courtesy of Oak Ridge National Laboratory) 
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Figure 4. Commercial Power Manipulators Resemble Robots. 

(Courtesy of Oak Ridge National Laboratory) 

 

 

By the early 1950s, master-manipulator systems based on analog electric 

servomechanisms were developed [6], [7], [8]. Typical deployment modes used overhead 

transporters similar to bridge cranes. Some were mounted on mobile platforms. Analog 

electronics-based teleoperation became highly developed and remained the state-of-the-

art baseline until about 1980 [9], [10], [11]. The systems worked well but were prone to 

amplifier drift and had to be retuned regularly. Teleoperated manipulation began to 

proliferate from the nuclear application area to space and subsea exploration from the 

1950s through the 1980s and to medical use in the 1990s. 

 
Oak Ridge National Laboratory (ORNL) worked with Central Research Laboratories to 

produce what is believed to be the first microprocessor-based teleoperated system shown 

in Figure 5. The technology has not significantly changed since that time. A current 

commercial state-of-the-art system is shown in Figure 6. Most teleoperators of this type 

have 6-DOF positional master controllers driving identical scale and configuration 

(kinematic replica) manipulator systems. Force reflection, reflecting the contact forces 
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from the manipulator back to the master controller, is common but by no means 

universal. Figures 7 and 8 illustrate a typical remote task execution and master controller 

station. 

 

In the 1990s the DOE seriously began to address its contaminated facilities and 

hazardous waste problems. Two specific requirements were substantially different from 

the high radiation hot cell environments for which the first electric servomanipulators 

were developed. First the radiation environments were orders of magnitude weaker in 

most (not all) hazardous waste sites. Second the tools needed for dismantlement and 

cleanup were heavy and reflected large forces back into the manipulator systems during 

operation. Electric teleoperators were too fragile for use with these tools. High payload 

hydraulically-actuated manipulators developed for subsea teleoperation began to be used 

in the 1990s at the various DOE sites for hazardous waste cleanup tasks that were too hot 

for direct human hands-on work. One such application used for demolition of a nuclear 

research reactor is shown in Figure 9.  

 

 

 

Figure 5. M-2 Servomanipulator. 

(Courtesy of Oak Ridge National Laboratory) 
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Figure 6. Telerob State-of-the-art Commercial Teleoperator. 

(Courtesy of Oak Ridge National Laboratory) 

 
 

 

Figure 7. Advanced Servomanipulator Remotely Maintainable Manipulator. 

(Courtesy of Oak Ridge National Laboratory) 
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Figure 8. Advanced Integrated Maintenance System Master Control Station. 

(Courtesy of Oak Ridge National Laboratory) 

 
 

 

Figure 9. Dual Arm Work Platform Using Schilling Hydraulic Manipulators. 

(Courtesy of Oak Ridge National Laboratory) 
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A major limitation of all real world teleoperators is the use of the two-finger parallel jaw 

gripper with no or minimal sensing for grasping tasks. This dictates that tooling used by 

the manipulator be modified with special fixturing to allow firm grasping. Tool operation 

often must be completed without sensing useful to optimal operation. The use of smart 

tooling to place some actuation and sensing on the tool has been a relatively recent 

development that relieves the manipulator of some of the task dexterity requirements 

[12]. Figure 10 shows a plasma torch smart tool application to cut structural steel. 

Another approach that has been demonstrated is to modify the manipulators with multi-

finger end-effectors to improve dexterity such as in Figure 11; however robustness and 

control issues have kept these types of manipulator hands from widespread use in D&D-

type applications to date, and multi-fingered end-effectors typically do not yet have 

adequate sensing to support task completion [13].  

 

 

 

Figure 10. Schilling Smart Tooling Demonstration. 

(Courtesy of Oak Ridge National Laboratory) 
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Figure 11. Barrett Wraptor Mounted on Schilling Manipulator at UTK. 

 

 
2.3 Robotics 

 
Sheridan’s definition of a robot states: 

 

A robot is an automatic apparatus or device that performs functions 

ordinarily ascribed to human beings, or operates with what appears to be 

almost human intelligence (adapted from Webster’s Third International 

Dictionary.) …The Robot Institute of America has defined a robot as a 

reprogrammable multi-functional manipulator designed to move material, 

parts, tools, or specialized devices through variable programmed motions 

for the performance of a variety of tasks [3]. 

 

Discounting mechanical toys and novelties that date back to ancient civilizations, the first 

useful industrial robot manipulator was created by Engelberger and Devol in the 1950s. 

Their thinking was directly inspired by nuclear manipulator systems, early numerical 

control machining techniques, and Isaac Asimov’s science fiction stories of the 1940s 
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and 1950s [14]. Their Unimate® robot manipulator as shown in Figure 12 was the first 

commercially available robot manipulator. It was completely pre-programmed and 

automated for repetitive tasks. The robot manipulator as originally conceived is 

essentially a teleoperated manipulator with a preprogrammed front end dictating all 

motions in a predetermined sequence. Previously mentioned Figure 4 show remote 

manipulators that could have been or could be used as robots with the addition of a 

suitable front-end computer interface. 

 

 

2.4 Telerobotics 

 
Sheridan states that “a telerobot is an advanced form of teleoperator the behavior of 

which a human operator supervises through a computer intermediary.” [3] This implies 

an intermittent level of communication. However the approach and degree of emphasis 

on either teleoperation or robotics can vary significantly. Hamel presented a notation to 

describe this variation in emphasis [2]. Telerobotics can be defined as the fusion of 

teleoperation (T) and robotics (R) to complete a task. Telerobotics expressed as “tR” 

emphasizes robotics and is presented from a robot-centric perspective. This variety of 

telerobotics tends to be oriented towards the use of industrial robots as the target 

manipulator and generally relies on higher-level commands in a more supervisory control 

mode where the operator is not in continuous control of the motions of the manipulator. 

This is consistent with the Sheridan interpretation of telerobotics. “Tr” telerobotics 

emphasizes teleoperation finesse but adds robotic functionality to the teleoperator for 

improved task completion performance. Robotic functions in Tr typically use traded or 

shared control in some form of operator assist. Shared control combines human-

controlled motions with robotic motions at the same time. Traded control sequences 

human controlled motion and robotic motion with one or the other having control at any 

one time [15], [16]. The approach presented in this dissertation best fits the Tr category 

of telerobotics using traded control. 
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Figure 12. Unimate Robot. 

(Courtesy of Division of Work & Industry, National Museum of American History, 

Behring Center, Smithsonian Institution) 

 

 

Beginning in the 1980s the hazardous materials handling community began to explore the 

use of telerobotics in attempts to provide refined capability and reduced task completion 

times. These capabilities added various automated robotic functions to human-guided 

teleoperation. Typical functions include “software fixturing” to constrain manipulator 

motions to a plane or line of motion (a form of shared control where the human operator 

manages some aspects of motion while autonomous control manages others), traded 

control where the human operator hands off control to automated execution of narrowly 

defined sequences of tasks for a time and then receives it back after task execution is 

completed, and supervisory control where the operator manages tasks at the higher level 

instead of making every motion personally [3]. Except for some of the more simple 

software fixturing, telerobotics is rarely used in real world D&D manipulator applications 
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due primarily to incompatibilities and implementation issues with both the manipulator 

systems used and the unstructured environments encountered.  

 

Smart tooling, a category of telerobotics whereby additional sensing and/or actuation is 

added to manipulation in the tooling acquired by the end-effector to improve task 

execution, has its roots in pick-and-place specialized remote tooling used by the nuclear 

industry since its inception. Smart tooling, when grasped in an end-effector, adds 

capability to limited manipulator systems. To date smart tooling systems are normally 

highly task specialized. 

 

 

2.5 Behavior-based Robotics (BBR)  

 

A concise definition of BBR provided by Arkin follows: 

 

Behavior-based systems are composed of multiple behaviors 

(stimulus/response pairs suitable for a given environmental setting that is 

modulated by attention and determined by intention) that tightly couple 

perception and action to produce timely response in dynamic and 

unstructured worlds. These behaviors are coordinated through many 

possible mechanisms, including arbitration, fusion, and sequencing [17]. 

 

BBR is most typically associated with autonomous systems and sometimes with 

supervisory control-oriented (type tR) telerobotic systems. To date, BBR is also more 

often implemented on mobile platforms than with manipulation though manipulation has 

been a component of BBR since the 1980s [18]. 

 

BBR grew out of the realization and frustration that the traditional artificial intelligence 

(AI) schemes for robot control were not working outside of simplified laboratory test 

environments. Recent research has expanded the definition of BBR significantly and 
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created a hybrid form by incorporating more traditional AI concepts as well as new 

developments. However, this dissertation returns to the early foundations to explore 

initial development in support of traded control of smart tooling for telerobotic assists.  

 

The earliest true autonomous robots were actually mobile platforms designed for 

psychological studies. These systems used what could be called a behavior-based control 

scheme implemented directly in analog electronics. The earliest design concepts were 

published in the 1930s [19], [20]. Contemporary concepts of the parallels and the 

intertwining between machine intelligence, control systems, and the human nervous 

system were expounded by Weiner as a new field of study, cybernetics, in 1948 [21]. The 

Machina Speculatrix cybernetic tortoise, shown in Figure 13, was first implemented in 

the late 1940s by W. Grey Walter for psychological studies [22], [23], [24].  

 

 

 

Figure 13. Machina Speculatrix Cybernetic Tortoise Replica. 

 (Courtesy of Division of Work and Industry, National Museum of American History, 

Behring Center, Smithsonian Institution) 
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Behavior-based approaches then disappeared from the forefront of robotics research until 

the 1980s when they resurfaced in similar form migrating to higher-level computer 

control. The earliest modern implementation of the behavior-based approach was by 

Brooks at MIT although Braitenberg also published some psychological mental 

experiments in 1984 that appear to have been inspired by the earlier work [25], [26].  

 

Several critical postulates can be put forward to describe the core of BBR. One of the 

most important is that "the world is its own best model" [27]. The plan should not be to 

model everything in the “world” and then attempt to calibrate the robot to that artificial 

world when the exact representation of what the robot needs to interact with is right in 

front of the robot. Sensors then become critical but the range of interaction is generally 

localized permitting more accurate ranging on simpler object fields and accommodating 

real-time updates which address flexibility and imprecision in the mobility/delivery 

system. At its simplest, BBR is sensor-based reactive control. However, BBR, while 

founded upon sensor-based reactive control, also requires an architecture of arbitration of 

the various behaviors necessary to complete a task. Brooks used a layered approach, 

labeled subsumption, of higher-level behaviors built on top of fundamental low-level 

behaviors [25].  The higher-level behaviors subsume (override) the lower level behaviors 

unless they fail for some reason; then the lower level behaviors can stand alone without 

any of the higher level functionality. Interaction or prioritization between behaviors may 

be via arbitration, fusion, and/or sequencing.  Arkin labels behaviors as schema; each 

schema has a characteristic artificial potential field associated with its function.  The 

fusion of behaviors is achieved by summing all of the schema potential fields into one 

overall potential field [28].  Pin’s fuzzy logic-based BBR represents an approach to 

arbitration common in both Europe and Japan [29]. 

  

Additional core concepts to the BBR philosophy include situatedness and embodiment. 

Situatedness means that the robot is located in the world in which it is interacting; there is 

only a minimal abstract description of that world. The environment directly affects the 

actions of the robot. Embodiment means that the robots use sensors to “experience” the 
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world directly. Actions have direct consequence on the feedback of the robot's sensor 

systems. From the terminology used, it is fairly obvious that BBR was devised around a 

focus on autonomous robotics and not on human interactive telerobotics that is the focus 

of this dissertation. 

 

Although they have morphed considerably into more complex architectures than the 

original concept, behavior-based systems have since become mainstream and taken over 

the more practical autonomous robotic mobile platform implementations in the field. 

Companies that sell small robotic devices, such as robot vacuum cleaners typically use 

BBR approaches [30]. The primary application for behavior-based systems has been 

autonomous robots, but they have also been applied to telerobotic systems of the 

supervisory control variety (tR) [28], [31]. 

 

 

2.6 Application Areas 

 
The application area for this dissertation is anywhere positional teleoperation is used and 

especially where the manipulators need to handle substantial tooling to execute tasks. The 

initial and key application area for teleoperated manipulators has been the handling of 

radioactive materials, operational support of processes, and conducting maintenance for 

nuclear research facilities and nuclear power industries where human access is not 

possible. Especially within the last 20 years, teleoperated manipulation has been used at 

the DOE sites for hazardous waste cleanup in areas where radiation levels are too high 

for human presence, where contamination levels dictate the use of personal protective 

equipment that limits human mobility, efficiency, and duration of operation, or where 

chemical or physical hazards create too much of a liability to permit human presence. 

 

Undersea and space applications grew out of the example created by the nuclear industry. 

Sub-sea manipulation has become crucial to oceanographic and archeological scientific 

investigations and off-shore oil exploration, oil rig maintenance, and accident mitigation. 
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A key difference in space-based applications is the significant time delay between 

operator interface and remote manipulator caused by the extreme distances encountered 

in space and by switching delays in communications equipment that relay the signals. 

Real-time high fidelity positional teleoperated manipulation is not currently feasible for 

space-based applications unless the master controller is in close proximity to the system 

being controlled. This means that tR telerobotics is more applicable than Tr telerobotics 

for most space-based applications.  

 

Most recently teleoperated surgery or telesurgery has become a major application area. 

Minimally invasive robotic laparoscopic surgery removes the head surgeon from the 

operating table to an operator station directly adjacent to the surgery while the rest of the 

surgical staff directly tends to the operation hands-on. These systems are commercially 

available and expanding in use at hospitals across the U.S. Telesurgery where the surgeon 

is separated a great distance from the operation and support staff has been demonstrated, 

and full remote site telesurgery with no surgical staff on hand has been demonstrated by 

the DARPA TraumaPod project where a nurse robot provided the surgical support staff 

function [32], [33]. The result of this work should be applicable to power tool use in 

telesurgery as well as the core focus of manipulation for any hazardous environment. 
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Chapter 3  

Relevant Work 

 

3.1 Introduction 

 

This chapter examines previous work and the resulting literature in order to establish the 

foundation and direction for this work. Unfortunately there is limited previous published 

intersecting work that ties teleoperation, telerobotics, or behavior-based robotics 

techniques to the use of tools and especially to the use of power tools and their interaction 

with the target task. Also where behavior-based techniques are used in telerobotics, they 

are typically of the tR type and not of the Tr type that is the focus of this dissertation. 

Therefore the literature survey is expanded to include the basic topics to establish the 

necessary foundation and to facilitate an extrapolation to tool-centric Tr-oriented 

telerobotics enhanced with selected relevant behavior-based concepts. 

 

 

3.2 Teleoperated Tooling Tasks 

 
The development of teleoperated manipulation was a direct result of the need to handle 

hazardous materials and to maintain process equipment during the World War II 

Manhattan Project. Pick and place of objects has always been one aspect of hazardous 

materials teleoperation, but the use of powered and hand tooling has always been a key 

and dominant requirement for task completion [14]. Much of this accumulated remote 

tooling design and application knowledge is not known outside of the DOE community 

though published guidelines do exist. 

 

The technology for teleoperated force-reflecting 6-DOF manipulators was well sorted out 

and highly developed through the 1950s [6], [7], [34]. These manipulators primarily used 

cable- or metal tape-driven joint actuation and a two-finger parallel jaw gripper 

arrangement to articulate objects and deliver and operate tools to remote tasks. Where 
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servomanipulators had inadequate capacity or were too fragile to deploy the tooling 

required, power manipulators resembling crane-deployed inverted industrial robots and 

overhead crane-hook-deployed tools were used [4], [14]. 

 

These servomanipulators used joint-based analog control driven with kinematically 

similar master controllers. The analog control loops had to be frequently tuned to 

maintain optimal performance due to amplifier gain and zero offset drift. Since the 

controls were analog, there was little opportunity to augment these systems with 

automation. Many systems provided force reflection using a control loop scheme called 

position-position bilateral force reflection [34]. There were no force sensors used in the 

generation of force reflection. The per joint force reflected back to the master was 

generated by controller response to the position difference between the joint position of 

the remote manipulator and the corresponding joint position of the master controller [8]. 

 

Since teleoperated servomanipulators used a parallel jaw gripper end-effecter that was 

not compatible with the irregular cylindrical shapes of most tools, custom tool fixturing 

was typically required to grasp and articulate the various tools. Grip pads that captured 

the fingers of the parallel jaw grippers were added. Depending on the reaction forces of 

the tools and the inability of the operator to precisely align and position that tool, 

compliant rubber links/pads were added to the tool fixturing. If the tool in question was 

powered, remote actuation was then adapted to operate the tool. These modifications 

drove cost and availability for remote tooling—more and more complicated 

modifications meant that fewer tool instances could be afforded. As previously 

mentioned, detailed guidelines have long existed for how to design, fixture, deploy, and 

use remote tooling for teleoperation [4].  

 

Sometimes particularly large tooling would be of the pick-and-place variety whereby the 

manipulator system with the aid of an overhead crane would set a tool package in place 

on a task. The automated or semi-automated remote tool (a predecessor to current 

concepts of smart tooling) would then complete its specific task via remote control. Any 
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issues of tooling dynamics and control would be handled directly in the tool mechanical 

design and would not impact the manipulator [4], [14]. 

 

In the 1970s analog servomanipulators were converted first to minicomputer and then to 

microprocessor-based control [2], [35]. This minimized the analog drift problems and 

allowed rudimentary automation (telerobotics) for the first time. Features that were 

enhanced or added included motion scaling, variable force reflection ratios, and enhanced 

master controller indexing. Commercial digital manipulator systems to this day are based 

on the same control concepts as these first systems. 

 

 
3.3 Telerobotic Tooling Tasks 

 

As previously mentioned a telerobot is a system that beneficially combines human 

interaction and automation in a single robot system; the fusion of teleoperation and 

robotics is telerobotics. The key benefits typically sought are faster and/or better task 

completion, and lower operator fatigue that permits longer operation and better efficiency 

than would be possible with a pure teleoperated system. These desires all have relevance 

in tool usage along with the need to minimize tool and manipulator system damage. 

 

Early work included the addition of subtask automation to traditional (compliant) 

teleoperated systems and had limited success [36], [37], [38]. To permit position-based 

force reflection in traditional joint control teleoperation, the manipulator and master 

controller joints require low actuation friction that tends toward high backlash and makes 

overall joint control compliant and imprecise. The resultant positional errors are not an 

issue for a human operator but are problematic for precise robotic positioning [36], [39]. 

Much telerobotics work after this time made use of industrial robots instead of 

teleoperators to gain precision of positioning at the cost of quality of teleoperation. 
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The earliest useful telerobotics work appears to have been completed by Vertut et al. and 

published in the mid-1980s [37]. Along with teach/playback-recorded motion, they also 

implemented software jigs and fixtures to constrain teleoperation motions to make it 

easier for an operator to use tools requiring precise alignment such as saws and drills.   

 

Also in the 1980s there was a growing interest in breaking joint level control and 

kinematically identical master controllers with a move to Cartesian control. Khatib 

provided a thorough mathematical development of his operational space that has been 

foundational ever since [40]. Researchers began to try to use industrial robots for 

teleoperation and dissimilar master control schemes and multi-axis joysticks were tried 

with varying levels of success [41], [42]. Much of what drove this was that research 

communities did not have access to high fidelity servomanipulators due to their high cost. 

(A high fidelity digital dual arm master-manipulator electric teleoperator system cost 

approximately $1.5M in 2010 [43].) In general these dissimilar kinematic systems do not 

compare favorably to traditional kinematic replica joint level teleoperation; however 

work in this area done by the French Commissariat à l’Énergie Atomique et aux Énergies 

Alternatives has made serious improvements in dissimilar Cartesian control through the 

use of traditional teleoperator master controllers driving industrial robots with a force-

torque sensor in the slave manipulator base [44], [45], [46]. 

 

Chan et. al. at the University of Tennessee at Knoxville (UTK) attempted to expand on 

Vertut’s work by focusing on various kinds of operator assists for tooling [47]. This work 

required that complex compliance matrices be set up by hand for each task. Everett later 

expanded on the operator assist efforts to include available sensor and model-based data 

to improve the quality of operation [16], [48]. This work also required complex setup 

procedures for each task. There is no question that operator assists add value to the 

precision of operation. The difficulty comes in setting up parameters to execute these 

tasks in a way that makes them useful and accessible. A key issue here is that the 

programming and engineering intuition required to implement task automation is beyond 

that of typical remote systems operators, and the amount of time required to configure the 
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system for a task may be longer than that required to struggle through the task via pure 

teleoperation. While the use of tooling was the focus of some of this work, it did not 

specifically incorporate tool/task interactions. 

 

Space-based systems seem to be the only application area that has broadly adopted 

joysticks for their highest grade of teleoperation, but they have unusual work space 

constraints, motions must be slow to avoid imparting reactive forces in space-based 

systems, and great distances induce time delay into control making traditional positional 

teleoperation difficult [49]. Under these constraints a “fly-the-end-effector” approach to 

control, which is also more natural for the typical astronaut with a pilot background, is 

the most practical control architecture [42]. While mission specialists are no longer 

typically pilots, they undergo extensive training on task mockups to achieve proficiency 

with a limited set of tasks using the available control modes. D&D remote operators 

generally receive little to no system level training or practice. Under these circumstances, 

positional master controllers that function as an extension of the human operators hands 

provide more natural teleoperation. 

 

The US National Aeronautics and Space Adminstration (NASA) has always maintained 

active research in teleoperation, telerobotics, and autonomous robotics [50], [51]. Early in 

their planning stages NASA acknowledged that moving from teleoperated systems to 

telerobotics (Tr) appeared to be the better approach although the National Bureau of 

Standards had determined to start with industrial robots and move back towards 

telerobotics (tR) by adding flexibility in operations and task programming. Hertzinger et. 

al. developed and flew a series of telerobotic dextrous manipulation experiments called 

the robot technology experiment (ROTEX) to explore master controller and control 

system control modes [52], [53].  

 

Backes et. al., Hyati, and Lee worked at NASA to address issues of telerobotic shared 

and traded control for teleoperators [54], [15], [55]. This fundamental work does not 
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appear to have extended to the use of tooling for task completion or appreciably 

distinguished whether one mode was better than the other.  

 

More recent NASA work in telerobotics has focused on creating the anthropomorphic 

Robonaut capable of articulating hand tools for space-based operations and potentially 

geological surveys on other planets. While highly capable, Robonaut has different 

operating parameters from those of earth-based D&D-type operations. It is relatively 

slow moving and is not designed to handle power tools capable of reflecting large forces 

back into the system [56]. Additionally, time-delayed operation issues due to distance and 

communications relay technology place constraints on space-based teleoperation and 

telerobotics that are not typically issues with earth-based D&D type operations. They are 

addressing a different set of task constraints. 

 

End-effecter tooling has always been a focus in the use of industrial robots where 

welding, painting, and various machine type operations such as deburring are common. 

Whitney et. al. did early work on robotic deburring solutions [57]. Solutions often did not 

transfer well to telerobotics, however, since industrial robots are stiff and the majority of 

teleoperators are not. In general Tr-oriented telerobotics requires solutions that 

accommodate the flexibility of the manipulator and its delivery system. 

 
The DOE pursued telerobotics throughout the 1990s with the purpose of improving the 

efficiency of remediation operations where remote systems were required to protect 

people from hazardous environments. The Robotics Technology Development Program 

and later the Robotics Crosscut Program addressed issues in D&D, tank waste retrieval, 

buried waste, mixed waste disposal, and laboratory automation [58]. Several of these 

areas, in particular tanks waste retrieval and D&D, began to investigate relevant 

telerobotic issues with respect to tooling usage. 

 

One area of application included storage tank waste retrieval and remediation using 

operator assists developed by Xi et. al. [59], [60]. They were concerned with integration 
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of human-based corrections into a preplanned robotic path to correct for path flaws and to 

avoid obstacles. Here the robotic task is the main activity and any operator motion is the 

assist. This approach was implemented and tested as an improvement for the tedious 

process of using remote systems to remove hazardous waste from storage tanks including 

scouring walls. The manipulator system was a large slender hydraulic manipulator with 

sluicing tooling on the end-effecter. This system was controlled by a joystick and moved 

slowly and so was not a high fidelity teleoperator. In this case, very specific and narrowly 

defined telerobotic assists were defined and implemented as a means of reducing operator 

fatigue.  

 

DOE also pursued manipulation, telerobotics, and tooling for typical D&D-type tasks. 

Since early testing showed that typical D&D tools such as hydraulic shears could reflect 

more than 300 lbs (1334N) of force back into the manipulator system, hydraulic 

teleoperated manipulators were substituted for the traditional but more fragile electric 

servomanipulators. Position-position force reflection was replaced by a force-torque 

sensor on the hydraulic manipulator in combination with dissimilar kinematic electric 

force reflecting master controllers [61]. Early work studied with varying success circular 

saws, band saws, reciprocating saws, sheet metal nibblers, and hydraulic shears with 

minimal fixturing and no telerobotics in an attempt to dismantle process equipment and 

the core of a research reactor. Substantial lessons learned on teleoperated tooling 

implementation issues were collected [1]. 

 

Later work included telerobotic plasma torch cutting of structural components that would 

be located in areas where accurate a priori models of the task would not be available [12]. 

This work involved smart tooling with both sensing and actuation and incorporated 

realistic manipulator control constraints such as dealing with a closed “black box” 

manipulator controller. Telerobotic functions included traditional robotics for pick-and-

place of tools, the use of a teleoperated sensor tool (ultrasonic and laser rangefinder to 

establish edges and standoff distances and correlated with manipulator position) to 

establish a short term task model with cut paths and standoff distances (plasma torch 
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cutting requires the maintenance of an approximately 3mm to 7mm of standoff for proper 

cutting), and automated robotic use of a plasma torch cutting tool to execute the model 

generated. Capability was demonstrated for flat plates and complex cuts on structural 

angle iron. Each task instance was completely hand programmed using the generated 

points.  

 

Hamel at UTK has conducted extensive telerobotics work that has specifically been 

oriented towards D&D-type cutting tasks and addresses the modeling issues via task-

specific sensor-based modeling where an operator used the robot task space analyzer 

(RTSA) to identify and plan the task; task execution was model-based robotics using the 

human-machine cooperative telerobotics (HMCT) system [62], [63], [64], [65], [66]. 

Under the RTSA operation strategy, an operator used sensor data from both video and 

laser rangefinder to establish an object’s location in space to create a task model of the 

particular D&D task to be completed, a task script was generated, and the task was 

automatically executed in model-based robotic mode. There was no direct task feedback 

during execution and no sensor-based registration of the manipulator to the task during 

execution. 

 

The technique and process has been tested and proven using a manipulator-held bandsaw 

to cut mockup process piping. There are several remaining issues in this technology. 

RTSA was one of the earliest techniques to recognize that a local task model would have 

more utility than a world model. World models can take extreme amounts of time to 

properly construct and register impacting the efficiency of operation, and the real world is 

not static, especially in a D&D situation where all of the tasks are dismantling the 

“world”. However RTSA’s foundational philosophical shift begs the question as to how 

much of a task model is actually necessary to complete a task. This has not been fully 

explored. Other remaining issues include dealing with the error bubble of a sensor system 

mounted any appreciable distance from the target task that limits task and tool choices 

and the complexity of dealing with various shapes in the task modeling [67]. The use of 

tooling was a critical part of the operation, but tool disturbances were not incorporated.  
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Zhang furthered this work by focusing on tooling dynamics and disturbances of the band 

saw cutting task to provide stable and more consistent cutting operation [68]. This 

capability was added to the existing HMCT RTSA system but did not make use of the 

RTSA capability. The goals of this work included the generation of a “universal tooling 

interaction force prediction model” and a “grey prediction force/position parallel fuzzy 

controller…that compensates for tooling interaction forces.” This work dealt with a 

single hard programmed task in its demonstration and did not accommodate the ability to 

reprogram tasks, task target locations, or more broadly accommodate other tools. 

 

Working with the same system, Kim noted that “highly unstructured environments and 

the continuous changing commands needed from the operator to counteract unexpected 

events make it impossible to develop a force assistance function using control algorithms 

based on any analytical form [65].” This was addressed with the incorporation of a fuzzy 

logic compensator narrowly defined for a specific task. This work identified issues with 

telerobotic tool fault detection that led to a series of efforts to find solutions using fuzzy 

logic, discrete wavelets, and neural networks. 

 
Most recently UTK has focused on the use of a multi-finger end-effecter to provide 

generic grasping of unfixtured tools [13], [69]. Fixturing has always been an expensive 

approach especially in situations such as cost-conscious D&D where tools wear out 

quickly. While generally relevant to this work, a multi-fingered end-effecter was 

considered to be a complication to first attempts at telerobotic tooling control and so was 

not considered in this work. 

 

Cannon launched a direction of work that examined grasping issues related to hand tools 

for a version of “point-and-direct” high level telerobotics using “virtual tools” [70], [71], 

[72], [73]. The ultimate goal was to provide supervisory level control of tools using in 

manufacturing type tasks including force control. The primary focus of this work was to 
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define how to grasp tools and did not address how to manage contact with the target task 

especially in the context of the use of tooling. 

 

It is recognized that virtual fixturing as originally developed for teleoperated use of 

tooling in the 1980s is not task-flexible. Fixturing is generally based on manipulator 

coordinates and not on task coordinates. Aarno et. al. examined the use of adaptive 

virtual fixtures; however the focus was on predicting intended operator motions to define 

fixture adaptations and did not directly address accommodation of tooling [74].  

 

Yu et. al. explored the possibility of using attractive and repulsive forces to align on a 

target, avoid an obstacle, or to follow a path using a Hidden Markov Model in an attempt 

to classify the apparent motions of a human operator to determine, select, and control the 

manipulator motion [75]. The focus was on determining the intended motions of the 

operator. The use of tooling contact issues during operation was not a concern or focus of 

that work. 

 

The advancement of medical manipulation of small surgical tools for the removal of 

human operator tremor and to compensate for motion of the task is directly relevant to 

D&D tasks because the task or manipulator deployment system will typically move 

during task execution. Bebek and Cavusoglu used a whisker sensor to dynamically 

compensate for tool-to-task motion during surgery on a beating heart [76]. The purpose 

of the sensor system was to cancel relative motion between the surgical tools and the 

target of the surgery. 

 

Some medical systems work has recognized that smart tooling is an important aspect of 

teleoperation and telerobotics. Saha under the guidance of Okamura examined the 

addition of force sensing directly onto surgical tooling to provide more sensory feedback 

to the surgeon remotely conducting the surgery with the purpose of improving the quality 

of task execution [77]. This work focused on force sensing in support of teleoperation 
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only and did not address telerobotics or the use of power tools which greatly complicates 

control schemes. 

 

While not specifically telerobotics, the DARPA TraumaPod project to support surgical 

teleoperation with a robotic nurse developed tool/task interaction strategies for a 7-DOF 

robot manipulator that had to quickly interact with both compliant manipulators and rigid 

non-optimally aligned surgical subsystems supplying tools and surgical supplies. 

Insertion force limiting and incremental force-based calibration of subsystems in an outer 

control loop around a “black box” robot controller provide relevant control concepts for 

D&D telerobotics [32], [33]. 

 

There is some indication that interest is increasing in the use of smart tooling to facilitate 

teleoperated task execution. Dario et. al. discussed smart tooling and its impact on 

telesurgery and minimally invasive surgery [78]. This paper was a survey of potential 

smart tooling usage and did not specifically address tooling usage itself or control modes. 

There has been little implementation in this area to date. 

 

 

3.4 BBR Tooling Tasks 

 
Previous traditional autonomous robotic approaches to unstructured task environments 

normally used a sense-model-plan-act sequence of events; and though there has been 

progress there are still difficulties with most of these event stages in the context of real 

world task execution [27]. In order for a robotic system to interact with its environment, 

an adequate model must be made of the world or the specific task to be addressed. In the 

context of early telerobotics, this model was generated manually in a computer-aided 

drafting package using as-built drawings.  This requires that expensive skilled technical 

labor spend significant time to generate models of the environment to be dismantled. 
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A better way to do this is to use some sort of sensor system to automatically model the 

robot’s world, and there have been many significant research activities along these lines, 

and commercial systems now exist that will generate models with human operator 

assistance [79], [80], [81], [82]. Key problems include cost, physical robustness in the 

presence of tooling, accuracy, the process requirement for a containment dome over the 

sensor system that is currently unworkable, and long scanning time or analysis times of 

the various sensor systems (laser range finders and stereo or monocular video are the two 

most common). Knowledge representation, or interpretation of the data into a model that 

the robot can use in real time, is also an area requiring significant progress. Finally, 

registration and calibration of the position of the robot to the task model to establish 

where it and all the objects in the task are located is also critical. 

 

Now consider that practical D&D systems are relatively large pieces of hardware, 

movable and flexible and not rigidly mounted, and operating in highly unstructured 

environments where complex objects reside in dirty low-contrast, low light environments 

(vision is necessary but not sufficient). High remote system flexibility means that the 

robot reference frames, normally taken to be fixed and rigid in a laboratory context, 

cannot be trusted and dictates that these models must be updated as necessary to maintain 

positional accuracy of the robot with respect to task objects. This could be nearly real-

time depending on the bandwidth of the disruption to the robot base frame location. Dark, 

complex, and dirty facility environments tax sensors and recognition systems beyond 

current state of the art. The research community has made relatively little deployable 

progress in resolving these issues over the years [27]. 

 
While the primary focus of the BBR research community appears to be on mobile robot 

platforms, manipulation has also been addressed.  Since most of these systems focus on 

total autonomy and not on human interaction, most of this work is marginally relevant to 

the proposed research.  However there is some work in telerobotic manipulation and 

collaboration with human operators or peers. 
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Arkin, et. al., have participated in BBR research based on both reactive and hybrid 

deliberative/reactive control approaches [28], [83], [84], [85], [86], [87], [31], [88], [89]. 

His work documents the evolution of the schema-based approach to reactive control and 

its migration to a hierarchical hybrid deliberative/reactive architecture to take advantage 

of a priori task knowledge.  This body of work also lays the groundwork for schema-

based telerobotics, though the definition of telerobotics is typically kept at a fairly high 

supervisory level (tR) and is applied primarily to mobility and not manipulation, and 

especially not to power tooling. The example presented by Reactive Control as a 

Substrate for Telerobotic Systems does present one possible conceptual model to create a 

substrate for telemanipulation [28]. However this is tR-oriented telerobotics and would 

require a complete rework of the teleoperation scheme that would be incompatible with 

commercial positional teleoperation systems. 

 
In work directly related to Arkin, Cameron et. al. and MacKenzie et. al., conducted 

research related to manipulation and mobility [90], [91]. The focus was on autonomous 

manipulation and not on interactive telerobotics. The most interesting concept here is the 

identification of the manipulator Jacobian and its relationship between joint torques and 

static forces at the end effector with the schema’s potential fields used to specify 

behaviors. However this would require a complete change of approach to teleoperation 

for implementation. 

 

Connell at MIT appears to have published some of the earliest work related to BBR-

based manipulation [18]. The control system is based on Brook’s subsumption 

architecture for behavior selection and is comprised of a collection of state machine-

based behaviors. The robot is completely autonomous and optimized for finding and 

picking up soda cans. The key useful point here is the switching mode provided by the 

state machines. One of the limitations of schema-based summed potential fields is that 

they do not provide for mode switching that is provided by the subsumption state 

machine. 
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Stein is one of the few that has addressed behavior-based telemanipulation [92]. The 

primary focus here is time-delayed teleoperation for space-based operations. In this case 

because of the time delay issues, it is important to make the BBR system the primary 

mover and to add human level control as a secondary. While Stein refers to this approach 

as teleoperation, it is in fact supervisory control at a fairly high level and barely even tR. 

The control system behavior arbitration is based on subsumption. 

 

Park et. al. of Argonne National Laboratory pursued BBR-based techniques for D&D-

related manipulation [93], [94], [95], [96], [97]. The context of this work focuses on dual 

arm manipulation and task execution based on structured light sources and video 

processing. This work follows the schema-based approach of Arkin and makes use of the 

manipulator Jacobian in correlating manipulator action to the BBR schema. The sensor 

scheme is to use structured lighting and video image processing for behavior feedback. 

The intent of this work is to manipulate objects and tools, and while there is some 

mention of possibly using force/torque or motor current sensors to detect loads and 

anomalies, there are no sensors planned to address direct tooling-to-work-piece 

interactions or optimization of tool action based on proximity and contact information. 

This work is very much arm-centric, and the aspects of tool interaction are ignored. This 

approach would encounter difficulties in task execution—tool alignment, wear, and 

chattering—that would affect efficient task completion. As with almost all BBR type 

implementations, it also treats teleoperation as a secondary mode and not as the primary 

mode of operation. 

 

Pettinaro explored the use of behavior-based techniques for the peg-in-hole insertion task 

[98]. The premise of this work was to consider how a blind human might use sensing to 

locate a hole and insert a peg. A zigzag and a hopping spiral pattern of motion were used 

to locate the hole. These approaches may work well to find a hole in a plane but does not 

translate well to the tooling tasks in three-dimensional space that may be surrounded by 

similar task objects. 
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Wasik and Saffiotti explored behavior-based approaches to arm control and examined 

previous work finding that much prior implementation of behavior-based systems for arm 

control were based on the sequencing of behaviors which they considered to be too 

limited to support generic grasping [99], [100]. Their work focused on vision-based 

grasping for a collection of pick and place task primitives. Their approach is fully 

autonomous and does not incorporate teleoperation, contact management, or concepts 

related to tooling interaction with its environment. 

 

Stoytchev noted that studies focusing on robotic tool use were uncommon and had not 

been well addressed in the autonomous robotics community [101]. This is still true. He 

examined the use of behavioral approaches to characterize tools with a focus on having 

the robot learn the use characteristics of tools. The tools identified were simple items 

such as sticks that could be grasped and used to poke or prod objects. This work is 

preliminary. The focus was on learning how to use simple tools and not on the efficient 

use of existing tools. It therefore does not address the use of power tools. 

 

Though not related to tooling, Pin described a minimal modeling approach to mobile 

robot navigation that used a fuzzy rule-based system [29], [102], [103]. Performance of a 

small set of 20 fuzzy rules was able to exceed the performance of 30,000 lines of code 

designed to attempt “crisp” image and sensor processing and navigation. The focus is on 

automated rule generation. The resultant is that the concept of a minimum model has 

value for real world implementation and that the use of a simple functional architecture 

based on behaviors may be able to exceed the performance of a system using more 

complex engineering models.  

 

 

3.5 Tool Disturbances 

 
Rapid oscillation of cutting teeth in conjunction with applied cutting force can produce 

“chattering” between the tool and the work piece. High frequency machine tool and saw 
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tooth chatter have been extensively studied by many researchers though the process is 

still not completely understood [104], [105], [106], [107], [108], [109], [110], [111], 

[112]. It is best if the working frequency of the tool contact can be kept far beyond the 

frequency that would normally impact manipulator dynamics; however, these tools 

invariably use universal motors where the motor’s tendency to slow under increased load 

can move its frequency of operation into a range where it will be of concern. 

 

Noakes investigated a chatter/disturbance solution based on prior machine tool chatter 

techniques that detect chatter with the ratio of variances of low and high accelerometer 

signals generated by the saw during cutting [113]. This is an empirical approach and 

thresholds must be established by experimental testing with the particular tool type. 

Standard digital signal processing techniques are used to split the signal into high and low 

frequency components for analysis. This approach only works to identify the presence of 

saw blade chatter and disturbance and does not mitigate chatter. Once the disturbance is 

detected, a procedure to modify operation to correct problem has to be devised that is 

dependent on specific task and tool circumstances.  

 

 

3.6 Summary 

 

In summary, there has been nearly no work that combines telerobotics, behavior-based 

concepts, and the use of power tooling in a way that is cognizant of the interactions 

between the tool and the task. However some general direction may be derived from 

previous work in the various non-intersecting subject areas. 

 

For this work the use of a positional master controller in support of high fidelity 

teleoperation is a primary goal. Telerobotic assists emphasizing Tr mode of operation are 

desired so that teleoperation may be maintained as the primary mode of operation since 

unplanned tasks and events will always occur during operation. This means that 

supervisory modes of operation or those modes that might use joystick control to modify 
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an autonomous operation as has been previously done in some behavior-based 

architectures are not desired. The behavior-based architectures also tend to supplant 

rather than coexist with existing manipulator controllers which is also undesired. 

 

A desire to maintain a standard teleoperation capability within an existing manipulator 

controller architecture while integrating telerobotic operator assists points to a traded 

control approach to permit switching between the control modes. This will also permit 

coexistence and ready integration between traditional teleoperation, robotic motion, and 

telerobotic assists. Traded control also affords the operator periodic breaks from 

concentrated physical motion to relieve fatigue in a way that shared control does not 

during longer operating sessions. 

 

One of the most promising concepts from behavior-based techniques is to rely on sensor 

information to capture local model context rather than generating an abstract model. This 

is the concept of “the world is its own best model.” This offers significant promise in task 

execution with minimal modeling of each individual task before execution. 

 

While multi-fingered end-effecters are ultimately desirable, they are currently unreliable 

for long-term operation and testing in the context of D&D tooling needs for this work. 

The effects of grasp on sensors is also a diversion from the intended goals of this topic. 

“Traditional” remote system tool fixturing is adopted for this work with the 

understanding that more generic grasping should be addressed at some future point. 
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Chapter 4  

Testbed Description, Capabilities, and Limitations 

 
4.1 Introduction 

 

This chapter defines the test bed used in this work. Much of this system was pre-existent 

to this work though it has been extensively reworked. The current iteration of hardware 

and software owes much to the foundational work of Renbin Zhou and substantial 

ongoing work by Andrzej Nycz. A hardware description and the software architecture are 

described. System capabilities and limitations are defined since they impact 

implementation, performance, and test results.  

 

 

4.2 Hardware Overview 

 

The manipulator system used in this work, shown in Figure 14, consists of a pair of 

manipulators that are mounted on a cross beam and then mounted to a pedestal base 

bolted to the floor. The steel box beam is 1.22 m long and .203 m across the flats of the 

square. The manipulators are mounted 1.054 m apart between the centers of their base 

mounting points. The top of the box beam where the manipulators mount is located .845 

m above the floor. 

 

The manipulators used are Schilling Titan II hydraulic 6 degree-of-freedom (DOF) 

manipulators. The shoulder pitch joint uses a linear actuator (hydraulic cylinder). The rest 

of the joints are proprietary rotary designs. All joints except the gripper use resolvers for 

position indication; the gripper uses a linear variable differential transformer. The 

hydraulic system is described as 3000 psi (20,684 kPa) nominal with a flow rate of 1.5 – 

5 gallons per minute (5.7 – 18.9 liters per minute). The manipulators are specifically 

designed for sub-sea use and are designed to withstand underwater depths up to 7,000 m 

below sea level. They are constructed of titanium for strength and corrosion resistance as 
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their most common use is off shore oil-rig maintenance. The use of these arms for 

hazardous waste cleanup is due to their robustness and payload capacity. 

 

From center of the manipulator base to the tip of the parallel jaw gripper, length of the 

arm is 2.00 m. Payload capacity of the arm while at full extension is 109 kg; the mass of 

the arm is 79 kg. The parallel jaw grippers open to 0.152 m, have serrated finger faces for 

firm grasp and include a cylindrical T-shaped notch for positive grasp of tooling if 

fixturing is designed to support the “T-handle” approach. 

 

The Schilling controller has been replaced with a PC/104-based controller developed by 

ORNL. The PC/104 controller was designed to provide basic teleoperation while 

supporting further development; the original Schilling controller was a “black box” that 

could not be modified and had limited means of control access. The controller, shown in 

Figure 15, is an open architecture unit based on the QNX4 real time operating system. 

The controller runs at a 200 Hz loop rate. It is essentially a joint position controller. UTK 

previously modified the controller to communicate with external systems via Ethernet; 

the original used a serial link to connect to the Schilling mini-master operator interface. 

 

The operator station is shown in Figure 16. It consists of an Agile Engineering-supplied 

compact remote operator console with control chair, viewing system, and computer 

monitors. A Barrett Whole Arm Manipulator (WAM) configured as a 7-DOF master 

controller is mounted on the left side of the console.  
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Figure 14. Telerobotics Test Bed. 

 

 

 

Figure 15. PC/104 Manipulator Controller. 
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Figure 16. Telerobotics Operator station. 

 

 

4.3 Software Architecture and Implementation 

 

The system level block diagram is provided in Figure 17. The system resides on a total of 

five computers interconnected with a dedicated Ethernet network. The system has no 

external connection to the Internet; therefore there is no traffic on the network that is not 

directly related to control. The collection of computers is a variety of hardware 

configurations and run various operating systems running software at various loop rates. 

 

The central machine is the high level controller (HLC). This desktop PC manages all 

communications between the other machines, manages the Ethernet loop timing, 

coordinates the passing of variables between systems and programs via shared memory, 

and provides the forward kinematics for the WAM and the forward and inverse 

kinematics for the Schilling. The interface for manual teleoperation and the BBR-inspired 

controls also reside in the HLC. 
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Figure 17. Test Bed System Level Block Diagram. 
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The operating system for the HLC is based on CentOS linux. Real time loop timing is 

synchronized via the rtc( ) system function call. Prior testing at UTK has indicated that 

this approach is valid to at least 128 Hz loop rate [114]. The intersystem Ethernet loop 

rate runs at approximately 32 Hz. The rtc( ) is provided to the main HLC program 

server_hlcx( ) since it is the point of coordination and timing between all processes on all 

of the networked systems.  

 

The include file is rtc.h. The rtc( ) is configured as follows: 

 
// required for the real time clock (rtc) 
 
// rtc device file descriptor 
 
 int rtc_fd; 
 
 unsigned long dummy; 
 
// variable for status response from /dev/rtc when interrupt returns 
 
 unsigned long rtc_status; 
 
// open the /dev/rtc device file 
 
 rtc_fd = open("/dev/rtc", O_RDONLY); 
 if(rtc_fd < 0) return -1; 
 
// enable periodic interrupts, and set interval 
 
if(ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) return -1; 
if(ioctl(rtc_fd, RTC_IRQP_SET, 128) < 0) return -1; // set to power of 2 up to 8196 
// sets the loop rate directly in Hz; currently set for 128Hz. 
 
It is used in the loop as follows: 

 
// LOOP 
  
  while (1) 
  
 { 
  code inside loop here 
 
// trigger the periodic rtc interrupt 
 
  read(rtc_fd, &dummy, sizeof(unsigned long)); 
 
 } 
 
 

Unfortunately only one process on the computer can have the rtc( ) at runtime, and the 

server_hlcx process absorbs its full availability. This means that all other processes that 
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need to run in a timed loop must run using nanosleep( ). Since loop timing is based on the 

process run time plus the sleep time, it must be set empirically using an iterative process, 

but this is not difficult to determine.  

 

Usage of nanosleep( ) is managed as follows. The include file is time.h. Preliminary code 

outside of the timed loop is: 

 

// Loop timing management using nanosleep( ) 
  
 struct timespec ts; 
 ts.tv_sec = 0; 
 // ts.tv_nsec = 31250000; // 32 hz, not calibrated 

ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz 

 

At the end of each loop the function is called as follows to delay the initiation of the next 
loop as follows: 
 

nanosleep(&ts, NULL); 

 

The PC/104-based arm controller was described in the previous section. It is only 

responsible for the Schilling arm control and communications to the network.  

 

The WAM controller is a Linux® box running the open source real time application 

interface (RTAI). It manages WAM control and its network interface only. Joint 

information and gravity compensation data are collected at a 500 Hz rate. Since the 

WAM runs as a master controller, joint motors are only used for the gravity 

compensation on the four lower driven joints of the manipulator. The three wrist joints 

are passive with position feedback only. 

 

The WAM master controller and the Schilling manipulator are kinematically dissimilar; 

therefore traditional joint-to-joint teleoperation is not viable. A Cartesian-to-Cartesian 

control scheme is used to manage the dissimilar kinematics. This particular system has 
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been described previously in [115], [116]. The original system used an open loop forward 

kinematic-reverse kinematic scheme that did not reflect actual position of the Schilling 

manipulator. While it worked well for teleoperation since the operator provides additional 

perception feedback, it was found to be problematic with robotics and was changed to a 

closed loop kinematic approach by feeding back the Schilling Titan positions. 

 

A separate Windows-based PC is used to run the RoboWorks® application that provides a 

simulation of the Schilling manipulator. The HLC is capable of connecting to either the 

actual Schilling manipulator or to the RoboWorks simulation of the Schilling. Using this 

interface, the WAM master or robotics routines can run either simulation or real 

manipulator. This feature is used only for checking software and visualization during 

operation of the real hardware. 

 

 

4.4 HLC Interface 

 

The HLC program server_hlcx uses a keyboard interface for commands and displays 

values on the screen indicating operating status of the system. See Figure 18. Important 

commands include: 

 

• I Idle mode and Index mode for the master manipulator 

• C Cartesian teleoperation 

• M Toggles between real arm control and control of the RoboWorks simulation 

• H Toggles between teleoperation and behavior/robotics modes 

 

Additionally there are a similar series of commands for individual joint or Cartesian 

space motions. The original system did not have the capability for robotic motion; this 

was implemented as part of this work. 
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Figure 18. HLC Graphical Monitor. 

 

 

4.5 Tooling Interfaces 

 

Tool control and sensor interfaces are managed by two National Instruments PCI-6034E 

data acquistion cards located in the HLC. These cards have 16 single-ended analog input 

channels (or 8 differential input channels) and eight bits of digital I/O programmable as 

input or output bitwise. One card is dedicated to the ATI force/torque sensor interface. 

The other card is available for the analog and digital I/O necessary for tool interfacing. 

There is a custom built interface installed between the I/O cards and the smart tool. Block 

diagrams and schematics are located in the Appendix. 

 

Software interface to the cards is provided through the open source Comedi data 

acquisition library for Linux. Comedi is also used to support reading of the force/torque 

sensor along with a library of routines supplied by force/torque sensor vendor (ATI). 

Software listings for the system support functions are provided in the Appendix. 
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4.6 System Limitations 

 

There are several physical limitations to the test bed as implemented. The lab where the 

manipulator system is located is small and the workspace is constrained. The Schilling 

manipulators have several weaknesses in terms of their use for robotics. The test bed is 

workable for that which it was used; however there are limits to the level of finesse that 

can be demonstrated. 

 

The lab where the manipulator system is located is a temporary installation. The room is 

too small to manage the proper reach between the manipulators and the mockups 

available for testing. While the setup appeared cramped on installation, issues did not 

show up until testing. The manipulator was having difficulty reaching tasks while 

maintaining full manipulability. The Schilling has an exceptionally long wrist link chain 

instead of a spherical wrist. This means that the manipulator should not have been 

mounted as close as it was to the mockups. However there was not additional space to 

move the system back from the mockups. 

 

The Schilling manipulators have a high payload; however, they also have fairly high 

compliance, but the key weakness of the Schilling manipulators when used for robotics is 

position resolution. At full extension with the resolution of the joint resolvers, one bit 

change is equal to approximately 3mm. Therefore at best the controller can be expected 

to manage ±3mm of positioning resolution with the arm at full extension. 

 

Referring back to the Figure 17 block diagram and prior discussion it should be noted 

that the smart tool force torque sensor is limited to reading at approximately 128 Hz and 

that the network control update is limited to about 32 Hz. While this situation is highly 

realistic in terms of systems that would actually be used in the D&D world, it also reveals 

the limitations in terms of what can be done with various control techniques. Control 

strategies and proposed solutions that require high feedback loop rates are not possible. 
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Chapter 5  

Telerobotic Tool Control Methodology Derived From Behavior-based Concepts 

 	  

5.1 Introduction 

 	  

In the very general context of remote tool-based operations, power tools contact surfaces, 

interact with, and change their environment in ways that normal grasping does not. Much 

of this interaction is variable depending on materials used in the task components, 

assembly torques of the target components, condition of the target components (such as 

the existence of rust/corrosion), and wear of the tool as part of its process of acting upon 

its environment. In general, these processes are not well understood, and previous 

research used comparatively complex solutions that have implementation issues for 

fieldable systems. The important issue is that the fundamental nature of the tooling and 

the associated processes are the dominant elements of basic task execution. 	  

	  

Most previous attempts have been based on model-based approaches. These assume that 

the task and tool delivery system may be completely and accurately modeled before the 

task is executed, that task objects are located where they are supposed to be, and that the 

manipulator system positioning the tooling goes where it is supposed to go. In actuality 

sensor systems working at a distance from their target object have error bubbles (a 

volume of measurement uncertainty) around the supposed target point. Manipulator 

systems, especially teleoperators that tend to be more compliant, may have substantial 

differences between where the control system intends to send the end-effecter and where 

it actually goes. Finally the physical objects of interest in the task model must be 

rendered in such a way as to capture necessary manufacturing and installation details and 

variances. 	  

	  

The D&D “real world” is not composed of simple structures in orderly arrays of high 

contrast objects. Lighting is often minimal. Target tasks are typically dirty and/or 

corroded. As-built installations often use components that were not on the original 



 
50 

drawings or are installed in a more approximate fashion than design drawings might 

imply. For a D&D system operating in a contaminated environment where human access 

would not be possible, direct measurement of all of the variables necessary to define a 

tooling task may not be practical or even possible. This is not to say that models are 

unnecessary, or not useful, but rather that there is significant motivation to explore 

simpler approaches to telerobotic tool usage in environments such as D&D that directly 

measure the location of task objects while managing tool contact and the tool process.	  

 	  

An alternative and perhaps more desirable approach is to simplify the understanding of 

tool interactions through task decomposition, to characterize each particular step, to 

identify interactions that must be controlled, and to identify events that must be noted for 

successful operations. Behavior-based systems provide one perspective for task 

decomposition and a focus on interaction with the actual target task. Behavior-based 

approaches use local sensor systems to interact directly with the target task object where 

possible. Tasks are broken into simple sense-react motions that typically do only one 

thing. Behaviors are then grouped together to complete more complex overall tasks. This 

decomposition makes the overall approach simpler and readily implementable due to the 

inherent iterative nature of the process/philosophy.  Task complexity may be addressed 

by adding additional behaviors to the existing set. Based on the literature review included 

in this research, behavior-based methods have not previously been used in tooling-centric 

situations and/or systems such as those used in remote handling and maintenance. 	  

 	  

Specifically, the hypothesis for this research is that behavior-based methods offer a 

simple and effective way to implement telerobotic tool control within positional master 

controller-based teleoperation of complex remote tasks. The goal is to identify and use 

relevant concepts in behavior-based robotics to build task type models without the need 

to build a task instance model and to execute the task type model with the resulting 

implementation. A generalized methodology using selected behavior-based concepts 

appropriate for telerobotics and applicable across a wide range of tools is described here 

in terms of procedures and implementation rules.	  
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5.2 Identification of the Tool Set and Applicability of Technique 

	  

The primary focus of this work is improvement in the use of remote power tooling for 

D&D of contaminated facilities. While the tool set is continually being reevaluated for 

improvement, there are specific tools that are normally used for certain types of D&D 

operations. A typical set of tools and their function is listed in Table 2. A majority of the 

tools are cutting or disassembly tools of some type. Entire categories such as the range of 

abrasive blasting processes have been excluded for now because large quantities of 

individual particles moving in a wave against a task object cannot be individually 

measured or controlled.	  

 	  

In the course of exploring this topic, it was discovered that all tools that interact with 

their work piece have characteristic process signatures that are generally repeatable. The 

tool signature is particularly identifiable if the tool process is operated at a constant rate 

rather than by trying to control to a particular process variable. This signature may be 

used to monitor task progress, to infer quality of operation, and to identify task 

completion. The methodology pursued in this work requires a tool process that can be 

readily monitored for feedback and control. Contact and force are the most likely 

controllable tool parameters.  

 

However, not all contact tools would be appropriate for this technique. The air chisel, 

jack hammer, and plasma torch are examples of tools that would be a poor fit for this 

technique. The air chisel, jack hammer, and sheet metal nibbler make high frequency 

high impact contact with a target surface to break up or break loose the target object for 

removal. Contact sensing and interpretation of impacts and generation of any type of 

response trajectory based on a series of these types of impacts would be impractical and 

exceedingly difficult. Tool interaction with the target surface is such that remote sensing 

of progress would be of limited value.  
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Table 2. D&D Tool Summary. 

Tool	   Target Object(s)/Task	   Contact Signature 

Reciprocating Saw	   Sectioning pipes and smaller metal 
structural components	    

Band Saw	   Sectioning pipes and smaller metal 
structural components (limited to 
components where the ends are free)	  

 

Circular Saw	   Sectioning flat plate and large diameter 
vessels	    

Hydraulic Shears	   Sectioning pipes and structural 
components (limited use because it can 
damage the manipulator delivery 
system)	  

 

Sheet Metal 
Nibblers	  

Sectioning sheet metal cabinets	  
 

Milling 
Head/Router	  

Sectioning flat plate and large diameter 
vessels	    

Impact Wrench	   Bolt removal, large components	  
 

Socket Tool/Nut 
Runner	  

Bolt removal, small components	  
 

Drill	   Sample collection and creation of 
drainage holes in pipes and vessels	    

Air Chisel	   Removal of bonded stacked blocks—
concrete, graphite, etc.	    

Jack Hammer	   Removal of concrete	  
 

Plasma Torch	   Sectioning of metal structures	   No contact 
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Plasma torch cutting requires precise control of an air gap standoff. While sensing of this 

control variable would be possible and relevant to the desired approach even though it is 

not contact based, the cutting trajectory must also be maintained at a fixed rate to ensure 

sectioning, and the cut path is predetermined a priori by an operator. This indicates that a 

model-based known-start-point to known-end-point path is the most practical means of 

control for the plasma torch, and therefore it is not a good fit for sensor-based techniques 

focused on contact and behavior-based principles.	  

 	  

In summary tools that generate a contact process or identifiable tool signature with a 

reasonable rate of repetition are the most likely application for the technique outlined in 

this work. This would include all tools from the table not in the preceding two 

paragraphs. Relevant tools rely on contact and management of forces to execute their 

function and to prevent binding of the tool. Fixed path generation, if necessary, would 

have to be considered as a higher-level function that would exist on top of the reactive 

control-based telerobotic tool control. 

	  

Returning	  to	  Table	  2,	  the	  third	  column	  reveals	  that	  it	  is	  relatively	  straightforward	  to	  

infer	  an	  expected	  process	  profile	  of	  the	  tool	  interacting	  with	  its	  task	  object	  in	  most	  

cases	   and	   to	   distinguish	   between	   practical	   and	   impractical	   applications.	  

Examination	  of	  the	  profile	  also	  points	  to	  what	  kinds	  of	  tool	  processes	  are	  amenable	  

to	   certain	   types	   of	   control	   techniques.	   Note	   that	   the	   profile	   for	   cutting	   through	  

objects	   such	   as	   pipe,	   structural	   elements,	   or	   drilling	   through	   objects	   indicates	   an	  

initial	   contact	   followed	   by	   a	   process	   force	   or	   profile	   (actual	   to	   be	   determined	  

experimentally),	   and	   then	   followed	   by	   a	   loss	   of	   contact.	   An	   impact	   wrench	   or	  

powered	  socket	   tool	  will	  see	  a	   transition	   in	   forces	  as	  part	  of	   the	  tool	  process.	  This	  

information	  can	  be	  used	  to	  establish	  a	  control	  sequence	  necessary	  to	  complete	  the	  

desired	  task.	  This	  also	  points	  to	  the	  types	  and	  number	  of	  events	  that	  will	  need	  to	  be	  

identified	  during	  task	  execution.	  
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While	   a	   tool	   process	   signature	   can	   be	   hypothesized,	   this	   must	   be	   checked	  

experimentally	   to	   validate	   the	   technique	   and	   to	   compare	   the	   expectations	   against	  

the	  actual	  observed	  tool	  process	  signature.	  Transition	  thresholds	  that	  signal	  events	  

must	  also	  be	  established	  experimentally	  since	   it	   is	  unknown	  what	   level	  of	  process	  

noise	  or	  variation	  between	   task	   instances	  may	  be	  encountered	  a	  priori.	  Especially	  

during	   any	   process	   that	   modifies	   the	   task	   object,	   process	   noise	   can	   be	   a	   major	  

overriding	  concern.	  

	  

While	   D&D	   tooling	   is	   the	   focus	   of	   this	   study	   and	   while	   validation	   of	   this	   work	  

focused	  on	  contact	  sensing	  and	  force-‐torque	  profiles,	  the	  concept	  of	  monitoring	  tool	  

process	  signatures	  on	  sensor	  measurement	  rather	  than	  trying	  to	  precisely	  maintain	  

a	  process	  variable	  can	  be	  generalized	  to	  almost	  any	  tool	  process	  that	  interacts	  with	  

its	   task	  object	   as	   long	  as	  a	   reliable	  means	   to	  measure	   the	  process	  variable	   can	   be	  

established.	  Telerobotic	  use	  of	  power	  tools	  in	  task	  areas	  such	  as	  telesurgery,	  sub-‐sea	  

exploration,	   and	   underwater	   oil	   rig	   maintenance	   are	   among	   the	   many	   potential	  

expansions	  of	  this	  work.	  As	  long	  as	  an	  attempt	  is	  made	  to	  establish	  a	  constant	  rate	  of	  

tool	  process	  progress,	   these	   techniques	   should	  also	  be	  applicable	   to	  non-‐powered	  

hand	  tools	  such	  as	  saws,	  sanders,	  planes,	  knives—any	  tool	  application	  where	  there	  

is	  a	  process	  and	  not	  simply	  an	  impact	  or	  contact	  that	  occurs	  between	  the	  tool	  and	  its	  

task	   object.	   In	   summary,	   this	   approach	   is	   an	   alternate	   way	   of	   viewing	  

manipulator/tool	   to	   task	   object	   interaction	   by	   expanding	   “contact”	   into	   a	  

progressive	  process.	  The	  tool	  signature	  process	  is	  essentially	  a	  superset	  of	  “contact”.	  

	  

One	  key	  difficulty	  is	  the	  creation	  of	  local	  sensing	  systems	  capable	  of	  precise	  useful	  

measurement	  that	  will	  survive	  the	  tool	  processes.	  Simple	  contact	  such	  as	  grasping	  

may	   be	   detected	   and	   controlled	   with	   a	   wide	   range	   of	   existing	   sensors.	   Tool	  

processes,	   on	   the	   other	   hand,	   can	   be	   quite	   dynamic	   and	   destructive	   to	   sensing	  

systems.	  This	  issue	  poses	  one	  significant	  obstacle	  to	  the	  full	  implementation	  of	  these	  

techniques.	  Global	   sensing,	  while	   safe	   from	   the	   tool	  process,	  will	  have	   issues	  with	  
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distance-‐to-‐target-‐based	   error	   bubbles.	   Local	   sensing	   designed	   to	   eliminate	   error	  

bubbles	  may	  not	  survive	  even	  a	  single	  execution	  of	  the	  tool	  task	  due	  to	  vibration	  and	  

impacts.	   This	   is	   particularly	   true	   of	   imaging	   cameras	   and	   rangefinders.	   Other	  

sensors	   such	   as	   contact,	   inductive,	   capacitive,	   or	   electric	   fields	   may	   have	  

vibration/impact	  issues	  but	  will	  also	  be	  susceptible	  to	  the	  electrical	  noise	  generated	  

by	   the	   power	   tools	   in	   use.	   Tool	   signature	  monitoring	   is	   a	  more	   difficult	   problem	  

than	  feedback	  for	  grasping.	  

	  

	  

5.3 Behavior Selection Methods and Impact on Technique Development 

	  

As previously mentioned, Arkin describes behavior selection to be by the various means 

of arbitration, fusion, or sequencing [17]. In BBR, arbitration is the switching that 

controls which behavior is executed at what time under what circumstances. One 

behavior is selected over another using a wide variety of prioritization schemes. Behavior 

fusion is the summation of directive vectors supplied by multiple behaviors to determine 

a cumulative path to goal. Sequencing is the preprogrammed selection of an order of 

actions to complete a goal. However the context of the use of sequencing is more often in 

the sense of sequenced assemblies of behaviors that use arbitration or fusion internally 

rather than sequencing of individual behaviors.  

 

An examination of the actual tool processes in combination with a desire to replace the 

task instance model approach with a task type approach to the task execution reveals a 

problem with the use of the behavior-based robotics concept. Tool processes, especially 

those that are the focus of this activity, rely on a fixed sequence of subtasks for execution, 

i.e. they are inherently model-based. Behavior-based robotics is a combination of 

multiple sensor-based reactive functions and the intelligent behavior selection process 

used to determine which behavior(s) is (are) active at any given time. Downgrading the 

behavior selection process to an always repeated fixed sequence downgrades the degree 

of adherence to the spirit of behavior-based robotics. Although sequencing is an 
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acceptable, if primitive, means of behavior selection,	   it	   may	   be	   a	   more	   correct	  

taxonomy	   to	   classify	   the	   technique	  generated	   in	   this	  work	  as	  an	  assembly	  of	  hard	  

sequenced	  reactive	  functions	  using	  concepts	  found	  in	  behavior-‐based	  robotics.	  	  

	  

The	  task	  type	  assembly	  itself	  is	  essentially	  an	  a	  priori	  model	  of	  the	  tool	  process	  that	  

is	  executed	  the	  same	  every	  time.	  The	  reactive	   functions	  are	  used	  to	  locate	  the	  task	  

object	  in	  space	  to	  anchor	  the	  task	  type	  model	  to	  its	  real	  task	  object	  instance	  and	  to	  

control	   progress	   of	   the	   tool	   process	   itself.	   It	   has	   been	   quite	   common	   to	   find	   in	  

implementation	   that	   reactive	   control	   augmented	   with	   available	   model-‐based	  

information	   and	   planning	   provides	   a	   more	   suitable	   approach	   to	   task	   completion	  

commonly	  known	  as	  hybrid	  deliberative/reactive	  control	  [117].	  

	  

While sequencing has been chosen to execute the tooling functions, a question that 

should be asked is if there are places or instances where arbitration or fusion would be 

practical for selection of the next action. If so, sequencing could still be used to switch in 

and out groups of behaviors rather than individual behaviors.	   Sequencing itself could 

even be implemented by arbitration with behavior priorities, but that would be a 

contrivance more complicated than a sequence script since it would always execute the 

same way every time.  

 

A change in priority (arbitration) during task execution indicates a change in the task at 

hand. Most tooling processes are concise and focused to a single task on a local task 

object. One possible situation requiring a change in task would be an event such as saw 

blade breakage that would render the task impossible to complete. Rather than have the 

operator intervene, alternate behaviors could recognize the problem, stop the tool process, 

and extract from the task. Behavior fusion has a more likely possibility of future use if 

also tied to sequencing of groups of behaviors. One example could include minimization 

of twisting moments on a circular saw blade in all three orientation axes while controlling 

the forward cutting force as the saw cuts through its task object. This could be 
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implemented by six behaviors with each one controlling one degree of freedom of saw 

motion all operating simultaneously to produce a six axis vector for motion of the saw. 

 

 

5.4 Description of Methodology 

	  

This approach makes use of the human operator’s ability to teleoperate tools into the 

tooling task vicinity, and then adds tool automation (operator assist functions) to 

complete the task and returns control back to the operator when the specific tooling 

operation has been completed The operator completes gross motion by essentially 

pointing the business end of the tool towards the desired location of the task. Automation 

operates in a traded control mode to autonomously control contact forces, tool functions, 

and to reduce fatigue on the operator by giving them periodic breaks from physical 

manipulation. The step-wise process is illustrated in Figure 19 and outlined below. 	  
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Figure 19. Smart Tool Behavior Development Methodology Block Diagram. 
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1. Describe the desired task characteristics and related constraints including what is 

known and what is not known. Consider expected task variability. Consider the task 

difficulty and the reason for the need to automate the task. 

	  

2. Select an appropriate tool based on task parameters. There may be several tool options 

for any given task. 

	  

3. Break the tooling task down into subtasks identifying motivators and/or events for start 

and end points of each subtask. Focus on minimal subtask complexity. 

	  

4. Choose preliminary sensing to identify events and control subtask processes while 

accommodating task, tool, manipulator delivery system, and operator limitations. 

	  

5. Conduct experiments to identify and analyze the characteristics of the specific subtask 

process to determine a suitable means of controlling that process. 

	  

6. Establish the requirements and characteristics for a set of sequenced functions to 

execute the tool task. 

	  

7. Implement and test the functions, first individually and then as a complete set to verify 

functionality. Iterate as necessary to previous steps to improve performance.	  

	  

First, a specific task is identified along with the limiting factors involved in executing 

that task such as access to and clearances around the target object and material 

composition and structural characteristics of the target object. Characteristics of the 

operation that might make the task easier or harder to execute should also be identified at 

this time. Though there are often various options as to what tool may be chosen to 

implement a given tool task, task characteristics may point to a best option. 
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Tool operations are not random or arbitrary in terms of what happens when; they are 

composed of a specific sequence of operations that are subtasks of the overall tool 

process. Once the task has been defined and a specific tool has been selected, the tool 

task is examined to segment it into subtasks that are as simple as possible. These should 

include specific motions needed to approach and retract from the target task and how that 

approach should be executed. How first contact between the tool and the target task is 

made and what its purpose is in the tooling operation should also be identified at this 

point. Standoff from the task object is common and should be defined if that is necessary 

for tool operation and whether the distance is critical or convenient to operation. 

	  

 The core of the task is the actual tooling operation on the target component, such as 

cutting a pipe, unbolting a bolt, drilling a specific material, or cutting a section of a tank. 

Rates of operation, forces encountered, and position or orientation operational constraints 

should be outlined. Questions such as the following must be answered. Is this a position-

based task, a force-based task, a combination of the two, or something else? How is task 

completion defined?	  

	  

For each of the various subtasks, the need for sensing must be established. Sensors must 

be selected to determine the required events. Sensor suitability is determined not only by 

the ability to measure the appropriate event or process but also by survivability given the 

tool characteristics (impacts, vibrations, forces, torques, the presence of fluids or other 

process debris) and target task interference (clearances around the task object that 

preclude local sensor mounting or that occlude the task target from sensing). 

Environmental concerns such as available light levels or chemical or radiological hazards 

that may constrain sensor choices must be identified. If a particular subtask function is 

not event critical or is impractical to measure, a model-based time/distance parameter 

should be investigated to determine suitability and whether its use would assist or hinder 

robust task execution. 
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Sensor selection should also include awareness of the manipulator system’s capabilities 

and limitations with regard to sensor-based controls. Can the sensor system be integrated 

into the manipulator controller, or does it need to reside outside of the manipulator 

controller? For D&D type systems in particular, smart tooling that applies sensors to an 

external controller not directly part of the manipulator will be the norm due to cost 

constraints on manipulator systems and the specific sensing requirements for a particular 

tool and task. This affects the useful task bandwidth of the information that the sensor can 

deliver to impact control outcomes.	  

	  

The next phase of implementation is the collection and analysis of experimental data in 

order to design reactive functions that map to the corresponding tool subtasks. It is 

necessary to establish this information experimentally because tooling data of this type 

does not yet exist in published literature. The motivation for this effort is to determine 

how the tool processes work, to identify events that would signal subtask start, stop, and 

progress, and to identify any relevant information that should be tracked during execution 

of a specific tool process. Required information would include what contact information 

can practically be collected as far as locating and identifying a desired target in space and 

what the tool process itself looks like to the available sensor suite. This information feeds 

function implementation with contact thresholds or tool process characteristic signatures. 	  

	  

In order to complete these tests, the prototype smart tool must be assembled into a 

package containing the tool, selected sensors, and any necessary fixturing to support 

manipulator grasping. Trajectories are then programmed as predecessors to the subtask 

reactive functions so that representative data may be collected. For example, a timed-

fixed rate trajectory to cut a horizontal pipe will generate a specific force profile as the 

pipe is cut. The subtask may then be broken down into measurable segments or events 

that can be controlled or identified as points of progress. 	  

	  

The complexity of the required sensing and associated control will be dependent on the 

complexity of the tool process that is being controlled. More complicated tool processes 
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will require more complicated sensors and controls. Initial sensor selection is determined 

by an estimation of what needs to be measured. In experimentation and analysis, it may 

become apparent that additional or different sensing is required from what was initially 

selected. If a tool process cannot be reasonably measured, estimates or alternatives based 

on models of the subtask will have to be created.	  

	  

The end result of these development steps is a set of function requirements needed to 

implement a set of sequenced reactive functions to execute the desired task with a given 

tool, using selected sensors, and within the constraints of the available manipulator 

system and operator skill sets. Reactive functions are then implemented according to 

requirements, tested individually, and then combined successively into the overall 

collection of behaviors to complete the tool task.	  

	  

Reactive functions are specifically matched to the subtasks of the task decomposition and 

are generally designed to make one simple motion in response to a sensor value or until 

some sensor measurement is reached. A motion in a certain direction until contact on a 

target object would be one example. Another example would be a downward motion to 

cut a horizontal pipe while monitoring forces encountered by the saw blade as it passes 

through the pipe to determine progress and final success of the cut. These are specifically 

closed loop in nature; there is direct sensor feedback from contact with objects in the tool 

task space. 	  

	  

Open loop actions have value to provide functionality where sensor information is not 

available or impractical to acquire (such as when sensors would be regularly damaged by 

the tool process) or where the desired action is not critical and there is no hazard to the 

open loop motion. An example would be to follow a move to contact behavior with a 

predetermined standoff motion based on the kinematics of the manipulator rather than to 

use stand off sensors. While interpretation and definition varies somewhat in the 

behavior-based community, open loop behaviors, also known as “ballistic” behaviors, are 

included in the accepted tool kit of functions. One interpretation considers that they are 
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essentially a timed model-based behavior where the robot executes a pre-programmed 

motion for a predetermined amount of time. These can be applied to tool-based 

telerobotics in limited circumstances though they are not reactive functions. 	  

In summary, this section describes a new methodology for telerobotic tool control using 

appropriate selected behavior-based concepts to enhance operation in unstructured 

environments. Once the task is identified and the tool is selected, the tool task is broken 

down into a series of sequenced tool subtasks that are decomposed to the simplest level 

practical. Sensors are then selected to measure the interaction of the subtask with its 

target object. Experiments are conducted to collect real world data as to how each subtask 

interacts with its target in terms of contact information and tool processes. An analysis of 

the experimental data is used to define function characteristics and possibly to modify 

tool and sensor implementation. Finally the set of reactive functions is implemented and 

tested first individually and then as a progressive sequenced collection to verify the 

complete tool task as functional and robust for its given task and operating constraints. It 

is believed that this methodology offers a simple, yet comprehensive, way of integrating 

tooling operations in more efficient ways to the classes of teleoperators used in 

unstructured and uncertain task environments.	  

  

 	  

5.5 Implementation Guidelines 

 	  

The outlined telerobotics concept is functionally illustrated in Figure 20. The operator 

teleoperates tool delivery to the task by using the manipulator to maneuver the tool point 

of contact oriented towards the task but without actual contact. Depending on the task 

there may well be certain approach issues to consider. For example a saw blade must be 

positioned such that the blade’s cutting surface is oriented correctly towards and above 

the surface that it will be cutting. 
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Figure 20. Concept Block Diagram. 

	  

	  

Once the gross positioning and pointing have been completed, control is “traded” to the 

behaviors by the operator. The collection of functions then execute their task 

automatically and return control of the system to a safe mode for the operator or high 

level controller to take control and move on to the next location for task execution. A task 

instance model is never generated, and the operator determines where to execute the tool 

task. 	  

 

The task instance model is replaced by a task type model that is encoded in the sequence 

and function of the functions, both reactive and ballistic. Sequencing is managed by 
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calling the functions sequentially in a structured program that is essentially a script. 

Functions are designed such that they terminate with a sensor event or control signal if 

closed loop or a time limit if open loop. It also becomes easy to edit or add to the script 

by inserting additional functions into the sequence. Each function may be tested 

individually by using it alone in the script program. The format is then simply as follows 

and as illustrated by Figure 21:	  

	  

task ( )	  

{	  

 subtask( );	  

 subtask( );	  

 subtask( );	  

}	  

 	  

 	  

	  

Figure 21. Behavior Selection Sequencing. 

	  
	  
The functions themselves are concise subtasks that do one thing based on a reactive 

“sense-act” model with no planning involved during execution. Given a specific sensor 

input, the output is predefined and preprogrammed. A function may be a control loop that 

reads sensors and provides a scaled output, or it could be a generic move based on time 
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and/or initiated or terminated by sensor input. The functions in a task sequence may have 

divergent approaches to achieve their ends; they are not necessarily homogeneous in 

implementation approach. 	  

	  

	  

5.6 Managing Human or Robot to Telerobotic Interaction 

 	  

The base mode for this work is teleoperation of the tool to complete the task with 

telerobotic assistance afforded via traded control. The secondary mode of operation is 

robotic tool delivery to task with assistance via traded control once the target region is 

reached. Except for the details of how the tradeoff occurs, automated task execution is 

managed in the same way for both operator and robotics via high-level supervisory 

controller.	  

 	  

In telerobotic assistance, the human operator positions the teleoperated tool according to 

best effort, points the tool tip at the target task, and manually triggers the execution of the 

telerobotic task. When the task concludes, it automatically passes control back to the 

operator in a safe IDLE mode. The operator then takes control manually of teleoperation 

to move to the next task. This process happens whether task execution succeeds or fails. 

If task execution succeeds, the operator simply moves on to another gross positioning of 

a task of the same type. If task execution fails, the operator can reposition the end-

effecter and try again or choose to move to the next task regardless.	  

 	  

Autonomous robot switching to the local sensor-based task automation (telerobotics for 

the human operator) is a simple transition based on completion of the preplanned 

trajectory. When the trajectory is done, control is passed to the sequencer without any 

operator interaction or direction. When the sequence of tool tasks is completed, control is 

passed back to the robotic trajectory generator.	  
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Chapter 6  

Functional Implementation  

	  

6.1 Introduction 

	  

This chapter discusses concept implementation and elucidates the process with two 

realistic D&D tooling tasks—cutting a horizontal pipe with a reciprocating saw and 

removing a bolt with a powered socket tool. The assembly of reactive functions is 

developed according to the process outlined in the chapter on methodology. Although 

this chapter includes experimental testing to establish final function definition, the 

following chapter addresses experimental testing of the system of functions for 

performance evaluation, validation, and discussion of results.	  

	  

	  

6.2 Cutting a Horizontal Pipe With a Reciprocating Saw 

	  

6.2.1 Task Definition 

	  

The first task selected is to cut a horizontal metal process pipe approximately two inches 

in diameter, although the technique will actually accommodate a range of pipe sizes 

automatically. A representative pipe task is shown in Figure 22. The mockup and 

hardware located behind the mockup are somewhat representative of the level of clutter 

that may be seen in the real world, except that the task light levels will typically be much 

lower with much more shadow and dark background, reducing available image contrast. 

An example of an actual remote viewing video image used by an operator to during 

dismantlement of process piping via remote manipulator is shown in Figure 23. 	  
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Figure 22. Horizontal Pipe Task. 

 	  

 	  

	  

Figure 23. Real World Piping Arrays and Viewing Limitations. 

(Courtesy of Oak Ridge National Laboratory) 
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Process piping occurs in standard sizes and materials. Piping sizes are based on 

commercial standards and include various standardized diameters. The wall thickness is 

defined by “schedule” such as schedule 40, and most process piping is either schedule 40 

or 80. Standard 2-inch schedule 40 black iron pipe as used in the mockup available for 

this work has an outside diameter of 60.3mm and a wall thickness of 5.5mm, yielding an 

inside diameter of 49.9mm. An end view of the pipe is shown in Figure 24.	  

 	  

 	  

	  

Figure 24. Pipe End Section. 
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6.2.2 Tool Selection and Description 

	  

Cutting process piping remotely is a difficult task. Small piping may be cut using a 

hydraulic shear. Larger piping requires the use of a saw; however saws are problematic 

with free hand positional teleoperation. Binding and maintenance of proper force levels 

are common issues. Band saws have been used to some extent, but they create problems 

when the two sides of the cut pipe capture the blade so that the saw cannot be removed 

from the task. Reciprocating saws have generally not been successful in the field but 

would be a serious asset to remote dismantlement and are a candidate for remote 

execution if suitable telerobotic controls can be implemented to assist the operator. The 

reciprocating saw is selected for this task in an attempt to provide new capability for 

remote systems that currently have difficulty deploying that particular saw type.	  

 	  

The particular hand held reciprocating saw to be used for this study is shown in Figure 

25. The saw is designed to be held by both hands when used by a human operator. A 120 

volts (V) alternating current (AC) 1050W universal motor is sandwiched between a rear 

grip and a front section covered with rubber to facilitate firm gripping of the tool by 

hand. Universal motors slow substantially under load and will stall if sufficient force is 

applied to them. As the saw slows it may excite the manipulator causing it to oscillate 

uncontrollably. Force and/or cutting progression through the work piece must be 

controlled such that the saw blade oscillating frequency stays high enough to be 

significantly beyond the bandwidth of the manipulator.	  
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Figure 25. Hand Held Reciprocating Saw. 

 	  
 	  

The length of the tool is 451mm from the tool foot (work piece contact point) to the end 

of the handle or 572mm from the tip of the blade to the base of the handle with the blade 

at full extension. The tool is about 76mm wide at its widest part. The mass of the tool is 

3360g. The center of gravity of the tool is 191mm back from the tool foot. The motor 

module (the best location for grasp fixturing due to shape) is located from 191mm inches 

to 302mm from the tool foot. 	  

 
The blade is 152.4mm (6 inches) long by 19mm (3/4 inches) wide by about 1.6mm thick 

with 12 teeth per inch. Blade oscillation travel is 25.4mm (1 inch) at 2280 oscillations per 

minute while under no load (38Hz for blade motion). This translates to 912 tooth cuts per 

second on the work piece. The material to be cut determines the blade material and 

number and configuration of the teeth per unit of blade length. Saw specifications are 

summarized in Table 3.	  
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Table 3. Reciprocating Saw Specifications Summary. 

Characteristic	   Specification	  

 	    	  

Tool body length	   451mm	  

Tool length w/ blade	   572mm	  

Tool width	   76mm	  

Blade dimensions	   152.4mm long by 19mm high by 1.6mm thick	  
(6 inches by .75 inch by 1/16 inch, 12 teeth/inch)	  

 	    	  

Mass	   3560g	  

CG	   191mm back from tool foot	  

Location for fixturing	   191mm to 302mm back from tool foot	  

 	    	  

Power	   120VAC, 1050W, universal motor	  

No load blade speed	   2280 cycles/minute or 38 Hz, 912 teeth/second	  

 	  

 	  

The reciprocating saw smart tool is shown in Figures 26 and 27 assembled with grasping 

block and force/torque sensor. The force/torque sensor measures for load on the saw foot 

for contact and load on the blade for cutting progress. Sensor signals and power are 

routed back to the control computer through a bundled cable. As completed, the mass of 

the saw smart tool with all fixturing is 14.38kg.	  
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Figure 26. Reciprocating Saw Smart Tool. 

  

 

	  

Figure 27. Reciprocating Saw Mounted in Gripper. 
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6.2.3 Subtask Definition 

 

Given selection of the task and the tool, the subtasks necessary to complete the overall 

task must be defined by examining the process. These then become the functions or 

subcomponents of the functions depending on best implementation method. A reasonable 

assumption is made that an operator would be able to deliver the tool to reasonably close 

proximity to the task within an error bubble of a few centimeters and can point the tool at 

the task with the saw blade generally above the pipe to be cut. The goal is to have 

automation manage contact and cutting progress.	  

	  

All	   actions	   are	   triggered	   by	   the	   sequencer	   as	   a	   starting	   event.	   Available	   sensor	  

events	  are	  identified	  for	  each	  task/subtask.	  

	  

The first task is to find the pipe. 

 Approach to contact roughly horizontally. (event = contact)	  

 Back off to create standoff to prevent binding. (event = no contact)	  

 Approach to contact to find the pipe roughly vertically. (event = contact)	  

 Back off to permit starting saw blade without binding. (event = no contact)	  

 	  

The next task is to level the saw so that the cut is as square as practical. (event = level) 

(It was later determined that practicality dictated that the saw be leveled at the start of the 

process.)	  

 	  

The next task is to cut the pipe.	  

 Start the saw blade free of the pipe.	  

 Move to contact the pipe and note when contact is made. (event = contact)	  

 Cut through the pipe. (monitor or control forces/torques) 

Note when the cut is completed. (event = no contact)	  

 Turn off the saw blade.	  
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The final task is to clear the pipe to return control back to the operator.	  

 Move clear of the pipe.	  

 Return control to the operator. 

 

	  

6.2.4 Sensor Selection 

 

Next a sensor or sensors must be selected that can provide sufficient input for concept 

validation and subtask completion. 	  

 	  

Though it is subject to placement accuracy and precision of the manipulator, Cartesian 

“global positioning” of the tool in its task space is available from kinematic equations. 

Behavior-based mobile platforms do not normally have access to global positioning 

information; however, it is available here. Due to the kinematics of the Schilling 

manipulator, the wrist roll joint position resolver can be used as a saw level indicator.	  

 	  

The business end of the tool moves and therefore is not amenable to direct placement of 

local sensing at the point of contact as would be possible with finger contact sensors for 

grasping. A six degree-of-freedom (DOF) force-torque sensor is available as mounted in 

the generic tool fixture and is used for measurement of contact forces and moments. 

While other sensors may be possible, sensor availability and robustness against damage 

due to the tooling process drove sensor selection to the force-torque sensor as an example 

to validate the concept. 

 

Referring to Figure 28, contact in the forward direction of the tool is afforded by force 

pushback in the -Fx direction and torque in the - Ry direction (rotation about y since the 

tool is offset from the sensor face plate) of the force/torque sensor. Experimental testing 

showed that the -Fx axis was sufficient to indicate contact. In addition force on the saw 

blade is indicated by sensor signals in the +Ry direction of the force/torque sensor.	  
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Figure 28. Smart Tool Force-Torque Sensor Axes. 

	  

	  

6.2.5 Saw Experimentation, Function Definition, and Implementation 

	  

Function prototypes are then generated that use preliminary thresholds to determine 

reasonable bounds or collect data for further development. Experiments are then 

conducted to establish the parameters for the function prototypes as needed.	  

	  

The first set of subtasks locates the pipe in space after the operator or higher level model-

based robotic system has managed gross position and pointing at the task. 

 	  

The prototype reactive function bApproachH is designed such that it moves toward the 

pipe in Cartesian space according to the orientation pose of the end effecter (x-y-z) as 

established by the operator. The function looks for contact against the foot of the saw via 
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the force-torque sensor. Since the operator should have positioned the tool in reasonably 

close proximity, the function should time out and generate an error message if it goes 

more than a certain distance without making contact since this condition should never 

occur. A potential positioning error bubble of greater than 25mm should be expected. 

Contact should occur in all instances on the foot of the saw. A reasonable contact 

threshold should be established.	  

 	  

For this function the manipulator is divided into two planar manipulators to recover 

decoupled end-effecter orientation—the global vertical x-z plane and the global 

horizontal x-y plane. End-effecter yaw is a composite of shoulder azimuth (joint0) and 

wrist yaw (joint4) in the x-y plane. Wrist pitch is a composite of shoulder pitch (joint1), 

elbow pitch (joint2), and wrist pitch (joint3) in the x-z plane. The workspace axes are 

defined such that +x is straight ahead from the robot towards the process piping mockup, 

+y is to the left, and +z is up.	  

 	  

The increments in the Cartesian motion axes are modified with the composite potential 

field created by the manipulator joint angles per the following equations: 	  

 	  

      (6.1)	  

      (6.2)	  

    (6.3)	  

 	  

where:	  

 	  

j = loop increment fixed to the time out limit,	  

inc = fixed delta for each Cartesian axis to move,	  

and the joint values are as previously described. Note that joint5, wrist roll, and joint6, 

gripper, are not part of this function.	  
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The 0.174 radians in equation 6.3 is a cumulative offset to position resolver errors that 

was identified experimentally by setting the pitch joints to zero and measuring the actual 

angle of each link with a digital level and the final end-effecter orientation. While this 

error may be partially due to compliance in the arm joint actuators, the joint resolvers are 

not installed with great accuracy as the manipulator used in this work is designed for 

joint-by-joint level teleoperation where such calibration is not of concern. Joint zero 

reference positions were also checked with the manipulator holding the tool at full 

extension; the additional error was only 0.1°.	  

 	  

Approach reads the force/torque sensor to look for contact based on a threshold value and 

will terminate on either contact or after a time limit is reached. While all axes are read, 

the dominant axis is the x-axis of the force/torque sensor that aligns with the longitudinal 

axis of the tool where contact is made. On completion control is passed to the next 

function in the sequence.	  

 	  

Once contact is made the saw should back off from the pipe to clear contact to prevent 

binding of the saw foot on the pipe and to permit the force-torque sensor to be used to 

find the pipe vertically. Contact should be minimized, and a reasonable distance should 

be defined. The prototype function is called bBackH.	  

 	  

The prototype function bApproachV is designed such that, given that the tool is already 

aligned and in close enough proximity to the pipe so that the blade will make contact, a 

downward vertical motion (-z) is used to locate the pipe vertically using the force-torque 

sensor. Force cannot be excessive, or the blade will be damaged. A reasonable contact 

threshold should be established. bApproachV is a variant of bApproachH.	  

 	  

The saw blade will bind if it is started while in contact with the pipe with any appreciable 

force. Therefore, a standoff should be created to eliminate contact with the pipe so that 

the cutting operation may begin. Contact should be minimized, and a reasonable distance 

should be defined but is not critical. This functional is labeled bBackV.	  
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Before cutting, the saw should be made as level as practical to provide for a 

perpendicular cut on a horizontal pipe. Given the kinematics of the manipulator, the wrist 

roll joint is accurately used as the angle sensor for this task. bWristR levels the wrist roll 

joint.	  

 	  

The next major task set is to cut the pipe. This requires turning on the saw, monitoring 

the cutting process as the saw moves in the Cartesian –z direction, and turning off the 

saw when done. The function is labeled bCutS and the details of the cutting process are 

established by examining forces and torques during cutting.	  

 	  

The final major task is to clear the pipe cut task so that control may be returned to the 

operator or higher level system. This requires a motion roughly the opposite of the 

original horizontal approach motion bApproachH. There is no significant need for 

sensing since the saw should return roughly to the starting point at the beginning of the 

automated telerobotic task, and it is known to be clear since that is where the operator 

initially positioned the tool. The prototype function is labeled bRetractS.	  

 	  

The equations of motion for bRetractS are as follows:	  

 	  

      (6.4)	  

      (6.5)	  

    (6.6)	  

 

	  

6.2.6 Testing to Establish Saw Thresholds and Control Approaches. 

 

Table	   4	   summarizes	   the	   results	   of	  developmental	   testing	   to	   determine	   thresholds	  

for	  the	  various	  functions.	  Relevant	  implementation	  notes	  follow	  the	  table.	  
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Table 4. Reciprocating Saw Event Tabulation. 

Function Name	   Action	   Event	   Variable(s)	   Threshold	  
 	    	    	    	    	  

bWristR	   Start via 
sequencer	  

Function call	   N/A	   N/A	  

bWristR	   Level saw 
blade	  

Terminate at 
joint value	  

Wrist roll 
position	  

= -1.604185	  

 	    	    	    	    	  
bApproachH	   Start via 

sequencer	  
Function call	   N/A	   N/A	  

bApproachH	   Move to pipe 
horizontally	  

Terminate on 
threshold	  

Force-torque 
sensor fx-axis	  

> 30N	  

 	    	    	    	    	  
bBackH	   Start via 

sequencer	  
Function call	   N/A	   N/A	  

bBackH	   Back off 
horizontally	  

Terminate on 
force + coast	  

Force-torque 
sensor fx-axis	  

> 20N	  
 	  

 	    	    	    	    	  
bApproachV	   Start via 

sequencer	  
Function call	   N/A	   N/A	  

bApproachV	   Move to pipe 
vertically	  

Terminate on 
threshold	  

Force-torque 
sensor ry-axis	  

> .5N-m	  

 	    	    	    	    	  
bBackV	   Start via 

sequencer	  
Function call	   N/A	   N/A	  

bBackV	   Back off 
horizontally	  

Terminate on 
torque + coast	  

Force-torque 
sensor ry-axis	  

< 0.0	  
 	  

 	    	    	    	    	  
bCut128S	   Start via 

sequencer	  
Function call	   N/A	   N/A	  

bCut128S	   Motion to cut 
pipe	  

Closed loop	   Force-torque 
sensor ry-axis	  

10N-m, P+F	  
 	  

bCut128S	   Log contact	   Store contact	   Force-torque 
sensor abs(ry)	  

> 1N-m	  
 	  

bCut128S	   Log rise of first 
peak	  

Store trigger & 
set variables	  

Force-torque 
sensor abs(ry)	  

> 10N-m	  
 	  

bCut128S	   Stop cutting 
when done	  

Terminate on 
torque + coast	  

Force-torque 
sensor abs(ry)	  

< 1N-m	  
 	  

 	    	    	    	    	  
bRetractS	   Start via 

sequencer	  
Function call	   N/A	   N/A	  

bRetractS	   Extract saw	   Count limit	   Time via counts	   Time = 8s	  
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bWristR	  

	  

The level position was measured experimentally under joint level control with the wrist 

in a horizontal position establishing a target value for the function action of -1.604185 

radians. This is different from the expected value of -1.570796 radians. The difference is 

due to vendor placement tolerances of the position sensor and reinforces the need to 

validate sensor and system performance experimentally. bWristR uses a calculated 

quintic trajectory equation starting from the initial arbitrary teleoperated position to the 

desired indicated “level” position using the manipulator joint controller to close the loop 

on position.	  

 	  

 	  

bApproachH (find the pipe horizontally in space)	  

 	  

Force, torques, and manipulator Cartesian positions are collected in a data file that also 

records start/terminate times for the function. A typical plot of contact forces and torques 

is shown in Figure 29. As previously mentioned, the most practical axes for event 

monitoring would be the Fx force axis or the Ry torque axis. Since Fx indicates the larger 

value that would be less subject to noise, it is selected for the variable to use for the 

threshold.	  

 	  

Threshold value determination is somewhat subjective. In this case a firm contact to the 

pipe was desired to avoid contact noise and uncertainty. After multiple trials, 30N was 

selected such that as soon as the magnitude of Fx is greater than 30N, the function 

terminates on the next loop and passes control on to the next function.	  
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Figure 29. Sample bApproachH Plot of Forces and Torques. 
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bBackH	  

 	  

Once contact is established, the desire is to move back along the approach vector away 

from the pipe to a noncontact standoff distance so that the pipe may be located vertically 

in the task space without interference or distortion from existing contact. Standoff also 

facilitates cutting by removing a potential for the foot of the saw to bind on the pipe 

during the cutting process and corrupting force-torque sensor values. The equations of 

motion are the negative of the approach equations:	  

 	  

      (6.7)	  

      (6.8)	  

    (6.9)	  

 	  

The goal is to break contact and move to an approximate standoff clear of the pipe. This 

is accomplished by monitoring the Fx force-torque axis to a threshold value. However, 

the force-torque sensor is initialized while in contact with the pipe, giving the sensor a 

starting preload (offset). To achieve an approximate standoff from the pipe, motion is 

given a momentum “coast” such that it continues to move a small distance after reaching 

the threshold. Since it was found that the final Fx value could vary substantially between 

approximately 25N to more than 60N, 20N was selected as the threshold value (Fx > 20). 

On threshold trigger, the simulated momentum coast provides for an additional free space 

standoff of less than 13mm, depending on how far the force continues above the 20N 

threshold. Actual distance is not significant; only that contact is cleared. One data set for 

bBackH is shown in Figure 30. There is significant distortion of the forces and torques as 

the manipulator moves to clear contact.	  
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Figure 30. Sample bBackH Plot of Forces and Torques. 
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bApproachV	  

 	  

After bApproachH has located the pipe horizontally, bApproachV locates the pipe 

vertically. Given the amount of standoff provided by bApproachH, the saw blade is 

guaranteed to act as a finger to contact the pipe when the tool is moved down in the 

manipulator base frame z-axis. The behavior terminates upon contact threshold. From 

multiple tests, it was determined that the Ry force-torque sensor axis was most 

appropriate and that a threshold of .5N-m (Ry > .5) would succeed in all cases. Force-

torque data for one instance of bApproachV is shown in Figure 31. 	  

 	  

Since a low threshold value was used, the loop increment motion rate was decreased to 

0.1mm. The equation of motion for the single Cartesian axis move is simply:	  

 	  

        (6.10)	  

  

	  

bBackV	  

 	  

bBackV moves back along the vertical approach vector away from the pipe to a non-

contact standoff distance so that the saw blade will not bind on startup. Since contact was 

established by Ry in bApproachV, Ry is used as the control in bBackV. As in bBackH, 

the force-torque sensor is initialized with a contact preload that must be reflected in the 

threshold value. Also as in bBackH, a momentum coast is used after the threshold has 

been reached to create a standoff from the pipe of less than 4mm. Inspection of multiple 

runs revealed that Ry < 0.0 would reliably terminate the behavior. Sample bBackV data is 

shown in Figure 32.	  
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Figure 31. Sample bApproachV Plot of Forces and Torques. 



 
87 

	  

Figure 32. Sample bBackV Plot of Forces and Torques. 
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There is significant distortion in all axes of force and torque as the manipulator moves 

vertically away from the pipe. This is due to compliance in the manipulator elbow joint 

aggravated by the weight of the tool package. However, the value of Ry settles to the 

negative value of the initial Ry axis preload, permitting the aforementioned Ry < 0.0 

threshold.	  

 	  

The motion increment for bBackV is the same as for bApproachV and the single axis 

equation of motion is:	  

 	  

        (6.11)	  

 	  

In summary, bBackV executes a Cartesian move in the manipulator base frame +z 

direction. An event generated when Ry < 0.0 terminates the function after a momentum 

coast on the order of 4mm.	  

  

	  

bCut128S	  

 	  

bCut128S is the core reactive function that actually cuts the pipe. The prototype of this 

function used a time-based position trajectory to experimentally define a tool process 

signature of the cutting process based on cutting forces. It collects force-torque data at 

128 Hz to ensure that sampling occurs at greater than twice the saw reciprocating 

frequency. The equation of motion for testing purposes is as follows:	  

 	  

        (6.12)	  

 	  

The forces and torques from a sample time/position-based cut are shown in Figure 33. It 

is immediately obvious that the sensor signals are unusable as is for control or 

monitoring. Since the primary cutting value should be offered by the Ry axis of the force-
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torque sensor, a filter is applied to that axis according to the following equations in an 

attempt to recover useful data: 

	  

       (6.13)	  

         (6.14)	  

 	  

Two examples of resulting data are shown in Figures 34 and 35. Although the 

magnitudes can vary widely and there is significant variation in the details of the 

waveform, there is a distinct signature to the pipe cutting process that can be used to 

determine progress through the pipe and to determine when the cut is done. This 

information is used to regulate the bCut128S reactive function.	  

 	  

bCut128S uses filtered measured Ry axis force-torque sensor readings (ryFilt) to control 

motion in the manipulator’s base frame z-axis to cut the pipe. The selected position + 

force (P + F) controller is bounded such that the rate of z motion varies from 

approximately 6mm/second – 19mm/second centered about a 10N-m controller set point. 

The P + F control is not designed to tightly control the force of the saw blade on the pipe 

since that would mask the tool process signature and since it is not practical given the 

control architecture bandwidth. Rather, it is designed to protect the saw blade and to 

provide faster motion when moving in free space in order to shorten the task. The lower 

bound is maintained to avoid damage to the saw blade due to excessive force; the upper 

bound provides higher velocity motion in free space and prevents premature trigger of 

terminating thresholds during contact. 	  
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Figure 33. Unfiltered Cut Forces and Torques. 
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Figure 34. Example 1 Filtered Ry. 

 	  

 	  

	  

Figure 35. Example 2 Filtered Ry. 
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Along with the primary cutting action of the function, multiple events are used to monitor 

and terminate the process. When the magnitude of the absolute value of the Ry-axis of 

the force-torque sensor (ryFiltAbs) reaches 1N-m, this is logged as first contact with the 

pipe and is stored for data analysis. This is a data analysis event and not a control event. 

ryFiltAbs is used to ensure that any spurious negative values, which are rare but did 

occasionally occur in testing, would not excessively lower the value of the filtered signal.	  

	  	  

When the value of ryFiltAbs reaches 10N-m, the pipe cut signature is rising to its first 

force peak, signaling the major portion of the cut. If ryFiltAbs drops below 10N-m after 

this event, a simulated momentum/coast of 1 second is initiated to carry through any 

oscillations generating low values of the controlled variable that may occur during cutting 

and while the P+F controller is accelerating to maximum velocity to increase the cutting 

force. Whenever ryFiltAbs rises above 10N-m, the momentum variable is set back to 

maximum.	  

	  	  

When the value of ryFiltAbs drops below 1N-m and when the 1 second momentum/coast 

has expired to verify that the cut actually is done and that the low value is not due to 

oscillation during cutting, the behavior terminates and logs end time.	  

  

	  

bRetractS	  

 	  

The motion executed by bRetractS is an incremental Cartesian motion in the manipulator 

base frame x, y, and z-axes in the negative direction of the approach vector established by 

the end-effecter pose. Since the saw blade has vertically cleared the pipe as part of the 

cutting operation, no z-axis motion is necessary.	   bRetractS is specifically a ballistic 

function, meaning that it has no local task space sensor feedback. It executes a quintic 

trajectory at a specific rate for a fixed time and then terminates by returning control to the 

operator.	  
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6.3 Removing a Bolt With a Powered Socket Tool 

	  

6.3.1 Task Definition 

 

The second task selected is to remove a bolt from a process assembly. The key concern 

and motivation for automating this task is to limit the forces applied so that the tool, 

manipulator, and task components are not damaged. The mockup available for this 

dissertation, shown in Figure 36, is based on remote maintenance guidelines and uses 

captured cone head bolts that have a 30° taper on extended heads. The bolt on the process 

mockup is 23.8mm (standard 15/16-inch) in size; the tapers on the bolt head and the 

socket permit a misalignment of about 12.7mm inch.  

	  

The cone head bolt has a capture mechanism such that the bolt is loosely contained when 

removed; it can drop about 10° when the unbolted bolt is extracted to its maximum travel 

of 50.8mm (2 inches), but it will not fall out. The bolt must be extracted at least 15.9mm 

(5/8-inch) to be considered loosened.	  

 	  

For the process mockup, the bolts are on a 101.6mm (4-inch) diameter bolt circle with 

three bolts separated by 120°. A 31.7mm (1¼-inch) outside diameter stainless steel pipe 

comes out from the flange perpendicularly and turns right 90°, coming within 12.7mm 

(1/2-inch) of two of the three flange bolts (see previous Figure 18), restricting access to 

these bolts and occluding view of the bolts, depending on the ability of the manipulator to 

be positioned for disassembly. 	  
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Figure 36. Disassembly Mockup. 

 

	  

6.3.2 Tool Selection and Description 

 

Tools for this task may involve electric or pneumatic impact wrenches, motorized socket 

tools based on drills, and even hand tools though remote hand tool use is fatiguing and 

not time efficient. Given that the purpose of this work is to demonstrate concept validity 

for smart tooling, a motorized socket tool with an appropriately sized socket is selected. 

For this work, a standard 3/8-inch electric drill fitted with a standard 1/2-inch socket 

drive and modified to provide remote actuation is shown in Figure 37 prior to fixturing 

for remote use. Specifications for the socket tool are collected into Table 5.	  

 	  
The socket smart tool is shown in Figures 38 and 39, assembled with grasping block and 

force/torque sensor. The force/torque sensor measures contact loads and operating 

torques. Sensor signals and power are also routed back to the control computer through a 
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bundled cable. Much of the cabling and interface is common with the saw tool. As 

completed, the mass of the smart socket tool is 11.48kg. 

 

While the saw uses a simple on/off relay controlled by the smart tool electronics interface 

at the computer, the socket tool requires additional control at the tool itself to change 

direction. This was the preferred solution over bringing a much larger bundle of wires 

back to the electronics interface. (Cabling handling is always a significant and 

problematic issue with remote tooling.) At the design phase it was not known that 

changing direction would not be a significant issue for capturing the socket, but the 

capability facilitated tightening as well as loosening bolts.	  

 	  
Contact in the forward direction of the tool is afforded by force in the -Fx direction and 

torque in the - Ry direction (negative moment about the Cartesian y-axis since the tool is 

offset from the sensor face plate) of the force/torque sensor. Experimental testing showed 

that force in the -Fx direction was sufficient to indicate contact. 	  

	  

	  

	  

Figure 37. Electric Drill for Socket Tool. 



 
96 

  

 

 

	  

Table 5. Socket Tool (Drill) Specifications Summary. 

Characteristic	   Specification	  

 	    	  

Tool body length	   222mm	  

Tool length w/ socket	   323mm	  

Tool width	   67mm	  

Socket dimensions 
including drive	  

15/16-inch: 30mm outside diameter by 67mm long	  
3/4-inch: 29mm outside diameter by 67mm long	  

 	    	  

Mass	   1444g	  

CG	   121mm back from tip of drill chuck	  

Location for fixturing	   89mm to 191mm back from tip of drill chuck	  

 	    	  

Power	   120VAC, 264W, universal motor, 7.5n-m	  

No load speed	   1200 rpm maximum	  
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Figure 38. Smart Socket Tool. 

 

 	  

	  

Figure 39. Smart Socket Tool Mounted in Gripper. 
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6.3.3 Subtask Definition 

 

As before with the reciprocating saw tool, an assumption is made that the operator can 

deliver the tool tip to within reasonable proximity of the target bolt head while also 

pointing the tool tip towards the intended target. The task problem (motivation for 

automation) is to limit forces on the tool to prevent damage.	  

 	  

As with the reciprocating saw tool, the subtasks with notable events are defined and 

outlined for experimental development. 	  

 	  

The first task is to find the bolt head in space.	  

 Approach to contact according to the pose of the end effecter. (event = contact)	  

	  

The next task is to undo the bolt.	  

 Turn on the motor.	  

 Monitor motion to determine if the bolt is adequately undone. (event = relative  

motion)	  

 Turn off the motor.	  

 	  

The final task is to clear the task to return control back to the operator.	  

 Move clear of the bolt/process assembly.	  

 Return control to the operator.	  

 

	  

6.3.4 Sensor Selection 

 

Available sensing will be considered to be the same as for the reciprocating saw. 

Manipulator joint sensing provides a type of Cartesian global position system. The 6DOF 

force-torque sensor provides contact and force management information.	  
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6.3.5 Socket Experimentation, Function Definition, and Implementation 

 

The prototypes functions requiring experimental development are listed below.	  

 	  

The first task is to locate the bolt head in space. This can be done by moving forward 

along a vector defined by the pose of the end effecter. This would involve motion in all 

Cartesian position axes (x-y-z). Motion should stop upon reaching a certain threshold 

preload of the socket on the bolt head. The function should time out and generate an error 

message if it goes more than a certain distance without making contact. If acquisition  

fails, the operator should be given another chance to reposition for a retry. The prototype 

function is a derivative of the saw approach function and is labeled bApproachB. The 

equations of motion are the same as for the saw function bApproachH. Contact threshold 

is the only notable difference between the two functions.	  

	  

The next task is actual removal of the bolt. To do this the motor must be turned on. 

Forces and torques are monitored to determine task progress. Once complete, the motor is 

turned off. The prototype function is labeled as bUnboltB. Time-based operation is used 

to look for a characteristic signature. 

	  

The final major task is to clear the socket tool task so that control may be returned to the 

operator or higher level system. The best approach is to return roughly to the starting 

position of the entire task along the lines of the original approach vector. The exception is 

that a captured bolt will extend the required motion to clear the task. The prototype 

function is labeled bRetractB and is a minor variation on bRetractS.  

 

Approach and retract functions run at 32Hz; the unbolt function operates at 128Hz.	  
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6.3.6 Testing to Establish Socket Thresholds and Control Approaches. 

 

Table	   6	   summarizes	   the	   results	   of	  developmental	   testing	   to	   determine	   thresholds	  

for	   the	   various	   functions.	   Relevant	   implementation	   notes	   follow	   the	   table	   in	   the	  

same	  manner	  as	  for	  the	  saw.	  

	  

	  

Table 6. Socket Tool Event Tabulation. 

Function Name	   Action	   Event	   Variable(s)	   Threshold	  
 	    	    	    	    	  

bApproachB	   Start via 
sequencer	  

Function call	   N/A	   N/A	  

bApproachB	   Move to bolt 
horizontally	  

Terminate on 
threshold	  

Force-torque 
sensor Fx-axis	  

< - 40N	  

 	    	    	    	    	  
bUnboltB	   Start via 

sequencer	  
Function call	   N/A	   N/A	  

bUnboltB	   “Push back” on 
bolt	  

Terminate 
timed 2 second 
motion bursts 
on threshold	  

fabs(fxstop – 
fxstart) 
(both start and 
stop come from 
fxFilt)	  

>100N	  
 	  

 	    	    	    	    	  
bRetractB	   Start via 

sequencer	  
Function call	   N/A	   N/A	  

bRetractB	   Extract socket	   Count limit	   Time via counts	   Time = 8s	  
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bApproachB (find the bolt head horizontally in space given approximate alignment)	  

 	  

Force, torques, and manipulator Cartesian positions are collected in a data file that also 

records start/terminate times for the function. As previously mentioned for saw data 

collection, the most practical axes for event monitoring would be the x force axis (Fx) or 

the y torque axis (Ry). Since Fx indicates the larger value that would be less subject to 

noise, it is selected for the variable to use for the threshold. See Figure 42 in section 7.4 

for a plot of bApproachB.	  

	  

Similar to the reciprocating saw threshold, value determination is somewhat subjective. A 

firm contact to the bolt was desired to avoid contact noise and uncertainty and to ensure 

that the unbolting operation would successful due to a firmly seated socket; however, 

excessive force that might cause binding during bolt removal needed to be avoided. After 

multiple trials, - 40N was selected such that as soon as the magnitude of Fx is less than    

- 40N, the function terminates on the next loop and passes control on to the next function.	  

	  

bUnboltB 	  

 	  

Force, torques, and manipulator Cartesian positions are collected in a data file that also 

records start/terminate times for the function. For unbolting, the most practical axes for 

event monitoring would be the x force axis (Fx) or the y torque axis (Ry), since the 

unbolting operation creates a “push back” force as it is backed out. Fx is chosen.	  

 	  

Threshold value determination required heavy filtering of Fx as with the saw tool. The 

same filter was used as expressed in equations 6.13 and 6.14. The terminating threshold 

was set to 1000N so that the loop would run on till manually ended. Start/stop forces 

were accommodated by the equation: 

 

fabs(fxstop – fxstart) > 100        (6.15)	  
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where: 

 

fabs is the absolute value of the function, 

fxstop is the final filtered pushback force at the end of the tool burst, and 

fxstart is the beginning filtered pushback force before the start of the tool burst. 

 

After multiple trials, 100N was selected such that as soon as the magnitude of equation 

6.14 is greater than 100N, the function terminates and passes control on to the next 

function. Actually any significant push back of the bolt as it was unscrewed was a good 

measure of success for the task. Ranges from 20N to 120N proved successful in 

indicating success. See Figure 43 in section 7.4 for a plot of bUnboltB unfiltered and 

filtered values. 

 

bRetractB	  

 	  

Mentioning the last function first, motion executed by bRetractB is an incremental 

Cartesian motion in the manipulator base frame x, y, and z-axes in the negative direction 

of the approach vector established by the end-effecter pose. bRetractB is specifically a 

ballistic function, meaning that it has no local task space sensor feedback. It executes a 

quintic trajectory at a specific rate for a fixed time and then terminates by returning 

control to the operator. In testing it was found that retracting in all three Cartesian 

position axes often caused the socket to snag on the unbolted but captured bolt. This was 

addressed by eliminating the z axis motion in the retract function.	  

	  

	  

6.4 A Note on Expansion to Other Tools 

	  

Sensing requirement and reactive function development complexity is directly 

proportional to the complexity of the tool process. More complex tooling operations 

require more sensing and control. Note that the socket tool only required three functions 
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to meet its automation needs; however, the reciprocating saw required seven functions to 

meet its automation needs. Note also that many of these functions assemble repeatedly in 

minor variations, indicating that they may serve as primitives with which to build new 

tool controllers. 

 

An impact wrench would use the same sequence of functions as the socket driver; 

however, it should be expected that the process “noise” thresholds and possibly the push 

back profile would be different. Drilling would use the approach and retract of the socket 

tool in conjunction with a process cut similar to the reciprocating saw.  

 

A milling head cutter would be similar to a reciprocating saw in that it would require a 

horizontal and vertical approach. It would be different in that the cut motion is in a 

different plane and that cutting a uniform metal plate would not have the same signature 

that a cutting a hollow pipe would have, but the cut process could be managed in the 

same manner. Retract would most likely best be completed by raising the milling head 

out of the cut and then back as with the saw. Most of the functions in the sequence could 

be identical to those of the reciprocating saw with different threshold values. A band saw 

would use a simplified version of the reciprocating saw sequence and would not have the 

same difficulties with process noise. 

 

The circular saw may be the most complicated D&D-type tool to control due to its need 

to prevent binding of the rigid blade in multiple axes while the cut progresses through the 

task object, as described in section 5.3. This tool sequencer would have all of the 

functions of the reciprocating saw but would also have to use command fusion to 

maintain orientation and position of the five axes that were not aligned with the direction 

of the cut in the task object. 

 

While D&D power tooling has been the focus of this effort, this collection of function 

primitives could be expanded and applied to any power tooling and even cutting and 
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friction-based hand tools. It has merit wherever a process signature is created between the 

tool and its task object.	  
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 Chapter 7  

Experimental Results 

 

 

7.1 Discussion of Overall Telerobotic Reciprocating Saw Results 

	  

Data collection for validation of the telerobotic reciprocating saw task was accomplished 

by running 15 instances of the task on a horizontal pipe. Tool placement to the task target 

area was via a sequence of robotic moves to a targeted end point in task space. 

Positioning repeatability of the manipulator delivery system is known to be on the order 

of ± 6mm in the Cartesian x, y, and z axes. Pipe placement in the process rack was 

intentionally not precisely aligned for each incremental test with variations in vertical 

(Cartesian z) and depth/distance away (Cartesian x) task axes on the order of ± 6mm. 

There was minimal attempt to fight the inherent variability in the task mockup or the tool 

placement as that was an opportunity to test the ability of telerobotic task execution to 

adapt to manipulator and task placement uncertainty.	  

 	  

For the 15 trials, successful completion of the cutting task was 100% with no faults. 

Experimental data is presented in Table 6 for the 15 trials. The functions are presented in 

each column with the maximum number of loops possible and the loop rate noted. None 

of the functions hit their maximum value indicating that all reactive functions terminated 

on sensor events and did not time out. The function bWristR is not included in the table 

since it executes a fixed 2-second closed loop trajectory to level the saw so that it is 

perpendicular to the horizontal pipe. (The wrist roll position sensor is used as the level 

sensor.) The function bRetractS is not included in the table since it is a time-limited (8s) 

ballistic function designed to extract the tool from the task area along a vector established 

by the end-effector pose so that the operator will not be concerned about trapping the saw 

blade in nearby piping or structures. However the fixed execution times of these 

functions are figured into the final telerobotic execution times noted in the last column. 

Total task execution times are computed from time stamps collected from the high-level 
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controller system clock initiating at the start of bWristR and terminating with the final 

time stamp on bRetractS. 

	  

For each function column, the highest count (longest execution time in green) and lowest 

count (shortest execution time in red) are noted along with an average function execution 

time at the bottom of the column. “Times” are noted in counts for most entries except for 

minimum, maximum, and average where execution times in seconds appear in 

parentheses.	  

 	  

The saw blade was inspected periodically looking for worn or broken teeth or any other 

damage to the blade. It was changed on test 11 as a precaution since several teeth had 

broken or acquired hardened debris. Prior experimentation had shown that the teeth 

would eventually wear to the point that cutting forces would increase significantly.	  

 	  

Table 7 provides additional detail to the internal workings of the bCut128S function. 

Except for minimum, maximum, and average execution times, the data is presented in 

counts from start with 128 counts per second in the control loop. “First Contact” indicates 

when the force/torque sensor reaches contact from the starting stand off of the saw blade 

from the pipe. “Cut Threshold Reached” indicates when the control point of 10N is 

reached on the cutting forces. “Cut Completed” is measured at the completion of the 

threshold rule conditions at the close of the bCut128S fucntion and includes the time 

required for move to contact. 	  

 	  

Note that First Contact and Cut Threshold Reached are paired; time to contact links to 

time to threshold reached. However, these two do not drive total cut completion time 

since the highest and lowest actual cut completion times do not follow from the highest 

and lowest values of the contact and threshold values. The last column “Total Actual Cut 

Time” is the completion time minus the time to contact.	  
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Table 7. Reciprocating Saw Data. 

 	   ApproachH	  
 	  

BackH	   ApproachV	   BackV	   Cut128S	   Total	  
Time	  

Max	  
Loop	  
Count	  

320	   64	   640	   320	   12000	    	  

Loop 
Rate	  

32 Hz	   32 Hz	   32 Hz	   32 Hz	   128 Hz	    	  

Test #	    	    	    	    	    	    	  
1	   266	   35	   323	   132 

(4.13s)	  
7411	   90s	  

2	   245	   35	   294	   124	   7189 
(56.16s)	  

89s	  

3	   234 (7.31s)	   36	   244 (7.63s)	   130	   7376	   87s	  
4	   264	   35	   368	   119	   7244	   90s	  
5	   261	   35	   267	   112	   7588	   90s	  
6	   261	   35	   289	   112	   7504	   90s	  
7	   261	   35	   297	   107	   7539	   88s	  
8	   260	   35	   288	   104	   7762	   93s	  
9	   264	   35	   361	   107	   7397	   93s	  

10	   249	   34 (1.06s)	   244	   100	   7793	   90s	  
11	   258	   36	   344	   95 (2.97s)	   7670	   92s	  
12	   265	   36	   370	   107	   7616	   94s	  
13	   271	   36	   437 

(13.66s)	  
108	   7512	   93s	  

14	   266	   37 (1.16s)	   334	   107	   7934	   94s	  
15	   277 (8.66s)	   35	   309	   104	   8032 

(62.75s)	  
91s	  

Average	   260.13 
(8.13s)	  

35.33 
(1.10s)	  

317.93 
(9.94s)	  

111.20 
(3.48s)	  

7571.13 
(59.15s)	  

90.93s	  
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Table 8. bCut128S Internal Performance Data. 

Test 
Run	  

First 
Contact 
Counts	  

 	  

Cut 
Threshold 
Reached 
Counts	  

Cut 
Completed 

Counts	  

Total	  
Actual 

Cut 
Time	  

1	   247	   966	   7411	   55.97s	  
2	   362	   1019	   7189 

(56.16s)	  
53.33s	  

3	   544 (4.25s)	   1230 
(9.61s)	  

7376	   53.37s	  

4	   224	   870	   7244	   54.84s	  
5	   265	   948	   7588	   57.21s	  
6	   238	   835	   7504	   56.76s	  
7	   268	   880	   7539	   56.80s	  
8	   354	   993	   7762	   57.87s	  
9	   262	   822	   7397	   55.74s	  

10	   223	   867	   7793	   59.14s	  
11	   200	   1083	   7670	   58.36s	  
12	   304	   1093	   7616	   57.12s	  
13	   179 (1.40s)	   772 

(6.03s)	  
7512	   57.29s	  

14	   356	   1097	   7934	   59.20s	  
15	   279	   1056	   8032 

(62.75s)	  
60.57s	  

Average	  
 	  

287 (2.24s)	   968.73 
(7.57s)	  

7571.13 
(59.15s)	  

56.91s	  
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It was noted after testing that the pipe has a welded seam along its length as part of its 

manufacturing process. As the pipe was moved to facilitate additional cutting, it was 

typically rotated to facilitate motion in the pipe clamps. This randomly moved the 

location of the weld in the cut profile probably impacting cut time somewhat due to a 

change in hardness of the metal being cut.	  

 	  

 

7.2 Examination of Specific Saw Tool Representative Test Cases 

	  

The shortest and longest duration cut data files are examined for variations. The z-axis 

graph in each figure plots z motion vertically against counts horizontally. Counts 

translates to time with 128 counts/second. The vertical axis is expressed in inches 

according to what the manipulator controller generates. The second graph for each figure 

is moment in N-m about the force-torque sensor y-axis. Test 2, shown in Figure 40, had 

the shortest execution time. It took about 2000 counts (15.62s) to reach the first peak 

while cutting the upper section of the pipe with about 4600 counts (35.94s) between the 

two peaks. There is minor oscillation of force in the main body of the cut that is 

commonly seen. Note that the peak forces are about 22N-m and 25N-m, respectively. 

Test 15, shown in Figure 41, has significantly higher forces and much more oscillation 

during the cutting process. While minimal oscillation is indicated in the z-axis motion of 

Test 2, there is obvious distortion in the z-axis motion of Test 15. The oscillation 

appeared to significantly delay the rise to first peak that is the indicator of successful 

cutting through the top of the pipe. Actual peak-to-peak time is shorter despite the 

oscillations at 4100 counts (32.03s). Despite the variations, both end cleanly and in 

similar fashion. The forces for Test 15 range from approximately 64% higher for peak 2, 

to 68% higher for peak 1, and 92% higher for the mid section of the pipe.	  	  
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Post-test examination noted that there was a slight but noticeable pitch angle to the saw 

blade in the saw. This angle was corrected as much as possible (the vendor mounting 

method does not adequately fix the blade angle), and another post-trial test was 

completed. Overall completion time dropped from 60.57s to 55.28s with no other 

changes. Saw blade condition is critical to time-to-complete performance. 

 

Referring back to Table 2 and the column containing the expected tool process signature 

for the reciprocating saw, the actual signatures of Figures 40 and 41 resemble but are not 

exactly like the proposed profile and show variation even from the experimental data 

taken to determine thresholds. However, the control technique still worked at 100%. 

Even with the variations, initial contact, closing loss of contact, and transitions through 

thicker and thinner walled sections of the pipe may be discerned. The intended process 

signature proved valid for control. 
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Figure 40. Cut Data From Shortest Duration Cut. 
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Figure 41. Cut Data From Longest Duration Cut.	  
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7.3 Discussion of Overall Telerobotic Socket Tool Results 

	  

Data collection for validation of the telerobotic socket tool task was accomplished by 

running 20 instances of the task on a process mockup cone head bolt mounted 

horizontally. As with the saw tool task, tool placement to the task target area was via a 

sequence of robotic moves to a targeted end point in task space. Also as mentioned for 

the saw tool task, positioning repeatability of the manipulator delivery system is known 

to be on the order of ± 6mm in the Cartesian x, y, and z axes. Since the process module 

containing the bolt was rigidly mounted, its position in space was consistent and 

repeatable for all tests.	  

 	  

For the 20 trial runs, there were 16 successful completions and four failures. Success was 

defined as the bolt being loose enough in its captured bolt fixture to slide out to full 

extension by hand without twisting it. There were three types of failures including: 

	  

• Minor capture of the bolt by its last thread such that it was easily removed by hand with 

less than a 90° twist. The terminating threshold was triggered and operation completed. 

This should be considered a soft failure since after bolt removal a remote system could 

probably shake the component loose without further tool action. Quantity of failures = 2. 

	  

• Major capture of the bolt such that it was too tight to rotate by hand. The threshold 

condition was met and operation terminated normally. This is a hard failure. Quantity of 

failures = 1. 

	  

• Threshold value never reached despite moving bolt. Terminated by operator. This is a 

hard failure. Quantity of failures = 1.	  

 	  

Table 9 outlines the composite performance of bApproachB for a representative subset of 

eight of the 20 tests. If the threshold is never reached, the behavior would run for 320 

counts or 10s while moving a distance of 127mm. All bApproachB functions triggered 
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successfully well before the counter limit. Thresholds of 40N and 50N for the Fx axis 

were tried in the series of tests with no noticeable difference in performance of the 

bUnboltB function.	  

 	  

The bUnboltB function runs in 2-second bursts and then checks for bolt pushback in the 

Fx axis to verify that motion has occurred. Although designed such that it could operate 

for multiple bursts, in actual operation, in all cases except the run-on failure requiring 

operator intervention, the function successfully terminated after one burst of the socket 

tool even given a wide range of examined thresholds. Therefore, an examination of 

counts and run time is not relevant for bUnboltB. The best measure of performance is the 

rate of success (16) /failure (4) out of the full number of tests (20) previously mentioned. 

 

 

7.4 Examination of Specific Representative Socket Tool Test Cases 

	  

Example test cases are presented to more specifically illustrate individual function 

performance. Figure 42 shows the Fx axis event trigger upon reaching preload of 40N. 

Although other axes increase in force and torque, Fx is the axis that represents the 

preload on the bolt to prepare for removal. Figure 43 shows the actual unbolt process for 

all six axes of force and torque, with the main axis of interest being the Fx axis. Due to 

the process noise on this signal, filtering (fxfilt) is used to monitor the Fx axis of the 

force-torque sensor to determine push back into the manipulator system, indicating that 

the bolt has moved out during the unbolt operation.	  
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Table 9. bApproachB Socket Tool Composite Results. 

 	   Loop Counts	   Motion	   Time	  

Theoretical limit	   320	   127mm	   10.0s	  

Actual low	   26	   10.32mm	   .81s	  

Actual high	   74	   29.37mm	   2.31s	  

Average	   56.9	   22.58mm	   1.78s	  
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Figure 42. Sample Approach Forces and Torques, Fx Used for Event Monitoring. 
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Figure 43. Sample Unbolt Forces and Torques, fxfilt Used for Event Monitoring. 
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 Chapter 8  

Summary and Future Work 

 

This work has examined the possibilities of integrating behavior-based concepts into 

teleoperation and robotics to provide efficient real world-usable telerobotic tooling 

assists. The concept was implemented and demonstrated for two tools common to remote 

D&D activities. In summary the basic approach works and has some merit but also has 

some limitations specifically related to the usefulness of behavior concepts. 

 

 

8.1 Summary 

 

As described in the previous chapter, both of the representative D&D tasks were 

implemented successfully. Performance of the saw task was 100% successful across the 

sample set. For the socket tool sample set, successful runs were completed 80% of the 

time with the given implementation. 

 

Referring back to Table 2 D&D Tool Summary, column three Contact Signatures are 

verified to approximate expectations. In both cases the raw signals contain so much 

process noise that they are unrecognizable and unusable as is. However, heavy filtering is 

possible to discern usable profiles that resemble those found in Table 2. In neither case is 

the replication exact, but it is sufficient to work reliably. 

 

Closed loop dynamic control using these signals would be difficult, but the reactive 

function-based approach achieved consistent successful results. The task decomposition 

technique derived from behavior-based concepts provided manageable subtasks that 

facilitated overall task completion. 

 

One aspect of smart tooling is that it is expensive to implement due to multiple expensive 

sets of sensors. While a force-torque sensor was used for each tool implementation, 
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limiting the event and process axes to one or two axes indicates clearly that successful 

operation is possible with a reduced sensing set such as one or two load cells per tool that 

would reduced the cost of smart tool sensing roughly by an order of magnitude. 

 

Another advantage to the approach presented in this work is that complicated kinematic 

or dynamics-based solutions are not necessary. Transformation of the force-torque sensor 

to manipulator kinematics was not even necessary. Each signal used was used 

independently of kinematic reference. 

 

Most importantly the behavior-derived technique functioned as desired to calibrate an a 

priori task model to a point of execution on the task mockup target point. Task instance 

modeling was eliminated. The task type was “calibrated” to the location of the task object 

in space permitting reliable telerobotic task execution. 

 

While successful, limitations were also found that made complete adherence to a 

behavior-based approach inappropriate for telerobotic use of power tooling. Tool tasks 

are inherently sequential in nature. Sequential behavior selection is considered the most 

primitive form and least desirable means of switching; however, it is most appropriate to 

telerobotic tooling. Also there are times when open loop robotic motions are the most 

efficient and practical means of task execution. These “ballistic” behaviors are accepted 

but discouraged in behavior-based approaches. These practicalities of implementation for 

telerobotic tooling reduce the “purity” of the behavior-based approach to more of an 

approach based on concepts derived from behavior-based techniques.	  

 

 

8.2 Review of Contributions 

 

The	  fundamental	  contributions	  of	  this	  dissertation	  are	  summarized	  here:	  
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1.	  The	  exploration	  and	  evaluation	  of	  behavior-‐based	  robotics	  for	  concepts	  to	  create	  

a	   new	   methodology	   for	   integrating	   telerobotic	   tool	   control	   with	   positional	  

teleoperation	   in	   the	   execution	   of	   complex	   tool-‐centric	   remote	   tasks	   such	   as	   those	  

associated	   with	   remote	   nuclear	   operations.	   Successful	   experimental	   results	   with	  

selected	   power	   tools	   and	   a	   full-‐scale	   telerobotics	   test	   bed	   have	   revealed	   the	  

attractive	   combination	   of	   simple	   implementation	   and	   efficient/effective	   tooling	  

operations.	  	  

	  

This	  methodology	  provides	  a	  workable	  clear	  path	  to	  implementation	  relevant	  to	  the	  

existing	   architectures	   of	   typical	   teleoperator	   systems	  while	   addressing	   tasks	   that	  

are	   currently	   difficult	   to	   automate	   due	   to	   complexity	   and	   limited	   registration	   to	  

actual	   task	  hardware.	  Once	  the	   first	  couple	  of	   tool	   tasks	  were	  programmed,	  it	  was	  

quite	   obvious	   that	   this	   technique	   has	   created	   a	   set	   of	   primitives	   that	   may	   be	  

assembled	   in	   different	   ways	   or	   with	   slight	   modification	   to	   quickly	   produce	   new	  

automated	  tooling	  tasks.	  This	  work	  represents	   the	   first	  known	  application	  of	   these	  

techniques	  to	  power	  tooling	  tasks.	  

	  

2.	  The	  creation	  of	  a	  new	  tooling	  task	  modeling	  process	  that	  is	  general	  in	  nature	  and	  

applicable	   to	   a	  wide	   range	   of	   power	   tools	   used	   in	   typical	   remote	  operations.	  This	  

task	   type	  modeling	   can	   replace	   task	   instance	  modeling	   to	   reduce	   and	  simplify	   the	  

application	   of	   the	   new	   behavior-‐based	   methods	   to	   complex	   telerobotic	   tooling	  

applications.	   It	   was	   demonstrated	   that	   the	   task	   type	   model	   could	   be	   reliably	  

encoded	   in	   a	   sequence	   of	   simple	   behavior-‐like	   reactive	   functions,	   thereby	  

alleviating	   the	   need	   for	  extensive	   a	   priori	   generation	  of	   a	   task	   instance	  model	   for	  

each	   task	   execution.	   This	   reduces	   the	   modeling	   time	   needed	   for	   individual	   task	  

automation	   making	   telerobotics	   more	   time	   competitive	   even	   with	   proficient	  

operators.	  
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3.	  The	  generation	  of	  specific	  characteristic	  tooling	  data	  for	  reciprocating	  saw	  cutting	  

and	  removal	  of	  bolts	  with	  a	  powered	  socket	   tool.	  These	  results	  have	  general	  value	  

in	  that	  they	  are	  relevant	  to	  extensions	  of	  this	  work	  and	  in	  the	  pursuit	  of	  other	  tool	  

control	   strategies.	   In	   particular,	   the	   force	   profile	   generated	   for	   pipe	   cutting	  

produces	   a	   well-‐defined	   characteristic	   signature	   that	   should	   be	   broadly	   useful	  

even	   outside	   of	   the	   telerobotics	   community.	   Progressive	   variation	   in	   the	   tool	  

signature	  profiles	  over	  repeated	  test	  instances	  indicate	  that	  tool	  wear,	  maintenance	  

prediction,	  and	  fault	  detection	  can	  probably	  be	  deduced	  from	  further	  study	  of	  the	  

process	  signature.	  

 

 

8.3 Future Work 

 

There	  are	  several	  possibilities	  to	  consider	  for	  future	  work	  building	  on	  the	  research	  

presented	  in	  this	  dissertation.	  	  

	  

One	  topic	  of	  particular	  interest	  is	  to	  investigate	  how	  these	  techniques	  can	  be	  used	  

to	   track	   and	   compensate	   for	   tool	  wear,	   to	   indicate	   component	   end	   of	   life,	   and	   to	  

identify	  operational	  faults.	  Tool	  signatures	  were	  found	  to	  vary	  according	  to	  wear	  in	  

the	  primary	  contact	  medium	  executing	  the	  tool	  task	  (such	  as	  a	  saw	  blade	  in	  a	  pipe).	  

Higher	  and	  more	  rounded	  force	  levels	  in	  the	  saw	  process	  signature	  indicate	  a	  worn	  

blade	  with	  dull	  or	  broken	  teeth.	  This	  should	  make	  it	  possible	  to	  determine	  at	  what	  

point	  a	  tool	  piece	  should	  be	  changed	  out	  facilitating	  maintenance	  scheduling.	  	  

	  

The	  basic	  framework	  is	  now	  in	  place	  to	  pursue	  dynamic	  motion	  of	  the	  manipulator	  

base	  or	  the	  task	  object	  during	  task	  execution.	  This	  will	  require	  the	  development	  of	  

new	   position	   sensing	   capabilities	   that	   can	   tolerate	   the	   vibrations,	   forces,	   and	  

moments	  imposed	  by	  tooling	  operations.	  However	  this	  would	  afford	  the	  possibility	  

of	  cutting	  operations	  even	  when	  the	  manipulator	  and	  task	  object	  are	  shaking	  and	  
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vibrating	   in	   response	   to	   the	   cutting	   operation.	   This	   is	   a	   common	   task	   problem	   in	  

D&D	  activities.	  

	  

Success	   was	   shown	   to	   be	   possible	   using	   sensor	   data	   collected	   from	   sensors	  

mounted	  in	  a	  common	  tool	  fixturing	  point.	  This	  indicates	  that	  it	  should	  be	  possible	  

to	  move	  to	  a	  multi-‐fingered	  end-‐effecter	  with	  a	  wrist	  mounted	  force-‐torque	  sensor	  

and	   achieve	   similar	  success	   by	  also	  addressing	   tool	  position	  and	  orientation	  when	  

grasping	   the	   tool.	   This	   is	   important	   because	   common	   sensing	   could	   be	   provided	  

without	  the	  cost	  of	  bolting	  tools	  into	  a	  smart	  tool	  fixture.	  

	  

Another	   area	  worthy	   of	   further	   investigation	  would	   be	   to	   consider	   how	   to	   apply	  

these	  techniques	  to	  tool	  process	  that	   are	  essentially	  impact-‐based	  such	  as	   the	   jack	  

hammer,	  air	  chisel,	  and	  sheet	  metal	  nibbler.	  Rapid	  motion	  of	  the	  tool	  coupled	  with	  a	  

wide	   range	   of	  ways	   that	   the	   target	   object	  may	   react	   to	   the	   tool	   impact	  will	  make	  

this	   a	   difficult	   study	   probably	   requiring	   extensive	   analytical	   and	   experimental	  

development.	  Due	  to	  the	  rate	  of	  impacts	  and	  the	  forces	  encountered	  in	  the	  process,	  

data	  acquisition	  and	  process	  control	  sample	  rates	  would	  have	  to	  be	  far	  higher	  than	  

is	  typically	  used	  in	  manipulator	  control.	  

	  

As	   with	   other	   early	   implementations	   using	   behavior-‐based	   concepts,	   the	  

implementation	   process	   tends	   to	   be	   tedious,	   incremental,	   and	   leans	   heavily	   on	  

experimental	   development.	   While	   this	   was	   intentional	   for	   this	   work	   in	   order	   to	  

start	   from	   first	   principles,	   various	   learning	   techniques	   under	   development	   in	   the	  

behavior-‐based	  community	  should	  be	  considered	  to	  provide	  automated	  assistance	  

in	  the	  reactive	  function	  development	  process.	  
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Chapter 9  

Conclusions 

 

This	   dissertation	   has	   described	   a	   methodology	   for	   combining	   concepts	   from	  

behavior-‐based	   systems	   with	   telerobotic	   tool	   control	   in	   a	   way	   that	   is	   compatible	  

with	  existing	  manipulator	  architectures	  used	  by	  remote	  systems	  typical	  to	  the	  D&D	  

and	   remote	   operations	   environments.	   The	   concept	   was	   implemented	   and	  

demonstrated	   for	   two	   tools	   useful	   to	   D&D	   type	   operations—a	   reciprocating	   saw	  

and	   a	   powered	   socket	   tool.	   The	   experimental	   results	   demonstrated	   that	   the	  

approach	   works	   to	   facilitate	   traded	   control	   telerobotic	   tooling	   execution	   by	  

enabling	  difficult	  tasks	  and	  by	  limiting	  tool	  damage.	  

 

The original concept was intended as a means of adding telerobotic assists for human 

operators (1) to permit task tooling operation where it is currently difficult or impossible 

or (2) to relieve fatigue where the tool operation is tedious. For this purpose it appears to 

work either exceptionally well (reciprocating saw) or adequately (socket tool). The 

reciprocating saw task was impossible with freehand teleoperation on the test bed but 

readily achievable via the reactive function assists. The socket tool concept works well 

enough to use in conjunction with teleoperation since the operator has the capability to 

retarget and retry if the initial targeting fails. 

 

The reactive functions formed a set of simple move primitives that can be readily 

assembled into new tooling tasks with relatively little difficulty. Knowledge of the task, 

task execution sequence, and tool characteristics are needed. A majority of the functions 

needed for the socket tool were directly derived from the saw tool. Having done the 

reciprocating saw and socket tool, a band saw, circular saw, and drill would be relatively 

easy to complete. The approach should expand readily to other D&D type tools as well as 

tools in other task sets such as small scale medical tooling for minimally invasive 

surgery. 
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There is no a priori modeling of a specific task instance. A task type model is embedded 

into the sequence of reactive functions and the actions of the functions themselves. 

Contact sensing is used to establish the location of the task object on which the tooling 

task executes. The point of interest for the task is established by the operator or a higher 

level robotic program. There is no abstract representation of the specific task instance 

stored anywhere in the system. 

 

Initial investigation showed that telerobotic use of power tooling did not completely 

conform to the tenets of the behavior-based approach. Tooling tasks are almost entirely 

sequential and deterministic or can be made that way with minimal planning. This 

decreases the behaviorism content of the concept since behavior arbitration essentially 

goes away in favor of the sequential execution of reactive behaviors. It may be best to 

consider this as a BBR-inspired or derived technique rather than a pure behavior-based 

robotics technique. 

 

The most advantageous component to this work that would facilitate complete robotic 

task execution is what has been learned about task decomposition to make what appears 

to be an exceedingly difficult task relatively easy by breaking it down into a set of simple 

moves and looking for target object contact and tool task signatures. The discovery of the 

tool process signatures and how they may be used to manage the tool process was an 

unexpected benefit of this work. It opens the door to the difficult to address needs of tool 

fault identification and recovery, predictive tool maintenance, and more extensive 

dynamics-based control techniques.  

 

In summary the purpose of this work was to explore the use of behavior-based robotics 

concepts to determine techniques relevant to the use of telerobotic assists in D&D type 

tool tasks with a purpose of minimizing the task instance modeling in favor of a priori 

task type models while using sensor information to register the task type model to the 

task instance. An approach was implemented and tested for two tools with variation to 

the usual behavior selection process by using fixed sequencing of the reactive functions. 
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The task type model was embedded into the sequencing of the functions and the functions 

themselves. There is no abstract representation used to build a specific task instance. 

Both tool implementations worked well. In the case of the reciprocating saw, the 

implementation was an enabling technology. The role of the tools and tasks as drivers to 

the telerobotic implementation was better understood in the need for thorough task 

decomposition. This work has been successful enough that it can be implemented and 

used near term on real world systems. 
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The software for this dissertation was written using GNU open source tools for the Linux 
environment. Except for some system level interactions that use C++, all files are written 
in C without the use of object-oriented techniques. Functions are meant to be stand-alone 
as much as possible to facilitate individual testing and regrouping for other tools with 
minimal function modification; however there are groups of functions that are quite 
similar as outlined below. Vestigial code for the interface of analog sensors not used is 
left intact to facilitate future expansion and as documentation to those conducting follow-
on work in our lab. 
 
bApproachB, bApproachH, and bApproachV, though using slightly different trajectory 
generation, are similar. bBackH and bBackV are likewise similar to each other and 
derived from the Approach functions. moveHome is included as representative of a 
family of robotic moves used in this work to go to preprogrammed targets. bWristR is a 
similar robotic move function to moveHome and its category of motions. bCut128S and 
bUnboltB are each unique to their tooling operation. The included files are listed below 
in order of presentation in this appendix. No attempt has been made to include all of the 
many MATLAB files used for analysis in this work, but all of those techniques are 
straightforward engineering exercises. References to comediFT.h refer to a support file 
available from ATI. References to newChild.h and child2( ) indicate software borrowed 
from Andrzej Nycz’s UTK Robotics Laboratory system software and are also therefore 
not included here. 
 
robot.h. 
 
read_writeIO.h 
read_writeIO2.c 
 
runbSaw.c 
runbSocketS1.c 
 
bApproachB.c 
bApproachH.c 
bApproachV.c 
bBackH.c 
bBackV.c 
bRetractB.c 
bRetractS.c 
 
bWristR.c 
bCut128S.c 
bUnboltB.c 
 
functGoIdle.c 
functMoveHome.c 
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/************************************************************************** 
*  
* robot.h 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical, Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
*************************************************************************/ 
 
#include <time.h> 
#include <math.h> 
#include <stdio.h> 
#include <unistd.h> 
 
 
// Calculate for each DOF; numbers in inches, used in trajectory calcs. 
 
double  qZero[6]; // Start point of robotic move 
double qFinal[6]; // Finish point of robotic move 
double   qNow[6]; // Current calculated point in robotic trajectory 
 
float      FT[6]; // Force torque sensor values 
 
// Stored Cartesian position, from Approach --> Retract 
 
double cStored[6] = {0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000}; 
 
// Stored instantaneous joint positions 
 
double qJoints[7] = {0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000}; 
 
// Following joint positions are ordered as follows:  
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw, wrist roll 
 
// Right T2 home joint positions. 
 
double qHome[7] = {0.0000, 0.8800, -2.5436, 0.3889, 0.0000, -1.4653, 0.0000};  
 
// Socket robotic move target T2 joint positions. 
 
double qSocket[7] = {-0.0859, 0.8183, -2.1817, 1.0144, -1.3175, -1.3866,
 0.0000}; 
 
// Saw robotic move target T2 joint positions. 
 
double  qSaw1[7] = {-0.705671, 0.484300, -2.542479, 1.476005, 0.381025,  
 -1.802548, 0.0000}; 
double  qSaw2[7] = {-0.675950, 0.994828, -2.060330, 0.996445, 0.547078,  
 -1.602363, 0.0000}; 
double  qSaw3[7] = {-0.539330, 0.989076, -2.371632, 1.358752, 0.513427,  
 -1.587311, 0.0000}; 
double  qPipe[7] = {-0.286702, 0.453717, -2.124469, 1.469198, 0.235584,  
 -1.650875, 0.0000}; 
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// Position increment instead of time but run at sample time. 
 
int posInc; 
 
// Function prototypes 
 
int read_writeIO(void); 
 
int functMoveHome(void); 
int functMoveSocket(void); 
int functMoveSocket1(void); 
 
int storeCartesian(void); 
int functApproach(void); 
int functApproachD(void); 
int functRetract(void); 
int functRetractD(void); 
int functGoIdle(void); 
 
int functMoveSaw1(void); 
int functMoveSaw2(void); 
int functMoveSaw3(void); 
int functMovePipe(void); 
 
int bWristR(void); 
int bApproachB(void); 
int bApproachH(void); 
int bApproachV(void); 
int bBack(void); 
int bBackH(void); 
int bBackV(void); 
int bCut128S(void); 
int bRetractB(void); 
int bRetractS(void); 
int bUnboltB(void); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
139 

/************************************************************************* 
* 
* Filename = read_writeIO2.h 
* Support for digital and analog I/O 
* 
* Obligatory GNU Comedi acknowledgment 
* 
* Derived from Comedilib, tut1.c 
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org> 
* 
* This file may be freely modified, distributed, and combined with 
* other software, as long as proper attribution is given in the 
* source code. 
* 
* NOTES 
* 
* subdev 0 = analog input port 
* subdev 2 = digital I/O port, note that there are many ports including 
* several digital ports and it's easy to get confused as to what does what. 
* 
* Much of this is now vestigial code but required to read I/O anyway. 
* 
**************************************************************************/ 
 
#include <stdio.h>  
#include <comedi.h>      
#include <comedilib.h> 
#include <fcntl.h> 
#include <unistd.h> 
#include <errno.h> 
#include <getopt.h> 
#include <ctype.h> 
#include <signal.h> 
#include <string.h> 
#include <time.h> 
#include <sys/time.h> 
#include </usr/src/linux-2.6.23/include/linux/rtc.h> 
 
#include "examples.h" 
 
// Reciprocating saw sensor inputs = left and right, horizontal and  
//vertical, slide and touch inputs. 
 
double sawRHslidePos; 
double sawRHtouchPos; 
double sawRVslidePos; 
double sawRVtouchPos; 
double sawLHslidePos; 
double sawLHtouchPos; 
double sawLVslidePos; 
double sawLVtouchPos; 
 
// Power supply monitoring 
 
double checkPlusTen; 
double checkMinusTen; 
double checkFive; 
 
int bits[8];    
 
 



 
140 

// Digital outputs for smart tool on comedi0 
 
int toolOn;  // toolOn  = 1 is on; use as either on/off or PWM. 
int toolDir; // toolDir = 0 is forward as default; reverse is 1. 
  
// Digital inputs for smart tool on comedi1 
 
int toolOnIN;  // toolOn input 
int toolDirIN;  // toolDir input 
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/************************************************************************* 
* 
* Filename = read_writeIO2.c 
* 
* This file is the function to read and write analog and digital IO from 
* the National Instruments 6034E for the HLC. It does not do the  
* force/torque sensor. 
* 
* Obligatory GNU comedi acknowledgment 
* 
* Derived from Comedilib, tut1.c 
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org> 
* 
* This file may be freely modified, distributed, and combined with 
* other software, as long as proper attribution is given in the 
* source code. 
* 
* NOTES 
* 
* subdev 0 = analog input port 
* subdev 2 = digital I/O port, note that there are many ports including 
* several digital ports and it's easy to get confused as to what does what. 
* 
**************************************************************************/ 
 
#include "read_writeIO2.h" 
 
int read_writeIO(void) 
{ 
  
 int subdev = 0; // varies depending on analog/digital port  
 int chan  = 0; // varies under this application  
 int range = 0; // 0 = +/10, still have to use for digital  
 int aref = AREF_GROUND; // AREF_GROUND for SE; AREF_DIFF for DE  
 
 int n_chans0; 
 int maxdata0; 
 
 double voltage[16]; 
  
 comedi_t *device0; 
 comedi_t *device1; 
 
 lsampl_t data0; 
 lsampl_t bits0 = 0; 
 
 int ret; 
 
 lsampl_t data1; 
  
// comedi0 smart tooling I/O 
  
 device0 = comedi_open("/dev/comedi0"); 
  
 n_chans0 = comedi_get_n_channels(device0, subdev); 
 
 for(chan = 0; chan < n_chans0; ++chan){ 
 
    maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
 
    comedi_data_read(device0, subdev, chan, range, aref, &data0); 
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   voltage[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev, 
 chan, range), maxdata0); 

  
    }   
     
// Smart tool position sensors, +/- 10VDC to mm,  
// NOTE: Calibration on voltage only 
     
  sawRHslidePos = 1.016 * voltage[0] - .119; 
  sawRHtouchPos = 1.016 * voltage[1] - .119; 
  sawRVslidePos = 1.016 * voltage[2] - .119; 
  sawRVtouchPos = 1.016 * voltage[3] - .119; 
  sawLHslidePos = 1.016 * voltage[4] - .119; 
  sawLHtouchPos = 1.016 * voltage[5] - .119; 
  sawLVslidePos = 1.016 * voltage[6] - .119; 
  sawLVtouchPos = 1.016 * voltage[7] - .119; 
   
// Power supply checks for diagnostics and scaling  
// --> Calibrated DC voltages 
   
  checkPlusTen  = 1.016 * voltage[13] - .119; 
  checkMinusTen = 1.016 * voltage[14] - .119; 
  checkFive     = 1.016 * voltage[15] - .119; 
     
// Digital input 
 
 for(chan = 4; chan < 8; ++chan){ 
 
    comedi_data_read(device0, 2, chan,range, aref, &bits0); 
 
    bits[chan] = bits0; 
 
    } 
     
// Reads inputs and assign to outputs. 
 
// toolOnIN  = bits[4]; // change for manual vs. auto input 
// toolDirIN = bits[5]; // change for manual vs. auto input 
  
 bits[0] = ! toolOnIN; // ! fixes inverted logic. 
 bits[1] = ! toolDirIN;  // ! fixes inverted logic. 
  
// Digital output 
 
 for(chan = 0; chan < 4; ++chan) 
  
 { 
 
    comedi_data_write(device0, 2, chan, range, aref, bits[chan]);  
 
 } 
     
 comedi_close(device0);  
     
 return 0; 
} 
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/************************************************************************** 
*  
* runbSaw.c 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical, Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
**************************************************************************/ 
 
#include "robot.h" 
 
int main(void) 
 
{ 
 functMoveHome(); // Joint motion move to home for consistent starting position. 
 
 printf("move home ok\n\n"); 
  
 functMoveSaw1(); // Joint level move to Saw way point. 
  
 printf("move saw 1 ok\n\n"); 
  
 functMoveSaw2(); // Joint level move to Saw way point. 
  
 printf("move saw 2 ok\n\n"); 
  
 functMoveSaw3(); // Joint level move to Saw way point. 
  
 printf("move saw 3 ok\n\n"); 
  
// BBR Start ////////////////////////////////////////////////////////////// 
  
 bWristR();  // Level wrist roll to horizontal before cutting. 
  
 printf("wrist roll ok\n\n"); 
 
 bApproachH(); // Cartesian approach to target along EE to contact 
  
 printf("approachH ok\n\n"); 
  
 bBackH();  // Cartesian motion along the EE vector to stand off 
  
 printf("backH ok\n\n"); 
  
 bApproachV(); // Cartesian approach to target along EE to contact 
  
 printf("approachV ok\n\n"); 
  
 bBackV();  // Cartesian motion along the EE vector to stand off 
  
 printf("backV ok\n\n"); 
 
 bCut128S(); // Cartesian -Z for time/distance 
  
 printf("cut ok\n\n"); 
  
 bRetractS();   // Retract along line to clear area. 
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 printf("retract ok\n\n"); 
  
// BBR conclude /////////////////////////////////////////////////////////// 
  
 functMoveSaw2(); // Joint level move to Saw way point. 
  
 printf("move saw 2 ok\n\n"); 
  
 functMoveSaw1(); // Joint level move to Saw way point. 
  
 printf("move saw 1 ok\n\n"); 
 
 functMoveHome(); // Joint motion move to home. 
  
 printf("move home ok\n\n"); 
  
 functGoIdle(); // Set control state via shared memory to Idle. 
  
 printf("idle ok\n\n"); 
  
 return 0; 
 
} 
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/************************************************************************** 
*  
* runbSocketS1.c 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical, Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
**************************************************************************/ 
 
#include "robot.h" 
 
int main(void) 
 
{ 
 functMoveHome(); // Joint motion move to home for consistent starting position. 
 
 printf("move home ok\n\n"); 
  
 sleep(1); 
  
 functMoveSocket(); // Joint level move to Socket task start point. 
  
 printf("move socket ok\n\n"); 
  
 sleep(1); 
  
 functMoveSocket1(); // Joint level move to conehead socket task start point. 
  
 printf("move cone1 ok\n\n"); 
  
 sleep(1); 
  
// BBR Start ////////////////////////////////////////////////////////////// 
 
 bApproachB(); // Cartesian approach to target along EE to contact 
  
 printf("approach ok\n\n"); 
  
 sleep(1); 
  
 bUnboltB(); 
  
 printf("unbolt ok\n\n"); 
 
 bRetractB();   // Retract along line to clear area. 
  
 printf("retract ok\n\n"); 
  
 sleep(1); 
  
// BBR End //////////////////////////////////////////////////////////////// 
  
 functMoveHome(); // Joint motion move to home for consistent starting position. 
  
 printf("move home ok\n\n"); 
  
 sleep(1); 
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 functGoIdle(); // Set control state via shared memory to Idle. 
  
 printf("idle ok\n\n"); 
  
 sleep(1); 
 
 return 0; 
 
} 
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/************************************************************************** 
*  
* bApproachB.c 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical, Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
* 
* 
**************************************************************************/ 
 
/************************************************************************* 
* 
*  Obligatory Acknowledgements for libraries used in this file. 
* 
* ATIDAQ F/T C Library 
* v1.0.1 
* Copyright (c) 2001 ATI Industrial Automation 
* 
* The MIT License 
*  
* Permission is hereby granted, free of charge, to any person obtaining a 
* copy of this software and associated documentation files (the "Software") 
* to deal in the Software without restriction, including without limitation 
* the rights to use, copy, modify, merge, publish, distribute, sublicense, 
* and/or sell copies of the Software, and to permit persons to whom the 
* Software is furnished to do so, subject to the following conditions: 
*  
* The above copyright notice and this permission notice shall be included 
* in all copies or substantial portions of the Software. 
*  
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS  
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF  
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE  
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
* 
**************************************************************************/ 
 
/************************************************************************** 
* 
* Comedilib 
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org> 
* 
* This file may be freely modified, distributed, and combined with 
* other software, as long as proper attribution is given in the 
* source code. 
* 
**************************************************************************/ 
 
#include "newChild.h" 
 
#include <time.h> 
#include <math.h>  
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#include "comediFT.h" 
 
static int biasFlag = 1; // for sampleBias switching to initialize F/T 
 
int read_writeIO(void); // reads comedi0 analog/digital IO 
 
int bApproachB(void) 
{ 
 
// System level communications 
  
int QUIT = 0; 
  
int shmidR,shmidRW, semid; // IPC idenfitiers 
key_t key_memRW,key_memR, key_sem;  // keys for shared mem and semphores. 
struct sembuf sb; // semaphore control structure  
   
//************************************************************************* 
     
void safe_quit(void) 
{ 
 QUIT=1; 
} 
  
//*************************************************************************  
 
//************************************************************************* 
  
int grabSem(int semNum,  struct sembuf *sb, int semid)  
 //semNum should be zero for this program so far. 
{             
 sb->sem_op=-1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1)  
  // make sure you're using the semaphore when it is necessary. 
 { 
  perror("semaphore access problem");  
  QUIT=1;  
   
 }          
 return 1;         
} 
  
//************************************************************************* 
  
int retSem(int semNum,  struct sembuf *sb, int semid)  
 //semNum should be zero for this program so far. 
{             
 sb->sem_op=1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1) 
  { 
   perror("semaphore return problem ");   
   QUIT=1;   
  }      
  return 1;         
} 
  
//************************************************************************* 
 
// Calculate for each DOF; numbers in inches, used in trajectory calcs. 
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double  qZero[6]; // Start point of robotic move  
    // (where you are now) 
  
double  qNow[6]; // Current calculated point in  
    // robotic trajectory 
          
double  qNowV[6]; // Incremental velocity for wrist  
    // orientations--warning not functional 
  
double  qNowOld[6]; // Used for incremental velocity calcs 
 
// Stored instantaneous joint positions 
 
double  qJoints[7]; 
 
// Following joint positions are ordered as follows:  
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,  
// wrist roll 
 
double Data[6];  // current manipulator position 
  
int senseContact = 0; 
  
// Loop timing management using nanosleep( ) 
  
 struct timespec ts; 
 ts.tv_sec = 0; 
// ts.tv_nsec = 31250000; // 32 hz, not calibrated 
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz 
  
// time-stamping variables 
  
 time_t time(time_t *tp); 
  
 time_t now; 
  
// file for data capture 
  
 FILE *fp; 
  
 if ((fp = fopen("approachB_data", "wb"))==NULL) 
   
 { 
  printf("Cannot open file.\n"); 
  exit(1); 
 } 
  
// Setup shared memory 
  
 child2( ); 
  
// Loop Variables 
  
 int i = 0; 
 int j = 0; 
 
 double inc = .015625; // .5 in/sec @ 32 hz 
 float contactThreshold = -40.00;  
  
 // Set constraints and scaling.  
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 // Note that positions use 1; orientations use 0. 
  
 for (i=0;i<6;i++) //initialize memory  
 {  
  parmRW->armCtrl.axesConstr[i]=1.0; 
  parmRW->armCtrl.axesScal[i]=1.0; 
  parmRW->armCtrl.armMode=IDLE; 
  parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i]; 
  if(i>2) 
  { 
   parmRW->armCtrl.cartesCtrl[i]=0.0; 
  } 
   
 } 
   
// Read the starting Cartesian position (where you are now) from  
// shared memory. 
 
 for (i = 0; i < 6; i++) 
 { 
  qZero[i] = parmR->armRightCar[i]; 
 } 
    
// Read the starting joint angles (where you are now) from shared memory. 
// This is for end-effecter orientation calculations. 
  
 for (i = 0; i < 6; i++) 
 { 
  qJoints[i] = parmR->armRight[i]; 
 } 
  
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
  
// Set up Force/Torque Sensor 
  
 char *calfilepath;    // name of calibration file 
 unsigned short index;  // index of calibration in file 
 Calibration *cal; // struct containing calibration information 
 short sts;            // return value from functions 
 
 // ATI F/T sensor variables 
  
 float SampleBias[7]; // measures  preloads on sensor before task 
  
 float SampleReading[7]; // raw sensor values as read from comedi1 
  
 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform 
 // Translate along/about {x translate, y translate, z translate,  
 // x rotate, y rotate, z rotate} 
  
 float FT[6]={0,0,0,0,0,0}; // array to hold the resultant  
      // force/torque vector. 
  
 
 
 
 // comedi1 variables 
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 int subdev = 0;   // analog port (comedi1 not used for anything  
      // other than F/T sensor) 
 int range = 0;   // 0 = +/10VDC 
 int aref = AREF_DIFF; // Differential Input  
  
 int n_chans0; 
 int maxdata0; 
 comedi_t *device0; 
 int chan=0; 
 lsampl_t data0; 
  
 device0 = comedi_open("/dev/comedi1"); 
  
 n_chans0 = comedi_get_n_channels(device0, subdev); 
  
 for(chan = 0; chan < n_chans0; ++chan) 
 { 
  maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
  comedi_data_read(device0, subdev, chan, range, aref, &data0); 

SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev, 
chan, range), maxdata0); 

 } 
  
 // Set up ATI functions 
  
 calfilepath="FT5240.cal"; 
 index = 1; 
  
 // create Calibration 
  
 cal=createCalibration(calfilepath,index); 
 if (cal==NULL) { 
  printf("\nSpecified calibration could not be loaded.\n"); 
  scanf("."); 
  return 0; 
 } 
 
 // NOTE: BELOW FT SETUP KEPT IN EVENT OF FUTURE USE! 
   
 // Set force units. 
 // This step is optional; by default, the units are inherited from  
 // the calibration file. 
  
 sts=SetForceUnits(cal,"N"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid force units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set torque units. 
 // This step is optional; by default, the units are inherited from the  
 // calibration file. 
  
 sts=SetTorqueUnits(cal,"N-m"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid torque units"); return 0; 
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  default: printf("Unknown error"); return 0; 
 } 
  
 // Set tool transform. 
 // This line is only required if you want to move or rotate the  
 // sensor's coordinate system. 
  
 sts=SetToolTransform(cal,SampleTT,"mm","degrees"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid distance units"); return 0; 
  case 3: printf("Invalid angle units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
// Trajectory begins here./////////////////////////////////////////////// 
 
 for (j = 0; j < 320; j++) // 320 points = 32hz X 10 seconds 
 
 { 
   
// Check forces/torques for contact; terminate if contact above threshold 
 
  for(chan = 0; chan < n_chans0; ++chan) 
  { 
    
   maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
    
   comedi_data_read_delayed(device0, subdev, chan, range, aref,  
    &data0, 10000); 
    
   SampleReading[chan] = comedi_to_phys(data0, \ 
    comedi_get_range(device0, subdev, chan, range), maxdata0); 
    
  } 
   
  // Bias the sensor once only. 
   
  if(biasFlag==1) 
  { 
   for (i = 0; i < 6; i++) 
    
   { 
    
   SampleBias[i] = SampleReading[i]; 
    
   } 
    
   Bias(cal, SampleBias);  
    
   biasFlag = 0; 
  } 
   
  // convert a loaded measurement into forces and torques 
   
  ConvertToFT(cal,SampleReading,FT); 
   
// read current Titan position and write to data file 
   
 for (i = 0; i < 6; i++) 
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  { 
    
   Data[i] = parmR->armRightCar[i]; 
    
  } 
   
 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f  
   %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], FT[2], FT[3], FT[4],  
   FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], Data[5]); 
 
// Check forces/torques for contact; terminate if contact above threshold 
   
  if (FT[0] < contactThreshold) 
     
  { 
   senseContact = 1; 
    
   printf("FT trip values\n"); 
  
   printf("FT:\n"); 
   printf("%f %f %f %f %f %f\n\n", \ 
   FT[0], FT[1], FT[2], FT[3], FT[4], FT[5]); 
    
// timestamp 
  
   now = time(NULL); 
  
   fprintf(fp, "\n%s\n",ctime(&now)); 
    
   break; 
  } 
 
  // Calculate incremental positions once through each loop. 
   
  qNow[0] = qZero[0] + j * inc * cos(qJoints[0] + qJoints[4]); // X 
   
  qNow[1] = qZero[1] + j * inc * sin(qJoints[0] + qJoints[4]); // Y  
 
  qNow[2] = qZero[2] + j * inc * \ 
  sin(qJoints[1] + qJoints[2] + qJoints[3] -.0174); // Z 
  // (note cumulative joint error  offset) 
   
  // Don't move the wrist joints 
   
  qNow[3] = qZero[3];   // rX stays the same 
  qNow[4] = qZero[4];   // rY stays the same 
  qNow[5] = qZero[5];   // rZ stays the same 
   
  // Write joint positions back to shared memory. 
   
  for (i = 0; i < 6; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
    
  } 
   
  // Calculate delta position once through each loop (for wrist). 
  // WARNING: HELD TO ZERO CHANGE. 
   
  for (i = 0; i < 6; i++) 
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  { 
   qNowV[i] = qNow[i] - qNowOld[i]; 
  } 
   
  // Write joint positions back to shared memory. 
  // Position uses qNow; orientation uses qNowV. 
  // 0, 1, 2 are qNow for positions, 3, 4, 5 are qNowV for  
  // velocities. 
   
  for (i = 0; i < 3; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
  } 
   
  for (i = 3; i < 6; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i]; 
  } 
   
  // Flag and write to Cartesian 
   
  grabSem(0,&sb,semid);   
  parmRW->armCtrl.updFlag=1; 
  parmRW->armCtrl.armMode=CART; 
   
  // Xfer current new positions to old positions 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowOld[i] = qNow[i]; 
  } 
   
  // Return semaphore 
   
  retSem(0,&sb, semid); 
   
  // Delay to control loop rate 
   
  nanosleep(&ts, NULL); 
   
  // Loop until j = 320 or trigger 
   
 } 
 
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
  
// exit mode...clean up and get out 
 
 grabSem(0,&sb,semid);  
  
 parmRW->armCtrl.armMode=IDLE;  
 
 retSem(0,&sb, semid);  
 
// free memory allocated to Calibration structure 
 
 destroyCalibration(cal); 



 
155 

  
 comedi_close(device0);  
 
return 0; 
 
} 
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/************************************************************************** 
*  
* bApproachH.c 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical, Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
* 
* 
**************************************************************************/ 
 
/************************************************************************* 
* 
*  Obligatory Acknowledgements for libraries used in this file. 
* 
* ATIDAQ F/T C Library 
* v1.0.1 
* Copyright (c) 2001 ATI Industrial Automation 
* 
* The MIT License 
*  
* Permission is hereby granted, free of charge, to any person obtaining a 
* copy of this software and associated documentation files (the "Software") 
* to deal in the Software without restriction, including without limitation 
* the rights to use, copy, modify, merge, publish, distribute, sublicense, 
* and/or sell copies of the Software, and to permit persons to whom the 
* Software is furnished to do so, subject to the following conditions: 
*  
* The above copyright notice and this permission notice shall be included 
* in all copies or substantial portions of the Software. 
*  
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS  
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF  
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE  
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
* 
*************************************************************************/ 
 
/************************************************************************* 
* Comedilib 
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org> 
* 
* This file may be freely modified, distributed, and combined with 
* other software, as long as proper attribution is given in the 
* source code. 
* 
**************************************************************************/ 
 
#include "newChild.h" 
 
#include <time.h> 
#include <math.h>  
 
#include "comediFT.h" 
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static int biasFlag = 1; // for sampleBias switching to initialize F/T 
 
int read_writeIO(void); // reads comedi0 analog/digital IO 
 
int bApproachH(void) 
{ 
 
// System level communications 
  
int QUIT = 0; 
  
int shmidR,shmidRW, semid; // IPC idenfitiers 
key_t key_memRW,key_memR, key_sem;  // keys for shared mem and semphores. 
struct sembuf sb; // semaphore control structure  
  
//************************************************************************* 
     
void safe_quit(void) 
{ 
 QUIT=1; 
} 
  
//*************************************************************************  
  
//************************************************************************* 
  
int grabSem(int semNum,  struct sembuf *sb, int semid)  
 //semNum should be zero for this program so far. 
{             
 sb->sem_op=-1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1)  
  // make sure you're using the semaphore when it is necessary. 
 { 
  perror("semaphore access problem");  
  QUIT=1;  
    
 }          
 return 1;         
} 
  
//************************************************************************* 
  
int retSem(int semNum,  struct sembuf *sb, int semid)  
 //semNum should be zero for this program so far. 
{             
 sb->sem_op=1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1) 
  { 
  perror("semaphore return problem ");   
  QUIT=1;   
  }      
  return 1;         
} 
  
//************************************************************************* 
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// Calculate for each DOF; numbers in inches, used in trajectory calcs. 
 
double   qZero[6]; // Start point of robotic move  
    // (where you are now) 
  
double   qNow[6]; // Current calculated point in  
    // robotic trajectory 
          
double   qNowV[6]; // Incremental velocity for wrist  
    // orientations--warning not functional 
  
double   qNowOld[6]; // Used for incremental velocity calcs 
 
// Stored instantaneous joint positions 
 
double   qJoints[7]; 
 
// Following joint positions are ordered as follows:  
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,  
// wrist roll 
 
double Data[6];  // current manipulator position 
  
int senseContact = 0; 
  
// Loop timing management using nanosleep( ) 
  
 struct timespec ts; 
 ts.tv_sec = 0; 
// ts.tv_nsec = 31250000; // 32 hz, not calibrated 
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz 
  
// time-stamping variables 
  
 time_t time(time_t *tp); 
  
 time_t now; 
  
// file for data capture 
  
 FILE *fp; 
  
 if ((fp = fopen("approachH_data", "wb"))==NULL) 
   
 { 
  printf("Cannot open file.\n"); 
  exit(1); 
 } 
  
// Setup shared memory 
  
 child2( ); 
  
// Loop Variables 
  
 int i = 0; 
 int j = 0; 
 
 double inc = .015625; // .5 in/sec @ 32 hz 
 float contactThreshold = 30.00; 
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 // Set constraints and scaling.  
 // Note that positions use 1; orientations use 0. 
  
 for (i=0;i<6;i++) //initialize memory  
 {  
  parmRW->armCtrl.axesConstr[i]=1.0; 
  parmRW->armCtrl.axesScal[i]=1.0; 
  parmRW->armCtrl.armMode=IDLE; 
  parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i]; 
  if(i>2) 
  { 
   parmRW->armCtrl.cartesCtrl[i]=0.0; 
  } 
   
 } 
  
// Read the starting Cartesian position (where you are now) from  
// shared memory. 
 
 for (i = 0; i < 6; i++) 
 { 
  qZero[i] = parmR->armRightCar[i]; 
 } 
    
// Read the starting joint angles (where you are now) from shared memory. 
// This is for end-effecter orientation calculations. 
  
 for (i = 0; i < 6; i++) 
 { 
  qJoints[i] = parmR->armRight[i]; 
 } 
  
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
   
// Set up Force/Torque Sensor 
  
 char *calfilepath;     // name of calibration file 
 unsigned short index;  // index of calibration in file 
 Calibration *cal; // struct containing calibration information 
// unsigned short i;     // loop variable used to print results 
 short sts;            // return value from functions 
 
 // ATI F/T sensor variables 
  
 float SampleBias[7]; // measures  preloads on sensor before starting task 
  
 float SampleReading[7]; // raw sensor values as read from comedi1 
 
 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform 
 // Translate along/about {x translate, y translate, z translate,  
 // x rotate, y rotate, z rotate} 
  
 float FT[6]={0,0,0,0,0,0};  // array to hold the resultant  
      // force/torque vector. 
  
  
 



 
160 

// comedi1 variables 
  
 int subdev = 0;   // analog port (comedi1 not used for anything  
      // other than F/T sensor) 
 int range = 0;   // 0 = +/10VDC 
 int aref = AREF_DIFF;  // Differential Input  
  
 int n_chans0; 
 int maxdata0; 
 comedi_t *device0; 
 int chan=0; 
 lsampl_t data0; 
  
 device0 = comedi_open("/dev/comedi1"); 
  
 n_chans0 = comedi_get_n_channels(device0, subdev); 
  
 for(chan = 0; chan < n_chans0; ++chan) 
 { 
  maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
  comedi_data_read(device0, subdev, chan, range, aref, &data0); 
  SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,  
   chan, range), maxdata0); 
 } 
  
 // Set up ATI functions 
  
 calfilepath="FT5240.cal"; 
 index = 1; 
  
 // create Calibration 
  
 cal=createCalibration(calfilepath,index); 
 if (cal==NULL) { 
  printf("\nSpecified calibration could not be loaded.\n"); 
  scanf("."); 
  return 0; 
 } 
 
 // NOTE: BELOW FT SETUP KEPT IN EVENT OF FUTURE USE! 
   
 // Set force units. 
 // This step is optional; by default, the units are inherited from  
 // the calibration file. 
  
 sts=SetForceUnits(cal,"N"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid force units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set torque units. 
 // This step is optional; by default, the units are inherited from the  
 // calibration file. 
  
 sts=SetTorqueUnits(cal,"N-m"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
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  case 2: printf("Invalid torque units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set tool transform. 
 // This line is only required if you want to move or rotate the  
 // sensor's coordinate system. 
 
 sts=SetToolTransform(cal,SampleTT,"mm","degrees"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid distance units"); return 0; 
  case 3: printf("Invalid angle units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
// Trajectory begins here./////////////////////////////////////////////// 
 
 for (j = 0; j < 320; j++) // 320 points = 32hz X 10 seconds 
 
 { 
   
// Check forces/torques for contact; terminate if contact above threshold 
 
  for(chan = 0; chan < n_chans0; ++chan) 
  { 
    
   maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
    
   comedi_data_read_delayed(device0, subdev, chan, range, aref,  
    &data0, 10000); 
    
   SampleReading[chan] = comedi_to_phys(data0, \ 
    comedi_get_range(device0, subdev, chan, range), maxdata0); 
    
  } 
   
  // Bias the sensor once only. 
   
  if(biasFlag==1) 
  { 
   for (i = 0; i < 6; i++) 
    
   { 
    
   SampleBias[i] = SampleReading[i]; 
    
   } 
    
   Bias(cal, SampleBias);  
    
   biasFlag = 0; 
  } 
   
  // convert a loaded measurement into forces and torques 
   
  ConvertToFT(cal,SampleReading,FT); 
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// read current Titan position and write to data file 
   
 for (i = 0; i < 6; i++) 
    
  { 
    
   Data[i] = parmR->armRightCar[i]; 
    
  } 
   
 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f  
   %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], FT[2], FT[3], FT[4],  
   FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], Data[5]); 
 
  // Calculate incremental positions once through each loop. 
   
  qNow[0] = qZero[0] + j * inc * cos(qJoints[0] + qJoints[4]); // X 
   
  qNow[1] = qZero[1] + j * inc * sin(qJoints[0] + qJoints[4]); // Y  
   
  qNow[2] = qZero[2] + j * inc * \ 
  sin(qJoints[1] + qJoints[2] + qJoints[3] -.0174); // Z  
  // (note cumulative joint error  offset) 
   
  // Don't move the wrist joints 
   
  qNow[3] = qZero[3];   // rX stays the same 
  qNow[4] = qZero[4];   // rY stays the same 
  qNow[5] = qZero[5];   // rZ stays the same 
   
   
  // Write joint positions back to shared memory. 
   
  for (i = 0; i < 6; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
 
  } 
   
  // Calculate delta position once through each loop (for wrist). 
  // WARNING: NOT FUNCTIONAL AT THIS TIME; HELD TO ZERO CHANGE. 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowV[i] = qNow[i] - qNowOld[i]; 
  } 
   
  // Write joint positions back to shared memory. 
   
  for (i = 0; i < 3; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
  } 
   
  for (i = 3; i < 6; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i]; 
  } 
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  // Flag and write to Cartesian 
   
  grabSem(0,&sb,semid);   
  parmRW->armCtrl.updFlag=1; 
  parmRW->armCtrl.armMode=CART; 
   
  // Xfer current new positions to old positions 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowOld[i] = qNow[i]; 
  } 
   
  // Return semaphore 
   
  retSem(0,&sb, semid); 
   
  // Delay to control loop rate 
   
  nanosleep(&ts, NULL); 
   
// Check forces/torques for contact; terminate if contact above threshold 
   
 
  if (((fabs(FT[0])) > contactThreshold) || ((fabs(FT[1])) > contactThreshold) || 
((fabs(FT[2])) > contactThreshold)) 
   
  { 
   senseContact = 1; 
    
   printf("FT trip values\n"); 
  
   printf("FT:\n"); 
   printf("%f %f %f %f %f %f\n\n", \ 
   FT[0], FT[1], FT[2], FT[3], FT[4], FT[5]); 
    
// timestamp 
  
   now = time(NULL); 
  
   fprintf(fp, "\n%s\n",ctime(&now)); 
    
   j = 320; 
  } 
   
  // Loop  
   
 } 
 
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
  
// exit mode...clean up and get out 
 
 grabSem(0,&sb,semid); 
  
 parmRW->armCtrl.armMode=IDLE;  
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 retSem(0,&sb, semid);  
 
// free memory allocated to Calibration structure 
 
 destroyCalibration(cal); 
  
 comedi_close(device0);  
 
return 0; 
 
} 
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/************************************************************************** 
*  
* bApproachV.c 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical, Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
* 
* 
**************************************************************************/ 
 
/************************************************************************* 
* 
*  Obligatory Acknowledgements for libraries used in this file. 
* 
* ATIDAQ F/T C Library 
* v1.0.1 
* Copyright (c) 2001 ATI Industrial Automation 
* 
* The MIT License 
*  
* Permission is hereby granted, free of charge, to any person obtaining a 
* copy of this software and associated documentation files (the "Software") 
* to deal in the Software without restriction, including without limitation 
* the rights to use, copy, modify, merge, publish, distribute, sublicense, 
* and/or sell copies of the Software, and to permit persons to whom the 
* Software is furnished to do so, subject to the following conditions: 
*  
* The above copyright notice and this permission notice shall be included 
* in all copies or substantial portions of the Software. 
*  
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS  
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF  
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE  
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
* 
***************************************************************************/ 
 
/************************************************************************** 
* Comedilib 
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org> 
* 
* This file may be freely modified, distributed, and combined with 
* other software, as long as proper attribution is given in the 
* source code. 
* 
**************************************************************************/ 
 
#include "newChild.h" 
 
#include <time.h> 
#include <math.h>  
 
#include "comediFT.h" 
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static int biasFlag = 1; // for sampleBias switching initializing the F/T 
 
int read_writeIO(void);  // reads comedi0 analog/digital IO 
 
int bApproachV(void) 
{ 
 
// System level communications 
  
int QUIT = 0; 
  
  int shmidR,shmidRW, semid;  // IPC idenfitiers 
  key_t key_memRW,key_memR, key_sem;// keys for shared mem and semphores. 
  struct sembuf sb; // semaphore control structure  
   
//************************************************************************* 
  
void safe_quit(void) 
{ 
 QUIT=1; 
} 
  
//*************************************************************************  
 
//************************************************************************* 
  
int grabSem(int semNum,  struct sembuf *sb, int semid)  
 //semNum should be zero for this program so far. 
{             
 sb->sem_op=-1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1)  
  // make sure you're using the semaphore when it is necessary. 
 { 
  perror("semaphore access problem");  
  QUIT=1;  
   
 }          
 return 1;         
} 
  
//************************************************************************* 
  
int retSem(int semNum,  struct sembuf *sb, int semid)  
 //semNum should be zero for this program so far. 
{             
 sb->sem_op=1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1) 
 { 
  perror("semaphore return problem ");   
  QUIT=1;   
 }      
 return 1;         
} 
  
//************************************************************************* 
 
// Calculate for each DOF; numbers in inches, used in trajectory calcs. 
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double   qZero[6]; // Start point of robotic move  
    // (where you are now) 
  
double   qNow[6]; // Current calculated point in  
    // robotic trajectory 
          
double   qNowV[6]; // Incremental velocity for wrist  
    // orientations--warning not functional 
  
double   qNowOld[6]; // Used for incremental velocity calcs 
 
// Stored instantaneous joint positions 
 
extern double qJoints[7]; 
 
// Following joint positions are ordered as follows:  
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,  
// wrist roll 
 
 double Data[6]; // current manipulator position 
  
 int senseContact = 0; 
  
// Loop timing management using nanosleep( ) 
  
 struct timespec ts; 
 ts.tv_sec = 0; 
// ts.tv_nsec = 31250000; // 32 hz, not calibrated 
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz 
  
// time-stamping variables 
  
 time_t time(time_t *tp); 
  
 time_t now; 
  
// file for data capture 
  
 FILE *fp; 
  
 if ((fp = fopen("approachV_data", "wb"))==NULL) 
   
 { 
  printf("Cannot open file.\n"); 
  exit(1); 
 } 
  
// Setup shared memory 
  
 child2( ); 
  
// Loop Variables 
  
 int i = 0; 
 int j = 0; 
 
 double inc = .015625; // .5 in/sec @ 32 hz 
 float contactThreshold = .50; 
   
 // Set constraints and scaling.  
 // Note that positions use 1; orientations use 0. 
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 for (i=0;i<6;i++) //initialize memory  
 {  
  parmRW->armCtrl.axesConstr[i]=1.0; 
  parmRW->armCtrl.axesScal[i]=1.0; 
  parmRW->armCtrl.armMode=IDLE; 
  parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i]; 
  if(i>2) 
  { 
   parmRW->armCtrl.cartesCtrl[i]=0.0; 
  } 
   
 } 
   
// Read the starting Cartesian position (where you are now) from  
// shared memory. 
 
 for (i = 0; i < 6; i++) 
 { 
  qZero[i] = parmR->armRightCar[i]; 
 } 
    
// Read the starting joint angles (where you are now) from shared memory. 
// This is for end-effecter orientation calculations. 
  
 for (i = 0; i < 6; i++) 
 { 
  qJoints[i] = parmR->armRight[i]; 
 } 
  
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
   
// Set up Force/Torque Sensor 
  
 char *calfilepath;    // name of calibration file 
 unsigned short index; // index of calibration in file (second parameter;  
     // default = 1) 
 Calibration *cal; // struct containing calibration information 
// unsigned short i;     // loop variable used to print results 
 short sts;            // return value from functions 
 
 // ATI F/T sensor variables 
  
 float SampleBias[7]; // measures  preloads on sensor before starting task 
  
 float SampleReading[7]; // raw sensor values as read from comedi1 
  
 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform 
 // Translate along/about {x translate, y translate, z translate,  
 // x rotate, y rotate, z rotate} 
  
 float FT[6]={0,0,0,0,0,0}; // array to hold the resultant  
      // force/torque vector. 
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 // comedi1 variables 
  
 int subdev = 0;  // analog port (comedi1 not used for anything  
     // other than F/T sensor) 
 int range = 0;  // 0 = +/10VDC 
 int aref = AREF_DIFF; // Differential Input  
  
 int n_chans0; 
 int maxdata0; 
 comedi_t *device0; 
 int chan=0; 
 lsampl_t data0; 
  
 device0 = comedi_open("/dev/comedi1"); 
  
 n_chans0 = comedi_get_n_channels(device0, subdev); 
  
 for(chan = 0; chan < n_chans0; ++chan) 
 { 
  maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
  comedi_data_read(device0, subdev, chan, range, aref, &data0); 
  SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev, 
chan, range), maxdata0); 
 } 
  
 // Set up ATI functions 
  
 calfilepath="FT5240.cal"; 
 index = 1; 
  
 // create Calibration 
  
 cal=createCalibration(calfilepath,index); 
 if (cal==NULL) { 
  printf("\nSpecified calibration could not be loaded.\n"); 
  scanf("."); 
  return 0; 
 } 
 
 // NOTE: BELOW FT SETUP KEPT IN EVENT OF FUTURE USE! 
   
 // Set force units. 
 // This step is optional; by default, the units are inherited from  
 // the calibration file. 
  
 sts=SetForceUnits(cal,"N"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid force units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set torque units. 
 // This step is optional; by default, the units are inherited from the  
 // calibration file. 
  
 sts=SetTorqueUnits(cal,"N-m"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
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  case 2: printf("Invalid torque units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set tool transform. 
 // This line is only required if you want to move or rotate the  
 // sensor's coordinate system. 
 
 sts=SetToolTransform(cal,SampleTT,"mm","degrees"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid distance units"); return 0; 
  case 3: printf("Invalid angle units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
// Trajectory begins here./////////////////////////////////////////////// 
 
 for (j = 0; j < 640; j++) // 640 points = 32hz X 20 seconds 
 
 { 
   
// Check forces/torques for contact; terminate if contact above threshold 
 
  for(chan = 0; chan < n_chans0; ++chan) 
  { 
    
   maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
    
   comedi_data_read_delayed(device0, subdev, chan, range, aref,  
    &data0, 10000); 
    
   SampleReading[chan] = comedi_to_phys(data0, \ 
    comedi_get_range(device0, subdev, chan, range), maxdata0); 
    
  } 
   
  // Bias the sensor once only. 
   
  if(biasFlag==1) 
  { 
   for (i = 0; i < 6; i++) 
    
   { 
    
   SampleBias[i] = SampleReading[i]; 
    
   } 
    
   Bias(cal, SampleBias);  
    
   biasFlag = 0; 
  } 
   
  // convert a loaded measurement into forces and torques 
   
  ConvertToFT(cal,SampleReading,FT); 
   
// read current Titan position and write to data file 
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 for (i = 0; i < 6; i++) 
    
  { 
    
   Data[i] = parmR->armRightCar[i]; 
    
  } 
   
 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f  
   %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], FT[2], FT[3], FT[4],  
   FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], Data[5]); 
 
  // Calculate incremental positions once through each loop. 
   
  qNow[0] = qZero[0]; // X 
   
  qNow[1] = qZero[1]; // Y  
   
  qNow[2] = qZero[2] - j * (inc/4.0); // Z  
  // (note cumulative joint error offset) 
   
  // Don't move the wrist joints 
   
  qNow[3] = qZero[3];   // rX stays the same 
  qNow[4] = qZero[4];   // rY stays the same 
  qNow[5] = qZero[5];   // rZ stays the same 
   
   
  // Write joint positions back to shared memory. 
   
  for (i = 0; i < 6; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
    
  } 
   
  // Calculate delta position once through each loop (for wrist). 
  // WARNING: NOT FUNCTIONAL AT THIS TIME; HELD TO ZERO CHANGE. 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowV[i] = qNow[i] - qNowOld[i]; 
  } 
   
  // Write joint positions back to shared memory. 
 
  for (i = 0; i < 3; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
  } 
   
  for (i = 3; i < 6; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i]; 
  } 
   
  // Flag and write to Cartesian 
   
  grabSem(0,&sb,semid);   
  parmRW->armCtrl.updFlag=1; 
  parmRW->armCtrl.armMode=CART; 
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  // Xfer current new positions to old positions 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowOld[i] = qNow[i]; 
  } 
   
  // Return semaphore 
   
  retSem(0,&sb, semid); 
   
  // Delay to control loop rate 
   
// Check forces/torques for contact; terminate if contact above threshold 
   
 
  if (FT[4] > contactThreshold) 
   
  { 
   senseContact = 1; 
    
   printf("FT trip values\n"); 
  
   printf("FT:\n"); 
   printf("%f %f %f %f %f %f\n\n", \ 
   FT[0], FT[1], FT[2], FT[3], FT[4], FT[5]); 
    
// timestamp 
  
   now = time(NULL); 
  
   fprintf(fp, "\n%s\n",ctime(&now)); 
    
   j = 640; 
  } 
   
  nanosleep(&ts, NULL); 
   
  // Loop until j = 640 
   
 } 
 
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
  
// exit mode...clean up and get out 
 
 grabSem(0,&sb,semid);  
  
 parmRW->armCtrl.armMode=IDLE;  
 
 retSem(0,&sb, semid);  
 
// free memory allocated to Calibration structure 
 
 destroyCalibration(cal); 
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 comedi_close(device0);  
 
return 0; 
 
} 
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/************************************************************************** 
*  
* bBackH.c 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical, Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
**************************************************************************/ 
 
/************************************************************************* 
* 
*  Obligatory Acknowledgements for libraries used in this file. 
* 
* ATIDAQ F/T C Library 
* v1.0.1 
* Copyright (c) 2001 ATI Industrial Automation 
* 
* The MIT License 
*  
* Permission is hereby granted, free of charge, to any person obtaining a 
* copy of this software and associated documentation files (the "Software") 
* to deal in the Software without restriction, including without limitation 
* the rights to use, copy, modify, merge, publish, distribute, sublicense, 
* and/or sell copies of the Software, and to permit persons to whom the 
* Software is furnished to do so, subject to the following conditions: 
*  
* The above copyright notice and this permission notice shall be included 
* in all copies or substantial portions of the Software. 
*  
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS  
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF  
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE  
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
* 
**************************************************************************/ 
 
/************************************************************************** 
* Comedilib 
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org> 
* 
* This file may be freely modified, distributed, and combined with 
* other software, as long as proper attribution is given in the 
* source code. 
* 
**************************************************************************/ 
 
#include "newChild.h" 
 
#include <time.h> 
#include <math.h>  
 
 
#include "comediFT.h" 
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static int biasFlag = 1; // for sampleBias switching initializing F/T 
 
int read_writeIO(void);  // reads comedi0 analog/digital IO 
 
int bBackH(void) 
{ 
  
int QUIT = 0; 
  
  int shmidR,shmidRW, semid; // IPC idenfitiers 
  key_t key_memRW,key_memR, key_sem;  // keys for shared mem and semphores. 
  struct sembuf sb; // semaphore control structure  
   
 //************************************************************************ 
     
void safe_quit(void) 
{ 
 QUIT=1; 
} 
  
//*************************************************************************  
 
//************************************************************************* 
  
int grabSem(int semNum,  struct sembuf *sb, int semid)  
//semNum should be zero for this program so far. 
{             
 sb->sem_op=-1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1)  
 // make sure you're using the semaphore when it is necessary. 
 { 
  perror("semaphore access problem");  
  QUIT=1;  
   
 }          
 return 1;         
} 
  
//************************************************************************* 
  
int retSem(int semNum,  struct sembuf *sb, int semid)  
//semNum should be zero for this program so far. 
{             
 sb->sem_op=1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1) 
 { 
  perror("semaphore return problem ");   
  QUIT=1;   
 }      
 return 1;         
} 
  
//************************************************************************* 
 
// Calculate for each DOF; numbers in inches, used in trajectory calcs. 
 
double   qZero[6];   // Start point of robotic move  
      // (where you are now) 
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double   qNow[6]; // Current calculated point in  
    // robotic trajectory 
          
double   qNowV[6]; // Incremental velocity for wrist  
    // orientations 
  
double   qNowOld[6]; // Used for incremental velocity calcs 
 
// Stored instantaneous joint positions 
 
double   qJoints[7]; 
 
// Following joint positions are ordered as follows:  
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,  
// wrist roll 
 
double Data[6];  // current manipulator position 
 
// Position increment instead of time but run at sample time. 
 
int senseContact = 0; 
  
// Loop timing management using nanosleep( ) 
  
 struct timespec ts; 
 ts.tv_sec = 0; 
// ts.tv_nsec = 31250000; // set to 32 hz 
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz 
  
// time-stamping variables 
  
 time_t time(time_t *tp); 
  
 time_t now; 
  
// file for data capture 
  
 FILE *fp; 
  
 if ((fp = fopen("backH_data", "wb"))==NULL) 
   
 { 
  printf("Cannot open file.\n"); 
  exit(1); 
 } 
  
// Setup shared memory 
  
 child2( ); 
  
// Set up Force/Torque Sensor 
  
 char *calfilepath;     // name of calibration file 
 unsigned short index;  // index of calibration in file 
 Calibration *cal; // struct containing calibration information 
 short sts;             // return value from functions 
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// ATI F/T sensor variables 
  
 float SampleBias[7]; // measures preloads on sensor before starting 
  
 float SampleReading[7]; // raw sensor values as read from comedi1 
  
 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform 
 // Translate along/about {x translate, y translate, z translate,  
 // x rotate, y rotate, z rotate} 
  
 float FT[6]={0,0,0,0,0,0}; // array to hold the resultant  
      // force/torque vector.  
  
 // comedi1 variables 
  
 int subdev = 0;   // analog port (comedi1 not used for anything  
      // other than F/T sensor) 
 int range = 0;   // 0 = +/10VDC 
 int aref = AREF_DIFF;  // Differential Input  
  
 int n_chans0; 
 int maxdata0; 
 comedi_t *device0; 
 int chan=0; 
 lsampl_t data0; 
  
 device0 = comedi_open("/dev/comedi1"); 
  
 n_chans0 = comedi_get_n_channels(device0, subdev); 
  
 for(chan = 0; chan < n_chans0; ++chan) 
 { 
  maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
  comedi_data_read(device0, subdev, chan, range, aref, &data0); 
  SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,  
   chan, range), maxdata0); 
 } 
  
// Set up ATI functions 
  
 calfilepath="FT5240.cal"; 
 index = 1; 
  
// create Calibration 
  
 cal=createCalibration(calfilepath,index); 
 if (cal==NULL) { 
  printf("\nSpecified calibration could not be loaded.\n"); 
  scanf("."); 
  return 0; 
 } 
  
 // NOTE: BELOW FT SETUP KEPT IN EVENT OF FUTURE USE! 
  
 // Set force units. 
 // This step is optional; by default, the units are inherited from  
 // the calibration file. 
  
 sts=SetForceUnits(cal,"N"); 
 switch (sts) { 
  case 0: break; // successful completion 
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  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid force units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set torque units. 
 // This step is optional; by default, the units are inherited from the  
 // calibration file. 
  
 sts=SetTorqueUnits(cal,"N-m"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid torque units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set tool transform. 
 // This line is only required if you want to move or rotate the  
 // sensor's coordinate system. 
  
 sts=SetToolTransform(cal,SampleTT,"mm","degrees"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid distance units"); return 0; 
  case 3: printf("Invalid angle units"); return 0; 
  default: printf("Unknown error"); return 0; 
 }  
 
// Variables 
  
 int i = 0; 
 int j = 0; 
 int k = 16; 
  
 double inc = .015625; // .5 in/sec @ 32 hz 
 float contactThreshold = 20.00;  
  
  
 // Set constraints and scaling. Note that positions use 1;  
 // orientations use 0. 
  
 for (i=0;i<6;i++) //initialize memory  
 {  
  parmRW->armCtrl.axesConstr[i]=1.0; 
  parmRW->armCtrl.axesScal[i]=1.0; 
  parmRW->armCtrl.armMode=IDLE; 
  parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i]; 
  if(i>2) 
  { 
   parmRW->armCtrl.cartesCtrl[i]=0.0; 
  } 
   
 } 
 
// Read the starting Cartesian position (where you are now) from  
// shared memory. 
 
 for (i = 0; i < 6; i++) 
 { 
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  qZero[i] = parmR->armRightCar[i]; 
 } 
    
// Read the starting joint angles (where you are now) from shared memory. 
// This is for end-effecter orientation calculations. 
  
 for (i = 0; i < 6; i++) 
 { 
  qJoints[i] = parmR->armRight[i]; 
 } 
 
  
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
 
// Trajectory begins here./////////////////////////////////////////////// 
 
 for (j = 0; j < 64; j++) // back away from pipe after contact 
 { 
 
 // Check forces/torques for contact; terminate if contact above  
 // threshold and minimum distance is reached. 
 
  for(chan = 0; chan < n_chans0; ++chan) 
  { 
    
   maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
    
   comedi_data_read_delayed(device0, subdev, chan, range, aref, &data0,  
    10000); 
    
   SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0,  
    subdev, chan, range), maxdata0); 
    
  } 
   
  // Bias the sensor once only. 
   
  if(biasFlag==1) 
  { 
   for (i = 0; i < 6; i++) 
    
   { 
    
   SampleBias[i] = SampleReading[i]; 
    
   } 
    
   Bias(cal, SampleBias);  
    
   biasFlag = 0; 
  } 
   
  // convert a loaded measurement into forces and torques 
   
  ConvertToFT(cal,SampleReading,FT); 
    
// read current Titan position and write to data file 
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 for (i = 0; i < 6; i++) 
    
  { 
    
   Data[i] = parmR->armRightCar[i]; 
    
  } 
   
  fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f  
   %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], FT[2], FT[3], FT[4],  
   FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], Data[5]); 
 
  // Calculate incremental positions once through each loop. 
   
  qNow[0] = qZero[0] - j * inc * cos(qJoints[0] + qJoints[4]); // X 
   
  qNow[1] = qZero[1] - j * inc * sin(qJoints[0] + qJoints[4]); // Y  
   
  qNow[2] = qZero[2] - j * inc * \ 
  sin(qJoints[1] + qJoints[2] + qJoints[3] -.0174); // Z  
  // (note cumulative joint error  offset) 
   
  // Don't move the wrist joints 
   
  qNow[3] = qZero[3];   // rX stays the same 
  qNow[4] = qZero[4];   // rY stays the same 
  qNow[5] = qZero[5];   // rZ stays the same 
   
  // Write joint positions back to shared memory. 
   
  for (i = 0; i < 6; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
    
  }  
   
  // Calculate delta position once through each loop (for wrist). 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowV[i] = qNow[i] - qNowOld[i]; 
  } 
   
  // Write joint positions back to shared memory. 
  // Position uses qNow; orientation uses qNowV. 
  // 0, 1, 2 are qNow for positions; 
  // 3, 4, 5 are qNowV for velocities. 
   
  for (i = 0; i < 3; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
  } 
   
  for (i = 3; i < 6; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i]; 
  } 
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  // Flag and write to Cartesian 
   
  grabSem(0,&sb,semid);   
  parmRW->armCtrl.updFlag=1; 
  parmRW->armCtrl.armMode=CART; 
   
  // Xfer current new positions to old positions 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowOld[i] = qNow[i]; 
  } 
   
  // Return semaphore 
   
  retSem(0,&sb, semid); 
 
// Check forces/torques for contact; terminate if contact above threshold   
 
  if (FT[0] > contactThreshold) 
   
  { 
 
   if ( senseContact == 0) 
    
   { 
     
   printf("FT trip values\n"); 
  
   printf("FT:\n"); 
   printf("%d %f %f %f %f %f %f\n\n", \ 
   j, FT[0], FT[1], FT[2], FT[3], FT[4], FT[5]); 
    
   // timestamp 
  
   now = time(NULL); 
  
   fprintf(fp, "\n%s\n",ctime(&now)); 
    
   senseContact = 1; 
    
   } 
    
   if (k == 0) 
    
   { 
    
   j = 64; 
    
   } 
    
   k = k - 1; 
    
  } 
   
  // Delay to control loop rate 
   
  nanosleep(&ts, NULL); 
   
  // Loop  
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 } 
 
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
  
// exit mode...clean up and get out 
 
grabSem(0,&sb,semid);  
parmRW->armCtrl.armMode=IDLE;  
retSem(0,&sb, semid);  
 
} 
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/************************************************************************** 
*  
* bBackV.c 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical, Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
**************************************************************************/ 
 
/************************************************************************* 
* 
*  Obligatory Acknowledgements for libraries used in this file. 
* 
* ATIDAQ F/T C Library 
* v1.0.1 
* Copyright (c) 2001 ATI Industrial Automation 
* 
* The MIT License 
*  
* Permission is hereby granted, free of charge, to any person obtaining a 
* copy of this software and associated documentation files (the "Software") 
* to deal in the Software without restriction, including without limitation 
* the rights to use, copy, modify, merge, publish, distribute, sublicense, 
* and/or sell copies of the Software, and to permit persons to whom the 
* Software is furnished to do so, subject to the following conditions: 
*  
* The above copyright notice and this permission notice shall be included 
* in all copies or substantial portions of the Software. 
*  
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS  
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF  
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE  
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
* 
*************************************************************************/ 
 
/************************************************************************** 
* Comedilib 
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org> 
* 
* This file may be freely modified, distributed, and combined with 
* other software, as long as proper attribution is given in the 
* source code. 
* 
*************************************************************************/ 
 
#include "newChild.h" 
 
#include <time.h> 
#include <math.h>  
 
#include "comediFT.h" 
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static int biasFlag = 1; // for sampleBias switching initializing F/T 
 
int read_writeIO(void);  // reads comedi0 analog/digital IO 
 
 
int bBackV(void) 
{ 
  
int QUIT = 0; 
  
  int shmidR,shmidRW, semid; // IPC idenfitiers 
  key_t key_memRW,key_memR, key_sem;  // keys for shared mem and semphores. 
  struct sembuf sb; // semaphore control structure  
   
 //************************************************************************    
  
void safe_quit(void) 
{ 
 QUIT=1; 
} 
  
//*************************************************************************  
 
//************************************************************************* 
  
int grabSem(int semNum,  struct sembuf *sb, int semid)  
//semNum should be zero for this program so far. 
{             
 sb->sem_op=-1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1)  
 // make sure you're using the semaphore when it is necessary. 
 { 
  perror("semaphore access problem");  
  QUIT=1;  
   
 }          
 return 1;         
} 
  
//************************************************************************* 
  
int retSem(int semNum,  struct sembuf *sb, int semid)  
//semNum should be zero for this program so far. 
{             
 sb->sem_op=1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1) 
 { 
  perror("semaphore return problem ");   
  QUIT=1;   
 }      
 return 1;         
} 
  
//************************************************************************* 
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// Calculate for each DOF; numbers in inches, used in trajectory calcs. 
 
double  qZero[6]; // Start point of robotic move  
    // (where you are now) 
  
double   qNow[6]; // Current calculated point in  
    // robotic trajectory 
          
double   qNowV[6]; // Incremental velocity for wrist  
    // orientations 
  
double   qNowOld[6]; // Used for incremental velocity calcs 
 
 
// Stored instantaneous joint positions 
 
double qJoints[7]; 
 
// Following joint positions are ordered as follows:  
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,  
// wrist roll 
 
 double Data[6]; // current manipulator position 
 
// Position increment instead of time but run at sample time. 
 
 int senseContact = 0; 
  
// Loop timing management using nanosleep( ) 
  
 struct timespec ts; 
 ts.tv_sec = 0; 
// ts.tv_nsec = 31250000; // set to 32 hz 
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz 
  
// time-stamping variables 
  
 time_t time(time_t *tp); 
  
 time_t now; 
  
// file for data capture 
  
 FILE *fp; 
  
 if ((fp = fopen("backV_data", "wb"))==NULL) 
   
 { 
  printf("Cannot open file.\n"); 
  exit(1); 
 } 
  
// Setup shared memory 
  
 child2( ); 
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// Set up Force/Torque Sensor 
  
 char *calfilepath;     // name of calibration file 
 unsigned short index;  // index of calibration in file 
 Calibration *cal; // struct containing calibration information 
 
 short sts;            // return value from functions 
  
// ATI F/T sensor variables 
  
 float SampleBias[7]; // measures preloads on sensor before starting 
  
 float SampleReading[7]; // raw sensor values as read from comedi1 
  
 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform 
 // Translate along/about {x translate, y translate, z translate,  
 // x rotate, y rotate, z rotate} 
  
 float FT[6]={0,0,0,0,0,0};  // array to hold the resultant  
 // force/torque vector.  
  
 // comedi1 variables 
  
 int subdev = 0;   // analog port (comedi1 not used for anything  
      // other than F/T sensor) 
 int range = 0;   // 0 = +/10VDC 
 int aref = AREF_DIFF;  // Differential Input  
  
 int n_chans0; 
 int maxdata0; 
 comedi_t *device0; 
 int chan=0; 
 lsampl_t data0; 
  
 device0 = comedi_open("/dev/comedi1"); 
  
 n_chans0 = comedi_get_n_channels(device0, subdev); 
  
 for(chan = 0; chan < n_chans0; ++chan) 
 { 
  maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
  comedi_data_read(device0, subdev, chan, range, aref, &data0); 
  SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,  
   chan, range), maxdata0); 
 } 
  
 // Set up ATI functions 
  
 calfilepath="FT5240.cal"; 
 index = 1; 
  
 // create Calibration 
  
 cal=createCalibration(calfilepath,index); 
 if (cal==NULL) { 
  printf("\nSpecified calibration could not be loaded.\n"); 
  scanf("."); 
  return 0; 
 } 
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 // NOTE: BELOW FT SETUP KEPT IN EVENT OF FUTURE USE! 
  
 // Set force units. 
 // This step is optional; by default, the units are inherited from  
 // the calibration file. 
  
 sts=SetForceUnits(cal,"N"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid force units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set torque units. 
 // This step is optional; by default, the units are inherited from the  
 // calibration file. 
  
 sts=SetTorqueUnits(cal,"N-m"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid torque units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set tool transform. 
 // This line is only required if you want to move or rotate the  
 // sensor's coordinate system. 
  
 sts=SetToolTransform(cal,SampleTT,"mm","degrees"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid distance units"); return 0; 
  case 3: printf("Invalid angle units"); return 0; 
  default: printf("Unknown error"); return 0; 
 }  
  
 
// Variables 
  
 int i = 0; 
 int j = 0; 
 int k = 32; 
  
 double inc = .015625; // .5 in/sec @ 32 hz 
 float contactThreshold = 0.00; // 
  
  
 // Set constraints and scaling. Note that positions use 1; orientations  
 // use 0. 
  
 for (i=0;i<6;i++) //initialize memory  
 {  
  parmRW->armCtrl.axesConstr[i]=1.0; 
  parmRW->armCtrl.axesScal[i]=1.0; 
  parmRW->armCtrl.armMode=IDLE; 
  parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i]; 
  if(i>2) 
  { 
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   parmRW->armCtrl.cartesCtrl[i]=0.0; 
  } 
   
 } 
  
// Read the starting Cartesian position (where you are now) from  
// shared memory. 
 
 for (i = 0; i < 6; i++) 
 { 
  qZero[i] = parmR->armRightCar[i]; 
 } 
    
// Read the starting joint angles (where you are now) from shared memory. 
// This is for end-effecter orientation calculations. 
  
 for (i = 0; i < 6; i++) 
 { 
  qJoints[i] = parmR->armRight[i]; 
 } 
  
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
 
// Trajectory begins here./////////////////////////////////////////////// 
 
 for (j = 0; j < 320; j++) // back away from pipe after contact 
 
 { 
 
// Check forces/torques for contact; terminate if contact above threshold 
 
  for(chan = 0; chan < n_chans0; ++chan) 
  { 
    
   maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
    
   comedi_data_read_delayed(device0, subdev, chan, range, aref, &data0, 
    10000); 
    
   SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0,  
    subdev, chan, range), maxdata0); 
    
  } 
   
  // Bias the sensor once only. 
   
  if(biasFlag==1) 
  { 
   for (i = 0; i < 6; i++) 
    
   { 
    
   SampleBias[i] = SampleReading[i]; 
    
   } 
    
   Bias(cal, SampleBias);  
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   biasFlag = 0; 
  } 
   
  // convert a loaded measurement into forces and torques 
   
  ConvertToFT(cal,SampleReading,FT); 
   
   
// read current Titan position and write to data file 
   
 for (i = 0; i < 6; i++) 
    
  { 
    
   Data[i] = parmR->armRightCar[i]; 
    
  } 
   
  fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f  
   %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], FT[2], FT[3], FT[4],  
   FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], Data[5]); 
 
  // Calculate incremental positions once through each loop. 
   
  qNow[0] = qZero[0];    // X stays the same 
   
  qNow[1] = qZero[1];    // Y stays the same 
   
  qNow[2] = qZero[2] + j * (inc/4.0);  // Z moves positive 
   
  // Don't move the wrist joints 
   
  qNow[3] = qZero[3];    // rX stays the same 
  qNow[4] = qZero[4];    // rY stays the same 
  qNow[5] = qZero[5];    // rZ stays the same 
   
  // Write joint positions back to shared memory. 
   
  for (i = 0; i < 6; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
 
  }  
   
  // Calculate delta position once through each loop (for wrist). 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowV[i] = qNow[i] - qNowOld[i]; 
  } 
     
  // Write joint positions back to shared memory. 
  // Position uses qNow; orientation uses qNowV. 
  // 0, 1, 2 are qNow for positions, 3, 4, 5 are qNowV for  
  // velocities. 
   
  for (i = 0; i < 3; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
  } 
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  for (i = 3; i < 6; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i]; 
  } 
   
  // Flag and write to Cartesian 
   
  grabSem(0,&sb,semid);   
  parmRW->armCtrl.updFlag=1; 
  parmRW->armCtrl.armMode=CART; 
   
  // Xfer current new positions to old positions 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowOld[i] = qNow[i]; 
  } 
   
  // Return semaphore 
   
  retSem(0,&sb, semid); 
 
// Check forces/torques for contact 
// Terminate if contact above threshold and momentum goes to 0 
   
 
  if (FT[4] < contactThreshold) 
   
  { 
   if (senseContact == 0) 
    
   { 
    
   printf("FT trip values\n"); 
  
   printf("FT:\n"); 
   printf("%d %f %f %f %f %f %f\n\n", \ 
   j, FT[0], FT[1], FT[2], FT[3], FT[4], FT[5]); 
    
   // timestamp 
  
   now = time(NULL); 
  
   fprintf(fp, "\n%s\n",ctime(&now)); 
    
   senseContact = 1; 
    
   } 
    
   if (k == 0) 
    
   { 
    
   j = 320; 
    
   } 
    
   k = k - 1; // Simulates momentum to guarantee FT sensor  
        // clear of contact 
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  }   
   
  // Delay to control loop rate 
   
  nanosleep(&ts, NULL); 
   
  // Loop  
   
 } 
 
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
  
// exit mode...clean up and get out 
 
grabSem(0,&sb,semid);  
parmRW->armCtrl.armMode=IDLE;  
retSem(0,&sb, semid);  
 
return 0; 
 
} 
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/************************************************************************** 
*  
* bRetractB.c 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical,  
Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
**************************************************************************/ 
 
#include "newChild.h" 
 
#include <time.h> 
#include <math.h>  
 
int read_writeIO(void); // reads comedi0 analog/digital IO 
 
int bRetractB(void) 
{ 
  
int QUIT = 0; 
  
  int shmidR,shmidRW, semid; // IPC idenfitiers 
  key_t key_memRW,key_memR, key_sem;  // keys for shared mem and semphores. 
  struct sembuf sb; // semaphore control structure  
   
 //************************************************************************ 
  
void safe_quit(void) 
{ 
 QUIT=1; 
} 
  
//************************************************************************* 
 
//************************************************************************* 
  
int grabSem(int semNum,  struct sembuf *sb, int semid)  
//semNum should be zero for this program. 
{             
 sb->sem_op=-1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1)  
 
 { 
  perror("semaphore access problem");  
  QUIT=1;  
   
 }          
 return 1;         
} 
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//************************************************************************* 
  
int retSem(int semNum,  struct sembuf *sb, int semid)  
//semNum should be zero for this program. 
  
{             
 sb->sem_op=1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1) 
 { 
  perror("semaphore return problem ");   
  QUIT=1;   
 }      
 return 1;         
} 
  
//************************************************************************* 
 
// Calculate for each DOF; numbers in inches, used in trajectory calcs. 
 
double  qZero[6];  // Start point of robotic move  
    // (where you are now) 
  
double  qNow[6]; // Current calculated point in  
    // robotic trajectory 
          
double  qNowV[6]; // Incremental velocity for wrist  
    // orientations 
  
double  qNowOld[6]; // Used for incremental velocity calcs 
 
// Stored instantaneous joint positions 
 
double  qJoints[7]; 
 
// Following joint positions are ordered as follows:  
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,  
// wrist roll 
 
double Data[6];  // variable for data capture. 
 
// Digital outputs for smart tool from comedi0 
 
extern int toolOnIN; // tool control variables from read_writeIO() 
extern int toolDirIN; 
 
extern int toolOn; // toolOn = 1 is on; use as either on/off or PWM. 
extern int toolDir; // toolDir = 0 is forward as default; reverse is 1. 
  
// Loop timing management using nanosleep( ) 
  
 struct timespec ts; 
 ts.tv_sec = 0; 
// ts.tv_nsec = 31250000; // set to 32 hz 
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz 
  
// time-stamping variables 
  
 time_t time(time_t *tp); 
  
 time_t now; 
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// file for data capture 
  
 FILE *fp; 
  
 if ((fp = fopen("retract_data", "wb"))==NULL) 
   
 { 
  printf("Cannot open file.\n"); 
  exit(1); 
 } 
  
// Setup shared memory 
  
 child2( ); 
  
// Variables 
  
 int i = 0; 
 int j = 0; 
  
 double inc = .015625; // .5 in/sec @ 32 hz 
   
 // Set constraints and scaling. Note that positions use 1; orientations use 0. 
  
 for (i=0;i<6;i++) //initialize memory  
 {  
  parmRW->armCtrl.axesConstr[i]=1.0; 
  parmRW->armCtrl.axesScal[i]=1.0; 
  parmRW->armCtrl.armMode=IDLE; 
  parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i]; 
  if(i>2) 
  { 
   parmRW->armCtrl.cartesCtrl[i]=0.0; 
  } 
   
 } 
  
// Read the starting Cartesian position (where you are now) from  
// shared memory. 
 
 for (i = 0; i < 6; i++) 
 { 
  qZero[i] = parmR->armRightCar[i]; 
 } 
    
// Read the starting joint angles (where you are now) from shared memory. 
// This is for end-effecter orientation calculations. 
  
 for (i = 0; i < 6; i++) 
 { 
  qJoints[i] = parmR->armRight[i]; 
 } 
  
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
 
// Trajectory begins here./////////////////////////////////////////////// 
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 for (j = 0; j < 256; j++)  // 256 points = 32hz X 8 seconds 
      // move enough to clear task 
 
 { 
   
// read current Titan position and write to data file 
   
 for (i = 0; i < 6; i++) 
    
  { 
    
   Data[i] = parmR->armRightCar[i]; 
    
  } 
   
 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f\n", j, toolOnIN,  
   Data[0], Data[1], Data[2], Data[3], Data[4], Data[5]); 
 
 
  // Calculate incremental positions once through each loop. 
   
  qNow[0] = qZero[0] - j * inc * cos(qJoints[0] + qJoints[4]); // X 
   
  qNow[1] = qZero[1] - j * inc * sin(qJoints[0] + qJoints[4]); // Y  
   
  // Don't move the wrist joints or Z motion. 
   
  qNow[2] = qZero[2];   //  Z stays the same 
  qNow[3] = qZero[3];   // rX stays the same 
  qNow[4] = qZero[4];   // rY stays the same 
  qNow[5] = qZero[5];   // rZ stays the same 
   
  // Write joint positions back to shared memory. 
   
  for (i = 0; i < 6; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
    
  } 
   
  // Calculate delta position once through each loop (for wrist). 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowV[i] = qNow[i] - qNowOld[i]; 
  } 
  
  // Write joint positions back to shared memory. 
  // Position uses qNow; orientation uses qNowV. 
  // 0, 1, 2 are qNow for positions, 3, 4, 5 are qNowV for velocities. 
   
  for (i = 0; i < 3; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
  } 
   
  for (i = 3; i < 6; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i]; 
  } 
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  // Flag and write to Cartesian 
   
  grabSem(0,&sb,semid);   
  parmRW->armCtrl.updFlag=1; 
  parmRW->armCtrl.armMode=CART; 
   
  // Xfer current new positions to old positions 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowOld[i] = qNow[i]; 
  } 
   
  // Return semaphore 
   
  retSem(0,&sb, semid); 
   
  // Delay to control loop rate 
   
  nanosleep(&ts, NULL); 
   
  // Loop ////////////////////////////////////////////////////////// 
   
 } 
 
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
  
// exit mode...clean up and get out 
 
grabSem(0,&sb,semid);  
parmRW->armCtrl.armMode=IDLE;  
retSem(0,&sb, semid);  
 
} 
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/************************************************************************** 
*  
* bRetractS.c 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical, Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
**************************************************************************/ 
 
#include "newChild.h" 
 
#include <time.h> 
#include <math.h>  
 
#include "comediFT.h" 
 
int read_writeIO(void); // reads comedi0 analog/digital IO 
 
int bRetractS(void) 
{ 
  
int QUIT = 0; 
  
  int shmidR,shmidRW, semid; // IPC idenfitiers 
  key_t key_memRW,key_memR, key_sem;  // keys for shared mem and semphores. 
  struct sembuf sb; // semaphore control structure  
   
 //************************************************************************ 
  
void safe_quit(void) 
{ 
 QUIT=1; 
} 
  
//*************************************************************************  
 
//************************************************************************* 
  
int grabSem(int semNum,  struct sembuf *sb, int semid)  
//semNum should be zero for this program. 
{             
 sb->sem_op=-1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1)  
 // make sure you're using the semaphore when it is necessary. 
 { 
  perror("semaphore access problem");  
  QUIT=1;  
   
 }          
 return 1;         
} 
  
//*************************************************************************** 
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int retSem(int semNum,  struct sembuf *sb, int semid)  
//semNum should be zero for this program so far. 
{             
 sb->sem_op=1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1) 
 { 
  perror("semaphore return problem ");   
  QUIT=1;   
 }      
 return 1;         
} 
  
//**************************************************************************** 
 
// Calculate for each DOF; numbers in inches, used in trajectory calcs. 
 
extern double  qZero[6]; // Start point of robotic move  
     // (where you are now) 
  
extern double   qNow[6]; // Current calculated point in  
     // robotic trajectory 
          
double     qNowV[6];  // Incremental velocity for wrist  
     // orientations 
  
double   qNowOld[6];  // Used for incremental velocity calcs 
 
// Stored instantaneous joint positions 
 
extern double qJoints[7]; 
 
// Following joint positions are ordered as follows:  
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,  
// wrist roll 
 
 double Data[6];  // current manipulator position 
  
// Digital outputs for smart tool from comedi0 
 
 extern int toolOnIN;  // tool control variables from read_writeIO() 
 extern int toolDirIN; 
 
 extern int toolOn; // toolOn = 1 is on; use as either on/off or PWM. 
 extern int toolDir; // toolDir = 0 is forward as default; reverse is 1. 
  
// Loop timing management using nanosleep( ) 
  
 struct timespec ts; 
 ts.tv_sec = 0; 
// ts.tv_nsec = 31250000; // set to 32 hz 
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz 
  
// time-stamping variables 
  
 time_t time(time_t *tp); 
  
 time_t now; 
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// file for data capture 
  
 FILE *fp; 
  
 if ((fp = fopen("retract_data", "wb"))==NULL) 
   
 { 
  printf("Cannot open file.\n"); 
  exit(1); 
 } 
  
// Setup shared memory 
  
 child2( ); 
  
// Set up Force/Torque Sensor 
  
 char *calfilepath;     // name of calibration file 
 unsigned short index;  // index of calibration in file (second parameter; 
default = 1) 
 Calibration *cal; // struct containing calibration information 
 short sts;            // return value from functions 
 
 // ATI F/T sensor variables--Note: Many for future use! 
  
 float SampleBias[7]; // measures  preloads on sensor before starting task 
  
 float SampleReading[7]; // raw sensor values as read from comedi1 
  
 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform 
 // Translate along/about {x translate, y translate, z translate, x rotate, y 
rotate, z rotate} 
  
 float FT[6];          // array to hold the resultant force/torque vector. 
  
 // comedi1 variables 
  
 int subdev = 0;  // analog port (comedi1 not used for anything other than 
F/T sensor) 
 int range = 0;  // 0 = +/10VDC 
 int aref = AREF_DIFF; // Differential Input  
  
 int n_chans0; 
 int maxdata0; 
 comedi_t *device0; 
 int chan=0; 
 lsampl_t data0; 
  
 device0 = comedi_open("/dev/comedi1"); 
  
 n_chans0 = comedi_get_n_channels(device0, subdev); 
  
 for(chan = 0; chan < n_chans0; ++chan) 
 { 
  maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
  comedi_data_read(device0, subdev, chan, range, aref, &data0); 
  SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,  
   chan, range), maxdata0); 
 } 
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 // Set up ATI functions 
  
 calfilepath="FT5240.cal"; 
 index = 1; 
  
 // create Calibration 
  
 cal=createCalibration(calfilepath,index); 
 if (cal==NULL) { 
  printf("\nSpecified calibration could not be loaded.\n"); 
  scanf("."); 
  return 0; 
 } 
 
 // NOTE: BELOW FT SETUP KEPT IN EVENT OF FUTURE USE! 
   
 // Set force units. 
 // This step is optional; by default, the units are inherited from the  
 // calibration file. 
 
  
 sts=SetForceUnits(cal,"N"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid force units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set torque units. 
 // This step is optional; by default, the units are inherited from the 
calibration file. 
 sts=SetTorqueUnits(cal,"N-m"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid torque units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set tool transform. 
 // This line is only required if you want to move or rotate the sensor's  
 // coordinate system. 
 // This example tool transform translates the coordinate system 20 mm along the  
 // Z-axis  
 // and rotates it 45 degrees about the X-axis. 
 sts=SetToolTransform(cal,SampleTT,"mm","degrees"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid distance units"); return 0; 
  case 3: printf("Invalid angle units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
 
// Variables 
  
 int i = 0; 
 int j = 0; 
  
 double inc = .015625; // .5 in/sec @ 32 hz 
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 // Set constraints and scaling. Note that positions use 1; orientations use 0. 
  
 for (i=0;i<6;i++) //initialize memory  
 {  
  parmRW->armCtrl.axesConstr[i]=1.0; 
  parmRW->armCtrl.axesScal[i]=1.0; 
  parmRW->armCtrl.armMode=IDLE; 
  parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i]; 
  if(i>2) 
  { 
   parmRW->armCtrl.cartesCtrl[i]=0.0; 
  } 
   
 } 
   
// Read the starting Cartesian position (where you are now) from  
// shared memory. 
 
 for (i = 0; i < 6; i++) 
 { 
  qZero[i] = parmR->armRightCar[i]; 
 } 
    
// Read the starting joint angles (where you are now) from shared memory. 
// This is for end-effecter orientation calculations. 
  
 for (i = 0; i < 6; i++) 
 { 
  qJoints[i] = parmR->armRight[i]; 
 } 
  
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
 
// Trajectory begins here./////////////////////////////////////////////// 
 
 for (j = 0; j < 256; j++)  // 256 points = 32hz X 8 seconds 
      // move enough to clear task 
 
 { 
   
// read current Titan position and write to data file 
   
 for (i = 0; i < 6; i++) 
    
  { 
    
   Data[i] = parmR->armRightCar[i]; 
    
  } 
   
  fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f  
   %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], FT[2], FT[3], FT[4],  
   FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], Data[5]); 
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  // Calculate incremental positions once through each loop. 
   
  qNow[0] = qZero[0] - j * inc * cos(qJoints[0] + qJoints[4]); // X  
   
  qNow[1] = qZero[1] - j * inc * sin(qJoints[0] + qJoints[4]); // Y  
   
  qNow[2] = qZero[2]; // Z, no motion necessary since the blade 
     // cleared the pipe during cutting. 
 
  // Don't move the wrist joints 
   
  qNow[2] = qZero[2];   // rX stays the same 
  qNow[3] = qZero[3];   // rX stays the same 
  qNow[4] = qZero[4];   // rY stays the same 
  qNow[5] = qZero[5];   // rZ stays the same 
   
  // Write joint positions back to shared memory. 
   
  for (i = 0; i < 6; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
    
  } 
   
  // Calculate delta position once through each loop (for wrist). 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowV[i] = qNow[i] - qNowOld[i]; 
  } 
  
  // Write joint positions back to shared memory. 
  // Position uses qNow; orientation uses qNowV. 
  // 0, 1, 2 are qNow for positions, 3, 4, 5 are qNowV for velocities. 
   
  for (i = 0; i < 3; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
  } 
   
  for (i = 3; i < 6; i++) 
  { 
   parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i]; 
  } 
   
  // Flag and write to Cartesian 
   
  grabSem(0,&sb,semid);   
  parmRW->armCtrl.updFlag=1; 
  parmRW->armCtrl.armMode=CART; 
   
  // Xfer current new positions to old positions 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowOld[i] = qNow[i]; 
  } 
   
  // Return semaphore 
   
  retSem(0,&sb, semid); 



 
203 

   
  // Delay to control loop rate 
   
  nanosleep(&ts, NULL); 
   
  // Loop ////////////////////////////////////////////////////////// 
   
 } 
 
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
  
// exit mode...clean up and get out 
 
grabSem(0,&sb,semid);  
parmRW->armCtrl.armMode=IDLE;  
retSem(0,&sb, semid);  
 
} 
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/************************************************************************** 
*  
* bWristR.c 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical, Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
**************************************************************************/ 
 
#include "newChild.h" 
 
#include <time.h> 
#include <math.h> 
 
int bWristR(void) 
{ 
  
 int QUIT = 0; 
  
//*************************************************************************  
  
void safe_quit(void) 
{ 
 QUIT=1; 
} 
//*************************************************************************  
 
//************************************************************************* 
  
int grabSem(int semNum,  struct sembuf *sb, int semid)  
//semNum should be zero for this program. 
{             
 sb->sem_op=-1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1)  
 // make sure you're using the semaphore when it is necessary. 
 { 
 // perror("semaphore access problem");  
  QUIT=1;  
   
 }          
 return 1;         
} 
  
//************************************************************************* 
  
int retSem(int semNum,  struct sembuf *sb, int semid)  
//semNum should be zero for this program. 
{             
 sb->sem_op=1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1) 
 { 
  perror("semaphore return problem ");   
  QUIT=1;   
 }      
 return 1;         
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} 
  
//************************************************************************* 
 
// Loop timing management using nanosleep( ) 
  
 struct timespec ts; 
 ts.tv_sec = 0; 
// ts.tv_nsec = 31250000; // set to 32 hz 
 ts.tv_nsec = 24400000; // calibrated for actual runtime 32 hz  
  
// Setup shared memory 
  
 child2( ); 
  
// Variables 
  
 int i = 0; 
 int j = 0; 
  
// global variables  
 
extern double qZero[6]; 
extern double qFinal[6]; 
extern double qNow[6]; 
  
// Read the starting position (where you are now) from shared memory. 
 
 for (i = 0; i < 6; i++) 
 { 
  qZero[i] = parmR->armRight[i]; 
 } 
 
// Set the target position (where you want to go) per stored memory. 
 
 for (i = 0; i < 6; i++) 
 { 
  qFinal[i] = qZero[i]; // no motion except in specified joint. 
 } 
  
  qFinal[5] = -1.604185; // level wrist roll  
    
// Set joint control mode 
  
  parmRW->armCtrl.armMode = 4; // mode = JOINT 
  
// Trajectory begins here./////////////////////////////////////////// 
 
 for (j = 0; j < 64; j++) // 64 points = 32hz X 2 seconds 
 
 { 
 
// Calculate incremental positions once through each loop. 
 
//  Quintic Trajectory Equation 
   
  for (i = 0; i < 6; i++) 
  { 
   // Quintic equation 
    
   qNow[i] = qZero[i]  
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   + 25 * ((qFinal[i] - qZero[i]) / 65536.0) * pow(j, 3)\ 
   - 75 * ((qFinal[i] - qZero[i]) / 8388608.0) * pow(j,4)\ 
   + 15 * ((qFinal[i] - qZero[i]) / 268435456.0) * pow(j,5); 
  } 
 
// Write joint positions back to shared memory. 
 
   for (i = 0; i < 6; i++) 
   { 
   parmRW->armCtrl.jointCtrl[i] = qNow[i]; 
    
   } 
   
// Delay to control loop rate 
   
  nanosleep(&ts, NULL); 
   
// Loop ////////////////////////////////////////////////////////// 
   
 } 
  
// Set joint control mode 
  
  parmRW->armCtrl.armMode = 0; // mode = IDLE 
 
return(0); 
  
} 
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/************************************************************************** 
*  
* bCut128S.c 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical, Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
* 128 Hz loop rate to examine saw freq data 
* 
**************************************************************************/ 
 
/************************************************************************* 
* 
*  Obligatory Acknowledgements for open source libraries 
* 
* ATIDAQ F/T C Library 
* v1.0.1 
* Copyright (c) 2001 ATI Industrial Automation 
* 
* The MIT License 
*  
* Permission is hereby granted, free of charge, to any person obtaining a 
* copy of this software and associated documentation files (the  
* "Software"), to deal in the Software without restriction, including  
* without limitation the rights to use, copy, modify, merge, publish,  
* distribute, sublicense, and/or sell copies of the Software, and to  
* permit persons to whom the Software is furnished to do so, subject to  
* the following conditions: 
*  
* The above copyright notice and this permission notice shall be included 
* in all copies or substantial portions of the Software. 
*  
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS  
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF  
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE  
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
* 
/////////////////////////////////////////////////////////////////////////// 
* 
* Comedilib 
* Copyright (c) 1999,2000 David A. Schleef <ds@schleef.org> 
* 
* This file may be freely modified, distributed, and combined with 
* other software, as long as proper attribution is given in the 
* source code. 
* 
**************************************************************************/ 
 
#include "newChild.h" 
 
#include <time.h> 
#include <math.h>  
 
#include "comediFT.h" 
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int read_writeIO(void);  // reads comedi0 analog/digital IO 
 
int bCut128S(void) 
{ 
 
// System level communications 
  
int QUIT = 0; 
  
  int shmidR,shmidRW, semid; // IPC idenfitiers 
  key_t key_memRW,key_memR, key_sem;  // keys for shared mem and semphores. 
  struct sembuf sb; // semaphore control structure  
   
 //************************************************************************     
void safe_quit(void) 
{ 
 QUIT=1; 
} 
//*************************************************************************  
 
//************************************************************************* 
int grabSem(int semNum,  struct sembuf *sb, int semid)  
 //semNum should be zero for this program so far. 
{             
 sb->sem_op=-1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1)  
  // make sure you're using the semaphore when it is necessary. 
 { 
  perror("semaphore access problem");  
  QUIT=1;  
   
 }          
 return 1;         
} 
//************************************************************************* 
int retSem(int semNum,  struct sembuf *sb, int semid)  
 //semNum should be zero for this program so far. 
{             
 sb->sem_op=1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1) 
 { 
  perror("semaphore return problem ");   
  QUIT=1;   
 }      
 return 1;         
} 
//************************************************************************* 
 
 
// Calculate for each DOF; numbers in inches, used in trajectory calcs. 
 
double  qZero[6]; // Start point of robotic move  
    // (where you are now) 
  
double   qNow[6]; // Current calculated point in  
    // robotic trajectory 
          
double  qNowV[6]; // Incremental velocity for wrist  
    // orientations 
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double  qNowOld[6]; // Used for incremental velocity calcs 
 
 
// Stored instantaneous joint positions 
 
double qJoints[7]; 
 
// Following joint positions are ordered as follows:  
// shoulder azimuth, shoulder pitch, elbow, wrist pitch, wrist yaw,  
// wrist roll 
 
double Data[6]; // current manipulator position 
 
// Recursive Filter variables 
 
float ryFilt    = 0; 
float ryFiltOld = 0; 
 
// Data Analysis Variables 
  
float ryFiltAbs = 0; 
  
// for sampleBias switching initializing the F/T 
  
static int biasFlag = 1;  
 
// Signature Analysis Variables 
 
int CONTACT1  = 0; 
int senseContact = 0; 
 
// Force control variables 
 
float setpoint = 10.0; 
float error = 0.0; 
float gain = .02; 
float controlF = 0.0; 
float control = 0.0; 
float controlFFilt = 0.0; 
float controlFFiltOld = 0.0;  
  
// Digital outputs for smart tool from comedi0 
 
extern int toolOnIN; // tool control variables from read_writeIO() 
extern int toolDirIN; 
  
// Loop timing management using nanosleep( ) 
  
 struct timespec ts; 
 ts.tv_sec = 0; 
 ts.tv_nsec =   2405555; // calibrated runtime 128 hz 
  
// time-stamping variables 
  
 time_t time(time_t *tp); 
  
 time_t now; 
  
// file for data capture 
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 FILE *fp; 
  
 if ((fp = fopen("cut_data128", "wb"))==NULL) 
   
 { 
  printf("Cannot open file.\n"); 
  exit(1); 
 } 
  
// Setup shared memory 
  
 child2( ); 
  
// Variables 
  
 int i = 0; 
 int j = 0; 
 int k = 128; 
 
 double inc = .015625; // .5 in/sec @ 32 hz 
 float contactThreshold = 500.00; // set to avoid tripping 
  
 // Set constraints and scaling.  
 // Note that positions use 1; orientations use 0. 
  
 for (i=0;i<6;i++) //initialize memory  
 {  
  parmRW->armCtrl.axesConstr[i]=1.0; 
  parmRW->armCtrl.axesScal[i]=1.0; 
  parmRW->armCtrl.armMode=IDLE; 
  parmRW->armCtrl.cartesCtrl[i]=parmR->armRightCar[i]; 
  if(i>2) 
  { 
   parmRW->armCtrl.cartesCtrl[i]=0.0; 
  } 
   
 } 
  
// Read the starting Cartesian position (where you are now) from  
// shared memory. 
 
 for (i = 0; i < 6; i++) 
 { 
  qZero[i] = parmR->armRightCar[i]; 
 } 
    
// Read the starting joint angles (where you are now) from shared memory. 
// This is for end-effecter orientation calculations. 
  
 for (i = 0; i < 6; i++) 
 { 
  qJoints[i] = parmR->armRight[i]; 
 } 
  
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
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// Set up Force/Torque Sensor--NOTE: much of this not used in  
// current iteration 
  
 char *calfilepath;    // name of calibration file 
 unsigned short index;  // index of calibration in file  
     // (second parameter; default = 1) 
 Calibration *cal; // struct containing calibration information 
 short sts;             // return value from functions 
 
 // ATI F/T sensor variables 
  
 float SampleBias[7]; // measures  preloads on sensor before  
     // starting task 
  
 float SampleReading[7]; // raw sensor values as read from comedi1 
  
 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform 
  
 float FT[6];           // array to hold the resultant force/torque  
     // vector. 
  
 // comedi1 variables 
  
 int subdev = 0;   // analog port (comedi1 not used for anything  
      // other than F/T sensor) 
 int range = 0;   // 0 = +/10VDC 
 int aref = AREF_DIFF;  // Differential Input  
  
 int n_chans0; 
 int maxdata0; 
 comedi_t *device0; 
 int chan=0; 
 lsampl_t data0; 
  
 device0 = comedi_open("/dev/comedi1"); 
  
 n_chans0 = comedi_get_n_channels(device0, subdev); 
  
 for(chan = 0; chan < n_chans0; ++chan) 
 { 
  maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
  comedi_data_read(device0, subdev, chan, range, aref, &data0); 
  SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev, 
chan, range), maxdata0); 
 } 
  
 // Set up ATI functions 
  
 calfilepath="FT5240.cal"; 
 index = 1; 
  
 cal=createCalibration(calfilepath,index); 
 if (cal==NULL) { 
  printf("\nSpecified calibration could not be loaded.\n"); 
  scanf("."); 
  return 0; 
 } 
  
 // Set force units. 
 // This step is optional; by default, the units are inherited from the  
 // calibration file. 
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 sts=SetForceUnits(cal,"N"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid force units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set torque units. 
 // This step is optional; by default, the units are inherited from the  
 // calibration file. 
 sts=SetTorqueUnits(cal,"N-m"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid torque units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set tool transform. 
 // This line is only required if you want to move or rotate the  
 // sensor's coordinate system. 
  
 sts=SetToolTransform(cal,SampleTT,"mm","degrees"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid distance units"); return 0; 
  case 3: printf("Invalid angle units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
// Trajectory begins here./////////////////////////////////////////////// 
 
 for (j = 0; j < 12000; j++)  // Governs increments and times out if  
      // thresholds go wrong. 
 
 { 
   
// Check forces/torques for contact; terminate if contact above threshold 
 
  for(chan = 0; chan < n_chans0; ++chan) 
  { 
    
   maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
    
   comedi_data_read_delayed(device0, subdev, chan, range, aref, &data0, 
    10000); 
    
   SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0,  
    subdev, chan, range), maxdata0); 
    
  } 
   
  // Bias the sensor once only. 
   
  if(biasFlag==1) 
  { 
    for (i = 0; i < 6; i++) 
    
   { 
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   SampleBias[i] = SampleReading[i]; 
    
   } 
    
   Bias(cal, SampleBias);  
    
   biasFlag = 0; 
  } 
   
// convert a loaded measurement into forces and torques 
   
  ConvertToFT(cal,SampleReading,FT); 
 
// Recursive filter on ry axis, saw blade torque, for 128hz 
   
  ryFilt = (1.0/128.0) * FT[4] + (127.0/128.0) * ryFiltOld; 
 
  ryFiltOld = ryFilt; 
   
  ryFiltAbs = fabs(ryFilt); 
   
// Turn Saw ON after initializing the FT 
 
  toolOnIN  = 0;  
  toolDirIN = 0; //0 = unbolt, 1 = bolt 
   
  read_writeIO(); 
   
// Read current joint angles from shared memory. 
  
 for (i = 0; i < 6; i++) 
 { 
  qJoints[i] = parmR->armRight[i]; 
 } 
 
// read current Titan position and write to data file 
   
 for (i = 0; i < 6; i++) 
    
  { 
    
   Data[i] = parmR->armRightCar[i]; 
    
  } 
 
 
  // Force-based Trajectory Control 
   
  error = setpoint - ryFilt; 
  controlF = gain * error; 
  control = inc/32.0 + controlF; 
   
   
// read current Titan position and write to data file 
   
 for (i = 0; i < 6; i++) 
    
  { 
  
   Data[i] = parmR->armRightCar[i]; 
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  } 
   
 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f  
   %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], 
   FT[2], FT[3], FT[4], FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], 
   Data[5], ryFilt, ryFiltAbs, controlF, control);  
   
  // Calculate incremental positions once through each loop. 
   
  // Only motion in -Z 
 
  qNow[0] = qZero[0];      // X stays the same  
  qNow[1] = qZero[1];      // Y stays the same 
   
  qNow[2] = qZero[2] - j * inc/32.0 - controlF;  // Z motion, P + F 
   
  // Fixed orientation 
   
  qNow[3] = qZero[3];     // rX stays the same 
  qNow[4] = qZero[4];     // rY stays the same 
  qNow[5] = qZero[5];     // rZ stays the same 
   
  // Write joint positions back to shared memory. 
   
  for (i = 0; i < 6; i++) 
    
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
    
  } 
     
  // Calculate delta position once through each loop (for wrist). 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowV[i] = qNow[i] - qNowOld[i]; 
  } 
   
  // Write joint positions back to shared memory. 
  // Position uses qNow; orientation uses qNowV. 
  // 0, 1, 2 are qNow for positions, 3, 4, 5 are qNowV for velocities. 
   
  for (i = 0; i < 3; i++) 
    
  { 
   parmRW->armCtrl.cartesCtrl[i] = qNow[i]; 
  } 
   
  for (i = 3; i < 6; i++) 
    
  { 
   parmRW->armCtrl.cartesCtrl[i] = 0; //qNowV[i]; 
  } 
   
  // Flag and write to Cartesian 
   
  grabSem(0,&sb,semid);   
  parmRW->armCtrl.updFlag=1; 
  parmRW->armCtrl.armMode=CART; 
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  // Xfer current new positions to old positions 
   
  for (i = 0; i < 6; i++) 
  { 
   qNowOld[i] = qNow[i]; 
  } 
   
  // Return semaphore 
   
  retSem(0,&sb, semid); 
   
  // Delay to control loop rate 
   
  nanosleep(&ts, NULL); 
 
//  Logic rules to control cutting 
   
  // Detect pipe contact. 
 
  if(ryFiltAbs > 1.0 && senseContact == 0) 
    
  { 
    
   senseContact = 1;  
    
   printf("\nj= %d, pipe contact \n", j); 
  }   
 
  // Announce cut threshold reached. 
   
  if(ryFiltAbs > 10.0 && CONTACT1 == 0) 
    
  { 
    
   CONTACT1 = 1;  
    
   printf("\nj= %d, cut threshold reached\n", j); 
  } 
   
  // If fyFiltAbs goes high after going low, reset k to max. 
  // Account for common condition on main pipe section. 
   
  if(ryFiltAbs > 10.0) 
    
  { 
    
   k = 128; 
    
  } 
   
  // If threshold reached and k not 0, start count down. 
   
  if(ryFiltAbs < 1.0 && CONTACT1 == 1 && k > 0) 
    
  { 
    
   k = k - 1; 
    
  } 
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  // Quit loop if cut is done. 
   
  if(ryFiltAbs < 1.0 && k==0) 
  { 
   
   toolOnIN  = 1; 
   toolDirIN = 1; 
  
   read_writeIO();  
    
   printf("\nj= %d, cut complete\n", j); 
      
   j = 12000; 
    
  } 
   
 } 
 
 
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
  
// make sure saw is off in case of any errors 
  
   toolOnIN  = 1; 
   toolDirIN = 1; 
  
   read_writeIO();  
  
// exit mode...clean up and get out 
 
grabSem(0,&sb,semid);  
parmRW->armCtrl.armMode=IDLE;  
 
retSem(0,&sb, semid);  
 
// free memory allocated to Calibration structure 
 destroyCalibration(cal); 
  
 comedi_close(device0);  
 
return 0; 
 
} 
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/************************************************************************** 
*  
* bUnboltB.c 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical, Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
**************************************************************************/ 
 
 
#include "newChild.h" 
 
#include <time.h> 
#include <math.h> 
#include <stdlib.h> 
 
#include "comediFT.h" 
 
static int biasFlag = 1; // for sampleBias switching initializing F/T 
 
int read_writeIO(void);  // reads comedi0 analog/digital IO 
 
int bUnboltB(void) 
{ 
  
 int QUIT = 0; 
  
 int shmidR,shmidRW, semid; // IPC idenfitiers 
 key_t key_memRW,key_memR, key_sem;  // keys for shared mem  
       // and semphores. 
 struct sembuf sb; // semaphore control structure  
  
//*************************************************************************     
 void safe_quit(void) 
 { 
  QUIT=1; 
 } 
//*************************************************************************  
  
//************************************************************************* 
 int grabSem(int semNum,  struct sembuf *sb, int semid)  
 //semNum should be zero for this program so far. 
 {             
  sb->sem_op=-1; 
  sb->sem_num=semNum; 
  if(semop(semid, sb,1)==-1)  
  // make sure you're using the semaphore when it is necessary. 
  { 
   perror("semaphore access problem");  
   QUIT=1;  
    
  }          
  return 1;         
 } 
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//************************************************************************* 
 int retSem(int semNum,  struct sembuf *sb, int semid)  
 //semNum should be zero for this program so far. 
 {             
  sb->sem_op=1; 
  sb->sem_num=semNum; 
  if(semop(semid, sb,1)==-1) 
  { 
   perror("semaphore return problem ");   
   QUIT=1;   
  }      
  return 1;         
 } 
//************************************************************************* 
  
// Variables 
  
 int i         = 0; 
 int j         = 0; 
  
 int test      = 1; 
 int set       = 0; 
  
 float fxstart = 0; 
 float fxstop  = 0; 
  
// Recursive Filter variables 
 
 float fxFilt    = 0; 
 float fxFiltOld = 0; 
  
 double contactThreshold = -1000.00; // bypass contactThreshold 
  
 double Data[6]; // current manipulator position 
  
// Position increment instead of time but run at sample time. 
  
 int senseContact = 0; 
  
// Digital outputs for smart tool from comedi0 
 
 extern int toolOnIN;  // tool control variables from read_writeIO() 
 extern int toolDirIN; 
 
 extern int toolOn; // toolOn = 1 is on; use as either on/off or PWM. 
 extern int toolDir; // toolDir = 0 is forward as default; reverse is 1. 
  
// Loop timing management using nanosleep( ) 
  
 struct timespec ts; 
 ts.tv_sec  = 0; 
 ts.tv_nsec = 2405555; // calibrated for 128 hz for FFT look 
  
// time-stamping variables 
  
 time_t time(time_t *tp); 
  
 time_t now; 
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// file for data capture 
  
 FILE *fp; 
  
 if ((fp = fopen("unbolt_data", "wb"))==NULL) 
   
 { 
  printf("Cannot open file.\n"); 
  exit(1); 
 } 
  
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
  
  
// Setup shared memory 
  
 child2( ); 
  
// Set up Force/Torque Sensor 
  
 char *calfilepath;    // name of calibration file 
 unsigned short index; // index of calibration in file  
     // (second parameter; default = 1) 
 Calibration *cal; // struct containing calibration information 
 short sts;             // return value from functions 
 
 // ATI F/T sensor variables--Note: Many for future use! 
  
 float SampleBias[7]; // measures  preloads on sensor before starting task 
  
 float SampleReading[7]; // raw sensor values as read from comedi1 
  
 float SampleTT[6]={0,0,0,0,0,0}; //sensor axis transform 
  
 float FT[6]={0,0,0,0,0,0};  // array to hold the resultant  
       // force/torque vector. 
  
 // comedi1 variables 
  
 int subdev = 0;  // analog port (comedi1 not used for anything  
     // other than F/T sensor) 
 int range = 0;  // 0 = +/10VDC 
 int aref = AREF_DIFF; // Differential Input  
  
 int n_chans0; 
 int maxdata0; 
 comedi_t *device0; 
 int chan=0; 
 lsampl_t data0; 
  
 device0 = comedi_open("/dev/comedi1"); 
  
 n_chans0 = comedi_get_n_channels(device0, subdev); 
  
 for(chan = 0; chan < n_chans0; ++chan) 
 { 
  maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
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  comedi_data_read(device0, subdev, chan, range, aref, &data0); 
  SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,  
   chan, range), maxdata0); 
 } 
  
 // Set up ATI functions 
  
 calfilepath="FT5240.cal"; 
 index = 1; 
  
 // create Calibration 
  
 cal=createCalibration(calfilepath,index); 
 if (cal==NULL) { 
  printf("\nSpecified calibration could not be loaded.\n"); 
  scanf("."); 
  return 0; 
 } 
 
 // NOTE: BELOW FT SETUP KEPT IN EVENT OF FUTURE USE! 
   
 // Set force units. 
 // This step is optional; by default, the units are inherited  
 // from the calibration file. 
 
  
 sts=SetForceUnits(cal,"N"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid force units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set torque units. 
 // This step is optional; by default, the units are inherited from the  
 // calibration file. 
 sts=SetTorqueUnits(cal,"N-m"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid torque units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
  
 // Set tool transform. 
 // This line is only required if you want to move or rotate the sensor's  
 // coordinate system.  
 sts=SetToolTransform(cal,SampleTT,"mm","degrees"); 
 switch (sts) { 
  case 0: break; // successful completion 
  case 1: printf("Invalid Calibration struct"); return 0; 
  case 2: printf("Invalid distance units"); return 0; 
  case 3: printf("Invalid angle units"); return 0; 
  default: printf("Unknown error"); return 0; 
 } 
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// LOOP begins here /////////////////////////////////////////////// 
  
while(test==1) 
  
{ 
  
 for (j = 0; j < 256; j++) // 128hz X 2 seconds 
  
 { 
    
// Check forces/torques 
  
 for(chan = 0; chan < n_chans0; ++chan) 
 { 
   
  maxdata0 = comedi_get_maxdata(device0, subdev, chan); 
   
  comedi_data_read_delayed(device0, subdev, chan, range, aref, &data0, 10000); 
   
  SampleReading[chan] = comedi_to_phys(data0, comedi_get_range(device0, subdev,  
   chan, range), maxdata0); 
   
 } 
  
 // Bias the sensor once only. 
  
 if(biasFlag==1) 
 { 
  for (i = 0; i < 6; i++) 
    
  { 
    
   SampleBias[i] = SampleReading[i]; 
    
  } 
   
  Bias(cal, SampleBias);  
   
  biasFlag = 0; 
 } 
  
 // convert a loaded measurement into forces and torques 
  
 ConvertToFT(cal,SampleReading,FT);  
   
// Recursive filter on ry axis, saw blade torque, for 128hz 
   
  fxFilt = (1.0/128.0) * FT[0] + (127.0/128.0) * fxFiltOld; 
 
  fxFiltOld = fxFilt;  
   
// Turn tool ON 
   
 toolOnIN  = 0;  
 toolDirIN = 0; // 0 = unbolt, 1 = bolt 
   
 read_writeIO(); 
   
// read current Titan position 
   
 for (i = 0; i < 6; i++) 
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  { 
    
   Data[i] = parmR->armRightCar[i]; 
    
  } 
   
 fprintf(fp, "\n %d %d %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f %9.6f  
   %9.6f %9.6f %9.6f %9.6f\n", j, toolOnIN, FT[0], FT[1], FT[2], FT[3],  
   FT[4], FT[5], Data[0], Data[1], Data[2], Data[3], Data[4], Data[5],  
   fxFilt);  
     
// Delay to control loop rate 
   
  nanosleep(&ts, NULL); 
   
// Manage pushback variable 
 
    
   if (j==1 && set==0) 
    
   { 
    
   fxstart = fxFilt; 
    
   set = 1; 
    
   printf("j= %d, fxstart = %f\n", j, fxstart); 
    
   } 
    
 
   if (j==255) 
    
   { 
    
   fxstop = fxFilt; 
    
   printf("j= %d, fxstop = %f\n", j, fxstop); 
    
   } 
   
// Loop /////////////////////////////////////////////////////////// 
   
 } 
  
 // End test 
  
 if(fabs(fxstop - fxstart) > 100.0) 
   
 { 
 
  test = 0; 
   
  printf("unbolt done\n"); 
   
 } 
  
  
}  
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 toolOnIN  = 1; 
 toolDirIN = 1; 
  
 read_writeIO(); 
  
// timestamp 
  
 now = time(NULL); 
  
 fprintf(fp, "\n%s\n",ctime(&now)); 
  
 printf("return to operator\n"); 
    
 return 0; 
  
} 
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/************************************************************************** 
*  
* functGoIdle.c 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical, Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
* Revision History 
* 
* Date  Author  Description 
* ----------------------------------------------------------------------- 
* 4/2010  Mark Noakes function to switch to Idle mode. 
* 
*      
*  
* ----------------------------------------------------------------------- 
* 
**************************************************************************/ 
 
#include "newChild.h" 
 
int functGoIdle(void) 
{ 
 
int QUIT = 0; 
 
//************************************************************************    
void safe_quit(void) 
{ 
 QUIT=1; 
} 
//************************************************************************* 
 
//************************************************************************* 
int grabSem(int semNum,  struct sembuf *sb, int semid)  
 //semNum should be zero for this program so far. 
{             
 sb->sem_op=-1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1)  
 // make sure you're using the semaphore when it is necessary. 
 { 
  perror("semaphore access problem");  
  QUIT=1;  
   
 }          
 return 1;         
} 
//************************************************************************* 
int retSem(int semNum,  struct sembuf *sb, int semid)  
 //semNum should be zero for this program so far. 
{             
 sb->sem_op=1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1) 
 { 
  perror("semaphore return problem ");   
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  QUIT=1;   
 }      
 return 1;         
} 
//************************************************************************* 
 
  
// Setup shared memory 
  
 child2( ); 
  
  
// Set joint control mode 
  
  parmRW->armCtrl.armMode = 0; // mode = IDLE 
 
return(0); 
  
} 
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/************************************************************************** 
*  
* functMoveHome.c 
*  
* DISSERTATION SOFTWARE 
*  
* Behavior-based Telerobotic Tool Control 
* Mark W. Noakes 
* Dept of Mechanical, Aerospace, and Biomedical Engineering 
* University of Tennessee at Knoxville 
* 
* Revision History 
* 
* Date  Author  Description 
* ----------------------------------------------------------------------- 
* 4/2010  Mark Noakes function for joint level move to Home 
*      position from any current location. 
* 
*     
*  
* ----------------------------------------------------------------------- 
* 
**************************************************************************/ 
 
#include "newChild.h" 
 
#include <time.h> 
#include <math.h> 
 
int functMoveHome(void) 
{ 
  
 int QUIT = 0; 
  
//*************************************************************************     
void safe_quit(void) 
{ 
 QUIT=1; 
} 
//*************************************************************************  
 
//************************************************************************* 
int grabSem(int semNum,  struct sembuf *sb, int semid)  
 //semNum should be zero for this program so far. 
{             
 sb->sem_op=-1; 
 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1)  
 // make sure you're using the semaphore when it is necessary. 
 { 
  perror("semaphore access problem");  
  QUIT=1;  
   
 }          
 return 1;         
} 
//************************************************************************* 
int retSem(int semNum,  struct sembuf *sb, int semid)  
 //semNum should be zero for this program so far. 
{             
 sb->sem_op=1; 
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 sb->sem_num=semNum; 
 if(semop(semid, sb,1)==-1) 
 { 
  perror("semaphore return problem ");   
  QUIT=1;   
 }      
 return 1;         
} 
//************************************************************************* 
 
 
// Loop timing management using nanosleep( ) 
  
 struct timespec ts; 
 ts.tv_sec = 0; 
 ts.tv_nsec = 31250000; // set to 32 hz 
  
// Setup shared memory 
  
 child2( ); 
  
// Variables 
  
 int i = 0; 
 int j = 0; 
  
// global variables  
 
extern double qZero[6]; 
extern double qFinal[6]; 
extern double qHome[6]; 
extern double qNow[6]; 
  
// Read the starting position (where you are now) from shared memory. 
 
 for (i = 0; i < 6; i++) 
 { 
  qZero[i] = parmR->armRight[i]; 
 } 
 
 
  
// Set the target position (where you want to go) per stored memory. 
 
 for (i = 0; i < 6; i++) 
 { 
  qFinal[i] = qHome[i]; 
 
 } 
  
    
// Set joint control mode 
  
  parmRW->armCtrl.armMode = 4; // mode = JOINT 
  
// Trajectory begins here./////////////////////////////////////////////// 
 
 for (j = 0; j < 320; j++) // 32hz X 10 seconds 
 
 { 
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// Calculate incremental positions once through each loop. 
   
//  Quintic Trajectory Equation 
   
  for (i = 0; i < 6; i++) 
  { 
   // Quintic equation 
    
   qNow[i] = qZero[i] +  ((qFinal[i] - qZero[i]) / 3276800.0) *  
   pow(j, 3) -  3 * ((qFinal[i] - qZero[i]) / 2097152000.0) *  
   pow(j,4) +  3 * ((qFinal[i] - qZero[i]) / 1677721600000.0) *  
   pow(j,5); 
  } 
 
// Write joint positions back to shared memory. 
 
   for (i = 0; i < 6; i++) 
   { 
   parmRW->armCtrl.jointCtrl[i] = qNow[i]; 
    
   } 
   
// Delay to control loop rate 
   
  nanosleep(&ts, NULL); 
   
// LOOP /////////////////////////////////////////////////////////////////// 
   
 
 } 
  
// Set joint control mode 
  
  parmRW->armCtrl.armMode = 0; // mode = IDLE 
 
return(0); 
  
} 
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 Appendix B  

Mechanical Drawings 
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 Appendix C  

Schematics 
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