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Abstract

Origami, the ancient art of paper folding, has found lots of different appli-

cations in various branches of science, including engineering. However, most of the

studies on engineering applications of origami have been limited to static or quasi-

static applications. Origami folding, on the other hand, could be a dynamic process.

The intricate nonlinear elastic properties of origami structures can lead to interest-

ing dynamic characteristics and applications. Nevertheless, studying the dynamics of

folding is still a nascent field. In this dissertation, we try to expand our knowledge of

fundamentals of origami folding dynamics. We look at the problem of origami fold-

ing dynamics from two different perspectives: 1) How can we utilize folding-induced

mechanical properties for dynamic applications? and 2) How can we fold origami

structures using dynamic excitations? In order to answer these questions, we conduct

three different projects. Regarding the first perpective, we study a unique asymmet-

ric quasi-zero stiffness (QZS) property from the pressurized fluidic origami cellular

structure, and examine the feasibility and efficiency of using this nonlinear property

for low-frequency vibration isolation. In another project, we analyze the feasibility

of utilizing origami folding techniques to create an optimized jumping mechanism.

And finally, regarding the second perspective, we examine a rapid and reversible

origami folding method by exploiting a combination of resonance excitation, asym-

metric multi-stability, and active control. In addition to these studies, Witnessing the
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rich and nonlinear dynamic characteristics of origami structures, in this dissertation

we introduce the idea of using origami structures as physical reservoir computing sys-

tems and investigate their potentials in sensing and signal processing tasks without

relying on external digital components and signal processing units.

iii



Dedication

To my parents and my sister,

for all of their sacrifices and support.

iv



Acknowledgements

I would first like to thank my advisor Dr. Suyi Li for his constant guidance

and help throughout the projects. Dr. Li provided the necessary equipment, funding,

and background knowledge in origami engineering to make these projects possible.

He taught me how to approach a problem, think about the big picture and ask the

right questions; skills that will be great assets in my future career as well.

I would also like to thank Dr. Phanindra Tallapragada. I had the chance

to attend his courses on nonlinear dynamics, which encouraged me to learn more

about this field. He also provided the inspiration for studying dynamics of jumping

mechanisms that use elastic energy storage as their means of actuation, specifically

those exhibiting non-linear force-displacement profiles.

In addition, I would also like to extend my thanks to Dr. Ardalan Vahidi and

Dr. Umesh Vaidya for serving on my committee and teaching me a lot about controls.

Finally, I would like to thank my friends and family. Without their love and

support, this journey would not have been possible.

v



Table of Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Fluidic Origami Cellular Structure with Asymmetric Quasi-Zero
Stiffness for Low-Frequency Vibration Isolation . . . . . . . . . . . 8
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Folding Kinematics and the Origin of QZS Property . . . . . . . . . . 14
2.4 Proof-of-concept Prototype and the Quasi-static Test . . . . . . . . . 22
2.5 Dynamic Analysis of Fluidic Origami with QZS Properties . . . . . . 25
2.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 41

3 The effect of Nonlinear Springs in Jumping Mechansims . . . . . . 44
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Jumping Mechansim and its Equations of Motion . . . . . . . . . . . 48
3.4 Studying The Effect of Force-Displacement Curve of the Nonlinear

Spring on the Jumping Performance . . . . . . . . . . . . . . . . . . . 52
3.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Design and Optimization of an Origami-Inspired Jumping Mech-
anism with Nonlinear Stiffness Properties . . . . . . . . . . . . . . 66
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vi



4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Tachi-Miura Polyhedron (TMP) Bellow . . . . . . . . . . . . . . . . . 70
4.4 The Dynamics of TMP Jumper . . . . . . . . . . . . . . . . . . . . . 74
4.5 TMP DESIGN OPTIMIZATION . . . . . . . . . . . . . . . . . . . . 77
4.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Dynamic Folding of Origami By Exploiting Asymmetric Bi-Stability 83
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 Dynamic Model of the Water-bomb Origami . . . . . . . . . . . . . . 87
5.4 Dynamic folding of the bistable water-bomb origami . . . . . . . . . . 94
5.5 Active control strategy for robust folding . . . . . . . . . . . . . . . . 103
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.7 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Physical Reservoir Computing Using Origami Structures for Sens-
ing and Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . 108
6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3 The Structure of the Origami Reservoir . . . . . . . . . . . . . . . . . 112
6.4 Sensing and Signal Processing Using Origami Reservoir . . . . . . . . 118
6.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

vii



List of Tables

2.1 Design parameters used in the proof-of-concept prototype . . . . . . . 24

4.1 The design variables and geometric constraints used in the design op-
timization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 The design variables and geometric constraints used in the design op-
timization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Linear TMP parameter sets resulting from single objective optimization 81

5.1 Comparison between the required quasi-static displacement and dy-
namic excitation amplitude for the dynamic folding between two sta-
ble states. Here, the quasi-static displacement is based on the reaction
force-displacement curve shown in Figure 5.4. . . . . . . . . . . . . . 100

6.1 Design of a baseline origami reservoir for the sensing and signal pro-
cessing tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

viii



List of Figures

1.1 Two perspectives of studying dynamics of origami folding and the cor-
responding studies conducted in this dissertation. . . . . . . . . . . . 4

2.1 The concept of pressurized fluidic origami cellular structure. (a) Crease
pattern of the underlying Miura-Ori. (b) Folded Miura-Ori sheets with
compatible designs can be stacked and connected to form a space-filling
cellular architecture shown in (c). (d) The fluidic origami features
naturally embedded tubular channels, which can be pressurized pneu-
matically. Such pressurization induces the desired quasi-zero stiffness
property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The design and kinematics of fluidic origami. (a) The geometry of
a tubular channel in fluidic origami, showing the definition of a, b, γ,
and θ of the two Miura-Ori sheets. The unit cell is highlighted, and
in this plot, the tubular channel has three unit cells (aka. N=3). (b)
The strongly nonlinear relationships between geometric quantities and
folding angle. In this plot, aI = aII = b, and γ = 70◦. The normalized
volume V̂ = V/Na3I and normalized length L̂ = L/NaI . . . . . . . . . 16

2.3 Pressure-induced stiffness of the fluidic origami unit cell based on
PV = const. (a) The reaction force-folding angle relationship, show-
ing the influence of sector angle (γ). (b) The influence of γ angle
on the force-deformation relationship. (c) Reaction force-deformation
curves based on different initial pressures (Pi). In all of these figures:
a = b = 38mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Parametric studies for obtaining QZS properties. (a) The relationship
between the deformation range with negative stiffness and ISMO design
parameters. Grey region represents designs that would not generate
any negative stiffness. (b) The relation between the deformation range
with negative stiffness and NISMO design parameters. In both cases,
Miura-Ori designs that can give QZS property are highlighted. The
designs used in the following quasi-static experiment (Section 2.4) and
dynamic analysis (Section 2.5) are highlighted. . . . . . . . . . . . . . 21

ix



2.5 Proof-of-concept experimental tests. (a) Schematic drawing showing
the design and assembly of the fluidic origami prototype. The zipper-
sheets and internal facets are highlighted. (b) Finished prototype made
from water-jet cut steel sheets and adhesive plastic films. (c) In this
figure, the fluidic origami prototype has been pressurized through a
custom-made air pouch to its maximum internal volume configuration.
Note that the end valve has been closed and disconnected from the
pressure supply to ensure a constant PV according to the governing
Equation (6). (d) The experimental set-up for the quasi-static test. . 23

2.6 The force-displacement relationships. The dashed curve represents the
analytical result and the solid and dotted curve shows the averaged
experimental result. The shaded grey region represents the standard
deviation of the measurements. . . . . . . . . . . . . . . . . . . . . . 25

2.7 Setup of the dynamic analysis. (a) Schematic diagram of using fluidic
origami for base vibration isolation. (b) The equivalent discrete system. 26

2.8 Numerical simulation of the fluidic origami isolator based on actual
force-displacement curve according to equation 2.6. (a, b) Sample
steady-state time response with Ω = 0.1Hz, Y = a and the corre-
sponding FFT result. (c, d) Another sample response with different
input (Ω = 1Hz, Y = a). . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9 Dynamic analysis based on symmetric cubic polynomial fitting. (a)
The setup of cubic polynomial fitting. (b, c) Relationships between TR
and excitation frequencies at Y = 0.125Na and 0.75Na, respectively.
(d) The relationship between TR and excitation amplitudes (Ω = 0.1Hz). 30

2.10 Fitting with quadratic and cubit polynomial terms. (a) Comparison
between some polynomial fittings with different orders performed for
range |u| < 0.12a The insert plot shows the corresponding magnitude of
fitting error (= RMS(uactual − ufit)/RMS(uactual)). (b) Actual force-
displacement curve and the comparison of three different fitting results
based on cubic and quadratic polynomials with different ranges of fit-
ting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.11 Sample steady-state time responses of system based on (a) numerical
simulation and (b) HBM for Y = 0.25Na and Ω = 0.1Hz. (c) The TR
results derived by numerical simulation based on Equation 2.10 and
HBM based on asymmetric fitting. Comparing this result to that in
Figure 2.9(c), it is evident that the asymmetry plays a crucial role in
the high TR values at high excitation amplitude. . . . . . . . . . . . 37

x



2.12 Base excitation performance study (a) The relationship among the
TR index magnitude, normalized excitation amplitude and normal-
ized excitation frequency. The performance threshold of TR = 1 is
highlighted. (b) and (c) show the corresponding contribution of DC
and AC components in the response, respectively. (d) Sample time-
response at Y/Na = 1.4 and Ω = 0.1Hz, showing an AC dominated
response of AC term. (e) Another Sample time-response at Y/Na = 0.8
and Ω = 1Hz, showing a DC dominated response. . . . . . . . . . . . 39

2.13 (a) The linear relation between the maximum possible displacement
∆x and the number of cells (N). (b) The shaded regions show the
excitation magnitudes and frequencies at which maximum relative dis-
placement of the end mass exceeds the folding limitation of the fluidic
origami. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Schematic of the jumping mechanism in (a) pre-jump phase of motion
and (b) post-jump phase of motion. . . . . . . . . . . . . . . . . . . . 49

3.2 (a) Piecewise linear reaction force-displacement curve of spring with
structural and actuation limits. (b) Non-dimensional force-displacement
curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 (a) Reaction force-displacement curve of the spring with an initial dis-
placement (d). (b) Non-dimensional force-displacement curve of the
spring with the shaded area representing the initial stored energy. (c)
Three constituent areas of the shaded region. . . . . . . . . . . . . . 53

3.4 (a) Three different piecewise linear force-displacement curves, with pos-
itive, negative and zero k̂3 stiffness coefficients. (b) Vertical displace-
ment of the upper mass (solid line) and lower mass (dashed line). (c)
Vertical displacement of the center of gravity. . . . . . . . . . . . . . 55

3.5 (a) Gravitational potential energy levels of the upper mass (UM), lower
mass (LM) and center of gravity (CG) for constant linear stiffness
(a); and three piecewise linear cases (b-d). The three piecewise linear
force-displacement curves feature the same k̂1 = 1, k̂2 = 2, k̂4 = 0.9,
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Chapter 1

Introduction

Origami — the ancient art of paper folding — first emerged in East Asia over

four centuries ago [1]. Nowadays, origami is no longer solely treated as a pastime

artistic activity. In fact, it has received a surge of interest over the past decade

from many research communities, such as mathematicians [2], material scientists, ar-

chitects [3], physicists [4], biotic researchers [5] and engineers [6–8]. For example,

plant biologists used origami folding to explain the deploying mechanisms of tree

leaves, flowers, and seed capsules [9, 10], and mathematicians developed algorithmic

and computational tools to design complex crease patterns and analyze their fold-

ing and unfolding behaviors [11–13]. Architects and engineers, inspired by the vast

variations of folding a 2D flat sheet into complex 3D shape, have built various fold-

able strcutrues of different sizes: from small-scale nano- [14–16] and DNA origamis

to meso-scale self-folding robots [17–20] and biomedical devices [21,22] to large-scale

deployable spacecraft [23,24] and civil infrastructures [25].

Many of these origami-inspired applications have exploited the kinematics

of folding. Folding can offer sophisticated shape transformations that are yet pro-

grammable which are served as guidelines for many design innovations [26]. In addi-

1



tion, origami structures have tremendous unique advantages including infinite design

space, excellent deformability and shape reconfigurability, flat-foldability and single-

degree-of-freedom (SDOF) folding mechanism [26]. In this perspective, origami struc-

tures have been essentially treated as a structure consisted of rigid panels connected

by ideal hinges (a.k.a rigid-foldable origami) [27]. This means that, the elastic defor-

mation of the constituent sheets or the dynamics of folding are often neglected [27].

However, the increasingly diverse and vastly expanding applications of origami

have encouraged researchers to study the mechanical properties of folded structures

as well, over the past decade. The combination of elastic energy in the deformed

facets and creases, and their complex spacial distributions, impart the architected

origami materials with various programmable and even unorthodox mechanical prop-

erties [27]. For example, recently it has been shown that folding can tailor the struc-

tural stiffness [28–31] or generate auxextic effects [32–34]. It can embed bistability

and multistability in the structures [33,35] and create structures with programmable

locking and stiffness jump [34]. These findings have led to emergence of a new cate-

gory of metamaterials and meta-structures called architected origami materials [27].

Despite the significant research progress, most of the previous studies on

Origami have mainly focused on kinematics or static/quasi-static characteristics of

origami folding. Origami folding, on the other hand, could be a dynamic process [26].

The intricate nonlinear elastic properties of origami structures can lead to interest-

ing dynamic characteristics and applications. Nevertheless, studying the dynamics of

folding is still a nascent field and there are only a few researches conducted in this

area [27].

Dynamics of reciprocal origami folding can be viewed from two different per-

spectives (figure 1.1). In the first perspective, the main objective is to program or cre-

ate desired mechanical properties in the structure, by introducing appropriate folds,
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for a specific dynamic application. For example, Yasuda et al [36] investigated the

nonlinear elastic wave propagation in a multiple degree-of-freedom (MDOF) origami

metamaterial consisting of Tachi-Miura polyhedron (TMP) cells. They demonstrated

that, via utilizing the geometry-induced nonlinearity and the structure periodicity,

such TMP-based tubular metamaterials can be developed into vibration and impact

mitigating structures with tunable characteristics. In another study, Ishida et al. [37]

developed an origami-based cylindrical structure with quasi-zero stiffness character-

istics and experimentally demonstrated that it can effectively isolate base excitations

at low frequencies. In another study, a cylindrical truss structure inspired by the

Kresling folding pattern were investigated for vibration isolation both numerically

and experimentally [37,38]. This vibration isolation function stemmed from a quasi-

zero stiffness (QZS) property obtained by integrating a linear spring with the bistable

Kresling pattern.

The second perspective on the other hand, focuses on studying the behavior of

the origami structure under different dynamic excitations and investigating whether

these nonlinear dynamic behaviors might be potentially used for a specific applica-

tion. For example, Fang et al. [26] conducted a comprehensive experimental and

analytical study on the dynamics of origami folding through investigating a stacked

Miura-Ori (SMO) structure with intrinsic bistability. They showed that under har-

monic base excitation, the SMO exhibits both intrawell and interwell oscillations. In

addition, using spectrum analyses, they observed that the dominant nonlinearities of

SMO are quadratic and cubic, which generate rich dynamics including subharmonic

and chaotic oscillations. In another study, Kidambi and Wang [39] investigated the

deployment dynamics of Kresling structures with various system geometries and op-

erating strategies. The axial and off-axis dynamic responses were studied, revealing

that the variation of key geometric parameters may lead to regions with qualitatively

3



Figure 1.1: Two perspectives of studying dynamics of origami folding and the corre-
sponding studies conducted in this dissertation.

distinct mechanical responses. The sensitivity of dynamic deployment to changes in

initial condition and small variations in geometric design were also demonstrated.

In another relevant study, Wu et al. [40] explored the transient dynamics of Miura-

origami tube under free deployment. They performed a preliminary free deployment

test, which indicates that the transient oscillation in the transverse direction is non-

negligible and the tube deployment is no longer a single-degree-of-freedom (SDOF)

mechanism. The results show that the relationships between the transient dynamic

behaviors and the examined parameters are sometimes contradictory in the deploying

and the transverse directions, suggesting the necessity of a compromise in design. Un-
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like these studies, which assume that the origami crease pattern is already folded into

the desired shape and the mountain and valley creases are assigned appropriately, Liu

and Felton, in another study [41], identified and validated a model to predict configu-

ration switching in mechanical origami systems, even at the flat-unfolded state. They

applied this model to design a branching origami structure with 17 distinct config-

urations controlled by a single actuator and demonstrate reliable switching between

these configurations with tailored dynamic inputs.

This research proposal sets out to expand our knowledge of the fundamentals

of origami folding dynamics by conducting three different studies.

In Chapter 2, we introduce a novel dynamic application for the previously

studied fluidic origami structure [42]. In this sense, this study is relevant to the first

perspective of analyzing dynamics of origami folding. This study investigates a unique

asymmetric quasi-zero stiffness (QZS) property from the pressurized fluidic origami

cellular structure, and examines the feasibility and efficiency of using this nonlinear

property for low-frequency vibration isolation. We show that the QZS property of

fluidic origami stems from the nonlinear geometric relationships between folding and

internal volume change, and it can be programmed by tailoring the constituent Miura-

Ori crease design. In addition, we show how the unique characteristic of achieving

QZS in our study, i.e. pressurization, makes the fluidic origami structure a tunable

QZS vibration isolater and distinguishes it from its counterparts. Outcome of this

research can lay the foundation for new origami-inspired multi-functional metama-

terials and meta-structures with embedded dynamic functionalities. Moreover, the

investigations into the asymmetry in force–displacement relationship provide valuable

insights for many other QZS structures with similar properties.

Chapter 3 and 4 are are related to each other and the first perspective of

understabding origami folding dynamics. In Chapter 3, we investigate the potential
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effects of utilizing nonlinear springs on the performance of robotic jumping mech-

anisms. As a theoretical example, we study dynamic characteristics of a jumping

mechanism consisting of two masses connected by a generic nonlinear spring, which

is characterized by a piecewise linear function. The goal of this study is to under-

stand how the nonlinearity in spring stiffness can impact the jumping performance.

To this end, non-dimensional equations of motion of the jumping mechanism are de-

rived and then used extensively for both analytical and numerical investigations. It

is found that compression section of the nonlinear spring can significantly increase

energy storage and thus enhance the jumping capabilities dramatically. Results of

this study is then used extensively in Chapter 4, to investigate the feasibility of uti-

lizing origami folding techniques to create an optimized jumping mechanism. In this

chapter, as a theoretical example, we study the dynamic characteristics of a jumping

mechanism consisting of two masses connected by a Tachi-Miura Polyhedron (TMP)

origami structure with nonlinear stiffness characteristics. We show how the desired

“strain-softening” effects of the TMP structure can lead to design of jumping mech-

anisms with optimized performance. Results of this study can lead to emergence of

a new generation of more efficient jumping mechanisms with optimized performance

in the future.

Chapter 5 on the other hand, focuses on the second perspective of studying

origami folding dynamics. In this chapter, we uncover the underlying dynamic char-

acteristics of a bi-stable origami structure and show that how dynamic excitations

can be used to fold the structure between its stable states. In particluar, we examine

a rapid and reversible origami folding method by exploiting a combination of reso-

nance excitation, asymmetric multi-stability, and active control. The underlying idea

is that, by harmonically exciting a multi-stable origami at its resonance frequencies,

one can induce rapid folding between its different stable equilibria without the need
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for using responsive materials. To this end, we use a bi-stable water-bomb base as

an archetypal example. Via numerical simulation based on a new dynamic model

and experimental testing, we show that the inherent asymmetry of water-bomb base

bi-stability can enable dynamic folding with relatively low actuation requirements.

In addition, we develop an active feedback control strategy to achieve robust and

uni-directional folding from the strong stable state to the weak one, even when the

structure is prone to exhibit inter-well oscillations. The results of this study can apply

to many different kinds of origami and create a new approach for rapid and reversible

(self-)folding, thus advancing the application of origami in shape morphing systems,

adaptive structures, and reconfigurable robotics.

Finally, some suggested future work is discussed in Chapter 6.
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Chapter 2

Fluidic Origami Cellular Structure

with Asymmetric Quasi-Zero

Stiffness for Low-Frequency

Vibration Isolation

2.1 Abstract

This study investigates a unique asymmetric quasi-zero stiffness (QZS) prop-

erty from the pressurized fluidic origami cellular structure, and examines the fea-

sibility and efficiency of using this nonlinear property for low-frequency vibration

isolation. This QZS property of fluidic origami stems from the nonlinear geometric

relationships between folding and internal volume change, and it can be programmed

by tailoring the constituent Miura-Ori crease design. Different fluidic origami cellular

structure designs are introduced and examined to obtain a guideline for achieving

QZS property. A proof-of-concept prototype is fabricated to experimentally vali-
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date the feasibility of acquiring QZS. Moreover, a comprehensive dynamic analysis

is conducted based on numerical simulation and harmonic balance method (HBM)

approximation. The results suggest that the QZS property of fluidic origami can

successfully isolate base excitation at low frequencies. In particular, this study care-

fully examines the effects of an inherent asymmetry in the force-displacement curve

of pressurized fluidic origami. It is found that such asymmetry could significantly

increase the transmissibility index with certain combinations of excitation amplitude

and frequency, and it could also induce a drift response. Outcome of this research

can lay the foundation for new origami-inspired multi-functional metamaterial and

meta-structure with embedded dynamic functionalities. Moreover, the investigations

into the asymmetry in force-displacement relation-ship provide valuable insights for

many other QZS structures with similar properties.

2.2 Introduction

The ancient Japanese art of Origami is essentially a technique of developing

topologically intricate three-dimensional shapes by folding. Its beauty and simplicity

have fostered a surge of interest from the science, mathematics, architecture, and engi-

neering communities. For example, molecular biologists used origami method to fold

single-stranded DNA molecules into predetermined shapes, which can be used to form

complex self-assembled nanostructures [43–46]. Plant biologists examined the deploy-

ment of seed capsules, leaves, and flowers based on origami folding principles [9,47,48].

Mathematicians developed computational tools that can design the appropriate crease

patterns for achieving desired shape reconfigurations by folding [11–13]. Engineers

also investigated the feasibility of utilizing origami for a wide variety of applications.

For example, it is possible to fold flat sheet into stiff and lightweight structures such
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as sandwich panels with fold cores [32], folded plate shell structures [49], and cel-

lular solids [50]. Moreover, it can be advantageous to leverage the kinematics (aka.

shape reconfiguration) of origami folding to advance the deployable aerospace struc-

tures [23, 24, 51], self-folding robots [7, 17, 52], medical stents [53], and flexible elec-

tronics [54]. Recently, there has been a paradigm shift from harnessing the kinematics

of origami to utilizing the mechanics of folding for engineering purposes. As a result,

we are witnessing the rapid emergence of origami mechanical metamaterials. These

metamaterials are typically made of multiple stacked origami sheets with carefully

designed crease patterns [32, 55–57], and the intricate relationships between folding

and constituent sheet deformations can impart the origami metamaterials with unique

and even unorthodox mechanical properties. For example, it has been demonstrated

that origami-based metamaterials and meta-structures can exhibit negative and flip-

ping Poisson’s ratio [32–34, 58], self-locking and discrete stiffness jumps [50, 59], and

elastic multi-stability [13, 26, 60]. In addition, the stacked origami topology features

naturally embedded tubular channels, which can be pressurized to generate adaptive

functions. This is the idea behind the so-called pressurized fluidic origami cellular

structure (referred simply as “fluidic origami” hereafter), which arises from combin-

ing the physical principles behind the plant nastic movements and the design variety

of the origami art (Figure 1). By utilizing the relation between folding motion and

the enclosed internal fluid volume, fluidic origami is able to exhibit many interesting

characteristics. For example it has been studied for its capabilities to achieve shape

transformation, stiffness control, and recoverable collapse [42,61].

Despite these remarkable developments, current state-of-the-art mainly focuses

on the kinematics and quasi-static applications of origami folding. However, origami-

inspired structures and materials could also show interesting dynamic characteristics

under excitations due to the richness of folding geometry. Nevertheless, studying the
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Figure 2.1: The concept of pressurized fluidic origami cellular structure. (a) Crease
pattern of the underlying Miura-Ori. (b) Folded Miura-Ori sheets with compatible
designs can be stacked and connected to form a space-filling cellular architecture
shown in (c). (d) The fluidic origami features naturally embedded tubular channels,
which can be pressurized pneumatically. Such pressurization induces the desired
quasi-zero stiffness property.

dynamic characteristics of origami-based structures is still a nascent field and there

are only a few researches conducted in this area hitherto. Yasuda et al. studied the

nonlinear elastic wave propagation in a multiple degree-of-freedom origami metama-
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terial consisting of Tachi-Miura polyhedron (TMP) cells [36]. They investigated the

feasibility of harnessing the geometry-induced nonlinearity of the TMP-based tubu-

lar metamaterials for tunable vibration and impact mitigation. Fang, et al. studied

the dynamic characteristics of a bi-stable stacked Miura-Ori (SMO) structure and

investigated its application in vibration isolation at certain frequencies [26]. Ishida

et al. proposed a cylindrical truss structure, inspired by the Kresling folding pattern,

for vibration isolation and investigated its performance numerically and experimen-

tally [38,62]. This vibration isolation function stems from a quasi-zero stiffness prop-

erty obtained by combining the bi-stability of the Kresling pattern and a linear spring.

Other than these studies, there are no other literatures on the dynamics induced by

origami folding. Therefore, the foremost vision of this research is to expand our knowl-

edge and understand on how to harness the folding-induced mechanical properties to

foster a new family of multi-functional origami structures and material systems with

dynamic applications. To this end, we introduced a unique quasi-zero stiffness (QZS)

characteristics from the pressurized fluidic origami and investigated the feasibility of

using this mechanical property for low-frequency vibration isolation [63]. Unlike the

cylindrical truss structure studied by Ishida et al., the QZS property of the fluidic

origami does not arise from mechanical springs but rather stems from interaction be-

tween internal pressure and folding. This provides a unique mechanism for developing

an adaptive QZS vibration isolator.

Exploiting quasi-zero-stiffness has been an important topic in low-frequency

vibration isolation for decades. For a passive vibration isolator consisting of a mass

(m) supported by a linear spring (k), vibration isolation occurs in frequencies over√
2k/m [64]. Consequently, one would prefer a smaller stiffness (k) to increase the

usable frequency bandwidth; however, this would result in a very small static load

carrying capacity. Implementing nonlinear springs with QZS property can be an ad-

12



vantageous solution for this problem. Using the QZS property, the dynamic stiffness

of the system would be close to or ideally zero at the equilibrium position, while the

static stiffness remains large. Therefore, the system can minimize the vibrations trans-

mission at very low frequencies without sacrificing the static load carrying capacity.

Several methods of creating and harnessing the QZS property have be proposed, such

as combining vertical and oblique linear springs [65–67], and using structural buck-

ling [68, 69]. In the authors’ previous publication, it was shown that QZS property

could arise from combining the pressure-induced stiffness and the nonlinear geometric

relationships between folding and internal volume [63]. The QZS property is naturally

embedded in the structure without the need of any additional springs like in other

devices; furthermore, it is feasible to obtain a wide range of appropriate Miura-Ori

designs to reach QZS.

The previous study by the authors, however, mainly focused on the design

principles of obtaining the QZS property in fluidic origami without any experimental

validation, and a comprehensive investigation on its dynamic responses from a low-

frequency base excitation is lacking. Such dynamics study is indeed crucial for under-

standing its performance potentials and limitations as a vibration isolator. Moreover,

the reaction force-displacement relationship of the fluidic origami exhibits a strong

asymmetry, which is an inherent property stemming from the folding kinematics. The

influence of such asymmetry on the base excitation isolation is not fully understood,

but can be significant at certain input frequencies and magnitudes. Indeed, there

is no comprehensive studies on the influence of inherent asymmetry in the force-

displacement relationship of QZS vibration isolator. The only relevant study dealt

with asymmetries rising from equilibrium offset based on systems with otherwise

symmetric force-displacement curves [70]. Therefore, the objective of this study is

to conduct a thorough analytical and experimental investigation on obtaining QZS
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property in fluidic origami, and then elucidate the influences of asymmetry in its

QZS property for low-frequency vibration isolation. Results of this study can lay the

foundation for the emergence of a new category of multi-functional, origami-based

metamaterials and meta-structures with adaptive dynamic functionalities.

The remaining sections of this paper are organized as follows. Section 3 re-

capitulates the nonlinear geometrical relationships between origami folding and the

desired QZS characteristics. A design criterion for obtaining the QZS property is

also presented. Section 4 discusses the experimental verification of the existence of

QZS property in a proof-of-concept fluidic origami prototype. Section 5 details the

dynamic analysis of utilizing the investigated asymmetric QZS property for base ex-

citation isolation. The behavior of the fluidic origami is analyzed numerically, and

harmonic balance method (HBM) is also used to provide deeper insights into the

fundamental dynamic characteristics. Section 6 concludes this paper with summary

and discussion.

2.3 Folding Kinematics and the Origin of QZS Prop-

erty

In this section, we briefly discuss the physical principles underpinning the QZS

property in fluidic origami, which lays the foundation for the further dynamic investi-

gations. The concept of fluidic origami is based on the idea that connecting Miura-Ori

folded sheets along their zig-zag crease lines can create a space-filling cellular topology

with naturally embedded tubular features (Figure 2.1) [35]. Miura-Ori is a periodic

tessellation, thus one can concentrate on studying the unit cell shown in Figure 2.2(a)

as a representative of the whole structure. Three geometric parameters, which remain
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unchanged regardless of folding, determine the design of Miura-Ori folding pattern.

They are the length of two adjacent crease lines (a, b), and the sector angle (γ) be-

tween these two lines. Miura-Ori folding pattern is rigid foldable, therefore the facet

material can be assumed rigid and the creases can be treated as ideal hinges. With

these assumptions, the folding motion of Miura-Ori has one degree-of-freedom that

can be described by the dihedral folding angle (θ) defined between the x-y reference

plane and the constituent facets (Figure 2.2(a)). To ensure kinematic compatibility

so that Miura-Ori sheets do not separate from each other during folding, one needs

to apply two geometric constraints: bI = bII = b, and aI cos γI = aII cos γII , where

the sub-index I and II represents to the two Miura-Ori sheets in a unit cell [32]. In

this way, the folding angles of the two Miura-Ori sheets are directly related so that

cos θI tan γI = cos θII tan γII and the rigid folding of the fluidic origami retains one

degree of freedom.

In this study, we choose the folding angle θI as the independent variable to

describe the folding motion so that the unit cell length can be calculated as follows

[35]:

L =
2b cos θI√

1 + cos2 θI tan2 γI
, (2.1)

Based on these governing geometric relationships, the enclosed volume of the unit cell

can be derived as follows:

V = 2a2Ib sin2 γI cos θI(

√
tan2 γII
tan2 γI

− cos2 θI + sin θI). (2.2)

Equations 2.1 and 2.2 describe the kinematic connections between the external ge-

ometries and internal volume change of fluidic origami. Based on these relationships,

one can predict that the fluidic origami will fold to a configuration with maximum
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Figure 2.2: The design and kinematics of fluidic origami. (a) The geometry of a
tubular channel in fluidic origami, showing the definition of a, b, γ, and θ of the two
Miura-Ori sheets. The unit cell is highlighted, and in this plot, the tubular channel
has three unit cells (aka. N=3). (b) The strongly nonlinear relationships between
geometric quantities and folding angle. In this plot, aI = aII = b, and γ = 70◦. The
normalized volume V̂ = V/Na3I and normalized length L̂ = L/NaI .

enclosed volume when it is subject to internal pressure [61]. This is due to the en-

tropy increase from inner energy reduction by volume expansion [71]. Pressurization

also imparts nonlinear stiffness to the structure (aka. pressure-induced stiffness [61].

If the fluidic origami structure is subject to external mechanical loads along the x
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direction (defined in Figure 2.2(a)), the reaction force due to internal pressure can be

calculated as follows based on virtual work principle:

FL = −P dV
dL

= −P dV
dθI

(
dL

dθI

)−1
, (2.3)

where dL is the change in origami length along the external force exertion direction.

The pressure-induced stiffness can be defined as the variation of the reaction force

with respect to the infinitesimal deformation so that [61]:

kL =
dF

dL
. (2.4)

By observing the force-displacement relationship in Equation 2.3 or the corresponding

pressure-induced stiffness, we can investigate the feasibility of obtaining quasi-zero

stiffness (QZS) in fluidic origami. To this end, we consider the following scenario of

pressurization. The fluidic origami is pressurized with an ideal gas at an initial pres-

sure (Pi) until it folds and settles at the configuration with maximum possible internal

volume (Vi). Then the structure is sealed so that the total amount of pressurized gas

inside is kept constant. After this, if the fluidic origami deforms via folding due to an

external force, its internal pressure (P ) and enclosed volume (V ) will change accord-

ingly. The ideal gas law states that PV = nRT , where n is the amount of substance

of gas (in moles),R is the universal gas constant, and T is the absolute temperature of

the gas. We assume that the change in internal volume due to folding occurs slowly

so the gas temperature (T ) is constant. Moreover, n is constant due to the sealing of

fluidic origami. Therefore, we can conclude that:

PV = PiVi = const, (2.5)
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and the reaction force equation (Equation 2.3) can be updated as follows:

FL = −PiVi
V

dV

dθI

(
dL

dθI

)−1
. (2.6)

Based on equation 2.6, it can be seen that the reaction force and pressure-induced

stiffness of the fluidic origami are functions of the internal volume (V ) and the length

(L) of the unit cell. Figure 2.2(b) shows that these two geometric variables are

strongly nonlinear functions of the folding angle (θI). Therefore, we can also expect

the pressure-induced reaction force and stiffness are strongly nonlinear with respect to

the overall folding deformation. It is possible to prescribe the behavior of the force-

displacement curve and obtain the desired quasi-zero stiffness (QZS) characteristic

for vibration isolation by choosing the appropriate design for the Miura-Ori pattern.

In the following subsections, two different design cases are presented, the first case is

identical stacked Miura-Ori sheets (ISMO) and the second one is non-identical stacked

Miura-Ori sheets (NISMO).

2.3.1 Case 1: Identical Stacked Miura-Ori Sheets (ISMO)

With two identical Miura-Ori sheets, the previously discussed relationships

can be simplified because γI = γII = γ and aI = aII = a. Figure 2.3(a, b) shows

the force-deformation curves of different ISMO tubes with 2 unit cells based on the

same crease lengths (a = b = 38mm) but different γ angles. Initial pressure (Pi) is

the same at 6.9kPa. It can be seen that when the sector angle γ is less than 69◦,

the reaction force increases monotonically with deformation, implying a nonlinear

positive stiffness. When γ > 69◦, the reaction force curve has a segment of negative

stiffness. The critical, quasi-zero-stiffness can be achieved when the sector angle

equals to 69◦. At this particular sector angle, the length of the negative stiffness
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segment in the reaction force curve converges to zero. In other words, the tangent

stiffness of the fluidic origami is positive throughout its deformation range except for

the QZS configuration, where the tangent stiffness equals to zero.

There are several interesting properties from the ISMO fluidic origami of γ =

69◦. First of all, the QZS characteristics is achievable regardless of the initial pressure

(Pi). Secondly, the magnitude of reaction force at the QZS point (Fcr) is linearly

proportional to the magnitude of initial pressure. Finally, the deformation at the

QZS point is only a function of origami geometry and does not depend on the initial

pressure (Figure 2.3(c)). In Section 2.5, we will detail the benefits of these properties

in vibration isolation. In order to find a comprehensive design criterion to obtain the

QZS characteristics, we introduce a non-dimensional parameter w as follows:

w =
∆l

Na
, (2.7)

where ∆l is the deformation range with negative stiffness in the reaction force-

displacement curve (Figure 2.3(b)), and N is the number of unit cells in a tubular

channel. ∆l needs to be zero in order to achieve the QZS property in the force-

displacement curve. Figure 4(a) illustrates the result of the parametric study on the

correlation between w and the Miura-Ori design. It can be seen that for identical

Miura-Ori sheets, w is independent of the creases length ratio k(= a/b) and is only

a function of sector angle (γ). Based on the aforementioned governing equations and

results presented in the Figure 4(a), we can conclude that QZS is reachable only when

γ = 69◦ regardless of the crease lengths (a and b).
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2.3.2 Case 2: Non-Identical Stacked Miura-Ori Sheets (ISMO)

To study the design criteria for obtaining QZS when the fluidic origami consists

of two different Miura-Ori sheets, we introduce a new non-dimensional parameter (Γ)

to quantify the design difference between the two sheets:

Γ =
aII
aI
. (2.8)

We can follow the same procedure as in the ISMO case to obtain the design criteria

for obtaining QZS property in the NISMO case. The results of the parametric study

in this case is presented in Figure 2.4(b). In the NISMO case, the designs that can

provide QZS depend on both the sector angles and the ratio between crease line

lengths. Therefore, the parametric study results in Figure 2.4 can provide the design

guidelines to achieve QZS and further dynamic analyses discussed in the section 2.5.

2.4 Proof-of-concept Prototype and the Quasi-static

Test

To validate the feasibility of achieving the desired QZS property in fluidic

origami, we fabricate and test a proof-of-concept prototype. This prototype is de-

signed to possess the characteristics of an origami structure with rigid facets and

hinge-like creases. To this end, facets are first waterjet cut individually from a 0.25

mm thin stainless-steel sheet. Then 0.13 mm thin adhesive-back plastic films (Ul-

tra High Molecular Weight (UHMW) Polyethylene) are used to connect the facets

together into a complete origami sheet with hinge-like soft creases. This origami

prototype resembles a NISMO structure with four connected tubular channels, each
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Figure 2.5: Proof-of-concept experimental tests. (a) Schematic drawing showing the
design and assembly of the fluidic origami prototype. The zipper-sheets and internal
facets are highlighted. (b) Finished prototype made from water-jet cut steel sheets
and adhesive plastic films. (c) In this figure, the fluidic origami prototype has been
pressurized through a custom-made air pouch to its maximum internal volume config-
uration. Note that the end valve has been closed and disconnected from the pressure
supply to ensure a constant PV according to the governing Equation (6). (d) The
experimental set-up for the quasi-static test.

consisting three unit-cells (Figure 2.5(a)). Design parameters used in this prototype

are summarized in Table 2.1. The fluidic origami prototype is also equipped with

two “zipper sheets” to constraint the overall deformation to rigid-folding only. These

zipper-sheets have the same designs as the smaller Miura-Ori sheet I used in the main

structure, but they are rotated about the lengthwise x-axis (Figure 2.5(a)). Because

of this rotation, the zipper-sheet can drastically increase the eigen-stiffness of unde-

sired deformations (e.g. bending and squeezing) without hindering the rigid-folding

deformation [72].
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Table 2.1: Design parameters used in the proof-of-concept prototype
aI b aII γI γII

30mm 30mm 2.5aI 59◦ 78◦

Furthermore, we remove the internal facets in the fluidic origami prototype so

that the four initially separated channels are combined into one (Figure 2.5(a, b));

this makes it much easier to apply a uniform internal pressure. Removing the internal

facets, however, does not change the governing relationship between internal pressure

and reaction force as defined in Equation 2.6, because it does not alter the kinematic

relationships between rigid-folding, total volume, and overall length of the fluidic

origami. A custom-made cubic-shaped air pouch is inserted to the fluidic origami

to provide internal pressurization. The pouch is made of 0.1-mm thin low-density

polyethylene film (LDPE).

The main structure is then connected to two 2.77-mm thick clear cast acrylic

end sheets using 0.635-mm thick piano hinges to provide the required contact sur-

face for the quasi-static compression test. It is worth noting that this hinge only

anchor one origami facet to the end sheet (Figure 2.5(d)), and other facets in contact

with the end sheets are free to move. The compressive force-displacement curve of

the pressurized fluidic origami structure is tested on a tensile test machine (ADMET

eXpert 5601 with a 250lbf load cell, 3mm/min displacement rate) (Figure 2.5(d)).

The structure is pressurized with initial pressure of 1.38kPa until it reaches its maxi-

mum volume (Figure 2.5(c)). During testing, the pressurized air is constrained inside

the air pouch by closing the connected on/off valve (Figure 2.5 (c)). Five sets of

measurements are performed; and Figure 6 depicts the averaged force-displacement

curve, the corresponding standard deviation, and the analytical prediction based on

Equation 2.6. The quasi-static test on the fluidic origami structure exhibits a good

repeatability among the five sets of measurements, and the stand-ard deviation is
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about 3 percent of the average value in the QZS region.

2.5 Dynamic Analysis of Fluidic Origami with QZS

Properties

In this section, we examine the effectiveness of utilizing the fluidic origami for

low-frequency base excitation isolation. To avoid unnecessary complexities, here we

use the design parameters obtained in the ISMO case study, that is aI = aII = a,

b = a, and γ = 69◦. However, the physical principles and design insights obtained in

this case study can be applied to any other fluidic origami designs that can exhibit

QZS property. Figure 2.7 illustrates the system setup for vibration isolation, where
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Figure 2.7: Setup of the dynamic analysis. (a) Schematic diagram of using fluidic
origami for base vibration isolation. (b) The equivalent discrete system.

the fluidic origami is assumed massless and a lumped mass (m=1kg) is attached at

the top. In this way, one can describe the origami structure as a combination of a

nonlinear spring and a damping element between the lumped mass and base. It is

worth highlighting that utilizing the QZS property for vibration isolation requires that

the static equilibrium of the mass-spring-damper system shown in Figure 7 occurs at

the QZS configuration. That is, the weight of the lumped mass should be equal to

the reaction force at the QZS point (mg = Fcr). To achieve this, we can use the

unique property of pressurized fluidic origami that the magnitude of the reaction

force at the QZS configuration is linearly proportional to the magnitude of the initial

pressure (Figure 2.3(c)). Therefore, the initial pressure can be adjusted according to

the following equation:

Pi = mg

[
−
(
Vi
V

)
dV

dL

]−1∣∣∣∣∣
QZS

. (2.9)
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We can then write the governing dynamic equation of motion as:

ü+ 2ζu̇+ F (u) = Ω2Y cos Ωt (2.10)

where, u = x − y is the relative displacement between the lumped mass and

the base. F (u) is the reaction force of the fluidic origami. ζ is the damping ratio,

which is assumed be to 0.3 for this study. Ω is the excitation frequency, and Y is

the base excitation amplitude. The reaction force (F), which exhibits the desired

QZS characteristics, is determined based on the fluidic origami constitutive relation-

ship in Equation 2.6 and appropriate initial pressure according to Equation 2.9. To

characterize the performance of the base excitation isolation, we introduce a trans-

missibility index (TR), defined as the ratio of the root mean squares of mass and base

displacements x(t) and y(t) respectively:

TR =
RMS(x(t))

RMS(y(t))
. (2.11)

The governing equation of motion (equation 2.10) based on the actual force-

displacement curve (Equation 2.6) is solved numerically using MATLAB “ode23s”

solver. The steady-state time response (examples shown in Figure 2.8) can be used

to calculate the transmissibility index (TR).

Beside numerical simulation, another common method for examining the QZS

vibration isolators is to use odd order polynomials to approximate the reaction force-

displacement curve around the QZS point, so that the established dynamic analysis

methods like harmonic balance (HBM) can be used. For example, a third-order

polynomial approximation can be applied to QZS structures and effectively turns

the overall system into a classical Duffing oscillator [65, 67, 73–75]. Zhou et al. [76]

also used a cubic polynomial by truncating the Taylor series expansion about the
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Figure 2.8: Numerical simulation of the fluidic origami isolator based on actual force-
displacement curve according to equation 2.6. (a, b) Sample steady-state time re-
sponse with Ω = 0.1Hz, Y = a and the corresponding FFT result. (c, d) Another
sample response with different input (Ω = 1Hz, Y = a).

equilibrium to examine a cam-roller-spring QZS isolator. Some other studies even

used fifth odd order polynomials [77,78].

Nonetheless, these odd order polynomial fittings are fundamentally similar in

that they produce symmetric force displacement curves with respect to the zero ori-

gin. That is, f(x) = −f(−x), where x is an arbitrary displacement from the QZS

point and f(x) is the force-displacement relationship. However, the force displace-

ment curve of the fluidic origami shown in Figure 2.3 is strongly asymmetric. To

understand how such asymmetry influences the dynamic response and performance

of base excitation isolation, we apply both symmetric (Section 2.5.1) and asymmetric

(Section 5.5.2) polynomial fitting, and compare the corresponding HBM results to

the dynamic response based on the actual force-displacement curve.
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2.5.1 Dynamic Analysis based on Symmetric Polynomial Fit-

ting

A simple, symmetric cubic fitting assumes the reaction force F (u) ' αu3,

where the cubic stiffness coefficient α can be found via the least square method

(Figure 2.9(a)). The governing equation of motion (equation 2.10) can be updated

accordingly to:

ü+ 2ζu̇+ αu3 = Ω2Y cos Ωt. (2.12)

This essentially represents a Duffing oscillator with a zero linear stiffness term. As-

suming a fluidic origami structure consisting of two internally connected unit cells

(N=2) and an initial pressure of P = 13.8KPa, the cubic stiffness coefficient turns

out to be α = 81020N/m3. /par The steady state solution of equation 2.12 can be

approximated by harmonic balance method (HBM), which is a powerful method for

analyzing the steady-state behavior of strongly nonlinear dynamic systems [74,79,80].

According to HBM, the solution of equation 2.12 can be approximated as:

u(t) = U1 cos Ωt+ U2 sin Ωt. (2.13)

Substituting the assumed u(t) into the simplified dynamic equation (equation 2.12)

and discarding higher order harmonic terms give the following nonlinear polynomial

equations:

 −Ω2U1 + 2ΩζU2 + 3
4
αU1

3 + 3
4
αU1U2

2 − Ω2Y = 0,

−Ω2U2 − 2ΩζU1 + 3
4
αU2

3 + 3
4
αU2U1

2 = 0,
(2.14)

which can be solved numerically to obtain the two unknown coefficients (U1,U2). Once

these two coefficients are determined, equation 2.12 can be updated to provide the
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approximate solution for the relative displacement u(t) and then the TR index. Fig-

ure 2.9(b-c) show the transmissibility index obtained by numerical simulation and
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HBM corresponding to two different base excitation amplitudes: Y = 0.125Na and

Y = 0.75Na, where a is the crease line length, and N is the number of cells. For the

small excitation amplitude, HBM results based on a cubic fitting agree well with the

numerical simulation; however, there are significant discrepancies at the higher exci-

tation amplitude. Such discrepancy in TR magnitude at higher excitation amplitude

is also shown in Figure 2.9(d), which depicts the comparison between cubic fitting

prediction and numerical simulation for a wide range of excitation amplitudes with

a constant frequency (Ω = 0.1Hz). Therefore, the HBM results based on symmet-

ric polynomial fitting cannot accurately predict the qualitative behavior of the base

isolation behavior, especially at higher excitation amplitudes.

Besides the discrepancies in transmissibility predictions at higher excitation

amplitude, the symmetric cubic fitting also fails to predict the emergence of a drift or

zero-frequency “DC component” observed in the numerical simulation based on the

actual-force displacement curve (Figure 2.8(b, d)). Such a drift or DC component

is especially evident at a higher frequency (Figure 2.8(b)) so that the lumped mass

moves to another position rather than the static equilibrium and oscillates around

that point. Indeed, it can be proven that for any dynamic system described by a

second order differential equation of the form:

ü+ cu̇+ f(u) = F cos(Ωt), (2.15)

where the reaction force f(u) is a summation of odd-order polynomials exhibiting a

symmetric behavior around the origin:

f(u) = αm1u
m1 + αm2u

m2 + ...+ αmnu
mn , (2.16)
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and mi(i = 1, 2, ..., n) are odd and positive integers, the system cannot exhibit any

drift or zero frequency response. To prove by contradiction, we assume the solution

of equation 2.15 includes a constant drift term U0 so that:

u = U0 + U1 cos Ωt+ U2 sin Ωt. (2.17)

Applying HBM and collecting zero-frequency components produces the following

equation:

U0

kf1=
m1−1

2∑
k=0

lf1=
m1−(2k+1)

2∑
l=0

U0
2k(αl1U1

m1−(2k+1)−2lU2
2l)+...

U0

kf2=
m2−1

2∑
k=0

lf2=
m2−(2k+1)

2∑
l=0

U0
2k(αl1U1

m2−(2k+1)−2lU2
2l)+...

U0

kfn=
mn−1

2∑
k=0

lfn=
mn−(2k+1)

2∑
l=0

U0
2k(αl1U1

mn−(2k+1)−2lU2
2l) = 0

(2.18)

It is obvious that 2k, mi − (2k + 1)− 2l, and 2l are all positive even integers. Since

U0, U1, and U2 are real values, equation 2.18 only has two possible solutions:

 U0 = 0,

U0 = U1 = U2 = 0,
(2.19)

and only the first solution is non-trivial. Therefore, we can conclude that for any dy-

namic system described by Equation 2.15, which has a symmetric force-displacement

reaction, it cannot produce any drift or zero-frequency response as U0 = 0.

Therefore, it can be concluded that a symmetric approximation of the force dis-

placement curve could not fully capture the dynamic behaviors of the fluidic origami.

Our results imply that the asymmetry of the fluidic origami force-displacement rela-

tionship is crucial in that: 1) it could significantly increase the transmissibility index
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at higher excitation amplitudes and 2) it could induce a drift response. To vali-

date these observations, we add even-order polynomials to our fitting to introduce an

asymmetry around the QZS point, and the corresponding predictions are discussed

in the following subsection.

2.5.2 Dynamic Analysis based on Asymmetric Polynomial

Fitting

It should be noted that the reaction-force displacement of the fluidic origami

is a complex nonlinear function; therefore, it is extremely hard to replicate its exact

behavior through polynomial fitting. Obviously, a higher order polynomial fitting can

better replicate the force displacement curve of the fluidic origami. Figure 2.10(a)

shows the comparison between some polynomial fittings, which indicates that one

needs to consider a ninth-order polynomial curve to obtain a quantitatively accurate

prediction. However, including a ninth-order polynomials in HBM makes the study

extremely arduous and unreasonable. Alternatively, we can concentrate on qualita-

tively revealing the effects of asymmetry on the overall system dynamics. For this

reason, we use the simplest fitting that can preserve the asymmetric behavior of the

force-displacement curve, that is, a combination of second and third order polynomi-

als. It is worth noting that there should not be a linear term in the fitting in order to

satisfy the zero stiffness at the origin. With these considerations, force-displacement

function can be approximated as:

F (u) = α2u
2 + α3u

3, (2.20)
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where the quadratic and cubic stiffness term α2 and α3 are approximated by the least

square method. Estimating the values of these two stiffness terms are not trivial.

Figure 2.10(b) shows the actual force-displacement curve according to Equation 2.6

along with three different fitting results. These fittings all include cubic and quadratic

terms as in Equation 2.20, but differ in the displacement range where the least square
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method is applied. It can be clearly seen that if the range is too big, the fitting is not

able to replicate the QZS property of the actual force displacement-curve, that is, the

sign of stiffness changes to negative near origin. On the other hand, if the range is

too small, the fitting deviates significantly from the actual force displacement curve.

Therefore, one needs to use the maximum displacement range for fitting as long as

the QZS property is qualitatively preserved at the equilibrium point (|u| < 0.12a in

this case), which results in: α2 = 333004N/m2, α2 = 51260N/m2.

By incorporating the quadratic and cubic fitting, the equation of motion

(Equation 2.10) can be updated to:

ü+ 2ζu̇+ α2u
2 + α3u

3 = Ω2Y cos Ωt. (2.21)

Now we can use HBM to analyze the transmissibly at large base excitation amplitude

as well as the emergence of drift (DC) component in the dynamic response. Substitut-

ing the assumed solution in Equation 2.17 into Equation 2.21 produces the following

algebraic equations:


α2(U0

2 + 1
2
(U1

2 + U2
2)) + α3(U0

3 + 3
2
U0

2U1
2 + 3

2
U0

2U2
2) = 0,

−Ω2U1 + 2ΩζU2 + 2α2U0U1 + α3(3U0
2U1 + 3

4
U1

3 + 3
4
U1U2

2) = Ω2Y,

−Ω2U2 − 2ΩζU1 + 2α2U0U2 + α3(3U0
2U2 + 3

4
U2

3 + 3
4
U1

2U2) = 0.

(2.22)

We Introduce two new variables, A1 and θ, so that:

 U1 = A1 cos θ,

U2 = −A1 sin θ.
(2.23)
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The relative displacement (u) can be expressed in terms of the new variables as:

u = U0 + A1 cos(Ωt+ θ), (2.24)

where U0 represent the drift or DC component of the overall dynamic response, and

A1 represents the primary harmonics or AC component. Through some mathematical

manipulation, it can be shown that U0 satisfies the following ninth-order polynomial

equation:

(−225
16
α3

5)U0
9 + (−675

16
α2α3

4)U0
8 + (45

4
Ω2α3

4 − 795
16
α2

2α3
3)U0

7+

(−456
16
α2

3α3
2 + 105

4
α2α3

3Ω2)U0
6 + (−17

2
α2

4α3 + 87
4
α2

2α3
2Ω2 − 9

4
α3

3Ω4 − 9α3
3ζ2Ω2)U0

5+

(−α2
5 + 31

4
α2

3α3Ω
2 − 15

4
α2α3

2Ω4 − 15α2α3
2ζ2Ω2)U0

4+

(α2
4Ω2 − 7

4
α2

2α3Ω
4 − 7α2

2α3ζ
2Ω2 − 27

8
α3

3Ω4Y 2)U0
3+

(−α2
3ζ2Ω2 − 1

4
α2

3Ω4 − 27
8
α2α3

2Ω4Y 2)U0
2 + (−9

8
α2

2α3Ω
4Y 2)U0 − 1

8
α2

3Ω4Y 2 = 0,

(2.25)

which has a non-trivial real solution, indicating the emergence of drift due to

the asymmetry in force-displacement curves. Figure 2.11(a, b) show the system time

responses based on numerical simulation and HBM for Y = 0.25Na and Ω = 0.1Hz.

HBM based on the asymmetric polynomial fitting successfully predicts the drift (DC

component) as well as the primary harmonics (AC component). Moreover, it can also

be shown that the following relation holds between U0 and A1:

A1
2 = −α2U0

2 + α3U0
3

1
2
α2 + 3

2
α3U0

. (2.26)

And θ can be derived by solving the following equation:

tan θ = − 2Ωζ

−Ω2 + 2α2U0 + 3α3U0
2 + 3

4
α3A1

2 . (2.27)
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Figure 2.11: Sample steady-state time responses of system based on (a) numerical
simulation and (b) HBM for Y = 0.25Na and Ω = 0.1Hz. (c) The TR results derived
by numerical simulation based on Equation 2.10 and HBM based on asymmetric
fitting. Comparing this result to that in Figure 2.9(c), it is evident that the asymmetry
plays a crucial role in the high TR values at high excitation amplitude.

Once U0, A1, and theta are solved, they can be substituted in equation 2.24 to ap-

proximate the steady-state response. We can then use this approximation to calculate
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the transmissibility (TR) index. Figure 2.11(c) shows the TR results derived by nu-

merical simulation based on Equation 2.10 and HBM based on asymmetric fitting,

respectively. Both results clearly show a significant increase of TR at higher base

excitation amplitude. The discrepancy shown in this figure is a result of fitting error

from using a relatively low order polynomials. However as mentioned earlier, the

purpose of this approximation using HBM is to qualitatively elucidate the effect of

asymmetry in force-displacement curves, thus the presented result indeed provides

valuable insights into the dynamic behaviors of fluidic origami.

2.5.3 Base Excitation Performance Analysis

Now that we have an understanding on the influence of asymmetry from

the force-displacement relationship, in this section, we comprehensively evaluate the

based excitation isolation performance of the fluidic origami based on the actual

force-displacement curve. Figure 2.12(a) represents the correlations among the trans-

missibility index, normalized base excitation amplitude, and excitation frequency.

Different colors in this figure represent the value of TR index, and the fluidic origami

is considered successful in performing its task when TR < 1. The TR index is consis-

tently below one except at very small frequencies and high base excitation amplitudes

(highlighted region in this figure), therefore, fluidic origami with QZS is indeed an

effective isolator.

We further analyze the contribution of drift (DC component) and primary

harmonics (AC component) to the overall dynamic response. To this end, FFT anal-

ysis is applied to the steady-state time responses corresponding to different excitation

frequencies and amplitudes. Figure 2.12(b, c) show the magnitudes of DC (DC/Y )

and AC (AC/Y ) components, respectively.
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Figure 2.12: Base excitation performance study (a) The relationship among the TR
index magnitude, normalized excitation amplitude and normalized excitation fre-
quency. The performance threshold of TR = 1 is highlighted. (b) and (c) show the
corresponding contribution of DC and AC components in the response, respectively.
(d) Sample time-response at Y/Na = 1.4 and Ω = 0.1Hz, showing an AC domi-
nated response of AC term. (e) Another Sample time-response at Y/Na = 0.8 and
Ω = 1Hz, showing a DC dominated response.

It can be seen that at some regions of base excitation frequency and ampli-

tude, the TR index is high and dominated by the AC component. Figure 2.12(d)

shows such an example where Y/Na = 1.4 and Ω = 0.1Hz. In contrary, there are

some combinations of excitation frequencies and amplitudes by which the DC com-

ponents dominates, and an example corresponding to Y/Na = 0.8 and Ω = 1Hz is

shown in Figure 2.12(e). The significant drift in the time response can drive the TR

index to near one. Therefore, unlike other QZS vibration isolators with symmetric

force-displacement relationships, drift plays a considerable role in the system dynam-

ics. One needs to consider its effect carefully in order to properly explain the base

excitation isolation.
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Another important factor that needs to be considered is the limit of achievable

displacement of the fluidic origami. The length of fluidic origami is restricted by the

kinematics of folding, that is, the structure can only be stretched up to the fully

deployed state (θI = 0 shown in Figure 2.2(b)). Therefore, we have to ensure that

the maximum relative displacement u(t) of the end mass does not exceed the maxi-

mum length of fluidic origami.

As the first step to understand the effect of such a geometric constraint due to

folding, we show that the maximum allowed displacement from the QZS configuration

to the fully deployed configuration is linearly related to the number of unit cells in

a fluidic origami tubular channel. It can be shown that the folding angle at the

QZS configuration (θQZS) does not depend on the number of cells. Therefore, from

Equation 2.1 we can write the maximum possible displacement from QZS to the fully

deployed state as:

∆x = N

 2b tan γI√
1 + tan γ2I

− 2b cos θQZS tan γI√
1 + cos θ2QZS tan γ2I

 , (2.28)

Based on Equation 2.28(28), the relationship between the maximum possible displace-

ment (∆x) and the number of cells (N) is linear (Figure 13(a)). This result can then

be applied to the parametric analysis result shown in Figure 2.12(a) as a constraint.

That is, if the maximum end mass displacement is larger than ∆x at some frequencies

and base excitation magnitudes, the fluidic origami is no longer considered feasible

for vibration isolation. Figure 13(b) shows such a region where the end mass displace-

ment exceed the constraint of folding. We can see that based excitation frequency

and amplitude combinations that leads to TR > 1 is indeed unachievable. In another

words, as long as the fluidic origami is not stretched to its maximum length, it can
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always perform well as a low-frequency base excitation isolator. Moreover, fluidic

origami with more unit cells in its tubular channel can isolate base excitation with

larger amplitudes.
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Figure 2.13: (a) The linear relation between the maximum possible displacement ∆x
and the number of cells (N). (b) The shaded regions show the excitation magnitudes
and frequencies at which maximum relative displacement of the end mass exceeds the
folding limitation of the fluidic origami.

2.6 Summary and Conclusion

This study analytically and experimentally examines a pressurized origami

cellular structure with an asymmetric quasi-zero stiffness (QZS) property, and in-

vestigates its use in low-frequency vibration isolation. Fluidic origami consisting

of stacked Miura-Ori sheets has been shown to exhibit many unique and interest-

ing mechanical properties related to stiffness. This research demonstrates that by
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sealing the pressurized structure, it is possible to acquire quasi-zero stiffness (QZS)

property due to the intricate and nonlinear relationship between folding and inter-

nal volume change.Design guidelines for achieving QZS are presented for two different

cases: One is identical stacked Miura-Ori sheets (ISMO) and the other is non-identical

stacked Miura-Ori (NISMO). A proof-of-concept prototype was tested to verify the

existence of desired QZS property. The appropriate fluidic origami designs are then

used for a comprehensive dynamic study of low-frequency base-excitation isolation.

In particular, this study closely examines the effects of inherent asymmetry in the

force-displacement relationships of fluidic origami. Via comparing the approximation

solutions based on harmonic balance method using both symmetric and asymmetric

polynomial fittings, we show that the asymmetry in force-displacement curve can 1)

induce a significant drift (DC component) in the steady state time response and 2)

increase the transmissibility index at high excitation amplitude and low frequency.

These phenomena must be carefully considered for evaluating the base excitation

isolation performance. Moreover, the kinematic constraint due to folding is also con-

sidered to ensure that fluidic origami will not be stretched beyond its maximum

possible length. We show that QZS property from fluidic origami can indeed provide

effective base ex-citation isolation at low-frequencies. The internal pressure of fluidic

origami can be adjusted to accommodate changes in the end mass, making the cellular

structure tunable. Results of this study can lay the foundation of origami-inspired

metamaterials and meta-structures with embedded dynamic functionalities. More-

over, investigations into the asymmetry in force-displacement relationship provide

valuable insights for many other QZS structures with similar properties.

In the next two chapters we investigate another dynamic application of origami

folding. In chapter 3, we study the potential effects of using a generic nonlinear spring

on the performance of a jumping mechanism. Then in chapter 4, we use our findings
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from chapter 3 and replace the generic theoretical nonlinear spring with an elastic

Tachi-Miura polyhedron (TMP) bellow origami structure and optimize its design to

achieve the best jumping performance.

43



Chapter 3

The effect of Nonlinear Springs in

Jumping Mechansims

3.1 Abstract

This research investigates the potential effects of utilizing nonlinear springs on

the performance of robotic jumping mechanisms. As a theoretical example, we study

dynamic characteristics of a jumping mechanism consisting of two masses connected

by a generic nonlinear spring, which is characterized by a piecewise linear function.

The goal of this study is to understand how the nonlinearity in spring stiffness can

impact the jumping performance. To this end, non-dimensional equations of motion

of the jumping mechanism are derived and then used extensively for both analytical

and numerical investigations. The nonlinear force-displacement curve of the spring

is divided into two sections: compression and tension. We examine the influences of

these two sections of spring stiffness on the overall performance of the jumping mech-

anism. It is found that compression section of the nonlinear spring can significantly

increase energy storage and thus enhance the jumping capabilities dramatically. We
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also found that the tension section of the nonlinear force-displacement curve does not

affect the jumping performance of the center of gravity, however, it has a significant

impact on the internal oscillations of the mechanism. Results of this study can unfold

the underlying principles of harnessing nonlinear springs in jumping mechanisms and

may lead to the emergence of more efficient hopping and jumping systems and robots

in the future.

3.2 Introduction

Studying legged robots is a century-old branch of robotic studies [81]. The

aspiration of replicating the omnipresent legged animals that are able to overcome

the unfavorable environmental conditions have engaged more and more robotic re-

searchers in this field [82, 83]. However, the dynamics of legged robots are quite

complicated compared to the stationary and wheeled mobile robots, especially due

to the impact with the ground. This, along with several other issues such as complex

nonlinear control, has led researchers to focus on single-legged systems that possess a

much simpler configuration [84]. The locomotion of single-legged robotic systems is

achieved by hopping. Hopping is the process of utilizing stored energy of the system

to jump and it can occur repeatedly via storing and then reusing the energy during

landing [85]. Despite its relative simplicity, hopping is still a useful means of locomo-

tion especially in terrains that are inaccessible to wheeled or tracked systems [84]. It

can also be very advantageous in situations when there is a sudden need for reflex,

e.g. frogs or bush-babies take advantage of their innate hopping ability to flee from

predators. Recently, there have been plenty of valuable researches on different aspects

of jumping locomotion, from proposing novel hopping mechanisms [86–89] to various

control strategies for stabilizing the dynamic motion [90–93].
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One can discern three pivotal topics of research among the recent investiga-

tions on hopping or jumping robots: Actuators, energy storage, and dynamics of

hopping. Actuator has always been one of the main concerns of researches in this

field. Since the very first hopping mechanism prototype proposed by Matsuoka [94],

researchers have been seeking more efficient actuators that can provide a low-cost,

lightweight and safe actuation. Several prominent researches in the field of hopping

robots have been inspired by the mechanism designed by Raibert [81, 95], which uti-

lizes hydraulic and pneumatic actuators. Other works utilized electric actuators that

are cleaner, safer, less expensive, and more appropriate for autonomous robots. Be-

sides actuators, energy storage also plays a significant role in the performance of

hopping robots. All of the existing jumping mechanisms rely on the instant release of

the stored energy to realize jumping [89], and there are several approaches to achieve

the required energy storage. Implementing traditional springs, such as compression,

extension, or torsion springs, is probably the most popular method. Compressed air

is another method of energy storage [89] that has been used in rescue [96] and patrol

robots [97]. Several researchers have also implemented specialized elastic elements

or customized springs [89] for storing energy. For example, the MIT microbot uti-

lizes two symmetrical carbon fiber strips with dielectric elastomer actuators [98, 99],

Jollbot deforms its spherical shape to store energy [100], and another compact jump-

ing robot takes advantage of an elastic strip to form closed elastica actuated by two

revolute joints [101,102].

The dynamics of hopping robots is another important branch of robotic re-

search for deciphering the underlying principles of hopping. Hopping mechanisms

exhibit a nonlinear dynamic behavior, naturally. This is especially due to the impact

with the ground and the presence of distinct stance and flight phases with sudden

transitions [84]. The governing dynamics of these two main phases are fundamen-
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tally different. Researchers have conducted several studies on the nonlinear dynamics

of hopping. For example, M’Closkey and Burdick investigated forward running dy-

namics of a 2-DOF hopper using a Poincare’ return map [103]. Koditschek and

Buehler modified the Raibert’s model and studied two discrete dynamical models of

this vertical hopper using linear and nonlinear spring [91]. The nonlinear springs can

introduce unique and desirable dynamic characteristics to the hopping mechanisms.

They were utilized in several jumping prototypes and their effects on the overall dy-

namic performances were assessed. For example, Yamada et al. proposed the idea

of using snap-through buckling – an archetypical nonlinear stiffness property – of a

closed elastica for jumping robots [101, 102]. In another study, Fiorini and Burdick

implemented a linear spring in a 6-bar geared mechanism to generate an effective

nonlinear spring behavior and investigated its effects on overcoming the pre-mature

take-off [104]. In addition, through a preliminary study, Armour investigated the

effect of negative stiffness on jumping [100]. However, apart from these experimental

case studies, there is a lack of any comprehensive analysis on the potential benefits of

utilizing nonlinear springs to improve the performance of the hopping and jumping

mechanisms. Such a gap in our knowledge prevents us from building hopping robots

that can effectively exploit nonlinear springs. Therefore, the aim of this research is to

fill this void by analyzing the performance of a generic jumping mechanism consisting

of two identical mass-es connected by a nonlinear spring. To this end, we use a piece-

wise linear function, as an archetype example, to characterize the force-displacement

relationship of the nonlinear springs. The outcome of this research can provide guide-

lines for robotic researchers and foster more efficient hopping mechanisms and robots

in the future.

The rest of this paper is organized as follows. In section 3.3, we introduce

the generic jumping mechanism utilizing a nonlinear spring as the energy storage
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element. Then we derive the non-dimensional equations of motions that govern the

jumping phenomenon. In section 3.4, we analyze the potential merits of utilizing a

nonlinear spring element through an extensive study based on numerical simulations

and analytical reasoning. Finally, section 3.5 concludes the paper with a summary

and discussion.

3.3 Jumping Mechansim and its Equations of Mo-

tion

The jumping mechanism (figure 3.1) investigated consists of two identical

masses connected by an elastic element exhibiting non-linear stiffness characteristics.

Energy storage in the system occurs through exerting an input force using an actua-

tor on the top mass to deform the elastic element. The reaction force-displacement

relationship of the nonlinear spring can be generally represented by a Cn(n >= 0)

continuous curve. However, in order to avoid introducing unnecessary complexities,

we focus on a generic piecewise linear C0 curve to describe the nonlinear stiffness prop-

erties. Despite its relative simplicity, the C0 curve is a useful tool for approximating

many nonlinear stiffness properties commonly used for engineering applications, e.g.

negative stiffness [69] and quasi-zero stiffness [63] characteristics. Figure 3.2(a) shows

the C0 piecewise linear force-displacement curve that will be used in this study. The

displacement axis is represented by y, where y = Y2 − Y1 − l0. Y1 and Y2 are the

height of the two masses with respect to the ground, and l0 is the free length of the

nonlinear spring. This curve consists of four linear sections with different stiffness

coefficients (k1 to k2). We also consider the structural and actuation limit that can

constrain the problem. The structural limit (H) is the maximum relative displace-
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Figure 3.1: Schematic of the jumping mechanism in (a) pre-jump phase of motion
and (b) post-jump phase of motion.

ment between the two masses in order to compress the spring and store an initial

energy. The actuation limit is the maximum amount of external force (fc) the actu-

ator can provide. Moreover, the force-displacement curve can be divided in to two

separate regions: The compression region (negative displacement), where the spring

is compressed; and the tension region (positive displacement), where the spring is

under tension. This separation allows us to study the energy storage (compression)

and jumping dynamics (tension) in a more systematic approach, as we will see later

in section 3.4.

Knowing the reaction force of the nonlinear spring, we can now investigate the

dynamic behavior of the system. The dynamic motion of the jumping mechanism can

be divided into two different phases: 1) pre-jump phase and 2) post-jump phase. In

order to just focus on the potential effects of the nonlinear spring, we assumed that

the masses are equal: m1 = m2 = m. In the following two sections, we study the

motion of the system in these two phases.

49



F

yc y y-H

fc

(a) (b)
^

^

^

^

^
^

^

k 

k!

k"
k#

F

yc-1

-1

k 

k!

k"
k#
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3.3.1 Pre-Jump Phase of Motion

The pre-jump phase (figure 3.1(a)) occurs for all time prior to the bottom

mass m1 leaving the ground. During this phase, an input actuation force displaces up

to a certain initial position (d). Once the input force is removed, the reaction force

of the spring accelerates the upper mass upward. The governing equation of motion

during this phase can be represented by:

mŸ2 = −F (Y2 − l0)−mg, (3.1)

where m is the mass of the upper body, F (Y2− l0) is the reaction force of the spring,

and Ÿ2 and Y2 represent the acceleration and position of the upper mass (relative to

the ground), respectively. We define k∗ = fc/H, the ratio between actuation limit

and structural limit, as a reference linear spring coefficient. Equation 3.1 can be

non-dimensionalized as follows:

d2Ŷ2
dτ 2

+ F̂ (Ŷ2 − l̂0) = −Ĝ, (3.2)
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where, Ŷ2 = Y1/H, τ = tω, ω =
√
k∗/m, F̂2 = F/fc, l̂0 = l0/H, and Ĝ = mg/fc. We

can also non-dimensionalize the stiffness coefficients: k̂i = ki/k
∗, (i = 1, 2, ..., 4).

3.3.2 Post-Jump Phase of Motion

In order for a jump to be possible, the jumping mechanism must be capable

of surpassing the gravitational force once the displacement in the non-linear elastic

element has become positive. That is, the restoring force of the non-linear elastic

element acting on the lower mass must exceed its weight. The jumping occurs when

Ŷ2 = Ŷ2,jump, where:

F̂ (Ŷ2,jump − l̂0) = Ĝ. (3.3)

The airborne or post-jump phase of the motion is illustrated in figure 3.1(b). Once

the bottom mass has left the ground, the governing system of coupled equations of

motion can be defined as:

mŸ1 = F (Y2 − Y1 − l0)−mg,

mŸ2 = −F (Y2 − Y1 − l0)−mg.
(3.4)

Following the same procedure of section 3.3.1, we can derive the non-dimensional

system of equations as follows:

d2Ŷ1
dτ2

= F (Ŷ2 − Ŷ1 − l̂0)− Ĝ,
d2Ŷ2
dτ2

= −F (Ŷ2 − Ŷ1 − l̂0)− Ĝ.
(3.5)

The initial conditions of equation 3.5 can be extracted from the solution of pre-jump

phase (equation 3.2). In the next section, we present the numerical simulation results

of solving the equations of motion.
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3.4 Studying The Effect of Force-Displacement Curve

of the Nonlinear Spring on the Jumping Per-

formance

Jumping occurs when the upper mass in figure 3.1 reaches a specific height

(equation 3.3), as we mentioned earlier. At this point, the lower mass loses its contact

with the ground and jumps off the ground. At the transition stage when the jump

starts, most of the stored energy in the spring (E0) is converted to the kinetic energy

of the upper mass and some portion will be converted to gravitational potential

energy. We assume that the whole mechanism is subject to conservative forces and

no damping is involved. Therefore, during the post jump phase when both of the

masses are airborne, the total energy of the system (aka. kinetic energy + spring

potential energy + gravitational potential energy) will be conserved. Nevertheless,

we expect that two different masses of the mechanism exhibit complex behaviors after

jumping due to the presence of a nonlinear spring element. Therefore, it is important

to study both the responses of the masses individually and the movement of the overall

center of gravity in order to obtain a clear understanding of the dynamic behaviors.

To this end, we start our investigation by analyzing the effect of the stored energy on

the jumping performance. The stored energy is related to the compression (negative

displacement) section of the force-displacement curve. Therefore, the first objective

would be to gain an accurate comprehension of the underlying principles that regulate

the relation between the compression section of the force-displacement curve and the

jumping phenomenon (section 3.4.1). In order to acquire a comprehensive tool for

designing a jumper with a desired functionality, we also investigate the effect of the

tension (positive displacement) section of the force-displacement curve on the jumping
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behavior of the overall center of gravity and both masses (section 3.4.2).

3.4.1 Energy Storage and the Compression (Negative Dis-

placement) Section of the Force-Displacement Curve

Storing energy in the system, shown in figure 3.1, is achieved by compressing

the spring element to an initial displacement. The stored energy (E0) at this stage is

equal to the amount of work (Wext) that has been done on the spring to compress it.

The relationship between the stored energy and the restoring force of the spring, if it

is compressed from the free length, can be expressed as:

E0 = Wext =

d∫
0

F (y). dy, (3.6)

where d is the displacement of the spring from the free length and F (y) represents

the restoring force of the spring (figure 3.3(a)). As we mentioned in section 3.3, a

piecewise linear force-displacement curve (figure 3.2) is an advantageous tool for rep-
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resenting most of the nonlinear stiffness properties that have been used for engineering

applications. Therefore, in this section we focus on the generic piecewise linear force-

displacement curves constrained by the actuation and structural limits (figure 3.2(b))

to study the effect of nonlinear spring elements on the jumping phenomenon. To

obtain a better insight into the energy storage function, we first non-dimensionalize

equation 3.6 based on the structural and actuation limit so that,

Ê0 =

d̂∫
0

F̂ (ŷ). dŷ, (3.7)

where: Ê0 = E0
1
2
k∗H2 , d̂ = d

H
.

Two important factors affect the amount of stored energy in the mechanism,

namely initial displacement and the force-displacement function. It is clear that for a

given force-displacement relationship, one can store the maximum amount of energy

when the mechanism is initially compressed all the way up to its structural limit, that

is d̂ = −1.

Meanwhile, shape of the force-displacement curve plays a significant role as

well. Consider an arbitrary piece-wise linear curve in the negative displacement re-

gion, bounded by the two structural and actuation limits (d̂ = −1 and F (d) = −1,

figure 3.3(b)). The stored energy of the system is equal to the area between the ŷ-

axis and the F (ŷ) curve (shaded region in figure 3.3(b)). The area can be represented

by the summation of three constituent areas, one triangle (A1) and two trapezoids

(A2 and A3) (figure 3.3(c)), as follows:

Ê0 = A1 + A2 + A3. (3.8)

The compression section of the generic force-displacement curve consists of
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three piecewise linear curves with three different non-dimensional stiffness coeffi-

cients: k̂2, k̂3 and k̂4. The magnitudes of these three stiffness coefficients can be

varied to examine the effect of energy storage on the jumping behavior. Figure 3.4(a)

demonstrates three different piecewise linear force-displacement curves with a posi-

tive, negative, and zero k̂3 coefficient, respectively. Another “constant linear” force-

displacement curve with stiffness coefficient k̂ = 1 is also plotted in this figure for

reference. Constant linear force-displacement curve is a linear curve with a constant

stiffness throughout its domain. Indeed, this constant linear force-displacement rela-

tionship can lead to the largest possible stored energy among all of the linear stiffness
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curves bounded by the structural and actuation limit. There-fore, it represents the

best possible linear spring. We assume the three piecewise linear curves share the

same k̂1, k̂2 and k̂4 stiffness coefficients and ŷc. In addition, we choose the tension

stiffness of all three piecewise linear springs to be the same as the fully linear spring,

that is k̂1 = k = 1, in order to compare the performance of nonlinear and linear

springs. All of the piecewise linear curves are chosen to provide more stored energy

than the constant linear spring.

We used MATLAB ODE45 solver to solve the system of ordinary differential

equations governing the motion, presented by equation 3.2. Initial condition of the

upper mass is chosen as [Ŷ2 = 0,˙̂Y2 = 0], where Ŷ2 is measured from the ground. Ad-

ditionally, Initial conditions of the post-jump phase of motion presented by equation

3.5, is extracted from the solution of pre-jump phase (governed by equation 3.2).

Figure 3.4(b) and 3.4(c) show the vertical displacement of both masses and the

center of gravity. Based on the results, it can be seen that the jumping mechanisms

featuring piecewise linear springs outperform the one with constant linear springs in

terms of jumping distances (up to 14 precent increase). Furthermore, both of the

masses and also the center of gravity are able to reach higher heights when k̂3 is

positive. This is because the mechanisms with positive k̂3 stiffness coefficients are

able to store more energy due to the larger area between the displacement axis and

the force-displacement curve (aka. larger A2 in figure 3.3).

Besides jumping height, we also compare the energy efficiency of these mech-

anisms. The ability of reaching higher heights in piecewise linear springs stems from

their capability of storing more energy in the system. Therefore, it is important to

analyze the efficiency of utilizing this additional energy. We define the energy effi-

ciency of the mechanism as the ratio between the maximum gravitational potential

energy of the overall center of gravity (max(PECG)) and the initial stored energy
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(E0):

η =
max(PECG)

E0

× 100 (3.9)

Figure 3.5(a-d) shows the gravitational potential energies of three different systems

presented in figure 3.4. Also shown in this figure is the initial stored energy level.

Based on these results, we can observe that the mechanism utilizing the piecewise

linear spring exhibit a slight drop in energy efficiency (¡2 percent for the spring with

positive k̂3).
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feature the same k̂1 = 1, k̂2 = 2, k̂4 = 0.9, ŷc = −0.2. But they have different k̂3
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We further analytically investigate this efficiency drop for the mechanisms

with higher initial stored energy. Consider the initial stored energy of a mechanism
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utilizing a constant linear spring with stiffness coefficient k̂1 = 1. We can represent

the non-dimensional initial stored energy of the system by E0, where:

Ê0 =
E0

E0, linear spring

=
E0

1
2
k∗H2

= 1 + ê, (3.10)

where ê (0 <= ê <= 1) represents the additional non-dimensional stored energy by

utilizing a nonlinear properties in the compression section of the force-displacement

curve. One can represent the difference between the efficiencies of the nonlinear

system and the linear system by the following equation:

∆η = ηlinear − ηnonlinear =

(
max(PECG,linear)

Ê0,linear

− max(PECG,nonlinear)

Ê0,linear + ê

)
× 100.

(3.11)

By considering the fact that the additional energy due to utilizing a nonlinear spring

will be converted to the kinetic energy of the system at the free length and with some

mathematical work, one can show that:

ηlinear − ηnonlinear =

(
2Ĝ

ê

1 + ê

)
× 100. (3.12)

This equations implies that the efficiency drop of a nonlinear mechanism follows

a hyperbolic relationship with respect to the additional energy ê. If more energy is

stored in the pre-jump phase via using nonlinear springs, jumper mechanism becomes

less efficient. However, it is important to point out that this drop in efficiency is

linearly dependent on Ĝ, which is the ratio of the jumping mechanism mass over

the maximum spring reaction force (aka. actuation limit). For a typical jumping

mechanism, this ratio is designed to be small and significantly less than one. In our

case study, Ĝ = 0.1. As a result, the magnitude of the efficiency drop from using

58



nonlinear spring is small (less than 2 percent in our case studies). The benefit of

significantly higher jump distance (up to 14 percent increase) easily outweigh the

small sacrifice in terms of efficiency.

Therefore, our results elucidate that implementing nonlinear spring can sig-

nificantly increase the jumping height by providing a pathway to store more energy

under the actuation and structural limits. Although these results are based on a C0

piecewise linear force-displacement curve, the principles can be directly extended to

any Cn(n >= 1) nonlinear curves.

3.4.2 Tension (Positive Displacement) Section of the Force-

Displacement Curve

In the previous section, we analyzed the effect of utilizing nonlinear properties

to increase the energy storage in the compression section (negative displacement) of

the force-displacement curve. In order to fully comprehend the effect of nonlinear

springs on jumping, we also need to study the tension (positive displacement) section

of the force-displacement curve. In this section, we consider three different stiffness

profiles (figure 3.6). The compressive part of these force-displacement curves are same

as the one in the previous section with positive k̂3(= +0.7); while the tension parts

of these curves (k̂1) differ. Three different k̂1 values are chosen: k̂1 = 1 represents a

spring with the same tension stiffness as the constant linear spring discussed in the

previous section. k̂1 = 0.5 and k̂1 = 5 represent springs with softer and stiffer (with

respect to k̂1 = 1) tension stiffness, respectively (figure 3.6).

Figure 3.7(a) shows the vertical displacement of both of the masses according

to the three different tension stiffness coefficients. Based on the results of figure

3.7(c), we can observe that changing the tension (positive displacement) stiffness of
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Figure 3.6: Three different piecewise linear force-displacement curves with the same
compression section (k̂2 = 2, k̂3 = +0.7, k̂4 = 0.9, ŷc = −0.2) but different tension
stiffness coefficients.

the force-displacement profile does not affect the maximum height that the center of

gravity of the mechanism can reach. On the other hand, the stiffness of the tension

section has a significant effect on the oscillations of two constituent masses of the

mechanism. Based on the results of figure 3.7(b), we can observe that increasing

the tension stiffness will decrease the amplitude of the internal oscillations of the

mechanism, but increases their frequency. In the next section, we try to qualitatively

explain these observations analytically by performing a modal analysis on a simplified

system.
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3.4.3 The Effect of Tension Stiffness on the Jumping Motion

of the Center of Gravity and the Internal Oscillations

Figure 3.1(b) shows the jumping mechanism at its airborne phase. We derived

the equations of motion for the case where m1 = m2 = m (equation 3.5). At this

section we consider a more general case where the upper and the lower mass can

be different. We can show that the motion of the both masses is governed by the

following system of equations:

m1z̈1 = F (z2 − z1)−m1g

m2z̈2 = −F (z2 − z1)−m2g,
(3.13)

where z2 and z1 are measured from the free length and the ground, respectively

and F (z2 − z1) is a nonlinear function. Here, we simply use the tension stiffness k1

to represent the stiffness characteristics around the equilibrium (z2 = 0). This is a

reasonable simplification because the post-jump phase of motion initially occurs when

the spring is under tension. Therefore, we can simplify the equations of motion in a

linear matrix form: z̈1

z̈2

 =

 − k1
m1

k1
m1

k1
m2

k1
m2


 z1

z2

+

 −g
−g

 ≡ ~̈Z = [K] ~Z − ~g. (3.14)

We can find the eigenvalues and the corresponding eigenvectors of the stiffness matrix

([K]) as follows:

λ1 = 0, ~v1 =

 1

1


λ1 = −k1m1+m2

m1m2
, ~v2 =

 −m2/m1

1

 .

. (3.15)
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One can show that, by diagonalization:

[K] = [V ][Λ][V ]−1, (3.16)

where:

[V ] =

(
~v1 ~v2

)
=

 1 −m2

m1

1 1

 , [Λ] =

 λ1 0

0 λ2

 =

 0 0

0 −k1m1+m2

m1m2

 .

(3.17)

Therefore, we can update equation 3.14 as follows:

~̈Z = [V ][Λ][V ]−1 ~Z − ~g. (3.18)

Pre-multiply both sides of equation 3.18 by V −1:

[V ]−1 ~̈Z = [Λ][V ]−1 ~Z − [V ]−1~g, (3.19)

and define ~U = [V ]−1 ~Z. That is:

~U =

 u1

u2

 = [V ]−1 ~Z =

 m1z1+m2z2
m1+m2

m1

m1+m2
(z2 − z1)

 . (3.20)

Based on equation 3.20, we can observe that u1 and u2 represent the position of

the center of gravity and the magnitude of the internal oscillatory motion of the

mechanism, respectively. Using ~U as the new state variable, we can update equation

3.18:

~̈U = [Λ]~U − [V ]−1~g. (3.21)
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By substituting and matrices into equation 3.21, we have:

 ü1

ü2

 =

 0 0

0 −k1m1+m2

m1m2


 u1

u2

−
 m1

m1+m2

m2

m1+m2

− m1

m1+m2

m1

m1+m2


 g

g

 . (3.22)

This means that:

ü1 = −g
(

m1

m1+m2
+ m2

m1+m2

)
= −g

ü2 = −k
(
m1+m2

m1m2

)
u2.

(3.23)

We can clearly see that the acceleration of the center of gravity is independent of the

stiffness of the tension section and is always equal to −g. Therefore, we can conclude

that, even with different tension stiffness coefficients, the center of gravity movement

of these mechanisms will be the same as long as the initial stored energy based on

compression section is the same. We also observed this for the actual nonlinear system

(figure 3.7(c)). We can also derive the frequency of the internal oscillations of the

simplified mechanism as follows:

Ω =

√
m1 +m2

m1m2

k1. (3.24)

Although equation 3.24 is derived for a simplified mechanism and does not provide the

exact frequency of oscillations for the nonlinear system, it suggests that the internal

oscillations of the mechanism depend on the tension stiffness, which is in agreement

with the numerical simulation results, based on the actual nonlinear system (figure

3.7(b)).

Therefore, although changing the stiffness coefficient of the tension section

does not change the jumping behavior of the center of mass, it has a significant effect

on the internal oscillations of the system. Consequently, utilizing a specific tension

stiffness for the mechanism is a choice that depends on the desired internal behavior
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of the mechanism, and may vary in different applications.

3.5 Conclusion and Discussion

In this study, we investigate the dynamic behaviors of a jumping mechanism

consisting two masses connected by a nonlinear spring characterized by a generic

piecewise linear function. We derive the non-dimensional equations of motion and

solve them numerically to elucidate the effect of two main sections of the nonlinear

force-displacement curve, i.e. compression and tension, on the jumping performance

of the system. We observe that utilizing nonlinear springs can store more initial

strain energy in the system compared to a linear spring, and can lead to higher

jumps both in term of the center of gravity and the individual masses. However,

the energy efficiency of the jumping would drop slightly. In addition, we saw that

the stiffness coefficient of the tension section of the non-linear force-displacement

curve does not affect the airborne motion of the center of gravity. Although it has a

significant effect on the internal oscillations of the jumping mechanism after it leaves

the ground. Researchers have investigated various approaches for creating nonlinear

spring characteristics, from combining different linear springs [67] to fluidic [35,63,105]

and bi-stable [26] origami. Therefore, results of this study is generic and can be

applied to a variety of robotic designs to create more efficient and optimized jumping

and hopping performance.

In the next chapter, we use the results and outcome of this study to analyze

the effect of using a Tachi-Miura polyhedron (TMP) bellow origami structure to

materialize the nonlinear spring with desired strain-softening effects in the jumping

mechansim. We show how this origami strcture can enhance the performance of the

jumping mechanism.
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Chapter 4

Design and Optimization of an

Origami-Inspired Jumping

Mechanism with Nonlinear

Stiffness Properties

4.1 Abstract

This research investigates the feasibility of utilizing origami folding techniques

to create an optimized jumping mechanism. As a theoretical example, we study the

dynamic characteristics of a jumping mechanism consisting of two masses connected

by a Tachi-Miura Polyhedron (TMP) origami structure with nonlinear stiffness char-

acteristics. We show how the desired “strain-softening” effects of the TMP structure

can lead to design of jumping mechanisms with optimized performance. The kinemat-

ics of TMP origami structure is reviewed and a modified model of its reaction-force

displacement curve is presented. We derive the equations of motion of the jump-
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ing process and use their numerical solutions extensively for design optimization.

Through this process we are able to obtain optimum geometrical configurations for

two different objectives: The maximum time spent in the air and the maximum clear-

ance off the ground. Results of this study can lead to emergence of a new generation

of more efficient jumping mechanisms with optimized performance in the future.

4.2 Introduction

Among the myriad of great achievements in human history, invention of robots

is a major breakthrough. Robots have affected and revolutionized so many aspects

of our mundane life. From industrial [106–108] and military [109] applications to ed-

ucation [110,111] and healthcare [112,113] services, they have been and will continue

improving the quality of our lives. Among the various existing categories of robots,

mobile robots are particularly important because they can perform tasks that are

inaccessible or unsafe for humans [114], such as volcano exploration, coal extraction,

and disaster rescue [115]. Mobile robots can be classified into five different cate-

gories according to their ground-contact-based modes of locomotion: wheeled robots,

tracked robots, snake robots, legged robots, and wheel-legged robots [115]. Among

them, the legged robots are particularly advantageous due to their relative superior-

ity in maneuvering and their capability to access vastly different terrains [116] like

mountain lands, sands, and even rugged terrains [115].

However, the dynamics of legged robots, in general, is more complicated com-

pared to the wheeled, tracked, or snake robots especially due to their impacts with the

ground [84]. They also require complex nonlinear control strategies. Therefore, re-

searchers have been encouraged to study single-legged robotic systems as well [84,117].

Despite the relative simplicity of their configuration, single-legged robots are found to
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be extremely advantageous in different applications [84]. The locomotion in this kind

of robotic systems is achieved by jumping [85], which is a relatively simple mode of lo-

comotion that can be beneficial in terrains that are inaccessible to wheeled or tracked

systems [84]. Recently, there have been a surge of interest in single-legged robotic

systems and several researchers have studied different facets of jumping mechanisms

and their locomotion [86,89,90,93].

One of the most important and crucial topics in the field of jumping robots is

the energy storage technique. In all of the existent jumping mechanisms, the jump-

ing phase of motion is achieved by an instant release of the stored energy in the

system [89]. Therefore, energy storage has an undeniably important role in the per-

formance of the jumping robots [117]. Researchers have proposed various methods

for storing energy in robotic systems: From traditional springs [118–120] (compres-

sion, extension, or torsional springs), and compressed air [96], to custom-designed

elastic elements [98, 99, 102]. The latter approach of energy storage essentially uses

the nonlinear spring elements to introduce unique and desirable nonlinear dynamic

characteristics to jumping robots.

Nonlinear spring elements have been used in several jumping robots and their

effect on the overall dynamic performance has been studied in several researches. For

example, in the study by Yamada et al., the snap-through buckling of a closed elastica

has been examined as a means of energy storage [101,102]. In another study, Fiorini

and Burdick investigated a jumping mechanism with a nonlinear stiffness achieved by

implementing a linear spring in a 6-bar geared mechanism [104]. Furthermore, the

authors of this paper have recently rigorously examined the effects of using a generic

nonlinear spring in a jumping mechanism [117] both numerically and analytically.

We showed that utilizing nonlinear springs with “strain-softening” characteristics,

can increase the initial stored energy and consequently create higher jumps in terms
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of center of gravity and ground clearance, while sacrificing only a negligible amount

of efficiency [117]. More importantly, results of this study were generic so that they

can be applied to different types of nonlinear spring mechanisms. This leads to the

research question of this study: Can we use origami structure to materialize the

desired nonlinear stiffness characteristics in a jumping mechanism?

Origami – the ancient Japanese art of paper folding – has recently expanded

the design and fabrication repertoire of engineers [27]. It has found lots of applications

from kinetic architectures [72] and self-folding robots [17] to surgery devices [121] and

DNA machines [122]. In addition, researchers have been studying origami folding

techniques as a method for achieving tunable nonlinear stiffness recently such as

negative and quasi-zero stiffness [59,123] and multi-stability [26, 124].

Therefore, in this paper, we investigate the feasibility of using origami as the

energy storage element in the jumping mechanism and achieve the desired “strain-

softening” nonlinear stiffness. To this end, we first analyze the stiffness properties of a

re-entrant origami structure based on Tachi-Miura polyhe-dron (TMP) [33] and inves-

tigate the effect of its design parameters on the structure’s overall force-displacement

relationship. Then, we examine a basic jumping mechanism consisting of two masses

connected by the TMP structure –— which acts as a nonlinear spring element in the

system –— and analyze its dynamic jumping behavior. Finally, we try to optimize

the design of this origami jumper based on two different performance criteria: 1)

jumping air-time and 2) clearance of the bottom mass.

The rest of the paper is organized as follows: In Section 4.3, we review the gov-

erning kinematic relations of TMP structure and its force-displacement curve under

quasi-static loading. Furthermore, we modify the mathematical model of its force-

displacement curve based on the nonlinear constitutive model of rotational springs

proposed by Liu and Paulino [125]. In Section 4.4, we derive the equations of motion
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of the jumping mechanism for the pre-jump and post-jump phases of motion. Section

4.5 focuses on design optimization of the origami structure based on the abovemen-

tioned performance criteria. To this end, we solve the derived equations of motion

numerically and use the results extensively. Section 4.6 concludes the paper with a

summary and discussion.

4.3 Tachi-Miura Polyhedron (TMP) Bellow

In this study, we use a variation of the Tachi-Miura polyhedron (TMP) origami

bellow studied by Yasuada and Yang [33] as the basis for our jumping mechanism.

The TMP bellow is essentially a linear assembly of identical unit cells and each cell

consists of two connected origami sheets (aka. the front sheet and back sheet shown in

Figure 4.1(a,b)). The geometric design of two origami sheets can be uniquely defined

based on two fold lines (l,m), the side length (d) and a sector angle (α) For clarity,

we refer the fold lines that remain parallel to the horizontal x− z reference plane as

the “main-folds” and all other fold lines are the “sub-folds” (Figure 4.1(b)).

Despite the relatively complex geometry, TMP bellow is rigid-foldable in that

its folding motion does not induce any deformations in the facets. Therefore, we can

assume the facets are rigid, and the fold lines behave like perfect hinges with assigned

torsional stiffness. In this way, we can use the virtual work principle and estimate

the reaction force F of the TMP bellow along its length direction (y-axis in Figure

4.1(a)) as follows [33]:

F = −32
Nd cos θM

[kM(N − 1) (θM − θM0) +NkS (θS − θS0)
cos3θG/2 sin θM

cosα sin θS

]
. (4.1)

In this equation, is the number of unit cells in the TMP bellow; and are the equivalent
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torsional stiffness of the main-folds and sub-folds, respectively; is the dihedral an-gle

associated with the main-folds, defined between the facets and x-z reference plane as

shown in Figure 1(c); is the dihe-dral angle between the facets along the sub-folds;

and is the angle between x-axis and a main-fold. Denote as the change in unit cell

height through folding and as the main fold angle corresponding to the initial, resting

configuration, the magnitude of these angles can be calculated as:

X

X Z

Z

Y

Y

θM

θG

2θS

Front Sheet:

Front Sheet:

Mountain fold Valley fold

Back Sheet:

α α
d

d

m l

(a) (b)

(c)

Unit 

cell

Figure 4.1: Design of the Tachi-Miura Polyhedron (TMP) bellow. (a) The overall
external geometry of a TMP bellow; this one consists of eight unit cells, and one of
them is highlighted in gray. (b) The crease design of the front sheet and back sheet
that makes up two unit cells. The main-folds are highlighted by red color. (c) The
external geometry of a folded front sheet, showing the different angles used in the
kinematics and mechanics analysis.

In this equation, N is the number of unit cells in the TMP bellow;kM and kS

are the equivalent torsional stiffness of the main-folds and sub-folds, respectively; θM

is the dihedral angle associated with the main-folds, defined between the facets and

x− z reference plane as shown in Figure 4.1(c); θS is the dihedral angle between the
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facets along the sub-folds. Denote u as the change in unit cell height through folding

and θM 0 as the main fold angle corresponding to the initial, resting configuration, the

magnitude of these angles can be calculated as:

θM = sin−1
(

sin θM0 −
u

Nd

)
, (4.2)

θG = 2tan−1 (tanα cos θM) , (4.3)

θS = cos−1

(
sin θG

2

sinα

)
. (4.4)

Figure 4.2(a) illustrates the force displacement curve of a TMP bellow design based

on l = m = d = 30mm, α = 40◦, θM0 = 65◦ and kM = kS = 0.03N.m/rad. Due

to the nonlinear geometric relationships induced by origami folding, the TMP bellow

shows a strong nonlinearity. In Particular, it shows a ”strain softening” behavior in

compression. That is, the TMP exhibits a high stiffness under small compressive de-

formation, but its stiffness decreases as the deformation increases. Previous study by

the authors has shown that such nonlinearity is desired because it can store more en-

ergy upon compression compared to the traditional linear spring, leading to a higher

jump [117]. Moreover, after careful examinations, we discover that the reaction force

generated by the sub-folds shows a stronger nonlinearity than the main-folds. There-

fore, we will intentionally weaken main-folds and stiffen up the sub-folds to strengthen

the desired non-linearity. This allows us to neglect the contribution of the main-folds

to the overall reaction force, and simplify equation 4.1 into the following:

F =
−32kS

Nd cos θM

[
N (θS − θS0)

cos3 θG
2

sin θM

cosα sin θS

]
. (4.5)

72



(c)

(b)

(a)

0.020-0.04-0.08-0.12

Displacement u [m]

Main-folds

Sub-folds
Total

40

80

120

-40

0
R

e
a

c
ti
o

n
 f
o

rc
e

 [
N

]

Without considering strain limits

With stiffening due to strain limits
-50

50

100

0

R
e

a
c
ti
o

n
 f
o

rc
e

 [
N

]

-50

50

100

0

R
e

a
c
ti
o

n
 f
o

rc
e

 [
N

]

α=70º α=50º

α=30º

Figure 4.2: The force-displacement curve of a TMP bellow. (a) The contribution
of main-folds and sub-folds to the overall reaction force, and the sub-folds show the
desired “strain softening” behavior in compression. (b) The modified reaction force
curve considering the deformation limit due to folding. (c) The reaction force curve
corresponding to different α, while all other design variables remain the same as those
used in (a).

However, this reaction force equation does not consider the deformation limits

due to rigid folding. That is, TMP bellow can only be folded in-between its com-

pression limit at θS = 0◦ (fully compressed) and extension limit at θS = 90◦ (fully

stretched). However, in reality when the TMP is compressed near θS = 0◦, its facets
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would come into contact with each other and resist further compression. On the

other hand, when the TMP is extended near θS = 90◦, both the front and back sheets

are stretched flat so that the overall tension stiffness would increase significantly. To

incorporate these deformation limits by folding, we adopt the method developed by

Liu and Paulino [125] and set two folding angle limits: θ1 = 20◦ for compression and

θ2 = 70◦ for tension. When θS < θ1, the reaction force equation (equation 4.5) is

modified into the following:

F = −32kS
Nd cos θM

[N(θ1 − θS0)+ 2θ1
π

tan
(
π(θS−θ1)

2θ1

)
cos3

θG
2

sin θM
cosα sin θS

]. (4.6)

Similarly, when θS > θ2, the reaction force becomes:

F = −32kS
Nd cos θM

[N(θ2 − θS0)+
2θ2
π

tan(π(θS−θ2)
2θ2

)
cos3

θG
2

cos θM
cosα cos θS

] . (4.7)

Figure 4.2(b) illustrates the modified reaction force, which is used for the subsequent

dynamic analysis and optimization. Figure 4.2(c) illustrates the effect of the sec-

tor angle α on the force-displacement curve. When other design variables are fixed,

increasing the α angle would decrease the reaction force in the structure when com-

pressed. This leads to less stored strain energy. For this reason we would expect

smaller α angles to lead to better jumping performance.

4.4 The Dynamics of TMP Jumper

The TMP jumping mechanism (shown in Figure 4.3) consists of two identical

masses connected by a TMP bellow, which serves as the energy storage element in

the mechanism. It is worth noting again that the TMP exhibits nonlinear stiffness

properties. In order to only focus on the effects of nonlinear stiffness on the jumping
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Figure 4.3: The jumping mechanism based on TMP bellow and its equivalent system.
Here the nonlinear spring shows the force-displacement curves defined in equations
(4.5-4.7).

performance of the origami structure, in this study, we assume that damping is zero.

One should notice that although damping can affect the dynamics quantitatively, it

does not fundamentally alter the behavior of the structure as long as it does not

eliminate the desired mono-stable strain softening stiffness. To initiate jumping, this

mechanism is actuated via an external force acting on the upper mass, which deforms

the TMP bellow and thus stores energy in the system.

The dynamics of jumping can be divided into two distinct phases: 1) pre-jump

phase and 2) post-jump phase. To focus on the effects of the TMP bellow on the

dynamic performance of the jumping mechanism, we assumed that the masses are

equal: m1 = m2 = M . In the following two subsections we investigate the motion

in these two phases and derive the equations of motion for pre-jump and post-jump

phases, respectively.

75



4.4.1 Pre-jump Phase of Motion

In this phase, the jumping mechanism is actuated by an external force on the

upper mass, which moves it to a certain initial displacement (d). Then the external

force is removed and the reaction force from TMP bellow accelerates the upper mass

upward. This pre-jump phase of motion continues until the bottom mass leaving the

ground. One can derive the governing equation of motion for this phase as:

MŸ2 = −F (Y2 − l0)−Mg, (4.8)

where M is the mass of the upper body; F (Y2 − l0) is the reaction force of the

TMP bellow defined in equation 4.5; l0 is the initial, resting length of the TMP; Ÿ2

and Y2 are the acceleration and position of the upper mass (relative to the ground),

respectively.

4.4.2 Post-jump Phase of Motion

If the jumping mechanism can overcome the gravitational force after the de-

formation of the TMP bellow becomes positive, the jump can occur. In other words,

once the restoring force of the TMP bellow on the lower mass exceeds its weight (aka.

F (Y2,jump − l0) ≥ Mg, the jumping mechanism enters the second phase of motion.

Here Y2,jump stands for the critical upper mass displacement when the jump occurs.

Once the bottom mass has left the ground, the governing system of coupled

equations of motion can be described as:

MŸ1 = F (Y2 − Y1 − l0)−Mg,

MŸ2 = −F (Y2 − Y1 − l0)−Mg.
(4.9)
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The initial conditions of equation 4.9 can be extracted from the solution of the pre-

jump phase equation 4.8. Figure 5 shows a typical time response of an origami jumper,

in which one can clearly identify the two different phases of jumping. Moreover, once

the origami jumper is airborne, it also exhibits an internal oscillation with respect to

its center of mass. In the next section, we use the numerical solution of equation (8)

and (9) to optimize the performance of the jumping mechanism.

4.5 TMP DESIGN OPTIMIZATION

The goal of this optimization is to identify the TMP bel-low design that can

lead to the best jumping performance. To this end, we describe the jumping perfor-

mance based on two different objectives: Airtime and Clearance (illustrated in Figure

4.4). Airtime is the total time that the jumping mechanism spends in the air; and

Clearance is the peak height achieved by the lower mass. We normalize the Clearance

by the rest height of TMP bellow and use the normalized values as the optimization

objective function.

There are five design variables that that can be tailored to optimize the jump-

ing performance. The definition and range of these variables are listed in Table 4.1,

and Figure 4.1 illustrates how they relate to the overall geometry of TMP bellow.

Moreover, three geometric constraints are imposed. The first constraint ensures that

the design of TMP bellow is properly defined and there are no conflicting crease lines.

The second constraint defines a minimum main-fold length for the ease of manufac-

turing and assembly. The third constraint sets an upper limit on the unit cell length.

The additional 15mm in the third constraint is for an extended tab to facilitate the

assembly of two sheets.

In this study, the three constraints on design variables are defined based on the
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Figure 4.4: A typical time response of the TMP origami jumper. The schematic plots
at the upper left corner illustrates the origami jumper at resting configuration, initial
configuration when the upper mass is compressed, and post jump phase, respectively.
The two objective functions of the design optimization: Airtime and Clearance are
highlighted. Notice the internal oscillation during the post-jump phase influences the
Clearance performance.

fabrication capabilities available to the authors. Increasing the variables beyond the

upper limits would require additional fabrication equipment; while reducing them

below the lower limit would makes assembly too difficult. Regardless, we can still

obtain valuable insights on the correlations between the design variables and jumping

performance within these constraints.

Besides the geometric design variables of TMP bellow, the magnitudes of some

other variables are defined for the optimization (Table 4.2). One of them is the stress-

free, resting folding angle of the main-folds θM0 . However, a very large resting folding

angle is difficult to achieve in experiments. Based on repeated trial-and-errors using

TMP prototypes of different geometric designs, θM0 = 65◦ is found to be a realistic

value. Another important variable is the initial folding ratio, which is essentially the

initial condition of the dynamic simulation discussed below. Again, after repeated

trial-and-error, it is found that an initial folding ratio of 75 % is preferred because it

can achieve the maximum stored energy for jumping without inducing any significant

plastic deformation. The crease torsional stiffness coefficient k is estimated based
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Table 4.1: The design variables and geometric constraints used in the design opti-
mization.

N : Unit cell 4 ≤ N ≤ 10

d: Side length 20mm ≤ d ≤ 40mm

α: Sector angle 30◦ ≤ α ≤ 70◦

l: Fold Length 20mm ≤ l ≤ 40mm

m: Fold Length 20mm ≤ l ≤ 40mm

Constraint 1: 2l − d cotα + 2m cosα ≥ 0

Constraint 2: d
2 tanα

− l ≤ −10mm

Constraint 3: 2
(
l +m+ d

2
tan
(
π
2
− α

)
+ 15

)
≤ 300mm

on the experimental data gathered from different shim stock, which will be used to

stiffen the sub-folds.

We numerically simulate the jumping behavior of the TMP mechanism in

MATLAB using ode45 solver for the different jumping phases outlined in Section 4.4.

In these simulations, we assume the upper mass is lowered so that the TMP bellow

is compressed to the initial folding ratio of 75%, and then the upper mass is released

for jumping. We then use the ode45 solver to obtain the pre-jump time response

according to equation 4.8. Based on this response, we can identify the moment when

the TMP bellow is stretched to the point that its resulting tension force surpass the

weight of lower mass. At this moment, the lower mass leaves the ground so that

we can use this as the initial conditions for the post-jump phase. Ode45 solver is
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Table 4.2: The design variables and geometric constraints used in the design opti-
mization.

M : End masses m1 = m2 = M = 0.25kg

θM0 : Resting main angle θM0 = 65◦

FR: Initial folding ratio FR = 90◦−θM
90◦

× 100% = 75%

kS: Sub-fold stiffness kS = 0.0383Nm/rad

used again to obtain the time response of the jumping phase so that the Airtime and

Clearance can be recorded.

To optimize the TMP bellow design, we integrate the jumping simulations and

ModeFrontier using the NSGA-II optimization algorithm. NSGA-II is a common ge-

netic algorithm for multi-objective optimization problems. We use a total population

size of 2500 individuals across 5 generations. The optimization results according to

each objective function are represented in Table 4.3.

From the results in Table 4.3, one can observe that the optimized sector angle α

is always at its lower limit. As we explained in Section 4.3, a lower α angle corresponds

to a stronger nonlinearity in the force-displacement relationship of the TMP bellow

(Figure 4.2(c)), which is desired for better jumping performance. The optimized unit

cell side length d and the crease length l, m are the same. Moreover, d and m are also

at their lower limit. The unit-cell side length d appears in the denominator of the

reaction force equation (equation 4.9), so a small side length corresponds to a bigger

reaction force and therefore more stored strain energy for jumping. The crease length

m does not appear in the reaction force equation explicitly, but its value is kept low

to avoid violating the third geometric constraint. Similarly, the value of crease length
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Figure 4.5: Pareto front obtained in the optimization results.

l is also kept low to avoid violating the second geometric constraint.

The difference between the two optimized designs are the number of unit cells

N . More unit cells in a TMP bellow means a larger initial displacement of the

upper mass, therefore more strain energy is stored for jumping and a longer airtime.

However, increasing the N values also increases overall structure height, which can

negate the performance of normalized Clearance. Such a trade-off between Airtime

and Clearance can be illustrated in the pareto front shown in Figure 4.5.

Table 4.3: Linear TMP parameter sets resulting from single objective optimization

Design Variables

N [-] α [◦] d [mm] l [mm] m [mm] Airtime [sec]

Optimum Airtime 10 30 20 28.5 20 0.502

Optimum Clearance 4 30 20 28.5 20 0.320
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4.6 Discussion and Conclusion

In this study we investigate the idea of utilizing origami folding techniques

to enhance the performance of a jumping mechanism. We study the feasibility of

using Tachi-Miura Polyhedron (TMP) origmai struture as the energy storing unit in

a mechanism consisting of two masses, through analyzing the dynamic characteristics

of the system. The TMP origami structure exhibits nonlinear stiffness characteristics.

We show how the desired “strain-softening” effects of the TMP structure can lead to

design of jumping mechanisms with optimized performance. We present a review of

the kinematics of TMP origami structure and derive a modified model of its reaction

force-displacement curve. We derive the equations of motion of the jumping process

and use their numerical solutions extensively for design optimization. The optimum

geometric configurations for two different objectives are derived: The maximum time

spent in the air (a.k.a airtime) and the maximum clearance off the ground. Although

this study has been conducted on a specific origami pattern (TMP bellow), the results

show that origami folding techniques can add more tools to the repertoire of robotic

researchers to create jumping mechanisms with higher performance. Therefore, the

outcome of this research can lead to emergence of a new generation of more efficient

jumping mechanisms with optimized performance in the future.

So far, we investigate two possible dynamic applications of origami folding.

The next chapter on the hand, focuses on the second perspective of analyzing dy-

namics of origami folding. In chapter 5, we demonstrate how can we use dynamic

excitation to achieve reversible and rapid folding in a bi-stable origami structure.
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Chapter 5

Dynamic Folding of Origami By

Exploiting Asymmetric Bi-Stability

5.1 Abstract

In this study, we examine a rapid and reversible origami folding method by

exploiting a combination of resonance excitation, asymmetric bi-stability, and active

control. The underlying idea is that, by harmonically exciting a bi-stable origami at

its resonance frequencies, one can induce rapid folding between its different stable

equilibria with a much smaller actuation magnitude than static folding. To this end,

we use a bi-stable water-bomb base as an archetypal example to uncover the under-

lying principles of dynamic folding based on numerical simulation and experimental

testing. If the water- bomb initially settles at its “weak” stable state, one can use a

base excitation to induce the intra-well resonance. As a result, the origami would fold

and remain at the other “strong” stable state even if the excitation does not stop.

The origami dynamics starting from the strong state, on the other hand, is more com-

plicated. The water-bomb origami is prone to show inter-well oscillation rather than

83



a uni- directional switch due to a nonlinear relationship between the dynamic folding

behavior, asymmetric potential energy barrier, the difference in resonance frequencies,

and excitation amplitude. Therefore, we develop an active feedback control strategy,

which cuts off the base excitation input at the critical moment to achieve robust and

uni-directional folding from the strong stable state to the weak one. The results of

this study can apply to many different kinds of origami and create a new approach

for rapid and reversible (self-)folding, thus advancing the application of origami in

shape morphing systems, adaptive structures, and reconfigurable robotics.

5.2 Introduction

Origami—the ancient art of paper folding—has received a surge of inter-

ests over the past decade from many research communities, such as mathemati-

cians, material scientists, biotics researchers, and engineers [126]. A key driving

factor underneath such interests is the seemingly infinite possibilities of develop-

ing three-dimensional shapes from folding a simple flat sheet. The kinematics (or

shape transformation) of origami is rich and offers many desirable characteristics

for constructing deployable aerospace structures [127], kinetic architectures [72,128],

self-folding robots [17], and compact surgery devices [21, 129]. The mechanics of

origami offers a framework for architecting material systems [126] with unique prop-

erties, like auxetics [130], tunable nonlinear stiffness [117, 131], and desirable dy-

namic responses [26,63,105]. Moreover, the origami principle is geometric and scale-

independent, so it applies to engineering systems of vastly different sizes, ranging

from nanometer-scale graphene sheets [132] all the way to meter-scale civil infras-

tructures [25].

For most of these growing lists of origami applications, large amplitude and au-
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tonomous folding (or self-folding) are crucial for their functionality. However, achiev-

ing a (self-)folding efficiently and rapidly remains a significant challenge [133]. To this

end, we have seen extensive studies of using responsive materials to achieve folding via

different external stimuli, such as heat [134], magnetic field [135], ambient humidity

change [136], and even light exposure [137,138]. In a few of these studies, bi-stability

was also introduced as a mechanism to facilitate folding and maintain the folded

shape without requiring a continuous supply of stimulation [139,140]. While promis-

ing, the use of responsive materials could incur complicated fabrication requirements,

and their folding can be slow or non-reversible.

In this study, we examine a rapid and reversible origami folding method by

exploiting the combination of harmonic excitation and embedded asymmetric bi-

stability. Bi-stable structures possess two distant stable equilibria (or “stable states”),

and this strong non-linearity can induce complex dynamic responses from external

excitation, such as super-harmonics, intra/inter-well oscillations, and chaotic behav-

iors [141]. These nonlinear dynamics have found applications in wave propagation

control [142], energy harvesting [143], sensing [144], and shape morphing [145, 146].

Here, shape morphing is particularly relevant to folding, so we used a proof-of-concept

numerical simulation to demonstrate the feasibility of using harmonic excitation to

induce folding in a bistable water-bomb base origami [147, 148] (Figure 5.1(a)). The

bi-stability of the water-bomb base is asymmetric [139,140], i.e. the two stable states

of the structure are asymmetric with respect to the unstable state and the energy gaps

of the two stable states are different, so the resonance frequencies of its two stable

configurations differ significantly. Due to this asymmetry, it is possible that when the

water-bomb origami is harmonically excited at the resonance frequency of its current

stable state, it can rapidly fold to and remain at the other stable state. Moreover, the

required excitation magnitude by this dynamic folding method is smaller than static
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folding.

Building upon this proof-of-concept study, this study aims to obtain a com-

prehensive understanding of the harmonically-excited rapid folding via a combination

of dynamic modeling, experimental validation, and controller design. First, we for-

mulate a new and nonlinear dynamic model of a generic water-bomb origami and

conduct an in-depth examination into the relationships among the dynamic folding

behaviors, potential energy landscape, resonance frequencies, and excitation ampli-

tudes. It is worth noting that this model is a significant advancement to our previous

study in that it releases unnecessary boundary conditions and includes the facet rigid

body motion (both translational and rotational). Since the bistability of water-bomb

origami is asymmetric, we can designate its two stable states as “strong” or “weak”

based on the magnitude of potential energy barriers between them. Our simulation

and experiment results show dynamic folding from the weak stable state to the strong

one is relatively easy, but folding in the other direction is quite challenging to achieve.

That is, starting from the strong stable state, the water-bomb origami tends to ex-

hibit inter-well oscillations under most excitation conditions, which is undesirable for

rapid folding purposes. This challenge is further complicated by the fact that the

nonlinear dynamics of origami are highly sensitive to design variations, fabrication

errors, and excessive damping. Therefore, we then devise and experimentally vali-

date a control strategy that ensures the robustness of dynamic folding by cutting off

the excitation input at a critical configuration. This control strategy is essential for

practical implementations of this dynamic folding method in the future.

It is worth highlighting that although this study uses the water-bomb origami

as an example, the insights into the harmonically excited folding and the control strat-

egy can apply to many other origami designs that exhibit asymmetric multi-stability,

such as stacked Miura-ori [149], Kresling [150], and leaf-out pattern [151]. Moreover,
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harmonic excitation at the resonance frequency has a high actuation authority, so it

can be an efficient method compared to other dynamic inputs, such as impulse [41].

Therefore, the results of this study can create a new approach for rapid and reversible

(self-)folding, thus advancing the application of origami in shape morphing systems,

adaptive structures, and reconfigurable robotics.

In what follows, Section 5.3 of this paper details the dynamic modeling of the

water-bomb base origami, section 5.4 discusses its dynamic folding behavior under

harmonic excitation, section 5.5 explains the active control strategy, and section 5.6

concludes this paper with a summary and discussion.

5.3 Dynamic Model of the Water-bomb Origami

In this section, we derive the governing equation of motion of a generic water-

bomb base origami. Assuming the water-bomb is symmetric in its design and rigid-

foldable (i.e., rigid facets and hinge-like creases), we can describe the kinematics of a

water-bomb with N triangular facets as a two degrees-of-freedom (DOF) mechanism.

These two degrees can be defined by the angle between the vertical Z-axis of the

origami and its valley creases (θv in Figure 5.1(b)), and the vertical position of the

central vertex hp, respectively. We assume that this central vertex is rigidly connected

to an external excitation, which is a vertical shaker table in this case (APS Dynamics

113, Figure 5.2). In this way, hp becomes the dynamic input variable, and θv is the

only degree-of-freedom left.

Using spherical trigonometry, we can derive the angle between the vertical

Z-axis and the mountain creases of the structure as a function of θv in that:

θm = cos−1
(

cosα

cos(d/2)

)
+ cos−1

(
cos θv

cos(d/2)

)
, (5.1)
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Figure 5.1: The design, folding kinematics, and prototyping of the water-bomb base
origami. (a) The external shape of the water bomb origami at its unfolded flat
configuration and two stable states (N = 6). We assume the triangular facet is rigid,
and the fold lines behave like hinges with embedded torsional springs. (b) Variables
that define the folding kinematics. The inertial frame of reference (XY Z) is attached
to the ground, and the body frame of reference (xyz) is attached to the facets. (c)
Proof-of-concept prototype made out of a polypropylene sheet with perforations along
the creases. The geometry of the pre-folded shim stocks used to create stiffness along
the creases is shown along with its folding angles for mountain and valley crease. The
geometry of the water-jet cut trapezoidal panels is also shown.

where α = 2π/N , and d is the radius of a circular arc defined by the central vertex

and two adjacent vertices on the valley creases (Figure 5.1(b)):

d = cos−1
(
cos2 θv + sin2 θv cos β

)
, (5.2)

where β = 2α. Again, using spherical trigonometry, one can show that:

γm = π − cos−1
(

1 +
cos2 θv + sin2 θv cos β − 1

sin2 α

)
, (5.3)
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Figure 5.2: Dynamic folding test of the waterbomb origami. (a) A schematic drawing
showing the overall experiment setup. A rigid rod connects the central vertex to the
shaker table. The facets are free to rotate. The vertical oscillations of one of the
facets are measured using a laser vibrometer (rq ≈ 3cm), which is then converted to
folding angles in the DAQ system. The vibrations of the shaker are measured using
a piezoelectric accelerometer. (b) The water-bomb origami prototype in its strong
stable state (left) and weak stable state (right).

γv =


− π + 2 cos−1

(
cotα tan

d

2

)
+ 2 cos−1

(
cot θv tan

d

2

)
if θv ≤

π

2

π − 2 cos−1
(

(cos d− 1) cot θv
sin d

)
+ 2 cos−1

(
cotα tan

d

2

)
if θv >

π

2

(5.4)

where γm and γv are the angles between the facets connected by the mountain and

valley creases, respectively (Figure 5.1).

The position and orientation of each triangular facet can be described by the

position of the central vertex hp in the XY Z (inertial) frame of reference attached

to the ground and the orientation of the xyz (body) frame of reference. The latter

can be described by three independent Euler angles, which represent the consecutive

rotations of the XY Z (inertial) frame of reference needed to align it with the xyz

(body) frame of reference. The order of rotations is arbitrary. Here, we choose the

zyx order (aka, the aircraft rotations) that consists of three steps: The first step is
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a rotation about the Z-axis by ψi, where ψi = 2π
N

. The second step is a rotation

about the y′-axis (aka., y-axis of the rotated frame after the first step) by θi, where

θi = 1
2
(π − θv − θm). The third step is a rotation about the x′′-axis (aka. x-axis of

the rotated frame after the second step) by φi, where

φi =


γm
2

if i is even,

2π − γm
2

if i is odd.

(5.5)

Here, the sub-index “i” (i = 0 . . . N − 1) labels the different triangular facets

as defined in Figure 5.1(a). Therefore, the total rotation matrix is a combination of

these three steps in that Ci = ΦiΘiΨi, where:

Φi =


1 0 0

0 cosφi sinφi

0 − sinφi cosφi

 , (5.6)

Θi =


cos θi 0 − sin θi

0 1 0

sin θi 0 cos θi

 , (5.7)

Ψi =


cosψi sinψi 0

− sinψi cosψi 0

0 0 1

 . (5.8)

In addition, the angular velocity of the xyz (body) frame of reference can be

derived using:

ωi = ωxiî+ ωyiĵ + ωzik̂, (5.9)
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Figure 5.3: Frequency response near the two stable states of water-bomb origami.
(a) A typical time response from small amplitude intra-well oscillations around the
stress-free stable state. Here the vertical displacements of point q are represented in
orange and the corresponding shaker excitations represented in gray. (b) Stroboscopic
sampling results for intra-well oscillations around the stress-free strong stable state.
(c) Typical time response of similar small-amplitude intra-well oscillations around the
other stable state.(d) The corresponding stroboscopic sampling results.
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where: 
ωxi = φ̇i − ψ̇i sin θi,

ωyi = ψ̇i cos θi sinφi + θ̇i cosφi,

ωzi = ψ̇i cos θi cosφi − θ̇i sinφi.

(5.10)

5.3.1 Kinetic energy of the origami

As the water-bomb base origami folds, its facets exhibit both translational and

rotational motions with respect to the central vertex. One can show that the total

kinetic energy of the origami structure originates from these two distinct motions

based on the following equations:

Ttot =
1

2
Nm|vp|2 +

N−1∑
i=0

(
1

2
ωIi ωi +mvp · ρ̇ci

)
, (5.11)

where, m is the mass of a triangular facet, vp is the velocity of the central vertex.

ρ̇c = ω × ρci, where ρci is the vector of center of mass of each facet in xyz (body)

frame of reference. Note that vp and ρ̇ci should be expressed in the same frame of

reference which is possible using the total rotation matrix C. Finally, the matrix I

contains that moment of inertia of each facet around the central vertex in that

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 , (5.12)

where, Ixx = 3
4
mr2 sin2 α, Iyy = 6

7
mr2 cos2(α

2
), and Izz = 1

2
mr2 + 1

12
mr2 cos2(α

2
).
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5.3.2 Gravitational potential energy of the origami

In order to derive the gravitational potential energy of the water-bomb origami,

we need to calculate the location of the center of mass of each facet. One can show

that the distance of each center of mass from the ground can be derived using the

following relationship:

Zcm = hp −
(

2

3
r cos

α

2
cos

(
θm + θv

2

))
. (5.13)

The corresponding gravitational potential energy is VG = NmZcm.

5.3.3 Elastic potential energy of the origami

Assuming that the triangular facets are rigid and the creases behave like hinges

with embedded torsional springs, we can derive the elastic potential energy of the

origami as

VE =
N

2

[
kγm (γm − γm0)

2 + kγv (γv − γv0)
2] , (5.14)

where kγm and kγv are the torsional stiffness coefficient of the mountain and valley

creases, respectively. γm and γv are the dihedral folding angles of the mountain and

valley creases (Eq. 5.3 and 5.4). In addition, γm0 and γv0 are the corresponding

stress-free dihedral angles.

5.3.4 Equation of motion

The Lagrangian of the origami structure becomes L = Ttot− VG− VE, and we

can derive the governing nonlinear equations of motion using

d

dt
(
∂L
∂θ̇v

)− ∂L
∂θv

+ Fd = 0. (5.15)
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Fd is the damping force generated along the origami creases, and we assume

that it has a simple form of crθ̇v. Here, c is the equivalent viscous damping coefficient,

and r is the length of each crease.

5.4 Dynamic folding of the bistable water-bomb

origami

The equation of motion (5.15) can be solved numerically using MATLAB

ODE45 solver to obtain the dynamic response to arbitrary base excitation inputs

and initial conditions. We assume that the base excitation is harmonic in that

hp = A cos Ωt. By solving the equation of motion under small-amplitude excita-

tions and performing a stroboscopic sampling over a range of excitation frequencies,

we obtain the intra-well frequency response of the water-bomb origami near its two

stable equilibria. In this way, we can identify the corresponding intra-well resonance

frequencies.

We analyze the accuracy of the origami dynamic model by comparing its pre-

dicted frequency response near the two stable states and experimental measurements

from a proof-of-concept prototype. This prototype has a hexagonal shape with a

crease length of 10cm (N = 6 and r = 10cm, Figure 5.1(c)). We cut a 0.76mm

thick flame-retardant Polypropylene sheet and perforated the crease lines using an

FCX2000 series GRAPHTEC flatbead cutting plotter to create the compliant base

layer of the origami. A significant amount of the material along the creases is removed

to reduce the damping as much a possible. The torsional stiffness along the creases

are generated by attaching 0.127mm thick shim stocks, which are folded carefully to

give the initial stress-free crease hihedral angles γm0 = 120◦ and γv0 = 175◦. Then,
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we attach twelve water jet-cut stainless steel trapezoids (24g each) to the triangu-

lar facets to offer sufficient inertia. Moreover, these trapezoids provide the desired

rigidity to the facets according to the rigid-folding assumptions.

5.4.1 Intra-well frequency response analyses and parameter

estimation

Although the geometric design and mass of the origami are known, we need to

estimate the magnitudes of torsional stiffness (kγm and kγv) and damping coefficient

(c) of the creases. To this end, we perform intra-well frequency sweeps near both

of the stable states of the structure with a small excitation amplitude to obtain the

frequency response. Then we can estimate kγm and kγv , which are assumed equal in

this case, and c by fitting the model predicted frequency responses to experimental

results using the least square method. In what follows, we show that these stiffness

coefficients are crucial for determining the intra- well resonance frequency, and the

damping coefficient directly affects the excitation amplitude for dynamic folding.

Figure 5.3(a) shows the experimentally measured frequency response of the

water-bomb origami near its stress-free stable state and the closest numerical pre-

diction based on least square method. Here, the frequency response is defined as

rms(hq(t))

rms(hp(t))
after the transient response has damped out, where hq is the vertical dis-

placement of a representative point on the median of a facet (Figure 5.2(a)). We

use an OFV-5000 Polytec laser vibrometer equipped with an OFV-503 laser head to

capture the displacement response of this representative point and a 352C33 PCB

accelerometer to measure the acceleration of the shaker, which is then converted to

displacement. We find that kγm = kγv = 0.32 N.m
rad

and c = 0.05 kg
rad.s

give the best

fitting at this stress-free stable state. Figure 5.3(b) shows the experimentally mea-
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sured frequency response near the other stable state and the corresponding numerical

prediction by using the estimated crease stiffness and damping coefficient from the

previous test. The comparison shows an approximately 15% discrepancy between the

estimated resonance frequency of this second stable state and the measured resonance

frequency (15.8Hz based on the experiments and 17Hz based on simulation). This

discrepancy probably originates from a combination of fabrication uncertainties and

the simplifications made in the analytical model. Moreover, the experimental re-

sults show higher damping than the prediction, which is reasonable due to the higher

excitation frequencies at this stable state.

Overall, our model successfully captures the difference in the intra-well res-

onance frequencies near the two stable states of the water-bomb base origami with

a relatively small error. This difference in resonance frequencies comes from the in-

herently asymmetric potential energy landscape of the origami (Figure 5.4(a)), which

creates an asymmetric force-displacement curve (Figure 5.4(b)) with different tangent

stiffness near its two stable equilibria. For clarity, we refer to the initial, stress-free

stable equilibrium with a deeper potential energy well as the “strong” state, and

the other stable equilibrium with a shallower energy well as the “weak” state. The

differences in the energy barriers for switching between these two stable states are

evident. That is, the origami must overcome a large barrier to switch from the strong

stable state to the weak one, but only needs to overcome a small barrier for the op-

posite switch (∆VG1 > ∆VG2 in Figure 5.4). In the following subsections, we show

that the differences in resonance frequencies, energy barriers, and the base excitation

amplitude all play crucial roles in the harmonically excited folding of water-bomb

origami.
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Figure 5.4: The asymmetric bi-stability of the water-bomb origami. (a) The asym-
metric elastic potential energy landscape with two different energy barriers (∆VG1 and
∆VG2). (b) The reaction force-displacement curve of the origami due to the elastic
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5.4.2 Dynamic folding from the weak stable state

If the water-bomb origami initially settles at the weak stable state, we can

induce an intra-well resonance by exciting it with the corresponding resonance fre-

quency. In this way, the origami can exhibit a large reciprocal folding motion with

a small energy input. If the excited origami can overcome the energy barrier ∆VG2 ,

it can rapidly switch to the other, strong stable state. Moreover, once this switch

is complete, the water-bomb will remain in the strong state because 1) the energy

barrier of the opposite switch is significantly higher, and 2) the resonance frequency

of the strong state is significantly different from the original input frequency (that is,

the intra-well resonance stops after the switch).

To experimentally validate this dynamic folding we mount the origami on the
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shaker and manually set it at the weak stable state initially (Figure 5.2(b)). We excite

the shaker with a constant frequency of Ω = 15.8 Hz, which is the experimentally mea-

sured intra-well resonance frequency at this stable state. Then, we gradually increase

the amplitude of base excitation until the water-bomb “snaps” to the strong stable

state. Once the snap occurs, we stop increasing the excitation amplitude (Figure

5.5(a)). The water-bomb origami continues to oscillate around the strong state with-

out switching back to its original configuration. We also replicate the same scenario

numerically (Figure 5.5(c, d)). In this simulation, the excitation frequency equals

to the experimentally measured resonance frequency, and the excitation amplitude

increases linearly over time until the snap-through occurs. It is worth noting that the

numerical model predicts a higher base excitation amplitude required for switching.

This difference is due to the over-prediction of resonance frequency by the analytical

model, as we discussed in the previous subsection. In a different study shown in Figure

5.5(e, f), we repeat the simulation exactly with the numerically predicted resonance

frequency (Ω = 17), and observe a much smaller excitation amplitude requirement for

switching. Despite these quantitative differences, our model and experiment confirm

the feasibility of dynamic folding from the weak stable state to the strong state solely

by inducing an intra-well resonance with a small excitation amplitude. Moreover, we

can reduce the required excitation magnitude by using this dynamic folding method.

That is, the required base displacement to achieve a dynamic folding from the weak

to the strong stable state is A = 1.3mm, while the required base displacement is

significantly higher if we fold the water-bomb quasi-statically (A = 6.5mm, Table

5.1).
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Figure 5.5: Harmonically excited folding from the weak stable state to the strong
state. (a) Acceleration of the shaker’s base (or central vertex) based on the piezoelec-
tric accelerometer readings. The frequency of excitations here is the experimentally
measured resonance frequency from the actual prototype (15.8 Hz). The energy land-
scape is shown on the right for clarity. (b) Time resposne of θv calculated from the
laser vibrometer data. (c) The base acceleration from the numerical simulation based
on the same excitation frequency of 15.8 Hz. (d) The corresponding time response of
θv by numerically solving the equation of motion 5.14. (e, f) The base acceleration
and time response (θv) from a similar numerical simulation using the analytically
predicted resonance frequency (17 Hz).

5.4.3 Dynamic folding from the strong stable state

If the water-bomb base origami structure initially settles at the strong stable

state, it has to overcome a significantly higher potential energy barrier ∆VG1 to fold

to the weak state. Although the intra-well resonance can help the origami to over-

come this significant energy barrier, a large amount of energy in the system may lead

to an inter-well oscillation between the two stable states, which is not desirable for

the dynamic folding purpose. To demonstrate this complex nonlinear dynamics, we

conduct a parametric study to examine the relationships among the dynamic fold-
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Table 5.1: Comparison between the required quasi-static displacement and dynamic
excitation amplitude for the dynamic folding between two stable states. Here, the
quasi-static displacement is based on the reaction force-displacement curve shown in
Figure 5.4.

Quasi-static Dynamic
Weak to Strong 6.5mm 1.3mm
Strong to Weak 51.1mm 24.2mm

ing behaviors from the strong stable state, potential energy barriers, difference in

resonance frequencies, and excitation amplitudes. Figure 5.6(a) shows the numeri-

cally predicted frequency responses of water-bomb origami with different stress-free

folding angles (θv0) around their two stable states, while Figure 5.6(b) shows the

corresponding elastic potential energy landscape.

We then excite each water-bomb origami with the resonance frequency of its

strong stable state for a range of excitation amplitudes, all from zero initial conditions.

Figure 5.6(c) summarizes its overall dynamic behaviors. For every water-bomb design,

there exists a small span of excitation amplitude that can generate the desired uni-

directional switch (aka. rapidly folding from the strong state to the weak state without

switching back). For example, the case (ii) in Figure 5.6(c)—with θv0 = 60◦ and A =

24 mm—exhibits such a dynamic response. Its time response and the corresponding

Poincare’s map are shown in figure 5.6(d) and (e), respectively. One can observe

that the oscillations of this water-bomb origami start from near the strong state, but

eventually switch to and remain at the weak stable state.

Any excitation below this span of uni-directional switch is not sufficient to

overcome the potential energy barrier, leading to intra-well oscillations only (e.g., the

case (i) in 5.6(c-e) with A = 24 mm). On the other hand, any excitation above this

span would generate an inter-well oscillation. Case (iii) and (iv) 5.6(c, d) are two
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Figure 5.6: Dynamic folding behaviors of the water-bomb base origami from its strong
stable state: (a) The numerically predicted frequency responses of water-bomb base
origami structures with different stress-free folding angle θv0 . The small inset figure
shows the differences in resonance frequency between the two stable states. (b) The
corresponding potential energy landscape. (c) The correlation between stress-free
folding angle, excitation amplitude, and the overall response. The desired rapid
folding (aka. uni-directional switch) is highlighted. (d) The time responses of four
representative cases based on different excitation amplitudes. (e) The corresponding
Poincare’s map. Note that, except for the case (ii), only steady-state responses are
shown in these maps.

examples of this inter-well oscillations. Moreover, one can observe that, although

both these two cases show inter-well oscillation, their state-state responses still show

marked differences. For example, a period in the steady-state response of case (iii)
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(A = 30 mm) consists of three oscillations around the strong state before one inter-

well oscillation, while the responses of the case (iv) (A = 40 mm) only involve two

oscillations around the strong state before an inter-well oscillation (Figure 5.6(d, e)).

Moreover, there is a clear trade-off between the potential energy barriers and

natural frequency differences. As the stress-free folding angle v0 of the water-bomb

increases from 50 to 70, the difference in resonance frequencies also increases between

the two stable states, however, the energy barrier VG2 decreases. Therefore, as θv0

increases, the excitation magnitude corresponding to these spans of uni-directional

switch decreases, and the width of these spans increases and then decreases. Overall,

we observe that a water-bomb origami with θv0 = 55◦ has the most balanced design

and the widest excitation span to achieve a uni-directional switch.

Overall, our numerical simulations show that solely using the intra-well reso-

nance to achieve the dynamic folding from the strong stable state to the weak state

is possible but quite challenging. That is, the excitation magnitude spans of the

uni-directional switch is narrow (< 10mm) even with the more optimized origami

designs. Moreover, the nonlinear dynamics of the water-bomb base origami are quite

sensitive to other uncertainties like initial conditions, fabrication errors, and excessive

damping. For example, the actual differences in resonance frequencies are actually

less than the prediction shown in Figure 5.3. As a result, we could not achieve a

consistent and repeatable fold from the strong stable state to the weak one in the

experimental efforts, despite the relatively small differences be- tween the frequency

response obtained from experiment and the prediction from numerical simulation.

This challenge necessitates an active control strategy, as we detail in the next section.
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Figure 5.7: The control strategy to achieve a robust and dynamic folding from the
strong stable state to the weak state. (a) The flow chart showing the concept and
implementation of the controller (b) The controlled base acceleration and water-
bomb origami folding angle based on the numerical simulation (top) and experimental
validation (below). It is clear that when the controller is engaged, inter-well oscillation
is stopped quickly, and the water-bomb settles at the targeted weak stable state.

5.5 Active control strategy for robust folding

In this section, we propose a feedback control strategy that enables us to

achieve a robust dynamic folding from the strong stable state of water-bomb origami

to the weak state. We show that this strategy is successful when pure dynamic ex-

citation without control only generates inter-well oscillations between the two stable

states. The idea of this feedback control strategy seems relatively straightforward.

Assuming the water-bomb origami is showing inter-well oscillations due to base ex-

citation, we can cut off this excitation at the moment when the origami is folding

toward the weak stable state (aka. ḣq > 0) and passing through the flat, unstable

equilibrium (aka. θv = 90◦). In this way, the water-bomb origami should be able to

overcome the energy barrier and switch to the weak stable state, but it would not be

able to switch back to the strong state due to energy dissipation via damping. Fig-

ure 5.7(a) shows the flow chart of this feedback loop based on the proposed control

strategy. Figure 5.7(b) shows the numerically simulated folding with this controller.
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We experimentally validate the effectiveness of this control strategy on the

same water-bomb origami prototype. Figure 5.7(a) shows the flow chart of this feed-

back loop based on the proposed control strategy. This feedback loop is encoded in a

LabVIEW program that uses the laser vibrometer and accelerometer readings as the

inputs. The labVIEW program filters out the acceleration data from the accelerom-

eter using a bandpass filter and then integrates it twice to derive the displacement

of the shaker’s base. Then it calculates the relative displacement of the water-bomb

base origami and the shaker by subtracting the derived displacements from the laser

vibrometer readings. Finally, it calculates θv using this displacement data. In this

setup, we excite the water-bomb origami with the intra-well resonance frequency of

8.8 Hz and increase the excitation amplitude until an inter-well oscillation occurs. We

then activate the controller, which can automatically detect the threshold of ḣq > 0

and θv = 0 and cut ofd the excitation accordingly. In our experiment, this controller

can reliably and repeatedly fold the water-bomb origami from the strong stable state

to the weak one. Therefore, despite its simplicity, the proposed controller provides an

effective approach to complete the bi-directional dynamic folding of the water-bomb

origami. Moreover, it is worth noting that the required base displacement to achieve

dynamic folding from strong state to the weak state is A = 24.5mm, which is much

smaller than the excitation amplitude in a quasi-static folding (A = 51.1mm, Table

5.1). It is also worth noting that this control algorithm is effective, but can certainly

be modified further to increase its efficiency.

5.6 Discussion

Scaling of the harmonically-excited folding strategy: Although this

study is based on a water-bomb base origami, the physical insights into harmonically-
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excited folding and the control strategy certainly apply to other origami or even other

structures with similar nonlinear properties. This is because the dynamic folding relies

on the asymmetry of the potential energy landscape and the resulting difference in

the resonance frequencies between the two stable states. Such asymmetric bi-stability

has been demonstrated in other origami designs like the rigid-foldable stacked Miura-

Ori [149] and leaf-out pattern [151], as well as the non-rigid foldable Kresling [150]

and square twist pattern [152].

It is also worth noting that, although this study focuses on a bi-stable origami,

the results could provide some valuable insights into the dynamic folding with more

than two stable states (e.g., a waterbomb base assembly with multiple vertices). It is

desirable to customize-design the multi-stable origami so that each of its stable states

exhibits a unique resonance frequency, and the differences between these frequencies

should be significant. Moreover, it is conceivable that a multi-stable origami with

complex energy landscape is even more likely to show inter- well oscillations than the

bistable water-bomb base, so the active control strategy discussed in this paper (or

an improved version of it) will be necessary.

Potential applications: A promising application of the dynamic folding is

shape morphing (or deploying). Self-folding origami can serve as the skeleton of

light-weight, shape morphing structures that can perform dissimilar tasks optimally

[145]. In this case, a low actuation requirement is crucial, so the higher actuation

speed and authority (Table 1) of dynamic folding offers a pathway for enhanced

morphing performance. Another promising application is origami robotics, especially

shape-transforming robots [153]. One can pre-program the bi-stability of origami

for different robotic tasks (e.g., the robot can be folded into a small volume for

transportation at one stable state and unfolded to perform tasks like locomotion at

the other state). Dynamic folding can enable rapid robotic transformations.
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Finally, although this study uses a shaker as the source of dynamic input, the

required harmonic actuation can also be achieved by other methods depending on the

application. It is conceivable that for structural morphing applications, motors and

fluidic actuators are applicable. For a smaller-sized origami, one could use external

magnetic fields [135] or responsive materials like dielectric elastomers [154]. Note that

via dynamic inputs, we could use the responsive materials more effectively than the

quasi-static folding.

5.7 Summary and Conclusion

In this study, we examine a dynamic and reversible origami folding method

by exploiting the combination of resonance excitation, asymmetric multi-stability,

and an active control strategy. The underlying idea is that, by exciting a multi-stable

origami at its resonance frequencies, one can induce rapid folding between its different

stable equilibria with a much smaller actuation re- quirements than static folding. To

this end, we use a bi-stable water-bomb base origami as the archetypal example and,

for the first time, formulate a distributed mass–spring model to describe its nonlinear

dynamics. Via numerical simulations based on this new model and experimental test-

ing using a proof-of- concept prototype, we characterize the difference in resonance

frequencies between the two stable equilibria of the origami. This difference stems

from the inherent asymmetry of the water- bomb with respect to its unstable equi-

librium at the unfolded flat shape. For example, if the water-bomb initially settles at

its weak stable state, one can use a base excitation to induce the intra-well resonance.

As a result, the origami would fold and remain at the other stable state even if the

excitation does not stop. The origami dynamics near the strong state, on the other

hand, is more complicated. The asymmetric energy barrier makes the origami prone
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to show inter-well oscillation rather than a uni-direction switch. There exist a com-

plex trade-off between the desired uni-directional folding, potential energy barrier,

the difference in resonance frequencies, and excitation amplitude.

Therefore, we propose an active feedback control strategy to achieve robust

and uni-directional folding from the strong stable state to the weak one. This strategy

cuts off the base excitation input when critical dynamic conditions occur. Despite its

simplicity, the control strategy is effective for controlling the dynamic folding. We

should emphasize that the proposed algorithm can be further modified to enhance

performance. For example, we can fully automate the task of detecting inter-well

oscillations and sending control signals to cut off shaker input when necessary.
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Chapter 6

Physical Reservoir Computing

Using Origami Structures for

Sensing and Signal Processing

6.1 Abstract

Reservoir computing (RC) is a computational framework suited for tempo-

ral/sequential data processing which is derived from several recurrent neural network

models. Reservoir computing systems has shown tremendous potentials in temporal

pattern classification, prediction, and generation tasks. Recently, physical systems

with highly nonlinear dynamic characteristics have been introduced as the physi-

cal reservoir computing systems that are capable of performing complex tasks such

as computation, pattern generation and control. Witnessing the rich and nonlinear

dynamic characteristics of origami structures, in this study we introduce the idea of

using origami structures as physical reservoir computing systems and investigate their

potentials in sensing and signal processing tasks without relying on external digital
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components and signal processing units. The results of this study can advance the

state of art and formulate a strategy for constructing mechanically intelligent struc-

tures and material systems that can sense the environment, learn from experience

and act accordingly, without relying on external controllers and digital components.

6.2 Introduction

Reservoir computing (RC) is a computational framework suited for tempo-

ral/sequential data processing which is derived from several recurrent neural net-

work models, including echo state networks (ESNs) [155] and liquid state machines

(LSMs) [156]. A reservoir computing system consists of a reservoir for mapping in-

puts into spatiotemporal patterns in a high-dimensional space by an RNN and a

readout for pattern analysis from the high-dimensional states in the reservoir [157].

The reservoir is fixed and only the readout is trained with a simple method such as

linear regression and classification [158,159]. Therefore, the main characteristic that

distinguishes reservoir computing from other recurrent neural networks (RNN) is fast

learning, which results in low training cost [160]. RC models have been successfully

applied to many computational problems, such as temporal pattern classification,

prediction, and generation [157].

The role of the reservoir in RC is to nonlinearly transform sequential inputs

into a high-dimensional space such that the features of the inputs can be efficiently

read out by a simple learning algorithm. Therefore, RNNs can be replaced by other

nonlinear dynamical systems as reservoirs [157]. This is the reason behind the recent

increasing interest in physical RC using reservoirs based on physical phenomena.

Various physical systems, substrates, and devices have been proposed for realizing

RC to achieve fast information processing devices with low learning cost. Physical
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implementation of reservoirs can be achieved using a variety of physical phenomena in

the real world, because a mechanism for adaptive changes for training is not necessary

[157].

It has been shown that mechanical systems, such as soft and compliant robots,

can be used as physical reservoirs. Soft and compliant robots with flexible bodies are

difficult to control due to their complex body dynamics compared with rigid robots

with stiff bodies. However, such intricate behavior can be harnessed to generate

complex nonlinear dynamic behaviors. The ability of physical reservoir computing

systems in computation, pattern generation and control has been studied before [157].

For example, a mass–spring network reservoir where mass points are randomly con-

nected to neighboring mass points via nonlinear springs was proposed by Hauser et

al. [161]. The input signal is given to some randomly chosen nodes as the external

force, inducing nonlinear responses from the mass–spring network. The output signal

is obtained as a linear combination of the actual lengths of the springs. Via numerical

simulations, they showed the computing power of RC based on the mass–spring net-

work in time series approximation and robot arm tasks. It was shown that by adding

feedback loops from the output, the reservoir of a mass–spring network can be applied

to pattern generation tasks, which are useful for producing locomotion of robots and

biological organisms [162]. In another relevant study, a muscular hydrostat system

inspired by octopus limbs was investigated and its motion was successfully learned

by an ESN-based controller in a simulation study [163] and in an experimental study

using a real robot made of silicone rubber [164]. The computational capability of the

soft body was demonstrated in nonlinear system approximations and body dynamics

control without an external controller [165,166].

Recently, it has been shown that origami structures can be utilized as physical

reservoirs and its computing power can be harnessed for robotic locomotion generation
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[167]. Bhovad and Li, via numerical simulations, proved that origami structures

provide a foundation for physical reservoir computing that can complete computation

tasks like emulation, pattern generation, and output modulation [167].

In this study we investigate the idea of utilizing the computation power of

origami structures for sensing and signal processing tasks. In particular, we are inter-

ested in using origami structure itself, via harnessing its highly nonlinear dynamics,

as a sensor for observing environmental conditions and a signal processing unit that

can perform tasks such as filtering without relying on external digital components.

The vision is to advance the state of art and formulate a strategy for construct-

ing mechanically intelligent structures and material systems with balanced versatility

and applicability. Structures that can sense the circumstances, learn from the past

experiences, and perform cost-benefit analyses. We believe that origami structures

offer a suitable framework to obtain a reservoir computing system that can be used

to achieve these goals, as the possess the following characteristics:

1) High-dimensionality: Allowing the reservoir to gather as much information

as possible from the input data stream, separating its spatio-temporal dependencies

and projecting it onto a high-dimensional state-space.

2) Non-linearity: Where the reservoir acts as a nonlinear filter to map the

information from the input stream.

3) Fading memory (or short-term memory): Where the reservoir states are

dependent on recent past inputs, but not distant past inputs (damping of the origami

structures provide this).

4) Separation property: To classify and segregate different response signals

correctly, even with small disturbances or fluctuations. Moreover, if two input time

series differed in the past, the reservoir should produce different states at subsequent

time points [168].
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Figure 6.1: The setup of physical reservoir computing with origami. The input creases
receive the input signal and the readout weights (Wout) are calculated using linear
regression after white noise is added to the reservoir state vector Φ(t).

6.3 The Structure of the Origami Reservoir

In this study, we use the concept of the origami reservoir proposed by Bhovad

and Li [167]. The proposed physical reservoir is constructed using the classical Miura-

ori sheets. The structure of the reservoir is essentially a periodic tessellation of unit

cells, each consisting of four identical quadrilateral facets with crease lengths a and

b and an internal sector angle γ (Figure 6.1) [32]. The folded geometry of Miura-ori

can be fully defined with a dihedral folding angle θ(∈ [−π/2, π/2]) between the x− y

reference plane and its facets. The reservoir size is defined as n × m, where n and

m are the number of origami nodes (aka. vertices where crease lines meet) in x and

y-directions, respectively. N is the total number of creases in the origami reservoir.
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Figure 6.2: The nonlinear truss-frame model for dynamic simulations. (a) The crease
pattern of a Miura-Ori origami sheet, with a highlighted unit cell. (b) The distribution
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masses at the vertices. (c) Kinematics and mechanics details of the structure required
to analyze the bending and stretching along the truss pq. Here, m(j) and n(j) are the
surface normal vectoes defined by triangles 4pqr and 4pqv at the current time step,
respectively.

6.3.1 Dynamic Model of the Origami Reservoir

In this study, we use the dynamic model of the Miura-ori sheet derived by

Bhovad and Li [167]. They adopted and expanded the lattice framework approach

to simulate the nonlinear dynamics of the structure. Origami creases of the Miura-

ori sheet are represented by pin-jointed stretchable truss elements with prescribed

spring coefficient Ks. Folding along the crease line is simulated by assigning torsional

spring coefficient Kb (Figure 6.1). The quadrilateral facets are further triangulated

with additional truss elements to estimate the facet bending with additional torsional

stiffness (typically, the stiffness across the facets is larger than those along the creases).

Using this approach allows to discretize the continuous origami sheet into a network

of pin-jointed truss elements connected at the nodes [167]. The network of nodes with

their interconnections defined by the underlying crease pattern resembles the network

of units governed by nonlinear dynamics in a typical reservoir.
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The corresponding governing equation of motion of node p can be represented

as follows:

mpẍp
(j) = F(j)

p , (6.1)

where the superscript (j) refers to the jth time step in the numerical simulation and

mp is the equivalent nodal mass, assuming the mass of the sheet is equally distributed

to all its nodes [cite]. F(j)
p is the summation of all internal and external forces acting

on node p and can be represented as follows:

F(j)
p =

∑
F(j)
s,p +

∑
F

(j)
b,p + F

(j)
d,p + F(j)

a,p +mpg, (6.2)

where the five forcing terms on the right hand side represent the forces from truss

stretching, crease/facet bending, equivalent damping, external actuation, and gravity,

respectively. In what follows we review the formulation of each of the forcing terms

developed by Bhovad and Li [167].

Truss stretching forces: Truss elements in the structure can be considered

as elastic springs with axial stretching stiffness (K
(j)
s = EA/l(j)), where EA is the

material constant, and l(j) is the length of the truss element at the current time step.

The stretching forces from a truss connecting node p and one of its neighbouring

nodes q can be represented as follows:

F(j)
s,p = −K(j)

s (l(j)pq − l(0)pq )
r
(j)
p − r

(j)
q

|r(j)p − r
(j)
q |

, (6.3)

where l
(0)
pq is the truss length at its initial resting state. r

(j)
p and r

(j)
p are the

current position vectors of these two nodes, respectively. Similarly, we can calculate

all the stretching forces acting on node p from all the neighbor nodes.

Crease/facet bending forces: The crease folding and facet bending are
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simulated with torsional spring coefficient (K
(j)
b = kbl

(j)), where kb is torsional stiffness

per unit length. the force acting on nodes p due to the crease folding along the truss

between p and q is:

F
(j)
b,p = −K(j)

b ((j)pq −ϕ(0)
pq )

∂ϕ
(j)
pq

∂r
(j)
p

, (6.4)

where ϕ
(j)
pq is the current dihedral angle along truss pq (aka. the dihedral angle

between the triangles 4pqr and 4pqv in [fig], and ϕ
(0)
pq is the corresponding initial

value. ϕ
(j)
pq can be derived as follows:

ϕ(j)
pq = η arccos

(
m(j).n(j)

|m(j)||n(j)|

)
modulo 2π, (6.5)

where,

η =


sign(m(j).r

(j)
pv ) if m(j).r

(j)
pv 6= 0

1 if m(j).r
(j)
pv = 0

(6.6)

where, m(j) and n(j) are current surface normal vectors of the triangles 4pqr and

4pqv, respectively. It should be noted that to calculate the total crease folding and

facet bending forces acting on node q, similar equations apply to trusses connected

to this node (e.g., truss pq, pr, ps, pt, pu, and pv in Figure X).

Damping forces: Bhovad and Li have used a formulation developed by Liua

and Paulino [125] to calculate the damping forces. The formulation first calculates

the average velocity of a node with respect to its neighbor nodes (v
(j)
avg) to effectively

remove the rigid body motion components from the relative velocities and ensures

that these components are not damped. Then damping force F
(j)
d,p applied on node p
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is given by:

F
(j)
d,p = −c(j)d (v(j)

p − v(j)
avg) (6.7)

c
(j)
d = 2ζ

√
K

(j)
s mp (6.8)

where c
(j)
d is the equivalent damping coefficient, and ζ is the damping ratio.

Actuation force: The input creases in the origami reservoir receive input

signal u(t), required for emulation, output modulation and sensing tasks. There are

many methods to implement actuation to deliver input u(t) to the reservoir. For

example, the actuation can take the form of nodal forces on a mass-spring-damper

network [161,162], motor generated base rotation on octopus-inspired soft arm [165],

or spring resting length changes in a tensegrity structure [169]. In origami, the actu-

ation can take the form of moments that can fold or unfold the selected creases [167].

Here, it is assumed that the resting angle ϕ(0) of the input creases change, in response

to the actuation at every step, to a new equilibrium ϕ
(j)
a,0 in that:

ϕ
(j)
a,0 = Wintanh(u(j)) + ϕ(0), (6.9)

where, Win is the input weight associated with the input creases which are assigned

before training and remain fixed after that. The magnitude of Win is selected such

that ϕ
(j)
a,0 ∈ [0, 2π] and consistent with the folding angle assignment.

In this study, the governing equations of motion are solved using MATLAB’s

ode45 solver with 10−3 second time-steps. Although the governing equations of mo-

tion use nodal displacement x(j) as the independent variables, we use the dihedral

crease angles ϕ(j) as the reservoir state variables to characterize the reservoir’s time
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response, because measuring crease angles is easier to implement by embedded sen-

sors. The relationship between ϕ(j) and x(j) can be directly calculated from the

governing kinematic relationships.

6.3.2 Training the Origami Reservoir

Similar to the input creases, sensor creases can be designated for measuring

the reservoir states. In this study, we denote Ni and Ns as the number of input creases

and sensor creases, respectively. Typically, the input creases are a small subset of all

origami creases of the reservoir (i.e., Ni < N). However, the sensor creases can be all

of the origami creases (i.e., Ns = N) or a small subset as well (i.e., Ns < N). Once

the selection of all the input and sensor creases is finalized, we can proceed to the

computing. In what follows we discuss the required steps of training the reservoir for

sensing and signal processing tasks.

The objective of the training phase is to obtain the readout weights Wi cor-

responding to every reservoir state (aka. the dihedral angles of the sensor creases).

Suppose we want to the train the reservoir to generate a nonlinear time-series z(t)

(aka. the reference output). The reservoir states ϕ(j) at every time step are measured

and then compiled into a matrix Φ.

Once the numerical simulation is over, we segregate the reservoir state matrix

Φ into washout step, training step, and testing step. The washout step data is

discarded to eliminate the initial transient responses. We then calculate the output

readout weights Wi using the training step data via simple linear regression:

Wout = [1 Φ]+Z (6.10)

where, [.]+ refers to the Moore-Penrose pseudo-inverse to accomodate non-
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squre matrix. 1 is a column of ones for calculating the bias term Wout,0. Z contains

the reference signals at each time step, and it is a matrix if more than one reference

are present. Finally, we use testing step date to verify reservoir performance. It is

worth noting that in the model a white noise of amplitude 10−3 is superimposed on

the reservoir state matrix during training to ensure the robustness of the readout

results against imperfections, external perturbations, and instrument noise in real-

world applications [167].

6.4 Sensing and Signal Processing Using Origami

Reservoir

In this section, we use the origami reservoir to sense the input signal to the

system, and apply a low-pass and a band-pass filter to the input signal. The baseline

variables for the origami geometric design, material properties, and reservoir param-

eters for this study are given in Table 6.1.

6.4.1 Sensing Task

The main objective of the sensing task is to sense or observe the input signal to

the origami reservoir. In order to achieve this, we excite the reservoir by sending the

input function u(t) to the input creases and train it to find the readout weights via

linear regression. Here, u(t) is a single-frequency periodic function of form Asin(ωt)

and the target function is exactly the same. Essentially, we want to train the reservoir

using different periodic functions, such that it can reproduce, or sense, any unknown

periodic input signal using the readout weights found in the training step. In order to

achieve this, we use a 9×9 Miura-Ori reservoir and excite it from zero initial conditions
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Table 6.1: Design of a baseline origami reservoir for the sensing and signal processing
tasks.

Parameters Value
Nodal Mass 7 g

ks 100 N/m
kc 0.2525 N/m.rad
Kf 10 N/m
ζ 0.2
a 16 mm
b 10 mm
γ 60

◦

θ0 60
◦

a 100 N/m
No. of sensors N

No. of input creases 0.2N

an train it for 50 seconds with a combination of 20 different random amplitudes in

which A ∈ [1, 100] and 25 different random frequencies in which ω ∈ [1, 50]. The

first 25 seconds of the data has been discarded as the washout step and the next 25

seconds has been used to derive the optimum static readout weights. Figure 6.3(a)

shows the performance of the origami reservoir in sensing an unknown input signal,

where the amplitude and the frequency of excitation are not in the training sets. It is

clear that the origami reservoir can successfully capture the input signal and rebuild

it using the derived static readout weights. We also analyzed the effect of the size

of the origami reservoir on the performance of the reservoir in sensing task in terms

of normalized mean square error (NSME) of the predicted signal. Here the size of

origami reservoir refers to the number of nodes in x and y direction. One can clearly

observe that increasing the size of the reservoir enhances its performance in sensing

as the degree of complexity and nonlinearity of the response increases.

119



Sensed Input Signal

Actual Input Signal

-9

-12

-6

-3

0

3

6

9

12

Time (s)

(a) (b)

0 1 2 3 4 5

N
S

M
E

In
p
u
t 

si
g
n
al

 u
(t
)

10
-7

0
5 7 9 11 13

0.2

0.4

0.6

0.8

1.0

1.2

Size of Origami Reservoir

Figure 6.3: Using origami reservoir for sensing the input signal. (a) The performance
of a 9 × 9 origami reservoir in sensing an input signal (u(t) = 9sin(2π(3.8)t)). The
amplitude and the frequency of the input signal are not in the training set. (b) The
effect of the size of the reservoir on the normalized mean sqaure error (NSME) of the
sensed signal.

6.4.2 Low-Pass Filter Task

In this subsection, we investigate the feasibility of using the origami reservoir

as a low-pass filter on the input signals to the reservoir. In order to achieve this, we

excite the reservoir by sending the input function u(t) to the input creases and train

it to find the readout weights via linear regression. Here, u(t) is a periodic function

containing high-frequency white noise of form u(t) = Asin(ωt) + HFWN(t), where

HFWN(t) stands for high frequency white noise and the target function is LP [u(t)],

where LP [ ] represents the low-pass filter operation. Essentially, we want to train the

reservoir using different periodic functions, such that it can act as a low-pass filter on

any unknown periodic input signal using the readout weights found in the training

step.

Figure 6.4(a) shows the geometry of a 11 × 11 origami reservoir used in this

task. The input creases of the reservoir are highlighted in red. Figure 6.4(b) and (c)
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Figure 6.4: Using origami reservoir a low-pass filter on the input signal. (a) The
gometry of a 11 × 11 origami reservoir used in this task. The input creases are
highlighted in red. (b) The performance of the origami reservoir in low-pass filter task
on the input signal (red), where a high frequency Gaussian white noise of strength
-40dBW is injected to the single-periodic input signal. (c) ask. The input creases are
highlighted in red. (b) The performance of the origami reservoir in low-pass filter task
on the input signal (red), where a high frequency Gaussian white noise of strength
-20dBW is injected to the single-periodic input signal. (d) The performance of the
origami reservoir as a low-pass filter on noisy signals with different levels of noise.

show the performance of the reservoir as a low-pass filter on a noisy signal constructed

as a summation of a single-periodic input signal and high frequency Gaussian white

noise of two different levels. We also analyzed the effect of the strength of the noise on
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Figure 6.5: Band-pass filter emulation task using origami reservoir. (a) Training the
reservoir as a band-pass filter on an input signal consisted of three different ranges of
frequencies. (b) Testing the performance of the reservoir in emulating the band-pass
filter.

the performance of the reservoir in terms of normalized mean square error (NSME)

in figure 6.4(d). Therefore, one can clearly observe that the origami reservoir can be

successfully trained to be used as a low-pass filter on the single-periodic input signals.

6.4.3 Band-Pass Filter Task

In this subsection, we investigate the feasibility of using the origami reservoir

as a band-pass filter on the input signals to the reservoir. To this end, we use a

11 × 11 Miura-Ori reservoir and excite it with an input signal consisted of three

different frequencies: 1) low frequency, 2) medium frequency and 3) high frequency.

The reservoir is excited from zero initial conditions and is trained for 100 seconds.

We discard the first 50 seconds of data as the washout step, use the data from the

next 40 seconds to calculate the optimum static readout weights, and then use the

last 10 seconds of data to assess the performance of the reservoir as a band-pass filter.

The objective of this task is to capture the medium-range frequency.

Figures 6.5(a) and (b) clearly show that the origami can be successfully trained
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to emulate a band-pass filter and capture the medium frequency of an input signal.

It should be noted that although this task was an emulation of a band-pass filter, the

training procedure for a broader range of frequencies and amplitudes is the same as

the sensing and low-pass filter task, but it requires a more comprehensive training

data, as the reservoir deals with three different ranges of frequencies here. However,

the emulation results are promising and the comprehensive training of the reservoir

will be the subject of further studies.

6.5 Discussion and Conclusion

In this study, we investigate the sensing and signal-processing capabilities of

physical reservoir computing using origami via numerical simulations and few para-

metric studies. We demonstrate that the highly nonlinear dynamics and complex

behavior of a Miura-Ori origami along with its fading memory property makes it a

suitable platform for physical reservoir computing. Nonlinear patterns can be embed-

ded into the origami reservoir, and the resulting pattern generation is robust against

external disturbances and recoverable under different initial conditions, proving sep-

aration property [167]. We use a dynamic model based on truss-frame discretization

approach developed by Bhovad and Li [167] to study the behavior of the origami

reservoir and train it for the aforementioned tasks. We show that the origami reser-

voir successfully performs sensing and signal processing tasks such as low-pass and

band-pass filtering on input signals. We also investigated the effect of the size of

the origami reservoir on the sensing performance and the performance of the system

as a low-pass filter under different levels of noise. Further parametric studies can

enrich our vision of the linkage between the design of the physical reservoir and its

computing performance.
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The outcome of this research can pave the way for a new generation of me-

chanically intelligent structures or soft robots that don’t rely on external digital com-

ponents for sensing. For example, a soft crawling robot might be able to use its

complex dynamics to sense the environment and the terrain which it is crawling on

and decide whether it is necessary to change its locomotion gait whenever there is

a change in the surface. As another example we might expect a new generation of

swimming robots that can use the complex dynamic interaction between their body

and the swimming environment to observe the objects in the environment and sense

the distance to the external objects and whether it’s necessary to maneuver to avoid

collision.

The results of this study can advance the state of art and formulate a strategy

for constructing mechanically intelligent structures and material systems that can

sense the environment, learn from experience and act accordingly, without relying on

external controllers and digital components.
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Chapter 7

Conclusion

Origami has found various engineering applications, in recent years. Many of

these origami-inspired applications have exploited the kinematics of folding. Folding

can offer sophisticated shape transformations that are yet programmable which are

served as guidelines for many design innovations. In addition, origami structures have

tremendous unique advantages including infinite design space, excellent deformability

and shape reconfigurability and flat-foldability. The increasingly diverse and vastly

expanding applications of origami have encouraged researchers to study the mechan-

ical properties of folded structures as well, over the past decade. This has led to

emergence of a new category of metamaterials and meta-structures called architected

origami materials. The combination of elastic energy in the deformed facets and

creases, and their complex spacial distributions, impart the architected origami ma-

terials with various programmable and even unorthodox mechanical properties such

as multistability or structural auxetic effects.

Despite the significant research progress, most of the previous studies on

Origami have mainly focused on kinematics or static/quasi-static characteristics of

origami folding. Origami folding, on the other hand, could be a dynamic process.
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The intricate nonlinear elastic properties of origami structures can lead to interest-

ing dynamic characteristics and applications. Nevertheless, studying the dynamics of

folding is still a nascent field and there are only a few researches conducted in this

area.

Dynamics of reciprocal origami folding can be viewed from two different per-

spectives. In the first perspective, the main objective is to program or create new

mechanical properties in the structure, by introducing appropriate folds, to create

the desired mechanical properties for a specific dynamic application. The second per-

spective on the other hand, focuses on studying the behavior of the origami structure

under different dynamic excitations. This dissertation sets out to expand our knowl-

edge of the fundamentals of origami folding dynamics by conducting three different

studies. We investigate the feasibility of using fluidic origami for low frequency vi-

bration isolation and the effect of utlizing origami folding techniques to enhance the

performance of a jumping mechanism as two potential dynamic application of origami

folding. In addition, we uncover the underlying dynamic characteristics of a bi-stable

origami structure and show that how dynamic excitations can be used to fold the

structure between its stable states.

Witnessing the rich and nonlinear dynamic characteristics of origami struc-

tures, in this dissertation we introduce the idea of using origami structures as physi-

cal reservoir computing systems and investigate their potentials in sensing and signal

processing tasks without relying on external digital components and signal processing

units. Although this is a preliminary study on potential capabilities of origami struc-

tures as physical reservoirs, it can certainly enrich our vision of the smart structures

and materials to create a generation of multi-functional structures or metamaterials

that can exhibit programmable properties or mechanical intelligence. The long-terms

research vision would be to realize mechanical metamaterials that can adapt their
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properties to the environmental conditions; soft robotic exoskeletons that can perform

control tasks without any digital components; or metamaterials and meta-structures

that can perform logical operations, store and process information using changes in

their morphology.

Results of these studies can open up new avenues in the field of origami folding

dynamics and may lead to emergence of a novel category of metamaterials and meta-

structures with embedded dynamic functionalities.
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