353 research outputs found

    Sensing, Design Optimization, and Motion Planning for Agile Pneumatic Artificial Muscle-Driven Robots

    Get PDF
    Mechanical compliance in robotic systems facilitates safe human-robot interaction and improves robot adaptation to environmental uncertainty. Several promising compliant actuator technologies have emerged from the field of soft robotics, in particular the pneumatic artificial muscle—a soft, lightweight actuator that contracts under pressure. The pneumatic muscle's passive compliance eliminates the need for precise high-bandwidth actuator control to simulate mechanical impedance. However, the pneumatic muscle is limited in practical robot applications—particularly, without sacrificing robot agility—due to several key challenges: development of compatible soft sensors, translation of conventional high-level control and planning techniques to pneumatic muscle-driven systems, and limitations in pneumatic muscle pressurization rate and force generation capabilities. This work seeks to address these challenges, via a threefold approach, to access the benefits of compliant robot actuation while maximizing the robot's dynamic capabilities. The first objective targets the development of a pneumatic muscle design with integrated sensing to enable kinematic and dynamic state estimation of muscle-actuated robots without hindering muscle compliance. The second objective focuses on the construction of a trajectory optimization framework for planning dynamic robot maneuvers using 'burst-inflation' muscle pressure control. Finally, the third objective explores a design optimization strategy utilizing biological joint mechanisms to compensate for pneumatic muscle limitations and maximize robot agility.Ph.D

    Advances in Bio-Inspired Robots

    Get PDF
    This book covers three major topics, specifically Biomimetic Robot Design, Mechanical System Design from Bio-Inspiration, and Bio-Inspired Analysis on A Mechanical System. The Biomimetic Robot Design part introduces research on flexible jumping robots, snake robots, and small flying robots, while the Mechanical System Design from Bio-Inspiration part introduces Bioinspired Divide-and-Conquer Design Methodology, Modular Cable-Driven Human-Like Robotic Arm andWall-Climbing Robot. Finally, in the Bio-Inspired Analysis on A Mechanical System part, research contents on the control strategy of Surgical Assistant Robot, modeling of Underwater Thruster, and optimization of Humanoid Robot are introduced

    Aquatic escape for micro-aerial vehicles

    Get PDF
    As our world is experiencing climate changes, we are in need of better monitoring technologies. Most of our planet is covered with water and robots will need to move in aquatic environments. A mobile robotic platform that possesses efficient locomotion and is capable of operating in diverse scenarios would give us an advantage in data collection that can validate climate models, emergency relief and experimental biological research. This field of application is the driving vector of this robotics research which aims to understand, produce and demonstrate solutions of aerial-aquatic autonomous vehicles. However, small robots face major challenges in operating both in water and in air, as well as transition between those fluids, mainly due to the difference of density of the media. This thesis presents the developments of new aquatic locomotion strategies at small scales that further enlarge the operational domain of conventional platforms. This comprises flight, shallow water locomotion and the transition in-between. Their operating principles, manufacturing methods and control methods are discussed and evaluated in detail. I present multiple unique aerial-aquatic robots with various water escape mechanisms, spanning over different scales. The five robotic platforms showcased share similarities that are compared. The take-off methods are analysed carefully and the underlying physics principles put into light. While all presented research fulfils a similar locomotion objective - i.e aerial and aquatic motion - their relevance depends on the environmental conditions and supposed mission. As such, the performance of each vehicle is discussed and characterised in real, relevant conditions. A novel water-reactive fuel thruster is developed for impulsive take-off, allowing consecutive and multiple jump-gliding from the water surface in rough conditions. At a smaller scale, the escape of a milligram robotic bee is achieved. In addition, a new robot class is demonstrated, that employs the same wings for flying as for passive surface sailing. This unique capability allows the flexibility of flight to be combined with long-duration surface missions, enabling autonomous prolonged aquatic monitoring.Open Acces

    Uncovering the Nonlinear Dynamics of Origami Folding

    Get PDF
    Origami, the ancient art of paper folding, has found lots of different applications in various branches of science, including engineering. However, most of the studies on engineering applications of origami have been limited to static or quasistatic applications. Origami folding, on the other hand, could be a dynamic process. The intricate nonlinear elastic properties of origami structures can lead to interesting dynamic characteristics and applications. Nevertheless, studying the dynamics of folding is still a nascent field. In this dissertation, we try to expand our knowledge of fundamentals of origami folding dynamics. We look at the problem of origami folding dynamics from two different perspectives: 1) How can we utilize folding-induced mechanical properties for dynamic applications? and 2) How can we fold origami structures using dynamic excitations? In order to answer these questions, we conduct three different projects. Regarding the first perspective, we study a unique asymmetric quasi-zero stiffness (QZS) property from the pressurized fluidic origami cellular structure, and examine the feasibility and efficiency of using this nonlinear property for low-frequency vibration isolation. In another project, we analyze the feasibility of utilizing origami folding techniques to create an optimized jumping mechanism. And finally, regarding the second perspective, we examine a rapid and reversible origami folding method by exploiting a combination of resonance excitation, asymmetric multi-stability, and active control. In addition to these studies, Witnessing the rich and nonlinear dynamic characteristics of origami structures, in this dissertation we introduce the idea of using origami structures as physical reservoir computing systems and investigate their potentials in sensing and signal processing tasks without relying on external digital components and signal processing units

    A Biologically Inspired Jumping and Rolling Robot

    Get PDF
    Mobile robots for rough terrain are of interest to researchers as their range of possible uses is large, including exploration activities for inhospitable areas on Earth and on other planets and bodies in the solar system, searching in disaster sites for survivors, and performing surveillance for military applications. Nature generally achieves land movement by walking using legs, but additional modes such as climbing, jumping and rolling are all produced from legs as well. Robotics tends not to use this integrated approach and adds additional mechanisms to achieve additional movements. The spherical device described within this thesis, called Jollbot, integrated a rolling motion for faster movement over smoother terrain, with a jumping movement for rougher environments. Jollbot was developed over three prototypes. The first achieved pause-and-leap style jumps by slowly storing strain energy within the metal elements of a spherical structure using an internal mechanism to deform the sphere. A jump was produced when this stored energy was rapidly released. The second prototype achieved greater jump heights using a similar structure, and added direction control to each jump by moving its centre of gravity around the polar axis of the sphere. The final prototype successfully combined rolling (at a speed of 0.7 m/s, up 4° slopes, and over 44 mm obstacles) and jumping (0.5 m cleared height), both with direction control, using a 0.6 m spherical spring steel structure. Rolling was achieved by moving the centre of gravity outside of the sphere’s contact area with the ground. Jumping was achieved by deflecting the sphere in a similar method to the first and second prototypes, but through a larger percentage deflection. An evaluation of existing rough terrain robots is made possible through the development of a five-step scoring system that produces a single numerical performance score. The system is used to evaluate the performance of Jollbot.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Icing Effects on Power Lines and Anti-icing and De-icing Methods

    Get PDF
    Icing on power lines may lead to compromise safety and reliability of electric supply network. Prolong icing can lead to power breakdown and collapse of towers. Since power transmission lines are mostly overhead and could face the direct impact of icing, and it is one of the main challenges faced by power distribution companies in cold regions. When the ice accretion crosses the safety limit then deicing action can be carried out. We can find number of deicing methods that are used in different parts of the world. However, all of these deicing techniques have their own advantages and disadvantages on implementation. It is one of the most difficult as well as dangerous process to perform deicing on power lines. If a fault is detected and that has been occurred due to icing or during routine maintenance, extra care must be taken in order to ensure safety of the personals when performing de-icing of lines. However, as technology evolved, new ways and techniques are adopted with the help of sensors that give quick feedback to control room in the national grid via wireless communication network for real time action. In the thesis we have discussed atmospheric icing impacts on power lines in the cold regions across the world. A literature review has been done for anti-icing and deicing methods that are currently adopted in the power distribution network. Methods that are used against ice buildups have also been analyzed. This work also shows the impacts of icing and deicing techniques presently adopted, and also throws light on their pros and cons during maintenance operations. It provides an overview of the evolving technology trends that are practiced to ensure the availability of existing power transmission system in cold climate regions

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications
    corecore