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SUMMARY

Mechanical compliance in robotic systems facilitates safe human-robot interac-

tion and improves robot adaptation to environmental uncertainty. Several promising

compliant actuator technologies have emerged from the field of soft robotics, in par-

ticular the pneumatic artificial muscle—a soft, lightweight actuator that contracts

under pressure. The pneumatic muscle’s passive compliance eliminates the need for

precise high-bandwidth actuator control to simulate mechanical impedance. However,

the pneumatic muscle is limited in practical robot applications—particularly, without

sacrificing robot agility—due to several key challenges: development of compatible

soft sensors, translation of conventional high-level control and planning techniques to

pneumatic muscle-driven systems, and limitations in pneumatic muscle pressurization

rate and force generation capabilities.

This work seeks to address these challenges, via a threefold approach, to access

the benefits of compliant robot actuation while maximizing the robot’s dynamic ca-

pabilities. The first objective targets the development of a pneumatic muscle design

with integrated sensing to enable kinematic and dynamic state estimation of muscle-

actuated robots without hindering muscle compliance. The second objective focuses

on the construction of a trajectory optimization framework for planning dynamic

robot maneuvers using ’burst-inflation’ muscle pressure control. Finally, the third

objective explores a design optimization strategy utilizing biological joint mechanisms

to compensate for pneumatic muscle limitations and maximize robot agility.

xv



CHAPTER 1

INTRODUCTION

Soft robotics is an emergent research area within the robotics field that promises safer

and more robust solutions to challenges in human and machine mobility. Tradition-

ally, roboticists devise sophisticated strategies relying on precise sensing to control

rigid motor-driven robots in an attempt to simulate animal-like flexibility and grant

robots a gentler touch. Conversely, soft robotics seeks to build mechanical intelligence

into robots using soft, flexible, and lightweight materials (like those found in living

organisms) that adapt to humans and their surroundings. In this way, soft robotics

enables simpler control, safer human-robot interaction, and increased resilience in

uncertain environments.

This work focuses on coupling one of the most well-known soft robot actuators—

the pneumatic artificial muscle—with rigid structures to enhance robot adaptability

while maintaining some of the advantages of traditional robotic systems, namely, high

force transmission capabilities and robust rigid body dynamics modeling techniques.

The pneumatic artificial muscle is a low-mass linear actuator composed of an elas-

tomeric bladder constrained by helically-wrapped fibers that contracts up to thirty

percent when pressurized, as shown in Figure 1.1. A single muscle or an antagonistic

pair can be connected to a pulley or lever arm to actuate a hinge joint (replacing an

electric motor), providing mechanical compliance with high torque capability. Con-

sider the benefits of soft actuation in the following applications:

1. Inherent safe contact dynamics: an assistive mobile manipulator with a flexible

robot arm to help physically-impaired individuals with activities of daily liv-

ing, like feeding and dressing. The low mass of pneumatic muscles significantly

reduces arm inertia, lessening the consequences of collisions, while the intrinsic
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compliance facilitates safe physical interaction between human and robot.

2. Biomechanical compatibility: a lower-body exoskeleton that provides assis-

tance at the knee joint to reduce metabolic cost during locomotion while carry-

ing a heavy load. The compliant actuators used on this device apply smooth,

biologically-similar assistive forces that safely and comfortably augment the

user’s leg muscles. Replacing motors and gearboxes with pneumatic muscles

also allows for a substantial reduction in distal mass along the leg, which, in a

wearable device, can reduce user fatigue during prolonged use.

3. Environmental adaptation: a legged exploration robot designed to navi-

gate challenging and hazardous environments with irregular terrain and unpre-

dictable obstacles. In these settings, legs significantly improve robot mobility

versus wheels, but are more difficult to control: each step must be carefully

planned to ensure robot stability. With soft actuators built into each leg, how-

ever, the robot can exploit leg compliance to mechanically adapt to the terrain

rather than rely on complex control algorithms.

Figure 1.1: Pneumatic artificial muscle: vented muscle at nominal length (top), inflated
muscle near max contraction length (bottom).

While the morphological approach to robot adaptation illustrated in these three

examples has been shown effective for simple systems, soft robot technologies are still

quite limited in practical applications. The most substantial challenges are: compat-

ible soft sensing technologies, limitations in soft actuator speed and force generation

capabilities, and application of conventional robot planning and high-level control
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techniques to soft robotic systems [1]–[6]. Consequently, this thesis seeks to im-

prove the performance of pneumatic muscle-driven robots, specifically to

enable the fast dynamics capabilities required in assisted human locomo-

tion and for propulsion of human-scale legged mobile robots. A threefold

approach is taken to address these challenges:

1. Objective 1: Develop a pneumatic muscle design with integrated sensing to

enable kinematic and dynamic state estimation of muscle-driven robots without

sacrificing the muscle’s compliant nature.

2. Objective 2: Develop a modeling approach for pneumatic muscle-driving rigid

body robots using a combination of analytical and data-driven models. Incorpo-

rate this model into a trajectory optimization framework for planning dynamic

robot motions that can be executed on a real robot with pneumatic control

hardware suited for mobile systems.

3. Objective 3: Investigate the use of biologically-inspired joint mechanisms to

maximize robot performance by compensating for pneumatic muscle limitations

in force versus contraction length and inflation speed.

This thesis addresses the three objectives over the next five chapters, further moti-

vating each objective by examining the current state-of-the-art in the field. Chapter

2 outlines pneumatic muscle sensing technologies that have previously been inves-

tigated, highlighting the lack of combined position and force sensing capabilities.

The design of a pneumatic muscle with integrated room-temperature liquid metal

strain sensors for muscle length and contraction force estimation is then detailed and

sensorized muscle performance is evaluated on a single degree-of-freedom (DOF) link-

age. The deficiencies of this sensing approach spur the development of a novel optical

reflectance sensor in Chapter 3. The optical sensors are integrated into a new pneu-

matic muscle design for improved kinematic and dynamic muscle state estimation.

3



Two antagonistic pairs of sensorized muscles are configured on a planar 2-DOF arm

to evaluate sensing performance.

In chapter 4, a complete pneumatic muscle-driven robot model is developed. The

selection of ‘burst inflation’ robot control strategy is first explained, as this largely

dictates pneumatic system dynamics. A range of techniques for modeling pneumatic

system and muscle dynamics are then laid out, and an approach is chosen to balance

model accuracy with simplicity. Additionally, the formulation of rigid body dynamics

used in this work is reviewed. The muscle-driven robot model laid out in this section

is utilized in the subsequent chapters for trajectory planning and design optimization.

Chapter 5 builds a trajectory optimization framework for pneumatic muscle-driven

robot motion planning using factor graphs. The pneumatic system, muscle, and rigid

body models are incorporated into a robot trajectory factor graph as constraint factors

and the graph is solved to calculate the valve open and close times that achieve a

desired robot trajectory or target state. To evaluate this approach, a two-legged

pneumatic muscle-driven jumping robot is designed and fabricated. A trajectory

factor graph is constructed for the jumping robot and used to plan a range of vertical

jumps. Pneumatic system dynamics and robot kinematics are then compared for

simulated and experimental jumps run using optimized valve timing sequences.

In chapter 6, biological muscle force transmission mechanisms in animal jumping

are reviewed: specifically, the effects of series elasticity (tendons) and joint angle-

dependent mechanical advantage (resulting from musculoskeletal structure) on jump-

ing biomechanics are considered. Inspired by animal morphology, this chapter in-

vestigates whether series elasticity and variable mechanical advantage can similarly

improve the performance of pneumatic muscle-driven robots. A sequence of design

optimizations are run for the jumping robot to characterize the impacts of series

elasticity and joint angle-dependent moment arm on jump height; the study includes

consideration for the interaction of pneumatic muscle activation timing and nominal
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muscle length with stiffness and moment arm design parameters.

Finally, Chapter 7 summarizes the overall research contributions of this thesis and

elucidates the context in which pneumatic muscles may be best utilized for mobile

robotic systems. Significant conclusions and lessons learned are highlighted for each

of the three objectives addressed in this work, and future research directions are laid

out for pneumatic artificial muscle-driven robots.
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CHAPTER 2

LIQUID METAL STRAIN SENSOR

For human-robot interaction applications, position and force sensing are critical to

safe and robust robot control but are challenging to implement for soft robot actu-

ators. Specifically, it is difficult to incorporate traditional position and force sensors

without sacrificing the soft, compliant nature of the actuator. Thus, the first objec-

tive of this work is to develop and integrate compatible soft sensors into one of the

most utilized soft actuators—the pneumatic artificial muscle—to provide compliant

actuation with built-in kinematic and dynamic sensing capabilities.

Recent literature has explored various methods of integrating soft sensors directly

into pneumatic muscles, including resistive sensors using conductive silicones, liquid

metals, and braided threads [7]–[10], inductive sensors via conductive wires wrapped

around muscles [11], [12], and optical sensors [13]. Most sensing methods focus on

measuring muscle displacement and rely on external pressure transducers for approxi-

mating muscle force [12], [14], [15]. Alternatively, one group measured muscle pressure

only, as a proxy to force output measurement [16]. However, there are several ad-

vantages to measuring both muscle length and pressure (or equivalently, length and

force) via muscle-integrated sensing:

• The number of external sensors is reduced (no external pressure transducer),

and less pneumatic connections are required, making it easier to incorporate

sensing and actuation into robotic systems.

• Pressure measurement directly at the muscle is more temporally accurate than

measurement via external transducers upstream that do not capture the tran-

sient pressure dynamics of downstream components. This is especially impor-
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tant for fast robot dynamics with rapid muscle inflation, as well as for high-

bandwidth force estimation.

While these benefits motivate the integration of both length and force sensing into

pneumatic muscle designs, only one investigation was found in which both muscle

contraction force and length were estimated from integrated sensing [17]. This was

achieved by measuring the inductance and resistance of conductive wire braids woven

around the muscle. The authors evaluated only position estimation on a 1-DOF

system.

The approach detailed in this chapter seeks to achieve position and force sens-

ing via the use of eutectic gallium indium (EGaIn) liquid metal sensing: two EGaIn

sensors are incorporated into each muscle to measure both contraction and pressure

[18]. While preliminary sensor results are promising, muscle force estimation accu-

racy suffers in practice due to poor pressure sensing resolution. Furthermore, several

issues inherent to EGaIn sensors limit their potential outside of a laboratory setting,

including complexity of sensor fabrication, oxidization of EGaIn causing sensor base-

line drift over time, circuit disconnection at the EGaIn-wire lead interface, and EGaIn

leakage out of the sensor.

2.1 Methodology

A number of pneumatic bending actuator designs have demonstrated the use of room-

temperature liquid metal strain sensors to measure actuator curvature [19]–[21]. Sim-

ilarly, a pneumatic muscle was designed with a liquid metal-filled helical microchannel

embedded in the muscle bladder to measure muscle contraction [9]; this helical mi-

crochannel design, along with several other non-liquid strain sensor concepts [8], [10],

relies on the coupling between muscle length and diameter to infer length change from

overall muscle expansion.

The sensorized muscle detailed here utilizes the liquid metal strain sensor to mea-
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sure both muscle contraction and force [18]. Instead of estimating muscle contraction

via muscle diameter, a linear strain sensor is enclosed inside the muscle along its

axis to measure muscle length directly. To infer muscle force, a second strain sensor

is wrapped around the outer circumference of the muscle, measuring the combina-

tion of overall muscle diameter and local muscle bladder deformation between muscle

threads. By spacing the helically-wrapped threads that constrain muscle geometry

further apart, the muscle bladder increasingly balloons out between threads as internal

pressure is increased, such that muscle length and diameter are effectively decoupled.

Muscle force can then be inferred from muscle pressure-length-force characterization

data.

Design overview. The pneumatic artificial muscle design consists of a cylindrical

silicone elastomer bladder embedded with Kevlar threads to constrain the motion

of the bladder under pressure. The use of discrete threads––rather than the more

typical woven thread mesh sleeved around the muscle bladder—allows for customiz-

able thread spacing and orientation, as well as a reduction in friction between the

constraining threads and the muscle bladder material. A eutectic gallium-indium

(EGaIn) strain sensor wraps around the outer diameter of the bladder at the mid-

point along the muscle axis to measure the radial bladder deformation (Figure 2.1a).

A second EGaIn sensor is enclosed in the muscle bladder and positioned along the

muscle’s axis of contraction to measure length (Figure 2.1b). The use of both axial

and radial sensors enables estimation of muscle length and pressure solely from muscle

sensor data.

2.1.1 Design and fabrication

Axial sensor. The axial sensor inside the muscle is comprised of a 300-µm mi-

crochannel filled with EGaIn (Sigma-Aldrich Co.) that is encapsulated in an Ecoflex
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Figure 2.1: (a) Pneumatic artificial muscle with radial EGaIn liquid metal strain sensor;
(b) section view of muscle showing axial EGaIn sensor. Large spacing is used between
muscle constraining threads (yellow).

30 platinum-cure silicone substrate (Smooth-on Inc.). Ecoflex 30 has a low elastic

modulus, minimizing the force required to strain the sensor; the maximum tensile

force exerted by the axial sensor at the full length of the pneumatic muscle is 0.67 N.

The sensor is fabricated using conventional soft lithography techniques [22]: two

silicone sheets are cast using 3D-printed molds; one of the molds contains a raised

channel feature to imprint the channel geometry into the silicone sheet, while the

other mold produces a flat sheet (Figure 2.2a). The two sheets are bonded using

Sil-Poxy silicone adhesive (Smooth-on Inc.). Then, the embedded channel is filled

with EGaIn via a hypodermic needle, and wire leads are attached to the ends of the

channel (Figure 2.2b). 3D-printed grips with threaded features for connection inside

the muscle are connected to both ends of the sensor. The nominal resistance of the

axial sensor design, prior to being installed inside the muscle in a pre-strained state,

is approximately 0.7 ohms.

Radial sensor. The radial sensor is fabricated in a manner similar to the axial

sensor, with one additional step: after creating the sensor and filling its channel with

EGaIn, the sensor is placed in a cylindrical mold and silicone is added to connect the

ends of the sensor together (Figure 2.2c). This produces a cylindrical sensor band

that fits snugly around the outer diameter of the pneumatic muscle. The nominal

resistance of the radial sensor design is approximately 1 ohm.
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Figure 2.2: Sensor fabrication process: (a) cast two sensor layers; (b) bond layers, inject
with EGaIn, and cast in cylindrical mold. For radial sensor, (c) bond sensor ends with
silicone in mold. (d) Radial sensor band.

Pneumatic muscle. The pneumatic artificial muscles are fabricated over four

steps, as shown in Figure 2.3, by casting Dragon Skin 10 SLOW platinum-cure silicone

(Smooth-On Inc.) into 3D-printed molds (Objet30 Prime, Stratasys) and intermedi-

ately embedding structural components:

1. Silicone is injected into mold assembly 1 around a cylindrical inner mold to

create a half-thickness muscle bladder (Figure 2.3a). As part of this step, one

of the end plugs is embedded at one end of the muscle. Additionally, raised

features on the inner surfaces of the outer molds created helical grooves on the

outer surface of the bladder.

2. The helical grooves are then used for guidance in wrapping the Kevlar threads

(0.36 mm diameter) around the muscle bladder (Figure 2.3b). Slots in the

embedded end plug and in the base of the inner mold are used to constrain the

threads. Eight threads each are added in the clockwise and counterclockwise

directions, respectively, at ± 22° from the muscle axis. This angle was chosen to

achieve a balance between axial contraction and radial expansion of the muscle

[23].

3. A second layer of silicone is cast around the inner muscle bladder and Kevlar
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threads, encapsulating the threads at the mid-thickness of the muscle outer

wall (Figure 2.3c). Extra thread length at the free end of the muscle is tucked

into an opening at the bottom of the inner mold so that the threads can be

subsequently connected to the second end plug in step 4.

4. The axial sensor is connected inside the muscle; the sensor wires are routed

through two passages in the end plug and the holes are sealed with Sil-Poxy.

The extra Kevlar thread lengths from step 3 are connected to the second end

plug and the plug is sealed into the open end of the muscle (Figure 2.3d). To

securely fix the threads at both ends of the muscle, conical inserts are screwed

into the tops of both end plugs

Figure 2.3: Pneumatic muscle fabrication process: (a) cast half-thickness silicone bladder
with embedded end plug, (b) wrap bladder with Kevlar threads, (c) cast second layer of
silicone onto bladder to encapsulate Kevlar fibers, (d) add sensor and end plug.

2.1.2 Sensorized muscle characterization & calibration

Control and data acquisition. For muscle and sensor characterization, as well as

experimental evaluation in the subsequent section, pneumatic muscle pressure control

was performed using solenoid valve pulse-width modulation to control airflow from
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a diaphragm pump to the muscle (Figure 2.4). A proportional-derivative controller

implemented on an Arduino MEGA 2560 was used to modulate the PWM duty

cycle of the valve based on pressure transducer feedback and the desired pressure

setpoint. The Soft Robotics Toolkit was used as a reference in selecting pump and

valve components for the controller [24].

EGaIn sensor voltages were recorded via an NI myDAQ device (National Instru-

ments Co.). Sensors were configured in a voltage divider circuit and the sensor voltage

was amplified using an operational amplifier with a nominal gain of 470. Additionally,

a capacitive filter was added to filter high frequency sensor noise.

Figure 2.4: Pressure control schematic: blue lines represent fluidic connections, green lines
represent signal connections, and black lines represent power connections.

Muscle characterization. Each pneumatic muscle was characterized over a set of

blocked force tests, in which the muscle was fixed in an Instron electromechanical

test frame and allowed to contract slowly under a fixed internal pressure. Tests were

performed at pressures between 3.4 kPa (0.5 psi) and 41.4 kPa (6 psi), stepped by 3.4

kPa (0.5 psi) increments. Before each test, the muscle was connected to the Instron

crosshead and the load cell was zeroed; the muscle was then preloaded to 0.44 N (0.1

lbf) in its unpressurized (maximum length) state to ensure all slack was removed.

Throughout each run, the pressure controller maintained a constant pressure setpoint,

while the Instron crosshead moved in the direction of muscle contraction at a rate
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of 20 mm/minute. The test stopped when the applied force dropped below 0.44 N

(0.1 lbf). The average peak force generated by this pneumatic muscle design at 41.4

kPa (6 psi) was 64.1 N (14.4 lbf). Across the four muscles tested, the maximum force

variation was 5.8 N (1.3 lbf); blocked force results are shown in Figure 2.5.

Figure 2.5: Pneumatic muscle blocked force data: third-order polynomial curves fit to
raw data.

Sensor characterization. Sensor response was characterized over the full oper-

ating range of the pneumatic muscle. Each muscle was inflated from 0 to 55.2 kPa

(8 psi) and deflated back to 0 kPa for ten cycles. Muscle length and diameter were

measured at each pressure using fiducial markers attached to the muscle. The average

axial contraction across all four muscles tested was approximately 16.7 mm, or 23%

of the inner muscle length (average of 73.3 mm). The average radial expansion was

16.3 mm, or 81% of the outer muscle diameter. The average voltage change for the

axial sensor across the entire contraction range for all four muscle prototypes was 1.6

V, while the average change for the radial sensor was 2.2 V. The muscle prototype in

Figure 2.6 showed the smallest axial and radial sensor voltage ranges across all four

muscles.

Additional testing was performed to determine the sensitivity of the axial sensor
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Figure 2.6: Pneumatic muscle prototype sensor characterization: (a) muscle contraction
and (b) corresponding axial sensor response; (c) diametral expansion and (d) corresponding
radial sensor response.

to ambient pressure inside the muscle. The axial sensor was electrically connected to

a milliohm meter (GW Instek, Ltd.) and sealed inside a pressure vessel. The vessel

was pressurized in 6.9 kPa (1 psi) increments up to 103 kPa (15 psi) and the sensor

resistance was recorded at each pressure. Sensor resistance increased by only 0.007

ohms over the entire pressure range, about 1% above the nominal resistance.

Muscle length & force estimation. For each pneumatic muscle, third-order poly-

nomial curves were fit to axial contraction versus axial sensor voltage data and diame-

tral expansion versus radial sensor voltage data (Figure 2.7). The axial sensor curve

allows for direct measurement of muscle length. Together, both sets of sensor charac-

terization data allow for estimation of internal muscle pressure from contraction and

diameter measurements, as shown in Figure 2.8. Then, muscle length and pressure
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estimates can be used to estimate muscle contraction force from blocked force data

(Figure 2.5).

Figure 2.7: Third-order calibration curves for axial sensor-muscle contraction and radial
sensor-diametral expansion.

2.2 Experiments and Results

To evaluate sensorized pneumatic muscle force estimation accuracy, experiments were

performed with a single sensorized muscle and an antagonistic pair connected to a

one degree-of-freedom hinge joint linkage. Axial and radial sensor data were used to

estimate applied linkage end-effector force.
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Figure 2.8: Muscle diametral expansion versus pressure for a range of fixed muscle con-
traction lengths.

Figure 2.9: One degree-of-freedom experimental test setup actuated by an antagonistic
pair of pneumatic muscles with EGaIn liquid metal sensors.

2.2.1 Static force experiment

Static force testing was performed with a single muscle connected to the linkage by

measuring the end-effector force as the end-effector was held fixed and the muscle

was pressurized. The muscle was configured on the linkage to achieve a range of

motion from 0 degrees at maximum muscle length to approximately 25 degrees at

full contraction (55.2 kPa, 8 psi). Tests were performed at 0 and 10 degrees, with

muscle pressures from 0 to 41.4 kPa (6 psi). At each test pressure, the reaction

force at the end-effector was measured via a low-friction pulley system connecting

the end-effector to the Instron load cell. The linkage was set up in the horizontal
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plane to eliminate gravitational effects. Axial and radial sensor voltages were both

recorded throughout each test and used to estimate end-effector force. As shown in

Figure 2.10, end-effector force predictions were relatively noisy but generally tracked

measured force.

Figure 2.10: Sensor-estimated end-effector force versus ground truth measurement for (a)
0 deg linkage angle and (b) 10 deg linkage angle.

2.2.2 Joint stiffness experiment

Stiffness testing was performed with two muscles connected to the linkage in an an-

tagonistic configuration (Figure 2.9), such that the linkage angle range was approxi-

mately ±12.5 degrees. After pressurizing each muscle to achieve the desired linkage

angle, the end-effector was displaced a fixed distance using the Instron pulley setup.

End-effector reaction force was measured over the full range of displacement. Testing

was performed at 0 degrees with both muscles connected to the same pressure source

and at 5 degrees with each muscle connected to its own pressure source. The axial

and radial sensor voltages were recorded throughout each test and used to estimate

end-effector force. As shown in Figures 2.11 and 2.12, end-effector force estimates gen-

erally trended with ground truth measurements, but accuracy significantly suffered

with the addition of the second muscle.
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Figure 2.11: (a) Sensor-estimated end-effector force (circle marker) versus ground truth
measurement (line) for 0 deg initial linkage angle; estimates are averages between two
antagonistic muscles. (b) Sensor-estimated muscle pressures (circle marker for extension
muscle, x marker for contraction muscle) versus controlled pressure (line).

2.3 Discussion

Overall, the limiting factor to muscle force estimation accuracy is the sensitivity of

muscle pressure estimates to variation in muscle diameter measurements. To show

this, the pressure estimates for both muscles during the 0-degree stiffness angle test

are plotted in Figure 2.11b: the trends in pressure estimation error directly correspond

to fluctuations in linkage end-effector force estimation. Muscle pressure estimation is

particularly sensitive to diameter estimation because the magnitude of muscle diam-

eter expansion per unit pressure change is small. Thus, any error in the radial sensor

measurement is amplified when correlated to muscle pressure.

Additionally, muscle force estimates are very sensitive to any baseline voltage

shift of the EGaIn sensors. If the baseline voltage measured for either the axial or

radial sensor prior to use does not accurately represent the sensor baseline throughout

subsequent operation, force prediction accuracy will suffer.

Furthermore, robustness issues limit the use of liquid metal sensors outside the

lab. The EGaIn liquid metal in each sensor microchannel slowly oxidizes over the

life of the sensor, causing the nominal sensor resistance to increase. While this can
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Figure 2.12: Sensor-estimated end-effector force (circle marker) versus ground truth mea-
surement (line) for 5 deg initial linkage angle linkage angles; estimates are averages between
two antagonistic muscles.

be compensated by periodic sensor calibration, oxidization can eventually lead to

breakage in the microchannel conductive path. Sensors are prone to leaking, as well—

over-straining the sensor, applying localized pressure to the sensor microchannel, or

even normal repeated use tends to cause EGaIn leakage from the sensor microchannel

at the wire lead interfaces over time. Finally, sensor fabrication complexity related

to casting consistent microchannels, bonding silicone layers, injecting EGaIn into the

microchannels, and attaching wire leads results in low sensor yield.

2.4 Significance

The ability to estimate both the force and displacement of pneumatic artificial mus-

cles exclusively using muscle-integrated sensors eliminates the requirement for exter-

nal sensors and encoders. This facilitates a more modular approach to the design of

muscle-actuated robots, such as for wearable devices, wherein muscles can be con-

figured to meet both the kinematic and dynamic requirements of the device without

additional consideration for sensor placement.

However, the liquid metal sensor-embedded pneumatic muscles developed in this

work were shown to have several issues that limit their capabilities in practical use.
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While robustness issues related to sensor fabrication complexity may potentially be

mitigated via alternate fabrication techniques, such as such as replacing cast mi-

crochannels with silicone tubing [19] or direct laser patterning of liquid metals [25],

muscle force estimation accuracy is limited due to radial pressure sensing resolution.

For a single sensorized muscle, accuracy may be acceptable in some applications; but,

the cumulative error using an antagonistic pair of muscles is excessive.
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CHAPTER 3

OPTICAL REFLECTANCE SENSOR

Recent advancements in soft sensing have focused on optical sensing methodologies,

which do not require special conductive materials and are not designed specifically

for one type of soft actuator. Stretchable optical waveguides have been used to

measure the change in light transmission during bending, stretching, compression,

etc. [26], [27]. Other sensing techniques measure the attenuation or reflection of light

by diffusive particles embedded in an elastomer under various modes of deformation

[28], [29]. Recently, a reflective elastomer foam sensor was developed to quantify

twisting and bending [30].

Inspired by these approaches, a novel optical sensor design is developed that mea-

sures the light reflected by strategically designed silicone features that can be embed-

ded in a variety of soft actuators [31], [32]. The sensor is straightforward to fabricate,

composed of inexpensive off-the-shelf electronics, and is versatile—it can measure

multiple deformation modes with the same basic design in various soft actuators or

structures. Several advantages of this sensor over the previous liquid metal design

include:

• Robustness: no oxidization or leaking issues common to conductive liquid

sensors.

• Production yield: silicone casting and shape deposition-based fabrication

achieves high reproducibility; no intricate cast features like microchannels are

required

• Plug-and-play: sensor electronics can be easily swapped in and out of an

actuator with no modification
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A pneumatic artificial muscle was designed with two integrated optical sensors to

measure the contraction length and force of the muscle. The sensorized muscle can

be readily incorporated into a robotic system to provide compliant actuation with

kinematic and dynamic feedback—the only additional requirements are a pneumatic

pressure source and a microcontroller capable of reading analog signals

In this chapter, the sensor and pneumatic muscle design are first detailed. Next,

optical sensor response is characterized for muscles under no load. The process of

calibrating sensors to muscle contraction length and force is then described. Muscle

sensor performance is subsequently evaluated on a two-degree-of-freedom (2-DOF)

arm with two antagonistic sensorized muscle pairs: arm kinematics and dynamics

are estimated from optical sensor measurements over several tests. Additionally, the

impact of external disturbances on sensor performance is evaluated.

3.1 Methodology

3.1.1 Design and fabrication

Optical sensor. The optical sensor uses an infrared light-emitting diode (LED) (IF

E91D; Industrial Fiber Optics, Inc.) and photodiode (IF D91; Industrial Fiber Optics,

Inc.) to measure the amount of light reflected by a corresponding silicone diaphragm

within a soft actuator: The LED is directed at the surface of the diaphragm and light

reflected directly back from the diaphragm passes into the photodiode. The typical

peak wavelength of the LED is 870 nm, and the typical peak of the photodiode is

880 nm. A 100-ohm potentiometer (3312J; Bourns, Inc.) is used in series with the

LED to adjust its light output, allowing for the sensitivity of each optical sensor to

be tuned after it is connected into an actuator. An operational amplifier (TLV2460;

Texas Instruments) is used to amplify the photodiode signal for measurement by a

microcontroller.

These sensors are utilized in a pneumatic muscle by integrating two sensors into
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each of the muscle’s two end cap assemblies—one for contraction length sensing and

the other for pressure sensing. As shown in Figure 3.1, a LED-photodiode sensor

pair are housed in the 3D-printed muscle end cap at each end of the muscle. A small

piece of 0.25-mm thick aluminum is positioned between the LED and photodiode to

block light emitted at the side of the LED from passing directly into the photodiode.

Each sensor’s circuit board (containing the potentiometer and operational amplifier)

is mounted directly to the end cap (Figure 3.1d). A shielded three-lead cable is

soldered to each board for power, ground, and signal connections.

Figure 3.1: Optical length and pressure sensor assemblies for integration with pneumatic
artificial muscle: (a) cross-section of muscle showing locations of sensor assemblies; (b)
length sensor end cap assembly; (c) pressure sensor end cap assembly; (d) sensor circuit
board.

On the pressure sensor side of the muscle, the end cap is not sealed in place;

instead, the pneumatic seal is achieved by the pressure sensor diaphragm. This allows

for easy replacement of pressure sensor electronics by simply removing the end cap.

On the length sensor side of the muscle, the end cap is separated into two pieces
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(Figure 3.1b): the first piece is sealed in place with silicone and contains optical fibers

for transmitting and receiving light; the second piece contains the sensor electronics

and is removable. This again facilitates replacement of the length sensor without

modification of the muscle.

Figure 3.2: Operating principle of optical sensors: red represents IR light emitted by LED
and blue represents IR light reflected by diaphragm back to photodiode. (a) Unpressurized
muscle with sealed diaphragm for pressure measurement and vented diaphragm for length
measurement; (b) pressurized muscle showing sealed diaphragm deflected under pressure
and vented diaphragm stretched/translated toward length sensor end cap. (c) Specular
reflection by sealed diaphragm before muscle pressurization (top) and after pressurization
(bottom); (d) diffuse reflection by vented diagram before muscle pressurization (top) and
after pressurization (bottom).

Sensor operation. The optical pressure sensor, with its corresponding sealed dia-

phragm in the pneumatic muscle, utilizes the mechanism of specular reflection: for a

light ray reflected by a mirror-like surface, the angle of reflection is the same as the

angle of incidence. Initially, the sealed diaphragm surface is flat and reflects a nominal

amount of light from the LED to the photodiode based on the distances between the

LED, the photodiode, and the diaphragm surface (Figure 3.2a). As muscle pressure
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increases, the sealed diaphragm balloons out along the muscle axis toward the end cap

(Figure 3.2b), such that the diaphragm surface normal is no longer constant along the

diaphragm surface. This spreads the distribution of specularly-reflected light rays over

a broader angular range, reducing the amount of light reflected into the photodiode.

Geometric ray tracing is used in Figure 3.2c to elucidate this mechanism, showing a

decrease in the number of specularly reflected rays received by the photodiode with

the diaphragm deflected.

To prevent the sealed diaphragm from stretching radially during inflation, Kevlar

fibers are wrapped circumferentially around the diaphragm section of the muscle, as

detailed in the muscle fabrication process (Figure 3.3, step 2). To maximize optical

reflectivity, white silicone pigment is added to the sealed diaphragm. The thickness

of the sealed diaphragm was tuned in preliminary testing to achieve sensor response

over the entire pressure operating range of the muscle; a thicker diaphragm deflects

less and reduces sensitivity at low pressures, whereas a thinner diaphragm deflects

more and stops reflecting any light back to the photodiode at high pressures.

The optical length sensor and corresponding vented diaphragm utilize the mecha-

nism of diffuse reflection—–incident light rays are scattered from the reflecting surface

at many angles. Light from the LED is reflected by a flat vented diaphragm in many

directions, and some of that light is received by the photodiode. As the muscle con-

tracts, the diaphragm translates closer to the LED-photodiode pair and stretches

radially, but no deflection along the muscle axis occurs because the diaphragm is

vented (Figure 3.2b). With translation of the diaphragm, the aspect ratio of photodi-

ode lens to photodiode–diaphragm distance increases and the photodiode lens spans

a larger angular range of reflected light. Geometric ray tracing is again used in Fig-

ure 3.2d to visualize this mechanism, showing an increase in the number of diffusely

reflected rays received by the photodiode with the diaphragm translated closer to the

photodiode. To be clear, both specular and diffuse reflection play a role in the two
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types of optical sensors detailed here, but one mechanism in particular is exploited

for each sensor.

The optical length sensor diaphragm is composed mainly of white-pigmented sili-

cone to enhance reflectivity, but also includes a 3-mm-wide black-pigmented silicone

annulus to improve sensor response characteristics: in preliminary testing, length sen-

sor response increased monotonically throughout contraction with the black annulus;

however, an initial dip in length sensor response during contraction was observed

without the annulus. A hypothesis for this behavior is that the deformation of the

silicone diaphragm at the inner muscle wall interface results in an initial decrease in

the amount of light reflected back to the photodiode before the translation of the

diaphragm toward the photodiode has the net effect of increasing the amount of light

reflected back.

Pneumatic muscle. The pneumatic artificial muscle designed in this study is pri-

marily composed of platinum-cure silicone rubber (Smooth-On, Inc.) embedded with

helically-wrapped Kevlar threads that constrain muscle deformation under pressure.

The nominal length and outer diameter of the unpressurized muscle are 22 and 2.2

cm, respectively. As previously described, two silicone diaphragms are integrated

into the muscle for sensing. A 3-mm thick vented silicone diaphragm, with two holes

allowing the passage of air through the diaphragm, is located 5 cm away from one end

of the muscle. A 3-mm thick sealed silicone diaphragm (no holes) is positioned 1.7

cm away from the other end of the muscle and provides the pneumatic seal for that

end of the muscle. White and black silicone pigments (Silc Pig; Smooth-On, Inc.)

are used in the internal diaphragms and the muscle bladder to enhance optical sensor

performance, as detailed above. Additionally, the main bladder of the pneumatic

muscle uses black pigmented silicone to minimize the optical reflectivity of the inner

muscle wall and to block ambient infrared light from affecting optical sensor baseline
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signals. Pigment is mixed into uncured silicone at 3% by weight of the silicone, per

the upper limit specified by Smooth-On.

Figure 3.3: Fabrication steps for sensorized pneumatic artificial muscle: (1) cast half-
thickness muscle bladder with helical grooves for thread placement; (2) add end-connectors
and wrap Kevlar threads; (3) cast second layer around bladder, encapsulating Kevlar
threads at mid-bladder; (4) cast two-color vented diaphragm; (5) cast one-color sealed
diaphragm; (6) add end caps and seal length sensor end cap in place.

Each muscle is fabricated over a six-step process illustrated in Figure 3.3 and

described as follows:

1. Cast the first layer of the muscle bladder up to half-thickness using Dragon Skin

10 NV mixed with black pigment. The outer molds contain extruded helical

features that create helical grooves in the half-thickness silicone layer.

2. Attach the thread end-connectors to the inner mold using alignment pins and

wrap the half-thickness muscle bladder with Kevlar threads along the guide

grooves embedded in the silicone bladder. The muscle is wrapped eight times

in each direction (clockwise and counterclockwise) with one continuous Kevlar
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thread—each end-connector contains eight eyelets through which the thread is

routed.

3. Cast the second layer of the muscle bladder (up to the full muscle thickness)

using Dragon Skin 10 NV mixed with black pigment; this encapsulates the

Kevlar thread midway through the muscle bladder. After the silicone has cured,

remove the inner mold from the muscle bladder.

4. Cast the vented diaphragm with black annulus:

(a) Insert the vented diaphragm mold with vent pins and cast 0.37 mL of

Dragon Skin 10 NV mixed with white pigment by injecting silicone through

the muscle bladder onto the mold via a hypodermic needle and syringe.

Remove the mold but leave the vent pins in place.

(b) Flip the muscle and cast 0.23 mL of Dragon Skin 10NV mixed with black

pigment, via hypodermic needle, into the annular void left by the vented

diaphragm mold. Remove the vent pins.

5. Flip the muscle, insert the sealed diaphragm mold, and cast 0.6 mL of Dragon

Skin 30 mixed with white pigment via hypodermic needle. Remove the sealed

diaphragm mold.

6. Attach the optical pressure sensor end cap assembly to the sealed diaphragm

side of muscle. Attach the optical length sensor end cap assembly to the vented

diaphragm side of the muscle and seal in place by injecting Dragon Skin 10 NV

silicone into the hole in the end-connector.

3.1.2 Control and data acquisition

For sensorized muscle characterization and subsequent experiments, pneumatic pres-

sure control was performed by pulse-width modulation of up to four solenoid valves
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(VQ100 Series; SMC Corp.), one per muscle. A proportional-integral (PI) plus feed-

forward controller for each muscle was run on an MSP432 microcontroller (Texas

Instruments) at 100 Hz to regulate muscle pressure. Integral anti-windup was added

to prevent the integral term from exceeding ±50% duty cycle. In addition, valve

dead zone compensation was implemented to maintain the duty cycle at or above

10%–—at duty cycles less than 10%, there is insufficient time for the valve to open,

so no airflow occurs.

Pressurized air was supplied by two diaphragm pumps (BTC-IIS; Parker Hannifin)

connected to a 1-L pressure accumulator chamber. To connect all pneumatic com-

ponents, 1/8-inch inner diameter tubing was used. On-off control of the diaphragm

pumps maintained the accumulator chamber pressure between 12 and 14 psi, provid-

ing a relatively constant pressure source for the pneumatic control system.

The MSP432 microcontroller sampled analog pressure transducer and optical sen-

sor data at 100 Hz with 14-bit ADC resolution. To mitigate the effects of pressure

oscillations resulting from opening and closing of the solenoid valves, pressure data

was low-pass filtered through a 20th-order finite-impulse response filter with a cutoff

frequency of 10 Hz. The microcontroller communicated via UART with a computer

running a Python script to record sensor data and update PI controller pressure

setpoints at 30 Hz. The system schematic is shown in Figure 3.4.

3.1.3 Sensorized muscle characterization

To verify sensorized muscle functionality, optical sensor response and muscle contrac-

tion range were characterized by performing repeated actuation cycles under no load.

Over each cycle, the muscle was slowly pressurized from 0 to 55 kPa and then vented

back down to 0 kPa at the same rate over 32 seconds. The length of the muscle was

measured using an electromagnetic (EM) tracker system (3DGuidance trakSTAR;

ATC) with 1.4 mm root mean square (RMS) position accuracy. The muscle was
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Figure 3.4: Pressure control and data acquisition schematic: blue lines represent flu-
idic connections, green lines represent signal connections, and black lines represent power
connections.

suspended from one end with its axis oriented vertically and the EM tracker sensor

was fixed to the free end of the muscle, as shown in Figure 3.5a. Muscle pressure was

measured using an analog pressure transducer (Honeywell ASDXAVX030PGAA5).

Throughout the test, the voltages of the optical length and optical pressure sensors

were recorded, along with ground-truth muscle length and pressure measurements.

Several preliminary inflation–deflation cycles were run for each muscle and the

LED brightness of each sensor was adjusted (via its corresponding potentiometer) to

maximize the voltage range of each sensor over the full pressure/length range of the

muscle without saturating at the limits. Each muscle was then characterized over 10

inflation–deflation cycles. As shown in Figure 3.5b, optical pressure sensor measure-

ments were consistent across cycles 2–10. However, for the first cycle of each muscle, a

slightly higher sensor response curve during inflation was observed. This phenomenon

was consistent across separate trials and different muscles and may be the result of

the stiff, viscoelastic Dragon Skin 30 diaphragm settling to a slightly different resting

configuration over an extended period after actuation. In addition, a hysteresis loop
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Figure 3.5: Optical sensor characterization for 10 muscle actuation cycles: (a) test setup
with muscle fixed at one end; (b) muscle pressure versus optical pressure sensor voltage for
single muscle; (c) muscle contraction length versus optical length sensor voltage for single
muscle; (d, e) comparison of optical sensor data for four muscles with 10-cycle data for
each muscle fit to a third-order polynomial—solid lines represent inflation, whereas dashed
lines represent deflation.

was exhibited by the optical pressure sensor for each pressurization–depressurization

cycle; this behavior is also attributable to the viscoelastic properties of the pressure

sensor diaphragm.

Optical length sensor measurements were consistent across all cycles, with no

divergent behavior observed for the initial cycle of each test (Figure 3.5c). In addition,

there appeared to be minimal hysteresis for the optical length sensor. This is to be

expected, as the length sensor response mechanism is relative diaphragm position

change, not diaphragm deformation. The sensor response curves for both pressure

and length sensors were similar across all four muscles, as shown in Figure 3.5d

and 3.5e, though length sensor response was more consistent from muscle to muscle
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compared with pressure sensor response.

Muscle contraction was repeatable over 10 cycles, with an average standard devi-

ation of 0.5 mm contraction for 1 kPa data bins. Maximum muscle contraction at 55

kPa was approximately 3.8 cm. Over the 32-second pressurization–depressurization

cycle, the hysteresis loop width was approximately 4 mm. Over a faster cycle, hys-

teretic effects would be expected to increase.

3.1.4 Sensorized muscle calibration

The optical sensor calibration data necessary to estimate pneumatic muscle contrac-

tion length and force was collected over a set of blocked force tests for each of four

muscles. Each muscle was connected to an Instron mechanical test frame (5965 Uni-

versal Testing System) and preloaded to 1 N to remove any slack in the test setup.

In each test, muscle pressure was maintained at a fixed setpoint while the Instron

crosshead moved in the direction of contraction at 80 mm/min, as shown in Figure

3.6a. The contraction force applied by the muscle to the crosshead was measured at

10 Hz. Blocked force tests were run with fixed pressures between 5 and 55 kPa in 5

kPa increments.

Pneumatic muscle force versus contraction length was consistent across all four

muscles tested, as shown in Figure 3.6b. The maximum difference in contraction force

between any two muscles was 7.7 N, occurring for near-zero contraction length (near-

maximum force) at the maximum test pressure of 55 kPa. The maximum contraction

force across all four muscles was 120 N at full muscle length and 55 kPa.

While the optical pressure sensor responded mainly to muscle pressure change

and the optical length sensor responded mainly to muscle length change, blocked

force data also showed a small degree of coupling between both sensors (the optical

length sensor is slightly sensitive to actuator pressure and the optical pressure sensor

is slightly sensitive to actuator length). Therefore, to account for the small coupling
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Figure 3.6: Blocked force testing: (a) test setup with muscle fixed at one end and con-
nected to the Instron crosshead at the other; (b) muscle contraction force versus contraction
length at fixed pressures between 5 and 55 kPa for four muscles.

effects and maximize estimation accuracy, both optical sensor measurements were

utilized for muscle length estimation and likewise for muscle force estimation.

To estimate length, a 2D polynomial surface of degree three in both dimensions

was fit to muscle contraction length versus optical length and pressure sensor voltage,

as shown in Figure 3.7. Similarly, a surface was fit to muscle contraction force versus

optical sensor voltages, as shown in Figure 3.8. Surface fit metrics are shown in Table

3.1: the poorest coefficients of determination for the length and force surface fits of

any muscle were 0.997 and 0.989, respectively; the largest root mean square errors

were 0.49 mm and 2.95 N, respectively.

3.2 Experiments and Results

Evaluation platform. To evaluate sensorized muscle length and force estimation

capabilities, four calibrated muscles were configured on a planar 2-DOF arm, with one

antagonistic muscle pair per joint, as shown in Figure 3.9. The arm was constructed
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Figure 3.7: Optical sensor length calibration: muscle contraction length versus optical
sensor voltages with polynomial surface fit for muscle length estimation.

Figure 3.8: Optical sensor force calibration: muscle contraction force versus optical sensor
voltages with polynomial surface fit for muscle force estimation.

Table 3.1: Surface fit metrics for muscle length and force versus optical sensor data.

Muscle
Length Force

R2 RMSE (mm) R2 RMSE (N)

1 0.997 0.49 0.990 2.8

2 0.999 0.27 0.996 1.8

3 0.998 0.35 0.992 2.4

4 0.997 0.47 0.989 2.9

of extruded ABS links connected by 3D-printed hinge joints with low-friction ball

bearings. Each joint included an encoder for ground-truth angle measurement with

a resolution of 0.043 deg. Each pair of muscles was connected at one end to a 4-
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cm diameter pulley at the respective join. The other end of the muscle pair was

connected to the proximal link of the joint through a ratcheting tensioner that was

used to finely adjust muscle tension and nominal joint angle. The arm was positioned

in the horizontal plane to eliminate gravitational loading about the joints.

Figure 3.9: Two degree-of-freedom arm evaluation platform with two antagonistic pairs
of sensorized pneumatic artificial muscles.

Arm configuration. Four sensorized muscles were connected on the 2-DOF arm,

two at each joint. Based on joint pulley radius and maximum muscle contraction,

the angle range for each joint was ±45 deg. The muscles were configured to achieve

nominal joint angles—the angles corresponding to equal pressures in antagonistic

muscle pairs—of -22.5 deg at joint 1 and 45 deg at joint 2; the corresponding nominal

arm position is shown in Figure 3.10. This configuration was chosen to provide a

more two-dimensional workspace (larger range along x-direction) with a larger area

than the arc-shaped workspace corresponding to 0-deg nominal joint angles.

The four muscles were each pre-tensioned on the arm to 7.5 N to prevent any of the

muscles from becoming slack during testing. This was an important consideration for

accurate estimation of arm position from optical sensors, as the contraction length of
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a muscle no longer directly corresponds to joint angle once the muscle becomes slack.

Pre-tensioning was performed by inflating all four muscles simultaneously to pressures

corresponding to 50% maximum contraction (about 1.75 cm) at 7.5 N loading; the

pressure for each muscle was calculated from a third-order polynomial regression of

blocked force—contraction length data. The two muscles at each joint were then

tensioned simultaneously until both muscles were 50% contracted and the desired

nominal joint angle was concurrently achieved.

Arm initialization. Before each test within an experiment, a brief initialization

procedure was performed. First, each muscle was inflated up to full pressure and

vented back to zero gauge pressure. This was done to account for the inconsistent

behavior observed in muscle sensor characterization, in which the first of 10 infla-

tion–deflation cycles showed a slightly higher pressure sensor signal than the subse-

quent 9 cycles. Next, the muscles were pressurized according to the nominal arm

configuration—corresponding to 50% contraction with 7.5 N tension—and 5 seconds

were provided for arm motion to settle. Muscle contraction length estimates from

optical sensors were recorded over the subsequent 5 seconds and the initial contrac-

tion length of each muscle was then set as the average estimated contraction over the

5-second window. In addition, the initial ground-truth arm angles were set to the

corresponding average encoder angles over the same time window.

Experimental progression. Over the first two experiments, the arm’s end-effector

position was estimated from optical muscle sensors for both static end-effector points

and elliptical trajectories in the workspace. Over the next two experiments, end-

effector forces and joint to torques were estimated from optical sensors for static

points and semi-random trajectories in the workspace. Finally, the effect of external

disturbances on sensing performance was evaluated.

36



3.2.1 Kinematics estimation experiments.

Joint angle estimation. To compute 2-DOF arm joint angles from muscle length

and pressure sensor measurements, the contraction length of each muscle was first

estimated through its associated sensor voltage–contraction length surface fit (Figure

3.7). Change in joint angle was then computed from pulley radius (2 cm) and change

in muscle length (versus initial length). Finally, each joint angle was calculated as

the average of the two angle estimates from both muscles at the joint.

Static position experiment. End-effector static position was estimated from op-

tical sensor measurements at multiple points distributed throughout the arm’s work-

space and compared to ground-truth position calculated from joint encoder angles.

Four target muscle pressures were generated (one per muscle) for each end-effector

position using muscle blocked force calibration data. Consistent with the initial arm

configuration procedure, pressures were generated to maintain 7.5 N of tension in each

muscle throughout testing. For each end-effector pressure configuration, a 5-second

settling time was provided to ensure the arm was static.

Ten trials were run with 16 end-effector positions per trial for a total of 160 indi-

vidual test positions. The maximum error from optical sensor position estimates over

all 10 trials was 3.4 cm, while the average error was 1.3 cm. Position estimates and

true positions are shown for these 10 trials in Figure 3.10. A small amount of varia-

tion in the true (and estimated) end-effector position for the same point over multiple

trials is observed because of the open-loop nature of the testing–—muscle pressure

control was closed-loop but there was no end-effector position feedback control. In

addition, small oscillations from the pressure control system resulted in corresponding

joint and end-effector oscillations.
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Figure 3.10: Optical sensor-estimated and true positions of two-DOF arm end-effector for
16 points in workspace over 10 trials; nominal arm configuration is shown in gray.

Trajectory experiment. End-effector trajectories were estimated from optical

sensor measurements to characterize sensing accuracy for dynamic arm movements.

Elliptical trajectories were generated for constant end-effector speeds of 4, 8, and 16

cm/s. Similar to static position tests, end-effector trajectories were run open-loop by

generating corresponding pressure trajectories from 7.5 N length-pressure curves and

modulating muscle pressures only.

Ten tests were run for each of the three trajectory speeds; results are shown in

Figure 3.11. Of all 30 trials, the maximum end-effector estimation error—calculated

as the Euclidean distance between the end-effector position estimate and the true

position—was 7 cm. The largest average error over 10 trials was 1.2 cm and the

largest standard deviation over 10 trials was 0.6 cm, as reported in Table 3.2. The

relatively low standard deviation suggests that the number of estimation errors close

to the 7 cm maximum was very small. Upon closer examination of raw optical sensor

data, infrequent spikes in sensor signals were found. These are likely the result of

electrical noise in the pressure control/data acquisition setup. The largest estimation

error occurred for the 4 cm/s trajectory test: for this test, only 17 of 9640 data point
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errors (<0.2%) were greater than 3 cm, and only 4 (<0.1%) were greater than 4 cm.

Figure 3.11: Optical sensor-estimated versus true end-effector location and joint angles
for open-loop elliptical trajectory at three different end-effector speeds.

3.2.2 Dynamics estimation experiments.

Static force experiment 1. Static end-effector forces were estimated from optical

sensor measurements at four locations near the top, left, right, and bottom of the

arm workspace. At each location, the end-effector was placed in contact with a fixed

obstacle. Muscle pressures were then commanded to displace the end effector 20 cm
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Table 3.2: Optical sensor end-effector position estimation error statistics for elliptical
trajectories at three speeds with 10 trials at each speed.

Speed
(cm/s)

Max Error
(cm)

Avg. Error
(cm)

Std. Dev.
(cm)

4 7.0 1.0 0.6

8 5.4 1.2 0.5

16 6.5 1.2 0.5

along a linear trajectory approximately perpendicular to the fixed obstacle; the com-

manded displacement lasted 10 seconds and was then reversed over the subsequent 10

seconds. For ground-truth measurement of end-effector forces, a Nano17 force/torque

sensor (ATI Industrial Automation) was mounted to the end of the arm; a conical

end effector was attached to the Nano17 to ensure point contact with the obstacle.

Joint torques were estimated from muscle sensor signals by estimating the tensile

force of each muscle from its respective sensor voltage–contraction force surface fit,

and then calculating the resultant torque based on the pulley radius at each joint as

τi = (fl,i − fr,i) ri (3.1)

where τi is the ith joint torque, fl,i and fr,i are the left and right muscle forces

of the ith joint, and ri is the pulley radius. At the beginning of each test, before

end-effector contact with the obstacle, muscle force estimates were baselined to 7.5

N, corresponding to the nominal muscle pretension during setup of the arm. End-

effector forces were then estimated using the inverse Jacobian of the arm at the test

configuration

fx
fy

 = (JT )−1

τ1

τ2

 (3.2)

where fx and fy are the end-effector forces in the x- and y-directions and J is the
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arm geometric Jacobian. All calculations were carried out in the arm base coordinate

frame, with the x-axis along the outstretched arm at zero-degree joint angles.

Overall, measured and sensor-estimated force data showed significantly more vari-

ance than measured and sensor-estimated joint angle data. Therefore, end-effector

force and joint torque test data were post-processed using a moving average filter

with a window of ±100 data points, corresponding to approximately ±0.3 s. The

maximum and average joint torque and end-effector force estimation errors across all

four workspace locations are reported in Table 3.3. Maximum errors were computed

from moving-average filtered data to exclude outliers caused by optical sensor noise.

Estimated joint torques generally tracked the true torques, but consistently under-

predicted peak torques for all four end-effector workspace locations. Consequently,

estimated end-effector forces also fell below the true forces at higher force magnitudes.

This is shown in Figure 3.12 for static force estimation at the left workspace location.

Figure 3.12: Static force experiment 1 results for 10 trials at left end-effector location: es-
timated versus true joint torques and end-effector forces for 20 cm commanded displacement
input.
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During testing, it was observed that the antagonist muscle at each joint became

slack during the latter part of the commanded displacement, owing to the control

scheme used: for a commanded end-effector displacement, the controller decreased

antagonist muscle pressure in proportion to increased agonist muscle pressure (based

on muscle pressure versus contraction length data). However, because the end effector

was fixed during static testing, the decrease in antagonist pressure without joint

rotation allowed the antagonist muscle to become slack during the 10-s commanded

displacement.

It was also observed that when the antagonist muscles were slack (no applied

contraction force), optical sensor force estimates were still greater than zero, thus

resulting in underestimated joint torques. This force estimation error for slack muscles

is likely due to two factors. First, there is less muscle force versus optical sensor

calibration data for the low pressure, small contraction operating region corresponding

to a slack muscle, and existing data are noisy, resulting in poorer surface fit quality

for this region; in Figure 3.8, this corresponds to the high pressure sensor voltage,

low length sensor voltage region of the pressure-length-force plot. Second, contraction

force estimation is most sensitive for smaller muscle contractions—this is highlighted

by the steep slope of the force versus length sensor curves at lower sensor voltages

(smaller contractions) shown in the right plot of Figure 3.8.

Consequently, it was hypothesized that the reduced force estimation accuracy

of the slackened antagonistic muscles was responsible for the underestimated joint

torques during static testing. Therefore, the static force experiment was repeated

with a second control scheme to avoid muscle slackness.

Static force experiment 2. For the second static force experiment, agonist mus-

cle pressures were again ramped over 10 seconds, but antagonist muscle pressures re-

mained fixed. Maximum agonist muscle pressures were increased for each end-effector
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workspace location to achieve end-effector forces similar in magnitude to those ob-

served during the first static force experiment. The joint torque and end-effector

force estimation errors for the second static force experiment are again summarized

in Table 3.3. Joint 1 torque and x-axis force estimates from optical sensor data were

more accurate with fixed antagonist pressure versus commanded displacement. Joint

2 torque and y-axis force estimates were similar for both control schemes. Overall,

the updated control scheme resulted in more accurate estimates of peak torques and

forces, as shown in Figure 3.13 for the fixed antagonist pressure static force test at

the left workspace location.

Figure 3.13: Static force experiment 2 results for 10 trials at left end-effector location:
estimated versus true joint torques and end-effector forces for agonist muscle pressure ramp
input (fixed antagonist pressure).

Dynamic force experiment. Dynamic force testing was performed by estimating

end-effector forces while manually moving the end-effector around in the workspace.

The muscles were initially pressurized to attain the same nominal arm position as

before (joint angles 1 and 2 at -22.5 deg and 45 deg, respectively). The conical
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Table 3.3: Static force experimental results: optical sensor joint torque and end-effector
force estimation error statistics for experiment 1 (commanded displacement) and experiment
2 (fixed antagonist pressure).

Measurement
Experiment 1 Experiment 2

Max
Error

Avg.
Error

Max
Error

Avg.
Error

Joint 1 Torque (Nm) 0.15 0.04 0.04 0.02

Joint 2 Torque (Nm) 0.07 0.03 0.06 0.03

X-Axis Force (N) 0.67 0.24 0.33 0.15

Y-Axis Force (N) 0.13 0.06 0.14 0.06

end-effector attached to the force/torque sensor was then moved by hand through

approximately elliptical paths at different speeds over 40 seconds. For the dynamic

test shown in Figure 3.14, joint 1 moved through a range of about 35 deg, while joint 2

moved through about 40 deg; joint 1 reached a maximum angular velocity of 20 deg/s,

while joint 2 reached a maximum velocity of 27 deg/s. Because of the relatively low

joint speeds and the low inertia of the lightweight 2-DOF arm, inertial effects were

negligible and static force calculations were considered a valid approximation.

Joint torque and end-effector force data were post-processed using a moving aver-

age filter with a 20-data-point window (0.6 seconds). Estimated joint torques gener-

ally tracked actual torques; however, as shown in Figure 3.14, joint 1 torque estimates

generally overpredicted, whereas joint 2 torque estimates underpredicted for nega-

tive torques. This resulted in good overall agreement between actual and estimated

end-effector forces but led to overprediction in x-axis forces and underprediction in

negative y-axis forces. The average x- and y-axis force errors for filtered data were

4.9% and 3.9% of the maximum x- and y-axis forces, respectively.

3.2.3 Sensor disturbance experiment

Sensor disturbance testing was performed to determine the effects of external muscle

contacts on contraction length and force estimates from sensor measurements. In
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Figure 3.14: Dynamic force experimental results for 2-DOF arm: (a) estimated versus true
joint torques and (b) estimated versus true end-effector forces, where solid lines represent
filtered data; (c) corresponding end-effector trajectory in shaded workspace moving from
light to dark.

each test, the muscle was inflated and maintained at one of several target pressures.

The muscle was contacted by a 3-cm diameter hemispheric tool up to a maximum

force of either 2 or 4 N, as measured by a Nano17 force/torque sensor connected to

the tool. Contact was ramped up to maximum force over approximately 3 seconds.

The muscle was supported from the non-contact side by a flat surface; this represents

the worst-case scenario, as muscle deformation is more localized than without the

supporting surface.

Results for contraction length estimation disturbances are summarized in Table

3.4 and results for contraction force estimation disturbances are summarized in Table

3.5. Minimal impact on length and force estimation accuracy was observed for contact

at the middle of the muscle (away from optical sensor diaphragms). The largest effects

were observed for contact at the length diaphragm. Contact with the muscle at the

length diaphragm deflects the diaphragm axially (similar to the intended mode of

deformation of the pressure diaphragm). This significantly reduces the amount of
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reflected light, causing a negative change in contraction length estimate. Length and

force estimates were less affected for pressure diaphragm disturbances—this is likely

because of the increased stiffness in this region of the muscle that results from the

circumferential Kevlar thread wrap used to prevent radial deformation of the muscle

(Figure 3.3 step 2). Overall, the optical sensors are most sensitive at lower muscle

pressures; at higher pressures, the muscle becomes stiffer and less deformation of

sensing diaphragms by external contact forces is possible.

Table 3.4: Effects of 2- and 4-Newton external disturbances on sensorized muscle length
estimation: deviation from nominal contraction length estimate (mm) at three locations
along muscle.

Muscle
Pressure (kPa)

Mid-muscle Length Diaphragm Pressure Diaphragm

2 N 4 N 2 N 4 N 2 N 4 N

14 -0.82 -1.38 -3.60 -11.26 0.37 0.90

28 0.31 -1.07 -0.92 -4.19 0.41 0.38

55 0.39 0.18 -0.16 -0.86 0.16 0.31

Table 3.5: Effects of 2- and 4-Newton external disturbances on sensorized force length
estimation: deviation from nominal contraction force estimate (N) at three locations along
muscle.

Muscle
Pressure (kPa)

Mid-muscle Length Diaphragm Pressure Diaphragm

2 N 4 N 2 N 4 N 2 N 4 N

14 2.48 4.36 11.31 36.24 0.92 3.96

28 -0.78 3.69 3.20 14.20 1.31 5.32

55 -1.24 -0.56 0.52 2.69 -0.54 -0.99

3.3 Discussion

3.3.1 Simplifications

Several noteworthy simplifications were imposed throughout testing. For static and

dynamic force experiments, encoder angles (rather than optical sensor-estimated an-

gles) were used for Jacobian calculations to convert between joint torque and end-

46



effector force domains. While optical sensor estimates of joint angles in kinematic

experiments were quite accurate, joint angle error would further increase end-effector

force estimation error by an average of approximately 8%.

At the beginning of each force test (with the arm in its nominal configuration), the

baseline force estimate for each muscle was set to the muscle pre-tension value with

which the arm was initially configured (7.5 N). This reduced the impact of any shifts

in sensor baselines after initial sensor calibration that may have occurred over time.

A similar baseline procedure could be completed at each startup for other systems

that would use these sensorized muscles, as follows: move the system into the nominal

configuration at which the muscles were originally pre-tensioned and set the current

length and force estimates to the corresponding pre-tension values.

3.3.2 Potential issues

Sensor hysteresis. Hysteretic behavior was observed for the optical pressure sensor

during characterization of optical sensor response in no-load testing. It is plausible

that the stiffer Dragon Skin 30 used for the pressure sensor diaphragm, as opposed to

the Dragon Skin 10 NV used for the rest of the muscle, dissipates more energy during

muscle pressurization. It may be possible to reduce this pressure sensor hysteresis

by using Dragon Skin 10 NV or another less hysteretic silicone. However, the use of

a lower-stiffness silicone would require a thicker diaphragm to maintain the pressure

operating range of the sensor.

Muscle slack. Experiments on the 2-DOF arm elucidated the importance of main-

taining tension in muscles for accurate kinematic and dynamic arm measurements.

For joint angle and end-effector position estimation, reduced accuracy was observed

when one or more muscles became slack. This is because the muscle no longer con-

strains the joint once the muscle becomes slack and therefore muscle length does not
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dictate joint angle. Reduced accuracy was also observed for joint torque and end-

effector force estimation when the antagonist muscle became slack. Antagonist muscle

force estimates are poorer in the slack state because of two factors: the force versus

length sensitivity of the optical length sensor is highest for small contraction lengths,

and the length-pressure-force surface fit quality is poorer in the small contraction

length/low pressure operating region because of limited and noisy data. These find-

ings suggest that with the proposed optical sensors, it is beneficial to prevent both

muscles at each joint from becoming slack to maximize kinematic and dynamic arm

estimation accuracy. This may be achieved by implementing a control scheme that

prevents all muscles from dropping below a prescribed minimum force threshold.

Physical disturbances. One of the main issues with the optical sensor design

presented is its susceptibility to physical disturbances. Although the optical sensor is

relatively insensitive to muscle contact away from the sensor diaphragms, significant

contact at the diaphragm locations can cause additional diaphragm deformation and

reduce length and force estimation accuracy. This was shown to be most significant

for the length sensor diaphragm. However, test results also suggested that sensor

estimation error caused by external muscle contacts can be mitigated by operating

at higher pressures. Additionally, for a use case in which physical disturbances are

more likely, it may be best to only use sensor data from the higher-pressure muscle

of the antagonistic pair at each point in time.

3.3.3 Observations

Throughout this work, several observations were made that may be relevant to

other researchers performing related research. During the initial design stage, it

was assumed that using the black plastic material 3D-printed on the Objet30 Prime

(RGD875 VeroBlackPlus) would be sufficient to block IR light. However, significant
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IR light transmission through 3D-printed parts several millimeters thick was observed.

Therefore, it was necessary to include additional design features, such as an aluminum

shield between the LED and photodiode in the muscle end cap, to prevent undesired

light transmission.

Black and white silicone pigments were used strategically in the muscle design

to improve sensor response characteristics. White pigment significantly increased

the IR reflectivity of silicone versus no pigment, whereas black pigment significantly

decreased the IR reflectivity. In testing, it was found that silicone with the maximum

recommended amount of black pigment was still slightly reflective at close sensor

distances (about 1 cm) for this sensor design.

Radial stretching of the length sensor diaphragm during muscle inflation seemed to

reduce the reflectivity of the diaphragm. This observation was made after comparing

the sensor response with and without the use of a thin strip of tape as a radial

constraint at the diaphragm. By constraining the muscle diameter at the length

diaphragm, the overall length sensor response was significantly larger (higher peak

sensor voltage at maximum contraction). It is plausible that the stretching of the

diaphragm allowed some light to pass through the diaphragm material, instead of

reflecting back. The radial constraint was not used on the sensorized muscles in this

work because it slightly reduces the contraction range of the muscle; instead, the IR

LED brightness was tuned to increase length sensor range.

Early length sensor testing showed an undesired response in which the length sen-

sor signal first decreased slightly before increasing throughout the remainder muscle

contraction. A black annulus of silicone was added to the outer edge of the length

sensor diaphragm to mitigate any unintended reflectance effects at the diaphragm-

muscle interface. This eliminated the initial dip in length sensor signal and achieved

a monotonically increasing signal versus muscle contraction length.
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3.4 Significance

The optical sensor-embedded pneumatic muscles developed in this study were utilized

to estimate the end-effector position of a 2-DOF arm with less than 1.4 mm-average

error for various end-effector speeds and locations in the workspace. Static and dy-

namic end-effector force estimation using the optical sensors was also demonstrated

with average errors of 0.16 N or less for maximum forces in the 2-N range. For ad-

ditional degrees of freedom, angle and torque estimation errors at each joint would

compound end-effector position and force estimation errors, as is the case for any

other serial manipulators with joint-level sensing. Although these levels of accuracy

cannot match those of off-the-shelf encoders and force sensors, they may be suffi-

cient for bioinspired and wearable robotics applications. Consider as an example a

wearable upper body exosuit used to augment the strength of a warehouse worker

manipulating heavy materials. For this type of lower-precision task, accuracy on the

centimeter/Newton scale may be acceptable.

The optical sensors presented in this work offer several key advantages over tradi-

tional solid-state sensing. Because these sensors are designed into the muscle, there is

no engineering effort required to integrate sensing into a muscle-actuated device, nor

is there additional external sensing hardware that may constrain device design. For

the upper body exosuit application, it would be challenging to outfit such a device

with encoders and force sensors without limiting range of motion and encumbering

the user via additional weight and rigid components. Optical sensor-integrated mus-

cles can potentially overcome these challenges by providing position and force sensing

in a flexible, low-mass actuator.

Additionally, the cost of each optical sensor for all components aside from the

3D-printed end fittings is less than $20, with components purchased in single quan-

tities. Much of this cost is attributed to the LED/photodiode plastic housing (for
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connection with optical fibers) that is not used in the sensor design. For similar

LEDs/photodiodes without housings, the single-quantity sensor cost drops to less

than $8. Compared with the several thousand-dollar force/torque sensor used in test-

ing, or similarly expensive force sensors, the optical sensors described here present

a substantially more cost-efficient alternative for measuring and controlling forces in

pneumatic-muscle powered devices.

Optical sensor-embedded muscle measurement performance is comparable to a

few of the other more accurate sensorized muscle designs that quantify accuracy. The

muscle length estimation calibration for the sensorized muscle in this work resulted in

approximately 0.5-mm RMS estimation error for the 22-cm long muscle (contraction

range of about 7 cm). This falls in the same range as other pneumatic muscle length

sensing approaches that similarly quantify measurement error of less than 1 percent

of total muscle length [8], [13], [17]. The 3-N RMS force estimation calibration error

measured for the sensorized muscle in this work is also similar to the force resolution

reported for the only other sensorized muscle found that incorporates both length

and force estimation [17]. However, a significant benefit of the optical sensor devel-

oped here is its straightforward adaptability to measurement of other soft actuator

deformation modes, such as for estimation of soft bending actuator displacement [32].
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CHAPTER 4

MUSCLE-DRIVEN ROBOT MODELING AND CONTROL

The second and third objectives of this work, detailed in the following chapters, focus

on design optimization and motion planning for pneumatic muscle-driven robots.

Critical to both of these objectives is the development of a sufficiently accurate system

model. The components of a complete system model for a muscle-driven robot include:

pneumatic system dynamics, muscle dynamics, and robot dynamics.

Figure 4.1: Pneumatic muscle-drive robot system dynamics.

Unlike robots actuated by electric motors in which available motor torque is ideally

independent of motor position, the muscle force output of pneumatic muscle-driven

robots is coupled with robot joint state. Robot motion is produced by muscle forces

(as well as external forces). Muscle force is a function of joint angle since muscle

force depends not only on pressure, but also on length. Muscle pressure is a function

of both the control input (valve state) and joint angle, since muscle volume depends

muscle length. The dependency of the pressure dynamics and muscle force output on

robot kinematic state results in a complex overall system model, as shown in Figure

4.1.

In this chapter, the low-level muscle pressure control approach is first outlined

to motivate the choice of pneumatic system dynamics model. Each component of

the overall system dynamics is then addressed individually; they are subsequently

connected in the following chapters to model a muscle-driven robot system.
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4.1 Pressure control strategy

Pneumatic muscle pressure control strategy informs the development of the pneumatic

dynamics model. As detailed in Section 4.3, muscle force output is a function of muscle

pressure and contraction length. Since contraction length is constrained by robot

pose, muscle-driven robots are controlled solely by modulation of muscle pressure.

Therefore, it is crucial to select a low-level pressure control approach best-suited

for the category of robots targeted in this work: mobile systems capable of high-

speed motion. For high-speed robot motion, fast muscle pressurization is an essential

requirement of the controller Additionally, for mobile robotic systems that must carry

their control hardware, minimizing the mass of control hardware is also critical. These

factors are considered for several potential pressure control approaches.

Continuous control of muscle pressure can be performed using a proportional

valve. Proportional valves precisely modulate airflow via continuously variable posi-

tion spools or armatures, but are significantly more expensive than discrete valves.

More critically, proportional valves are much heavier than discrete valves with equiv-

alent max flow rates. And with one valve required to control each pneumatic muscle,

this mass quickly adds up, limiting the performance of mobile robot systems that

must carry their control hardware.

A discrete valve can be operated by pulse-width modulation (PWM) to more

coarsely regulate pressure in a continuous fashion, provided the valve has sufficiently

fast open/close response times. However, as the valve and associated pneumatic

tubing are sized up to reduce muscle response time for higher-speed robot motion,

the faster airflow dynamics make smooth pressure regulation a challenge. Without

very fast valve response times that are not feasible for larger valves, large pressure

oscillations become unavoidable. Consequently, PWM pressure control is not feasible

for high-flow systems.
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Based on these issues, a simple on-off ‘burst-inflation’ control approach is instead

chosen for this work, in which a high-flow discrete valve is fully opened in one direc-

tion to quickly pressurize the muscle, closed to seal the muscle, and fully opened in

the other direction to vent the muscle. A corresponding trajectory planning strategy

is developed for burst-inflation control in Chapter 5 to determine valve open/close

time sequences for performing a desired robot maneuver. These valve control se-

quences are easily implemented on a robot and do not unrealistically rely on accurate

pressure control via PWM. Additionally, system mass is reduced by avoiding pro-

portional valves. And while burst-inflation control is not as precise as closed-loop

pressure modulation, robot compliance inherent to pneumatic muscles can be lever-

aged to compensate for uncertainty in robot trajectory—as long as the muscle-driven

robot executes a desired trajectory just ‘accurately enough’, the robot can rely on

mechanical adaptation, rather than precise feedback control, to account for deviation

from nominal trajectory.

4.2 Pneumatic system dynamics

Background. With the choice of muscle pressure control strategy laid out, several

approaches to modeling pneumatic system dynamics can be considered. The simplest

approach is to fit a curve to experimental muscle pressure versus time data. This

provides a very accurate muscle pressure response in simulation for a fixed pneumatic

system configuration, which includes source tank size, source pressure, tubing length,

diameter, tube fittings, etc. However, for any changes to the pneumatic system con-

figuration, additional experiments must be run to re-characterize the muscle pressure

response curve. Furthermore, this purely data-driven approach treats muscle pressure

as uncoupled from the rest of the robotic system, contrary to the interaction between

muscle, pressure, and robot dynamics shown in Figure 4.1. Thus, any change in robot

dynamics from the characterization experiment to subsequent robot maneuvers would
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again require re-characterization of muscle pressure response.

Several research groups have instead approximated pneumatic dynamics with

lumped-parameter pneumatic circuit models [33], [34]. System volume (source tank

and muscle) is modeled as a capacitor using the ideal gas law, while pressure loss due

to viscous effects is modeled by a linear or nonlinear resistor; resistance values are

empirically determined from experimental data. Gas inertia is sometimes included

via an inductor element, as well.

Another common approach is to derive a differential equation for the evolution

of internal muscle pressure in time from Boyle’s law—for an ideal gas undergoing an

isothermal process, the product of pressure and volume is constant. Boyle’s law is

applied by equating the product of muscle air pressure and volume at atmospheric

pressure to the pressure-volume product at the elevated internal muscle pressure [35],

[36]

paVa = pmVm

pm =
paVa
Vm

(4.1)

where pa is atmospheric pressure, Va is muscle air volume at atmospheric pressure,

pm is internal muscle pressure, and Vm is internal muscle volume. Muscle pressure is

then differentiated in time

ṗm = ��̇paVa
Vm

+
paV̇a
Vm
− pm

V̇m
Vm

=
paV̇a
Vm
− pm

V̇m
Vm

= pm

(
ṁ

m
− V̇m
Vm

) (4.2)

where ṁ is the mass flow rate of air into/out of the the muscle. To integrate the

above differential equation for muscle pressure in time, muscle volume, rate of change

of muscle volume (V̇m), and mass flow rate are required. Flow rate is frequently mod-
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eled using an empirical valve equation with one or more experimentally-determined

coefficients [36]–[38].

Muscle volume and volumetric rate of change can be determined geometrically,

assuming the pneumatic muscle is a cylinder [37]

Vm =
(b2L− L3)

4πn2
(4.3)

V̇m =
(b2 − 3L2)

4πn2
L̇ (4.4)

where b is the length of the helically-wound threads in the muscle, L is muscle length,

and n is the number of thread turns around the muscle. L and L̇ are state variables

of the robotic system. This equation is typically modified to account for distortion

from cylindrical shape at the ends of the muscle, such as in [39]. Alternatively, muscle

volume can be empirically modeled using experimental data for best accuracy [35],

[40].

Approach. The high-flow discrete valve selected for this work has a large orifice to

maximize airflow rate for fast robot dynamics; therefore, the dominant flow restriction

in the pneumatic system is attributed not to the valve restriction, but to the frictional

pressure drop along the tubing connecting the valve to the muscle. Consequently, the

chosen strategy was to model the mass flow rate of air into the muscle by adapting

the Darcy-Weisbach equation for tube pressure loss to a compressible fluid. The mass

flow rate through the tube can be expressed as

ṁ = ρvA (4.5)
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where ρ is the fluid density, v is the fluid velocity, and A is the cross-sectional area

of the tube. The Darcy-Weisbach equation is given by [41]:

∆p = fD
L

D

ρv2

2
(4.6)

where ∆p is pressure drop, fD is the Darcy friction factor, L is tube length, and D

is tube inner diameter. The Darcy friction factor is approximated via the Haaland

equation

fD =

[
−1.8log10

(
6.9

Re
+
( ε

3.7D

)1.11
)]−2

(4.7)

where ε is the tube surface roughness, and Re is the Reynolds number

Re =
ρuD

µ
(4.8)

in which µ is the dynamic viscosity, and u is the average fluid velocity.

The assumption of an ideal gas undergoing an isothermal process allows for sim-

plification of the analysis, such that the ratio of pressure to density is a constant, and

therefore, gas density is proportional to pressure

p

ρ
= RsT ⇒ ρ =

p

RsT
(4.9)

where Rs is the specific gas constant (Rs = R/M , R is the ideal gas constant, M

is the molar mass) and T is gas temperature. The pressure-density ratio for air is

plotted against constant RsT for increasing pressure in Figure 4.2. At low pressures

between 200-1000 kPa, the pressure-density ratio closely matches the ideal gas law.
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Fluid velocity can then be expressed in terms of pressure and mass flow rate

ṁ = (kp)V A⇒ V =
ṁ

kpA
. (4.10)

Figure 4.2: Air pressure/density ratio versus pressure.

By expressing the differential pressure drop along the tube using the Darcy-

Weisbach equation and substituting Equations 4.9 and 4.10, the differential pressure

drop along the tube can be expressed as

dp = −fD
ṁ2

2kpA2D
dL (4.11)

A second simplification is made by treating air viscosity as constant over the length

of the tube. As shown in Figure 4.3, air density varies significantly with pressure,

but air viscosity is relatively constant at low pressures—for the 200-1000 kPa input

pressure range of the valve, air viscosity changes only by approximately 0.5%. With

constant air viscosity, the Darcy friction factor becomes a function of mass flow rate

only

fD =

[
−1.8log10

(
6.9πDµ

4ṁ
+
( ε

3.7D

)1.11
)]−2

. (4.12)
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Figure 4.3: Air density and viscosity versus pressure.

Finally, by assuming a uniform mass flow rate through the tube, it is possible to

integrate pressure drop along the length of the tube from the source pressure, ps, to

the muscle pressure, pm, as

L = −
∫ pm

ps

2A2D

fDṁ2RsT
p dp =

kA2D

fDṁ2
(p2
s − p2

m) (4.13)

ṁ2 =
A2D

fDLRsT
(p2
s − p2

m). (4.14)

Equation 4.14 is implicit in ṁ, as fD is a function of mass flow rate, so ṁ is solved

for numerically. At each simulation timestep, the mass flow rate into each pneumatic

muscle is integrated and the corresponding muscle pressure is calculated from the

ideal gas law.

Pneumatic muscle volume is modeled from experimental data. For the ‘mesh’

muscle design used in Chapters 5 and 6, a prototype muscle was completely filled

with water at several lengths between full extension and full contraction and the mass

of water was measured by subtracting empty muscle mass from filled muscle mass.

Water mass was converted to volume using water density at room temperature. A

third-order polynomial was fit to measured muscle volume versus contraction fit data,
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shown in Figure 4.4, as

V = β0 + β1c+ β2c
2 + β3c

3. (4.15)

where c is muscle contraction. The polynomial coefficients for the mesh muscle design

are provided in Table 4.1.

Table 4.1: Muscle volume polynomial coefficients for ‘mesh’ muscle design.

β0 β1 β2 β3

42.43 31.41 -3.25 0.13

Figure 4.4: Muscle volume versus muscle contraction for mesh muscle: experimentally-
measured data and third-order polynomial fit.

Note that the final experimental data point in Figure 4.4 is at the maximum

contraction length of the mesh muscle, at about at 7 cm contraction—this corresponds

to the maximum muscle volume. Consequently, the polynomial fit beyond this point

does not accurately represent muscle volume.

Assumptions. It is important to review the assumptions that were made to sim-

plify analysis of muscle pressure dynamics. Treatment of air as ideal gas is valid for

low muscle operating pressures (valve operation is limited to <1000 kPa) and rela-

tively high temperatures around 300 K. With regard to the assumption of constant
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air viscosity, there is negligible change in viscosity over the pressure operating range,

assuming constant temperature. Even with a temperature drop from 23 °C to 0 °C,

air viscosity only decreases approximately 6 percent—this results in only a 0.2 percent

change in the friction factor (Equation 4.12).

The assumption of uniform mass flow rate along the length of the tube neglects

transient airflow dynamics that occur right as the valve as opened and as it is closed,

but should not significantly affect the overall shape of the muscle inflation curve.

However, treatment of muscle inflation as an isothermal process is a significant sim-

plification, since temperature drop along the tube as air expands is not negligible.

Additionally, there are several other unmodeled pneumatic restrictions in the system

beyond the valve-to-muscle tube friction, including pneumatic connectors between

the air tank and valves, valve flow path, and tubing bends. Rather than drastically

expanding the complexity of the pneumatic model by incorporating air temperature

change and modeling all pneumatic components, unmodeled effects were incorporated

by tuning the modeled tube diameter to match experimental airflow dynamics.

Evaluation. The tube pressure drop model developed above was evaluated against

a more sophisticated model from MATLAB’s ‘Pipe’ gas element. The Pipe model

includes viscous friction losses and convective heat transfer between gas and tube

wall and accounts for the evolution of gas temperature over the length of the tube.

As shown in Figure 4.5, muscle inflation response is very similar between the two

models, with the most noticeable difference right after the valve is opened—the initial

pressure increase with the MATLAB Pipe model is more gradual.

The tube pressure drop model was then compared with experimental muscle pres-

sure step response data. A 74-inch length of 3/16-inch inner diameter tubing was

connected between the valve and the muscle. As shown in Figure 4.6a, the model

resulted in faster muscle inflation than that observed experimentally. To empirically
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Figure 4.5: Pneumatic muscle pressure step response: simplified tube pressure drop model
vs. MATLAB Pipe model.

include the unmodeled pneumatic restrictions (valve orifice, pneumatic fittings con-

necting the valve to the tube and the tube to the muscle, and bends in the tube)

that contribute to slower muscle inflation, the modeled inner tubing diameter was

reduced. As shown in Figure 4.6b, agreement between simulated and experimental

step responses significantly improved with a diameter reduction of 0.03 in. Note that

the experimental muscle shows a slower rise in muscle pressure over the first 25 ms of

of the step response, before experimental pressure catches up with modeled pressures.

It is possible that position of the pressure transducer at the far end of the muscle

(opposite to muscle inlet) results in additional transient effects inside the muscle that

are reflected in the experimental data.

4.3 Muscle dynamics

Background. Many types of force models—analytical, phenomenological, and em-

pirical—have been developed for the pneumatic artificial muscle over the past several

decades. The earliest and most frequent approach applies the principle of virtual

work, equating muscle work out (muscle force applied over muscle contraction) to

work in (change in muscle muscle volume via pressurization). The resulting model
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(a) (b)

Figure 4.6: Pneumatic muscle pressure step response comparing experimental data (circle
markers) to MATLAB Pipe model (dashed line) and custom model (solid line): (a) nominal
tube diameter, (b) tube diameter reduced by 0.03 in.

yields muscle force that is proportional to pressure at a fixed contraction length, but

decreases quadratically over the contraction range of the muscle

− FdL = PdV

⇒ F =
p

4πn2

(
3L2 − b2

) (4.16)

where F is muscle contraction force, p is muscle pressure, L is muscle length, b is

the length of the helically-would threads around the muscle, and n is the number of

thread turns. For this derivation, the muscle is assumed to be perfectly cylindrical in

shape throughout contraction. This model excludes many physical phenomena.

Subsequent work has sought to add these unmodeled effects, including friction

between woven mesh fibers and between the woven mesh and elastic bladder [23], [33],

bladder elasticity [42], [43], mesh fiber elasticity [34], [43], divergence from cylindrical

shape during inflation [38], [43], change in bladder thickness during inflation [43], and

a general correction factor for force over-prediction [37]. Incorporating these features

leads to relatively more accurate muscle force estimation accuracy, but with more

complex models. It is important to note that most of these models use empirically-
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determined parameters that require extensive experimental data.

Other work has directly analyzed the forces acting on the muscle bladder, simi-

larly adding friction, bladder elasticity, and non-cylindrical shape effects to improve

accuracy with similar results [39], [43]–[45]. Research groups have also explored the

use of phenomenological models using empirically-tuned spring, damper, and force

elements [37], [46]; a few have tried to represent the pneumatic muscle by adapting

the Hill biological muscle model [35], [47].

As most of the above approaches already require experimental data to tune various

model parameters, recent works have fit simpler empirical models between muscle

contraction force, contraction length, and pressure directly to experimental data [31],

[48]–[50]. Data is typically gathered via quasi-static tests which reflect most of the

effects described above, such as bladder stiffness, fiber stiffness, and muscle deviation

from cylindrical shape. Consequently, empirical models tend to be most accurate.

Approach. An empirical modeling approach is also used in this work. A compre-

hensive pressure-length-force characterization was performed for the mesh pneumatic

muscle design by running a series of quasi-static blocked force tests, similar to the

optical sensor characterization described in Chapter 3. The muscle was fixtured in

an Instron materials testing system, maintained at a fixed pressure, and allowed to

contract at a constant speed from its maximum (nominal length). Muscle length and

force were recorded for fixed muscle pressures up to 345 kPa and a third-order surface

was fit to contraction force versus pressure and contraction data

fm =β00 + β10c+ β01pm + β20c
2 + β11cpm + β30c

3 + β21c
2pm. (4.17)

where fm is muscle force, pm is muscle pressure, and c is muscle contraction; the

surface fit is shown in Figure 4.7.
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Figure 4.7: Third-order surface fit to pneumatic muscle blocked force versus pressure and
contraction data.

Assumptions. While quasi-static tests do not fully capture the dynamic properties

of the muscle—mainly, the hysteresis due to various frictional effects—this is not

necessarily an issue for the dynamic robots that are the focus of this work. Explosive

robot movements can only be achieved for the direction of muscle contraction; muscle

elongation (deflation) is passive, and therefore slower, so elongation is not useful

for high-speed robot movement. Thus, to most accurately model contraction force,

muscle force was calibrated specifically for the direction of muscle contraction, rather

than averaging between contraction and elongation force curves.

4.4 Rigid body dynamics

The use of a rigid robot frame to transmit pneumatic muscle forces allows for analysis

with standard rigid body dynamics techniques. This work utilizes the modern geo-

metric interpretation of classical screw theory, as in [51], in which rigid-body motions

are expressed using matrix exponentials.

The twist-wrench formulation of Newton-Euler dynamics for a single rigid body
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can be expressed in body frame coordinates {b} as

Fb = GbV̇b − [adVb ]
TGbVb

Fb =

τb
fb

 ,Gb =

Ib 0

0 mI

 ,Vb =

ωb
vb


(4.18)

where Fb is the wrench acting on the body, Gb is the spatial inertia matrix of the

body, Vb is the body twist, and V̇b is the body twist acceleration. Given two twists

V1 and V2, the Lie bracket of V1 and V2 is defined as [adV1 ]V2, where

[adV ] =

[ω] 0

[v] [ω]

 (4.19)

in which [ω] and [v] are the skew-symmetric matrix representations of angular and

linear velocity vectors. The recursive formulas for the Newton-Euler dynamics formu-

lation of an n-link open chain with body-fixed reference frame {i} attached to center

of mass of each link i are detailed, starting with the kinematics.

The configuration of frame {i} relative to {i−1} given the joint position θi between

the two links is

Ti,i−1(θi) = e−[Ai]θiMi,i−1 (4.20)

where Ti,i−1 ∈ SE(3) (the special Euclidean group of homogeneous transformation

matrices) is the configuration of frame {i−1} in {i} for arbitrary joint angle, Mi,i−1 ∈

SE(3) is the configuration of frame {i− 1} in {i} with the robot in its home position

(all joint positions at zero), and Ai is the screw axis for joint i in frame {i}.
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The twist and acceleration of link i are given by

Vi = [AdTi,i−1
]Vi−1 +Aiθ̇i (4.21)

V̇i = [AdTi,i−1
]V̇i−1 + [adVi ]Aiθ̇i +Aiθ̈i, (4.22)

where [AdT ] is the adjoint representation of the homogeneous transformation matrix

T

[AdT ] =

 R 0

[p]R R

 , (4.23)

in which R is the rotation matrix and [p] is the skew-symmetric matrix representation

of the translation vector p. The twist of link i is the sum of the twist of the previous

link Vi−1 and the twist due to the joint i velocity.

For each link i, the total wrench acting on the link is the sum of the wrench

transmitted through joint i and the wrench applied through the subsequent joint

i+ 1, or the wrench applied to the end-effector link n, as given by

Fi − [AdTi+1,i
]TFi+1 = GiV̇i − [adVi ]

TGiVi. (4.24)

The joint force or torque (depending on prismatic or revolute joint) at each joint is

calculated from the wrench transmitted through joint i and the joint’s screw axis

τi = FTi Ai. (4.25)

The recursive equations in (4.20)-(4.25) serve as kinodynamic constraints to enforce

robot dynamics in the subsequent trajectory optimization and design chapters.

67



4.5 Discussion

As noted in Section 4.2, there are several key simplifications made in formulating

the pneumatic system model, namely, the assumption of uniform mass flow rate

along the length of the tube and the treatment of inflation as an isothermal process.

Additionally, there are several other sources of airflow resistance in the pneumatic

system, beyond that of the valve-to-muscle connecting tube, that are not modeled.

Instead of significantly increasing model complexity, unmodeled airflow resistance

effects are compensated by adjusting the modeled tubing diameter. With the tuned

tubing diameter, agreement between simulated and experimental muscle inflation step

responses is substantially improved. The pneumatic system model is further evaluated

for a multi-muscle system in Chapter 5.

4.6 Significance

This chapter details airflow, pneumatic muscle, and rigid body dynamics subsystem

models that are used together to construct a complete model for pneumatic muscle-

driven robots. The overall model is vital to the muscle-driven robot trajectory plan-

ning approach laid out in Chapter 5 and to the robot design optimization strategy

examined in Chapter 6.
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CHAPTER 5

JUMPING ROBOT TRAJECTORY OPTIMIZATION

The second objective of this work is to develop a framework for planning high-speed

maneuvers on mobile muscle-driven robots controlled by ‘burst inflation,’ in which

high-flow solenoid valves are used to control the timing (but not rate) of rapid muscle

pressurization. For this burst inflation control approach, planning a robot trajectory

entails determining valve open and close timing sequences for each pneumatic muscle

on the robot.

Recently, legged robots have become a significant research focus in the robotics

community because of their versatility outside of a structured laboratory setting.

Legs allow robots to step over small irregularities, leap over large obstacles, and jump

onto elevated surfaces, making legged robots capable of traversing a broad range of

unstructured terrains in which wheeled robots fail. Thus, legged robots have potential

in a wide range of applications that involve navigation in unknown environments

with unpredictable terrain, including search and rescue, military reconnaissance, and

extraterrestrial exploration.

As the development of legged robots has evolved, increasing attention has been

given to the incorporation of mechanical compliance into robot legs. Researchers have

taken cues from biology, attempting to capture the benefits of mechanical compliance

to improve legged robot agility, dynamic stability, power efficiency, and mechanical

adaptation to environmental uncertainty [52]–[59]. One of the most studied com-

pliance mechanisms is the series-elastic actuator, typically a motor in series with a

spring [54], [57]–[59], while other designs utilize pneumatic springs [52], [60], or make

the entire leg structure itself compliant [61]. Alternatively, the pneumatic artificial

muscle represents a viable alternative for robot compliance. The pneumatic muscle’s
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low mass (in the range of 50 to 100 grams) minimizes distal inertia along the leg,

while its passive compliance eliminates the need for active impedance control used

with series-elastic actuators.

An important problem in the context of legged robots is planning control tra-

jectories, especially for complex high-speed maneuvers like jumps. This planning

capability, required to realize the agility capabilities of legged robots in practice, has

not been adequately addressed for pneumatic muscle-driven robots. While several

research groups have investigated the use of pneumatic muscles in legged robots, in-

cluding for jumping [62]–[66], the majority of pneumatic muscle-driven jumping robot

efforts have focused on maximizing jumping capabilities, with little consideration for

jumping trajectory planning.

Though a few studies have shown that jumping directionality control is possible

[67], [68], only one other work has been found that details jump trajectory planning

for a pneumatic muscle-driven quadruped robot—the robot was controlled via con-

tinuous muscle pressure modulation using pneumatic proportional valves [69]. This is

similar to optimal control approaches for pneumatic robot manipulators tethered to

large banks of proportional valves [70]–[74]. Proportional valves allow for continuous

control signals that are directly compatible with standard trajectory optimization ap-

proaches. However, as explained in Chapter 4, proportional valves are poorly-suited

for mobile robots due to their size and weight; mass is particularly important for

robots designed to be capable of fast dynamic motions like jumping and leaping.

Therefore, this work aims to enable trajectory planning of explosive maneuvers,

such as jumping, for muscle-driven mobile robots controlled by high-flow discrete

solenoid valves. In contrast with continuous pressure control approaches, ‘burst in-

flation’ is used to rapidly pressurize each pneumatic muscle based on an optimized

valve timing sequence for a desired trajectory. A factor graph-based trajectory op-

timization approach is developed to model pneumatic muscle-driven robot dynamics
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and to plan valve open and close times for a desired robot maneuver. As standard

planning approaches assume continuous control input signals, the trajectory planner

in this work accommodates the discrete nature of burst-inflation control. The efficacy

of the planning framework is evaluated on a pneumatic muscle-driven legged jumping

robot test platform.

Jumping robot test platform. The jumping robot test platform used in this

work is a planar two-legged system actuated by four pneumatic muscles, as shown in

Figure 5.1. Each leg of the robot consists of a ‘shank’ link and a ‘thigh’ link connected

by the revolute ‘knee’ joint; the thigh is connected to a ‘torso’ link at the revolute

‘hip’ joint. All five links are 0.55 meters long. The robot design utilizes carbon fiber

tubing for each link and 3D-printed polylactic acid (PLA) joints to minimize robot

mass. A pneumatic muscle is connected at each joint via a pulley; the pulley radius

determines the moment arm by which the muscle contraction force generates joint

torque. Additionally, an elastic element is connected to a second pulley at each joint

to form an antagonistic torsion spring that opposes leg swing—these torsion springs

prevent leg collisions mid-air and return the legs back toward their starting pose

after liftoff. Each pneumatic muscle is connected to a B3 Series (Parker Hannifin)

solenoid valve for on/off burst-inflation control. All four valves then connect to a single

Figure 5.1: Planar two-legged jumping robot test platform.
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pressurized carbon-fiber tank. For all testing, the valves and tank were positioned

off-board the robot (tethered test setup).

Each link mass was measured by hanging the link from a load cell, with the

corresponding pneumatic muscle and connecting hardware attached; link masses are

listed below, in Table 5.1. The total mass of the tethered robot is approximately 2.3

kg. To calculate link inertias, each link was treated as a 2-cm radius cylinder with

uniform density, corresponding to

J =
1

12
m
(
3r2 + l2

)
(5.1)

where J is the link inertia of the cylinder about the axis through its center diameter,

m is the link mass, r is the radius, and l is the link length. The Simulation Description

Format (SDF) file describing the robot frame morphology and inertial properties is

included as Appendix A.

Table 5.1: Jumping robot link masses.

Robot Link Mass (kg)

Shank 0.285

Thigh 0.428

Torso 0.883

5.1 Methodology

5.1.1 Factor graph framework

The next three sections lay out an approach to planning pneumatic muscle-driven

robot trajectories using factor graphs—a factor graph is a bipartite graph consisting

of variable nodes and factor nodes, where each variable node represents an unknown

variable and each factor node represents a constraint on the variables [75]. A factor

graph can be constructed to represent the dynamics of a robot by simply specifying
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the kinematic and dynamic equations of the robot as constraints between the corre-

sponding robot state variables. For a pneumatic muscle-driven robot, the pneumatic

model, muscle force model, and rigid body dynamics from Chapter 4 are encoded

in a graph as constraints between pneumatic, muscle, and robot link states. Copies

of the robot dynamics factor graph can then be connected in series via collocation

constraints to transcribe a robot trajectory in time.

The overall trajectory factor graph can be utilized for multiple aspects of robot

analysis and planning. In this chapter, a graph is constructed for a pneumatic muscle-

driven jumping robot and is used to to plan and simulate jump trajectories, as well

as to improve the accuracy of kinematics extraction from video test footage. The

GTSAM library is used to build the factor graph and perform optimizations [76].

5.1.2 Multi-phase trajectory optimization

The general trajectory optimization problem is formulated as the minimization of an

objective function

min
tF ,x(t),u(t)

J = φ
(
tF ,x(t0),x(tF )

)
+

∫ tF

t0

L
(
τ,x(τ),u(τ)

)
dτ (5.2)

with a boundary objective (term 1) and a path integral along the trajectory (term 2),

where the decision variables are the final time tf and the state and control trajectories

x(t) and u(t). The optimization is subject to the system dynamics

ẋ(t) = f(t,x(t),u(t)) (5.3)

as well as other constraints including: path constraints, boundary constraints, bounds

on state and control, bounds on final state, and bounds on final time.

Direct collocation is used to transcribe the continuous trajectory optimization

problem into a nonlinear program (NLP) by discretizing the state and control trajec-
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tories at collocation points or nodes [77]; this discretized problem can be represented

in a factor graph. The overall factor graph corresponding to a symmetric vertical

jump (both feet leave the ground simultaneously) by the pneumatic muscle-driven

jumping robot is shown in Figure 5.2. Each xk in the factor graph represents the

full state of the robot at the node corresponding to time tk. It is important to

note that for the bust inflation control approach in this work, the control signal

is not continuous—the control inputs consist of discrete valve open and close times

tv = [to,1, tc,1, ..., to,nm , tc,nm ] for each of the nm muscles; this complication is addressed

in Subsection 5.1.4.

x0 x1

∆t1

xt−1 xt xt+1

∆t2

xn−1 xn

tv

collocation
xk+1 = xk + 1

2
(ẋk + ẋk+1)∆tp

np

dynamics
ẋk = f(xk, To, Tc)

initial state
h0(x0) = 0

guard
g(xk) = 0

goal
hn(xn) = 0

... ...

Figure 5.2: Factor graph representing the jumping robot vertical jump trajectory, formu-
lated as a multi-phase optimization problem using hybrid direct collocation: the first phase
(∆t1) represents the jumping robot dynamics with both feet in contact with the ground,
while the second phase represents the aerial jumping robot dynamics.

The hybrid direct collocation method [78] is applied to incorporate hybrid robot

dynamics that describe robot contact mechanics, such as for the jumping robot where

each foot is in contact with the ground for only a portion of the jump sequence.

Given a desired contact sequence, multiple phases of the trajectory are explicitly

modeled, where each phase represents a distinct set of dynamics. In this way, the

overall trajectory optimization is formulated as a sequence of trajectory optimization

sub-problems connected by inter-phase constraints. For the jumping robot, there

are four sets of dynamics: both feet on ground, only left or right foot on ground,

and aerial phase (no feet on ground). The switch between each phase is modeled

as instantaneous: a boundary node is associated with each phase transition event
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(making or breaking contact) that allows for velocity discontinuities. Each phase p

has a duration of ∆tp, evenly dived into np steps so that each step with a phase has

duration ∆tp/np; the duration of each phase is added as a decision variable to the

optimization problem.

Guard constraints g(xk) at the boundary nodes dictate phase switches: the guard

event for each jumping robot foot leaving the ground is the reduction of the normal

contact force to zero; the guard event for each foot contacting the ground is the reduc-

tion of foot-ground separation distance to zero. Additionally, inter-phase constraints

at the boundary nodes require robot configuration to be maintained through a phase

switch (no robot configuration discontinuity).

Robot dynamics constraints (pneumatic, muscle, and rigid body dynamics) are

imposed at each node

ẋk = f(xk, To, Tc) = fk (5.4)

and trapezoidal collocation constraints are imposed between consecutive robot states

in time

xk+1 = xk +
1

2
(fk + fk+1)

∆tp
np

. (5.5)

Initial state constraints h0(x0) are set on the first state and target state constraints

hn(xn) are set on the final state. In the following two subsections, the factor rep-

resenting the dynamics of the full robot state (Equation 5.4) is expanded into two

sub-factor graphs, one for the rigid body dynamics of the robot frame, and the other

for the joint torque dynamics dictated by pneumatic muscle and airflow dynamics.
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5.1.3 Robot dynamics

Robot dynamics are represented in a sub-factor graph using the rigid body dynamics

formulation in Section 4.4, where the recursive pose, twist, acceleration, and wrench

equations become factors connecting consecutive robot links

Ti,i−1(θi) = e−[Ai]θiMi,i−1 (5.6)

Vi = [AdTi,i−1
]Vi−1 +Aiθ̇i (5.7)

V̇i = [AdTi,i−1
]V̇i−1 + [adVi ]Aiθ̇i +Aiθ̈i (5.8)

Fi − [AdTi+1,i
]TFi+1 = GiV̇i − [adVi ]

TGiVi (5.9)

τi = FTi Ai. (5.10)

The dynamics sub-factor graph representation of the jumping robot is shown in

Figure 5.3, with five poses for the five robot links, and four joint angles for the four

actuated robot joints. The red factors exist when the corresponding leg (either link 1

or 5) of the robot is in contact with the ground—these factors connect the leg link to

an additional ground-fixed link through a revolute joint with zero torque transmission.

Each blue factor exists when the corresponding leg is aerial, removing the revolute

joint connecting the leg link to the ground link so that the interaction wrench between

the two links is zero. Trapezoidal collocation factors connect the robot poses, twists,

and accelerations between consecutive sub-factor graphs in overall trajectory graph.

5.1.4 Joint torque dynamics

The joint torque sub-factor graph shown in Figure 5.4 combines pneumatic system

dynamics, muscle dynamics, and joint geometry to model the muscle-generated torque

applied at each robot joint. Beginning at the left of the graph, the state of the
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Figure 5.3: Rigid body dynamics representation of the jumping robot in a factor graph.
The red factors are active when the corresponding robot foot is in contact with the ground:
pose, twist, and acceleration constraints enforce fixed foot position (point contact); wrench
constraints enforce no torque transmission from the ground to the foot. The blue factors
are active for the aerial phase and enforce zero interaction wrench between the foot and the
ground.
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Figure 5.4: Joint torque sub-factor graph, from left to right: the pneumatic source tank
state (blue), shared by all joint torque sub-graphs; the airflow dynamics constraint between
the source tank and pneumatic muscle; the pneumatic muscle state; and the constraints
between muscle force/joint torque and robot state.

pneumatic source tank that feeds all pneumatic muscles is comprised of source tank

volume Vs and air mass ms. An ideal gas law factor

ps =
ms

VsRsT
(5.11)

connects the volume and mass to source tank pressure ps, where Rs is the specific gas

constant and T is the gas temperature.
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The pneumatic solenoid valve opening and closing are discrete control events, rep-

resented by the valve control times to and tc, that determine the underlying equation

for air mass flow rate from source tank to muscle. For the open-valve state, the mass

flow rate ṁm from the source tank into the muscle is calculated given the current

source pressure and muscle pressure pm by integrating along the tube, as described

in Section 4.2 (Equation 4.14). For the closed-valve state, the mass flow rate is zero.

Treating the pneumatic dynamics as hybrid dynamics with phase-switching events,

like the robot dynamics, would significantly increase the complexity of the problem—

the sequence of all valve phases, as well as the progression of valve phases relative

to robot dynamics phases, would be required to set up the trajectory optimization

problem. Therefore, a soft model is instead used to smoothly approximate the step

function using the sigmoid function

S(x) =
1

1 + e−x
. (5.12)

The air mass flow rate dynamics are modeled using multiple sigmoids time-shifted by

the valve open and close times

ṁm = S(
tk − to
co

)− S(
tk − tc
cc

)ṁm,o (5.13)

where ṁm,o is the mass flow rate assuming the valve is open and co, cc are constants

that dictate the rate of change between the two sets of pneumatic dynamics.

The source tank volume Vs, air mass ms, and pressure ps nodes are shared by

all joint torque sub-factor graphs, as one tank feeds all muscles on the robot. A

trapezoidal collocation factor connects consecutive source tank air mass nodes in
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Figure 5.5: Use of sigmoids to smoothly connect valve open/close airflow dynamics: (a)
large co and cc resulting in smoother change between sets of dynamics, (b) small co and cc
resulting in faster change between sets of dynamics.

time

ms,k+1 = ms,k −
∑

m=1:nm

1

2
(ṁm,k + ṁm,k+1)

∆tp
np

, (5.14)

(5.15)

such that the total air mass flow out of the source tank is the sum of air mass flow rates

into all muscles. Muscle volume Vm and air mass mm make up each muscle pneumatic

state, connected to muscle pressure through an ideal gas law factor. Muscle volume

Vm is a function of muscle contraction ∆x, per the experimentally-fit Equation 4.15.

Additional trapezoidal collocation factors connect consecutive muscle air mass nodes

in time

mm,k+1 = mm,k +
1

2
(ṁm,k + ṁm,k+1)

∆tp
np

. (5.16)

The factor between muscle force fm, muscle pressure, and muscle contraction is

based on the third-order muscle force surface fit detailed in Section 4.3 Equation 4.17
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such that force is a function of muscle pressure pm and muscle contraction c. A lin-

ear stiffness spring element is added to the joint model in series with the muscle to

represent muscle connector compliance and robot frame compliance; thus, a Hooke’s

law factor connects spring displacement ∆s and muscle force. Accordingly, a factor

connecting joint displacement ∆θ, spring elongation ∆s, and muscle contraction con-

strains the total joint displacement to be the difference between spring elongation

and muscle contraction,

r∆θ = ∆s− c (5.17)

where r is the radius of the cam through which the muscle force is converted to joint

torque. Finally, the joint torque factor

τ = fmr − cθ̇ (5.18)

is added, such that the applied torque is the difference between the torque generated

by the muscle through r and the viscous joint damping torque. For the jumping robot,

there are four joint torque sub-factor graphs within the overall graph, corresponding

to the four pneumatic muscle-driven joints.

5.2 Experiments and Results

Experiments were performed with the two-legged jumping robot to evaluate the effi-

cacy of this factor graph-based planning approach. The jumping robot has two legs

with two joints per leg, each driven by a single pneumatic muscle, so for a single in-

flation cycle of each pneumatic muscle, eight valve control times must be planned (to

and tc for each muscle). In each test, valve open and close commands—corresponding

to the valve control times determined from trajectory optimizations—were sent via

UART from a PC running a timer loop in ROS to an MSP432 microcontroller (Texas
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Instruments). Based on these commands, the microcontroller activated each valve

via an H-bridge circuit; the microcontroller also recorded muscle and tank pressures

at 100 Hz.

For all experiments, robot kinematics were extracted from video by tracking fidu-

cial markers on the robot, with two markers attached to each robot link. Jumps were

filmed at 240 frames per second and a custom HSV filter was implemented in MAT-

LAB to measure the pixel location of each marker in every video frame. The robot

poses throughout each jump were first calculated directly from pixel measurements,

assuming the robot was perfectly planar relative to camera throughout the jump,

with no camera distortion. Then, the kinematics portion of the jumping robot factor

graph (link poses, twists, and twist accelerations) was utilized to improve the accu-

racy of robot pose estimates by optimizing for fiducial marker positions subject to

the kinematics constraints; to accomplish this, several additional variable and factor

nodes were included.

Camera pose and camera calibration variable nodes were added to the graph to

represent the position, orientation, and intrinsic properties of the camera. The pose

of the camera in the jumping robot test setup was measured in the laboratory, while

camera focal length and distortion parameters were estimated from a collection of

checkerboard calibration images processed using OpenCV. Camera pose and intrinsic

parameter priors were added as unary factors with low uncertainty. Fiducial marker

location variables were added for each marker on each link, with a factor connecting

each marker location to the pose of the respective robot link. Finally, a projection

factor for fiducial marker location based on camera pose, camera calibration model,

and pixel measurement was added for each marker on each link of the robot. This

fiducial marker-based kinematics optimization compensated for robot translation and

rotation out of the video plane, as well as camera misalignment and distortion.
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Figure 5.6: Comparison of robot poses in simulated and real jumps at multiple times
throughout 0.2-m target jump (1.5-m torso height).

(a) (b)

Figure 5.7: Comparison of simulated and real jumps for 0.2-m target jump height: (a)
Pneumatic muscle pressures, (b) robot joint angles. Circle markers represent experimental
data and solid/dashed lines represent simulation data—note that simulated pressures and
angles are symmetric on the right and left legs, so simulated data for knee joints and hip
joints, respectively, overlap.

Vertical jumping. Valve control times were planned for four vertical jump height

objectives, ranging from 0.1 to 0.4 m, where jump height was measured relative to the

standing pose of the robot [79]. A goal constraint was added to the final robot state

of the jumping robot factor graph to specify desired jump height; the twist of the

torso link at the final state was constrained to be zero, corresponding to maximum

jump height.
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Figure 5.8: Comparison of robot torso trajectory in real and simulated jumps for 0.2-m
target jump; circle markers represent experimental data and solid/dashed lines represent
simulation data.

Before planning and evaluating jumping trajectories, several test jumps were used

to tune several model parameters. Three key parameters—muscle connection stiff-

ness, pneumatic tubing diameter, and joint damping—were adjusted to improve model

agreement with experimental results; all other parameters were maintained at their

nominal values. Muscle connection stiffness was set to 80 kN/m to account for the

compliance of the materials connecting each muscle to the robot frame and joint

pulley, as well as the compliance of the robot joint and frame components. Tubing

diameter was decreased by 15 percent from the nominal 3/16-in diameter to compen-

sate for unmodeled pneumatic restrictions. Finally, joint damping of approximately

0.03 N-m-s/rad was estimated.

To initialize values for the trajectory optimization, a jumping trajectory was sim-

ulated with arbitrary valve control times. Optimization over the factor graph was

then performed using the GTSAM library, and the optimized valve control times

were subsequently evaluated in experimental jumps with the real robot. Three jumps

were performed for each of the four target heights.

The error between simulated and experimental trajectories for all jumps is summa-

rized in Tables 5.2 and 5.3. Simulated trajectories generally underpredicted experimentally-
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Figure 5.9: Comparison of robot poses in simulated and real jumps at multiple times
throughout 0.4-m target jump (1.5-m torso height).

(a) (b)

Figure 5.10: Comparison of simulated and real jumps for 0.4-m target jump height: (a)
Pneumatic muscle pressures, (b) robot joint angles. Circle markers represent experimental
data and solid/dashed lines represent simulation data—note that simulated pressures and
angles are symmetric on the right and left legs, so simulated data for knee joints and hip
joints, respectively, overlap.

measured jump heights, most significantly for larger target jump heights. The maxi-

mum jump height error was 15.6 cm, for the 0.4-m target jump height. The average

muscle pressure RMS error across all jumps was 46.5 kPa, while the average joint an-

gle RMS error was 5.6 deg. Figures 5.9 and 5.10b show agreement between simulated

and experimental joint angles for the largest target jump height of 0.4 m. Simulated

muscle pressure inflation rates matched experimental data well, but peak pressures
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Figure 5.11: Comparison of robot torso trajectory in real and simulated jumps for 0.4-m
target jump; circle markers represent experimental data and solid/dashed lines represent
simulation data.

in simulation were lower than experimental pressures in many cases, especially for

smaller jump heights. For example, in 0.2-m target jump height testing, peak muscle

pressures were 25 to 50 kPa higher in experiments, as shown in Figure 5.10a.

For all tests, experimental muscle pressures remained nearly constant after valve

closure (as expected), while simulated muscle pressures decreased significantly. This

is because the muscle volume versus contraction polynomial fit, Equation 4.15, is only

accurate up to the maximum contraction of the muscle. Simulated muscle contraction

beyond this range results in a fictitious increase in muscle volume but does not impact

the simulated trajectory accuracy, as the muscle model does not generate force beyond

the muscle’s maximum contraction. However, this muscle volume model simplification

results in larger average errors between simulated and real muscle pressures, shown

in Table 5.2.

5.3 Discussion

Much of the difference between simulation and experimental results can be attributed

to uncertainty in several key model parameters which were manually tuned based on
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Table 5.2: Average RMS error between simulated and experimental joint data over three
trials for each target jump height.

Target Jump
Height (m)

Muscle Pressure RMS Error (kPa)

Knee, Right Hip, Right Hip, Left Knee, Left

0.1 55.5 42.4 50.7 51.2

0.2 54.6 41.3 48.9 45.7

0.3 44.3 44.8 53.2 47.1

0.4 52.5 35.7 30.7 45.8

Target Jump
Height (m)

Joint Angle RMS Error (deg)

Knee, Right Hip, Right Hip, Left Knee, Left

0.1 7.2 4.0 3.6 5.0

0.2 7.2 5.4 4.0 5.8

0.3 6.6 5.5 3.8 4.8

0.4 8.2 3.4 4.3 11.2

Table 5.3: Average error between simulated and experimental trajectories over three trials
for each target jump height.

Target Jump
Height (m)

Torso Location
RMSE (cm)

Jump Height
Error (cm)

0.1 4.4 7.6

0.2 4.7 4.7

0.3 5.6 10.3

0.4 6.2 15.3

limited test data. During tuning of the series stiffness parameter (assumed to be the

same for both hip and knee joints), it was found that jumping dynamics are quite

sensitive to the stiffness value. The stiffness at each joint encompasses the compliance

of several mechanical elements, including the webbing and muscle mesh materials that

connect the ends of the muscle to the joint pulley and robot link, the mesh attachment

feature on the link, the 3D-printed pulley and joint components, and the carbon fiber

robot frame. The impact of series stiffness on robot dynamics is further explored in

Chapter 6.

Pneumatic system model accuracy is also critical, as pneumatic muscle force is a

function of pressure. Although the simulated rate of muscle inflation during verti-
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cal jumps matched experimental data well, the pneumatic system dynamics are not

independent of other robot parameters, such as series stiffness. This may be the rea-

son simulated peak pressures were generally lower than experimental peak pressures.

Thus, in future work, a more robust system identification approach should be used

to identify critical system parameters simultaneously.

The existing trajectory factor graph for the robot can be adapted for system pa-

rameter identification by including kinematics and pressure data from experiments.

Unary measurement factors can be connected to muscle and source tank pressure

variables at each trajectory timestep for experimental pressure data. Kinematics in-

formation can be included by incorporating the additional graph structure utilized

for kinematics extraction from video: camera pose, calibration, and marker location

variables, and the correspond projection factors. With this setup, marker pixel loca-

tion information from video footage can be directly added to the system identification

factor graph.

System identification could be extended to incorporate dynamic measurements for

a more comprehensive analysis. Ideally, a load cell would be connected in series with

each pneumatic muscle on the robot to measure muscle contraction force; however, it

may be challenging to incorporate the load cell without extending robot link lengths.

A simpler approach is to use force measurement plates at both robot feet to measure

ground reaction forces, although this would not capture joint-level information. Force

measurement data could then be included in the system identification trajectory

graph.

As detailed in the previous chapter, several pneumatic modeling assumptions were

used to simplify analysis. Rather than attempting to model all system components

and include all physical phenomena, valve-to-muscle tubing diameter was instead

treated as a tunable parameter to compensate for unmodeled effects. Simulated mus-

cle inflation rates during vertical jumps were generally consistent with experimental
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data, and peak simulated pressures agreed with peak experimental pressures more

closely after performing system identification. Nevertheless, it would be beneficial to

investigate modeling of additional pneumatic features in future work.

The factor graph approach to trajectory optimization in this chapter provides an

intuitive representation of robot states and dynamics as nodes and factors in a graph.

Sub-factor graphs are individually constructed for subsets of the robot dynamics—

the robot frame kinodynamics and the pneumatic muscle-driven joint dynamics—

and connected together to represent the complete robot dynamics. Replicates of the

dynamics graph are then connected via collocation constraints to construct a robot

trajectory in time, where each graph represents a discretized collocation point.

A notable benefit of the factor graph framework is that the robot factor graph

can be utilized for multiple aspects of the research problem. In this work, the entire

graph is used to plan jumping trajectories. The robot kinematics portion of the graph

is used to improve estimates of experimental robot kinematics extracted from video,

with the addition of camera pose/calibration variables and camera-marker projection

factors. As described above, source tank and muscle pressure measurements can be

incorporated into the overall trajectory graph to perform system identification of key

robot parameters from experimental jump data.

In future work, this trajectory planning strategy could be extended to lateral

jumping, with additional trajectory phases for single foot-ground contact dynamics.

Additionally, more sophisticated optimization objectives that incorporate foot clear-

ance for jumping over obstacles or robot orientation for landing on sloped surfaces

and uneven terrain may be explored. An important step will be to incorporate plan-

ning for safe robot landing as part of the trajectory optimization. Here, the passive

mechanical compliance of pneumatic muscles can be leveraged to compensate for

trajectory error and uncertainty in the environment.
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5.4 Significance

In this chapter, a factor graph-based trajectory planning approach is formulated for

pneumatic muscle-driven robots controlled using burst inflation. A trajectory fac-

tor graph is constructed by connecting consecutive robot factor graphs in time via

collocation constraints, where each robot graph incorporates the pneumatic system,

muscle, and rigid body dynamics models formulated in Chapter 4. After goal con-

straints representing the trajectory objective function are added to the trajectory

graph, optimization of the graph yields valve open and close times corresponding to

the target robot trajectory. Additionally, trajectory optimization is extended to hy-

brid robot dynamics using a multi-phase approach, in which each phase represents a

distinct set of dynamics. This burst-inflation trajectory planning approach enables

reduced pneumatic control system mass, cost, and complexity.

The trajectory planning approach developed in this work was evaluated on a planar

two-legged jumping robot, where valve control times were planned for various verti-

cal jump heights. In the context of trajectory planning for pneumatic muscle-driven

legged robots, there is only one other study found that performs jump trajectory

optimization [69]. The authors use proportional valves for continuous pressure modu-

lation of pneumatic muscles on a quadruped and achieve an average joint angle RMS

error of 2.3 deg across all joints and a max RMS error of 3.4 deg across all joints for

one experimental jump. The target jump height and distance are 36 cm and 73 cm,

respectively, but the actual height and distance are not provided. For comparison,

the average RMS error across all joints in all twelve vertical jumps in this Chapter

was 5.6 deg, with a max RMS error of 14.7 deg. Thus, with regard to joint tracking

accuracy, the burst inflation approach used in this work is not significantly far off

from continuous pressure control. Pneumatic muscle-driven systems controlled via

proportional valves are expected to exhibit more precise joint trajectory tracking, as
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proportional valves enable continuous feedback pressure control that can compensate

for disturbances and model inaccuracies. In contrast, continuous pressure modula-

tion is not possible with burst-inflation via discrete valves, so higher RMS joint error

compared to [69] was anticipated for the jumping robot in this work.

In comparison, trajectory planning approaches for motor- and hydraulic-driven

legged robots have demonstrated relatively high jump planning accuracy. The quasi

direct-drive MIT Cheetah 3 robot executed planned robot jumps onto a 30-inch desk,

but the authors did not quantify trajectory error [80]. The SEA-driven StarlETH

quadruped robot performed a 30-cm jump relative to its initial squat pose, with

around 5 percent jump height error between planned and executed trajectories [81].

A single leg hopper with direct-drive motors demonstrated planned jump height er-

ror closer to 10 percent for a 25-cm jump relative to initial squat pose [82]. The

hydraulically-actuated HyQ quadruped robot performed a 20-cm jump with around

5 percent error between planned and executed trajectories [83].

While the average jump height error for all jumps performed on the pneumatic

muscle-driven jumping robot in this work was around 40 percent, the sensitivity of

muscle dynamics and overall jump height to robot joint stiffness—further explored

in Chapter 6—suggests that a more robust system identification of a few key sys-

tem parameters, including series stiffness, can significantly improve planning accu-

racy. Additionally, note that with the exception of the MIT Cheetah 3 study that

did not quantify jumping trajectory error, the jump heights for all other motor and

hydraulically-driven robot studies were limited to 30 cm and were measured relative

to squatting robot pose, not standing pose; in this work, jumps were performed up

to 40 cm relative to the robot’s 1.1-m standing pose.

The trajectory planning strategy developed in this work can be applied to any

pneumatic muscle-driven robot morphology, enabling execution of agile robot ma-

neuvers while facilitating passive mechanical compliance. Furthermore, the factor
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graph-based planner can readily accommodate additional engineering analyses such

as kinematics extraction from video, as well as system parameter identification which

is central to maximizing trajectory planning accuracy.
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CHAPTER 6

DESIGN OPTIMIZATION INSIGHTS & FUTURE DIRECTIONS

In this chapter, a design optimization approach to maximize pneumatic muscle-driven

robot dynamic performance using biologically-inspired joint mechanisms is laid out,

addressing the final objective of this work. Specifically, the muscle-driven robot model

developed in Chapter 4 is used to gain insight into the impacts of series elasticity and

joint angle-dependent mechanical advantage on robot performance and how they may

compensate for the force-length limitations of pneumatic muscles.

Nature demonstrates that animal morphology can compensate or even leverage

biological muscle’s force-length and force-velocity limitations, shown in Figure 6.1, to

maximize animal agility. For human jumping, several models and experimental stud-

ies of the triceps surae muscle-tendon complex suggest that tendon compliance and

increasing moment arm versus joint angle allow for high joint angular velocities with

large joint moments that would not be possible otherwise, given the corresponding

muscle properties [84], [85]. Similar studies have suggested that shorter plantarflexor

moment arms are associated with improved dynamic performance in tasks like sprint-

ing, as a smaller muscle shortening velocity is required for a shorter moment arm,

resulting in larger muscle forces [86], [87]. In general, the human body uses tendons

of various lengths and stiffnesses connecting to joint angle-dependent moment arms

to change the shape of each muscle’s torque-angle curve. In fact, for muscle-tendon

units of the lower body, peak isometric moment generally does not occur at the same

angle where peak muscle force is produced, nor at the angle of maximum moment

arm [88].

Smaller animals similarly use tendons and variable moment arms to improve dy-

namic performance. For example, studies on different species of frogs estimate that
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(a) (b)

Figure 6.1: (a) Active (left), passive (right), and total (blue) biological muscle force-length
curves, where l̃M is the muscle length at which the muscle develops peak isometric active
force f̃M ; (b) biological muscle force-velocity curve, where ṽM is the muscle lengthening
velocity [89].

the power required to achieve observed jump distances is several times greater than

the peak power available from jumping muscles. The authors suggest that this energy

redistribution in time is achieved via series elasticity and joint angle-dependent me-

chanical advantage [90]–[92]. Specifically, a tendon stores energy from relatively slow

muscle contractions and subsequently releases the energy over a shorter time period

later in the jumping motion sequence. Tendon loading in this manner requires that a

large muscle force is applied to the tendon before significant leg motion occur. This is

enabled by a skeletal moment arm configuration that provides a smaller mechanical

advantage at joint angles early in the jump sequence, producing less joint torque, and

thus, less frog motion. This ‘inertial catch mechanism’ essentially decouples muscle

displacement from leg displacement, allowing pre-loading of the tendon. An increase

in mechanical advantage throughout joint rotation increases joint velocity, facilitating

the release of tendon energy later in the jump.
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Inspired by biology, this chapter investigates whether series elasticity and joint

angle-dependent moment arm mechanisms can similarly improve the dynamic per-

formance of pneumatic muscle-driven robots, as they do for biological muscle-driven

animals. The pneumatic muscle (Figure 6.2) and biological muscle (Figure 6.1a) have

similar (total) force-length curves, in that they both generally increase with muscle

length. In contrast to biological muscle, pneumatic muscles are not force-limited by

contraction velocity; however, pneumatic muscle contraction velocity is limited by

pneumatic system configuration (source pressure and airflow restriction).

Figure 6.2: Pneumatic artificial muscle force-length curve.

Previous work has examined the effects of adding series elasticity and variable

mechanical advantage to improve the performance of both traditional and muscle-

driven robots. In the context of traditional motor-driven systems, one study developed

a servo-driven mechanism to adjust the torque-angle curve of a hinge joint [93]. A

spring was configured in series with a second servo driving the joint and the torque-

angle curve mechanism was used to adjust stiffness for a one-legged hopping robot.

However, the authors did not optimize spring stiffness nor torque-angle curve, but

mentioned only that it is possible. In another study, the authors optimized the design
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of a motor-driven four-bar linkage with an elastic link (link length, spring stiffness,

and spring tension) to maximize vertical jump height for drop jumping of quadruped

hind limbs [94].

With regard to pneumatic muscle-driven robots, one group sought to expand joint

torque capacity over a larger workspace for a single joint manipulator actuated by

an antagonistic muscle pair, though high-speed movement was not a focus this work

[95]. Another group developed an adjustable torque-angle profile mechanism and

explored effects of varying joint torque-angle curves for quadrupedal robot jumping

[66]. The authors explored muscle pressurization timing optimization in simulation

and evaluated jumping performance for only four torque-angle configurations—they

did not perform an overall design optimization.

In this chapter, the impacts of series elasticity and variable moment arm on the

performance of pneumatic-muscle driven robots is investigated for dynamic tasks. The

use of variable moment arm to improve joint torque characteristics is first illustrated

in a simple application: a pneumatic knee exoskeleton with a single muscle-actuated

joint. The knee exoskeleton assistance torque output is optimized for walking on

inclined terrain by tuning the geometry of a lever arm that converts linear muscle

force to joint torque. A general design optimization approach is then outlined for

a more complex system: the two-legged jumping robot with four muscle-actuated

joints detailed in Chapter 5. A sequence of design optimizations are performed in

simulation to examine the impacts of series elasticity and angle-dependent mechanical

advantage on jumping performance. Results from this work yield valuable design

insights for pneumatic-muscle driven robots and motivate future directions for this

design optimization approach.
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6.1 Knee Exoskeleton Case Study

The use of joint angle-dependent moment arm to improve the performance of pneu-

matic muscle-driven robots is demonstrated on a relatively simple system: a 1-DOF

pneumatic knee exoskeleton. The knee exoskeleton system was developed in collabo-

ration with the EPIC Lab at Georgia Tech to provide assistance during level-ground

and inclined walking with the goal of reducing the wearer’s metabolic cost. Four

pneumatic muscles are attached to each leg of the exoskeleton, with two parallel pairs

of muscles connected in series, as shown in Figure 6.3. The exoskeleton is controlled

via proportional myoelectric control (PMC), providing assistive knee extension torque

at the knee joint in proportion to the muscle activation level of the quadriceps muscle

group in the thigh. Discrete solenoid valves are used to inflate, seal, and vent the

pneumatic muscles; the valves and control hardware are contained in a backpack worn

by the exoskeleton user. The targeted exoskeleton assistance level was 20 percent of

Figure 6.3: (a) Bilateral pneumatic knee exoskeleton; (b) exoskeleton knee assistance
force profile.
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biological knee extension torque for a user walking up an inclined surface, approxi-

mately 15-20 Nm assistance torque. The corresponding targeted range of motion for

knee assistance was 20-0 deg knee flexion [96]–[99]. An additional requirement of the

exoskeleton was to allow for 90 deg of knee flexion so that the user can sit or squat

while wearing the device; thus, the unpressurized muscles (zero contraction) must

attach to the exoskeleton frame at 90 deg knee flexion.

The pneumatic muscle produces maximum force at its full length, and force output

decreases nonlinearly as the muscle contracts, as shown in Figure 4.7. Consequently,

the maximum exoskeleton force for the 90 to zero deg range of motion is produced

at 90 deg and decreases throughout knee extension. With a constant moment arm

throughout knee joint rotation, the maximum exoskeleton assistance torque will also

be produced at 90 deg. However, the torque-angle curve can be shaped using a joint

angle-dependent moment arm to shift peak assistance torque to a different angle.

Accordingly, a lever arm was designed for the exoskeleton to shape the torque-angle

curve for the targeted assistance range—the lever arm length and mounting angle on

the exoskeleton frame were optimized to maximize torque from 20 to zero deg knee

extension.

Knee assistance torque versus knee angle was calculated for a range of lever arm

mounting angles. As shown in Figure 6.4a, with the muscles connected to a pulley

(constant moment arm), the assistance torque curve from 90 to zero deg knee flexion

follows the profile of the muscle force versus contraction length curve. By replacing

the pulley with a lever arm, the torque-angle curve changes shape and the peak

torque can be shifted towards smaller knee angles by adjusting lever mounting angle.

Assistance torque is maximized in the 20-0 deg knee flexion range for a mounting angle

of zero deg, relative to the horizontal (ground) plane. This intuitively makes sense, as

a zero-deg mounting angle produces largest lever arm at zero-deg knee flexion, when

muscle force is lowest (largest muscle contraction).
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Figure 6.4: Assistance torque versus knee flexion angle comparing 5-cm pulley and lever
arm configurations: (a) 5-cm lever arm at various mounting angles; (b) various lever arm
lengths at 0-deg mounting angle.

Knee assistance torque versus knee flexion angle was then calculated for a range

of lever arm lengths. As shown in Figure 6.4b, peak assistance torque increases as

lever arm length increases; however, peak torque also shifts back in the direction

of larger knee flexion angles (away from the target range) for increasing lever arm

length. A high average assistance torque is achieved in the 20 to zero deg knee flexion

range for a lever arm length of 4 to 5 cm. Therefore, a 5-cm lever arm with zero

deg mounting angle was selected for the final exoskeleton design. In the remainder

of this chapter, the use of angle-dependent mechanical advantage to optimize robot

performance, demonstrated by this knee exoskeleton design example, is investigated

for the more complex jumping robot system.

6.2 Methodology

The impacts of both joint angle-dependent mechanical advantage and series elasticity

on pneumatic muscle-driven jumping robot performance are explored. In the jumping

robot model, the fixed-radius pulley at each joint is replaced by a variable radius cam.

A series elastic element was already implemented at each joint in the model in Chapter
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5 (Subsection 5.1.4) to model joint-level compliance inherent to the robot hardware.

To perform design studies, a particle swarm optimization is set up with cam geometry

and series stiffness parameters as decision variables; 5000 jumping robot particles are

simulated per iteration, with 50 total optimization iterations. Over a number of

design studies, the effects cam and stiffness parameters on vertical jump height and

joint-level dynamics are detailed.

6.2.1 Variable moment arm

An angle-dependent moment arm is implemented at each joint using a cam. In this

work, the cam is limited to a linear profile

r(φ) = r0 +mφ (6.1)

with initial cam radius r0 and profile slope m as the two cam design parameters. The

cam profile is parameterized by the angle φ, such that at φ = 0, the cam radius is

r0. There are two cam geometry-dependent values at each joint angle that influence

overall robot dynamics: the effective moment arm and the linear muscle displacement

due to cam rotation.

Figure 6.5: Muscle-cam geometry parameters.
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Effective moment arm. The effective moment arm of the cam—through which

the pneumatic muscle produces joint torque—is calculated by equating the slope of

the muscle with the slope of the cam at the muscle-cam tangent point. First, the

tangent point, shown in Figure 6.5, is expressed in cam coordinates

xc = r(φ) sin(φ) = (r0 +mφ) sin(φ)

yc = r(φ) cos(φ) = (r0 +mφ) cos(φ).

(6.2)

The tangent point is then converted to link coordinates via the relative angle, β,

between the cam and the link

x = xc cos(−β) + yc sin(−β)

= (r0 +mφ) sin(φ) cos(β)− (r0 +mφ) cos(φ) sin(β)

= −(r0 +mφ) sin(β − φ)

y = −xc sin(−β) + yc cos(−β)

= (r0 +mφ) sin(φ) sin(β) + (r0 +mφ) cos(φ) cos(β)

= (r0 +mφ) cos(β − φ).

(6.3)

The muscle and cam slopes, sm and sc, are then calculated as

dx

dφ
= (r0 +mφ) cos(β − φ)−m sin(β − φ)

dy

dφ
= (r0 +mφ) sin(β − φ) +m cos(β − φ)

(6.4)

sm =
y

x+ d
= − (r0 +mφ) cos(β − φ)

(r0 +mφ) sin(β − φ)− d

sc =
dy/dφ

dx/dφ
=

(r0 +mφ) sin(β − φ) +m cos(β − φ)

(r0 +mφ) cos(β − φ)−m sin(β − φ)

(6.5)

where d is the robot link length. The cam slope equation can be further simplified
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by defining θ = arctan( m
r0+mφ

):

sc =
cos(θ) sin(β − φ) + sin(θ) cos(β − φ)

cos(θ) cos(β − φ)− sin(θ) sin(β − φ)

= tan(θ + β − φ)

= tan(ψ).

(6.6)

After equating the muscle and cam slopes at the tangent point and numerically

solving for the cam parameterization angle φ, the moment arm a can be computed as

ψ = tan−1(s) (6.7)

a = d sin(ψ). (6.8)

If the angle φ solution is outside of the cam parameterization range (meaning that

the cam geometry does not exist in that angle range), φ is set to the parameterization

angle limit

φ < φmin → φ = φmin

φ > φmax → φ = φmax

and the slope is then computed from Equation 6.5. These two cases are illustrated

in Figure 6.6.

Figure 6.6: (a) Cam moment arm solution for φ less than φmin; (b) cam moment arm
solution for φ greater than φmax.
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Muscle displacement. The linear muscle displacement due to cam rotation dic-

tates how much the corresponding muscle must contract before muscle slack is re-

moved and the muscle begins to apply force to the cam. In order to calculate the

linear muscle displacement, the muscle length up to the muscle-cam tangent point

and the length of the muscle lead that wraps along the profile of the cam are calcu-

lated. The latter is calculated as the length along the cam from the start of the cam

profile up to the angle φ (corresponding to the muscle-cam tangent point)

lcam =

∫ φ

0

√
(r0 +mφ)2 +m2dφ

=
m log(r0 +

√
(r0 +mφ)2 +m2 +mφ)

2
+

(r0 +mφ)
√

(r0 +mφ)2 +m2

2m
.

(6.9)

The muscle length up to the muscle-cam tangent point is calculated as

lmuscle =
√
y2 + (x+ d)2

=
√

(r0 +mφ)2 + d2 − 2d(r0 +mφ)sin(β − φ).

(6.10)

Then, the linear muscle displacement ∆c can be computed as the difference between

muscle length change and cam wrap length change for two subsequent joint angles

∆c = ∆lmuscle −∆lcam. (6.11)

6.2.2 Series elasticity

The series elastic ‘tendon’ element connected between the pneumatic muscle and the

cam at each joint is modeled as a linear spring

fs = k∆a (6.12)

102



where k is the spring stiffness and ∆a is the spring displacement. A linear spring

element was already added in the previous chapter, Figure 5.4, to account for ex-

isting muscle connection and robot frame compliance; thus, for the sake of design

optimization, the spring stiffness was made a design decision variable.

6.3 Experiments and Results

The effects of series elasticity and joint angle-dependent mechanical advantage on

vertical jump height were investigated for the planar two-legged jumping robot model

over a number of design optimizations. Optimizations were performed for a squat

jump from a static pose with the robot torso approximately 7 cm off the ground.

The 1.5-liter source tank pressure was set to 550 kPa. All pneumatic muscles were

initially activated (valve opened) at time zero and sealed at 150 ms, unless otherwise

noted.

6.3.1 Series elasticity

To investigate the impact of series elasticity on robot jumping performance, jump

height was optimized with respect to tendon stiffness. Fixed-radius 4.5-cm pulleys

were modeled at all four joints. The tendon stiffnesses at the hip and knee joints were

independent and allowable stiffness values ranged from 10 N/cm to 10,000 N/cm.

The maximum jump height was achieved for the highest stiffness values (minimum

compliance) at both the hip and the knee (Figure 6.7). Jump heights with 10,000

N/cm tendons were nearly 2.4x greater than with 100 N/cm tendons; with 10 N/cm

tendons, the robot did not leave the ground.

As shown in Figure 6.8, a compliant tendon unfavorably allows the pneumatic mus-

cle to contract more throughout the beginning of the jump than with a high-stiffness

tendon. This results in larger muscle volume during the early stage of the jump,

since muscle volume increases with contraction (Equation 4.15). Consequently, with
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Figure 6.7: Jump height contour plot for varied hip and knee tendon stiffnesses: increasing
jump height from dark to light; blue marker indicates maximum jump height.

a larger muscle volume to pressurize, the time to peak muscle pressure is significantly

later in the jump, by which point the muscle has already contracted through most of

its range. As a result, the muscle is operating lower on its force-length curve (Figure

6.2) when it reaches max pressure, so peak muscle force is significantly lower. Conse-

quently, robot center-of-mass power, Figure 6.9, is significantly lower with compliant

tendons and foot liftoff occurs much later in the jump sequence—liftoff is delayed

nearly 100 ms.

Next, muscle activation timing was varied with tendon stiffness to determine

whether activation timing impacts optimal stiffness values. The offset between knee

and hip inflation times was varied from -100 ms (hip muscles activate before knees)

to 100 ms (knees before hips). A 150-ms total inflation time was maintained for each

muscle (ex: for an activation time of 10 ms, the valve closes at 160 ms).

The highest jump was again achieved with maximum tendon stiffnesses. The op-

timal activation sequence comprised knee inflation only 5 ms before hip inflation.

Interestingly, this is the opposite of human leg muscle activations observed during

squat jumps, which show a proximal-distal activation sequence [100], [101]. Plotting
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(a) (b)

(c) (d)

Figure 6.8: Comparison of robot joint dynamics for jump with stiff joint tendons versus
jump with compliant tendons: (a) knee muscle contraction, (b) knee muscle volume, (c)
knee muscle pressure, (d) knee muscle force. Solid lines represent knee joint and dashed
lines represent hip joint; vertical lines represent foot liftoff times

jump height versus pneumatic muscle activation timing for maximum stiffness ten-

dons, Figure 6.10, shows that there is a window of hip offset timing corresponding

to the highest jumps. From -5 ms to 15 ms hip offset, there is a less than 2 percent

change in jump height; outside this window, there is a significant drop-off in jump

height.

Closer examination of muscle and joint dynamics reveals why the short hip offset

timing window around time zero results in the highest jumps. Figure 6.11 compares
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Figure 6.9: Comparison of robot center-of-mass power for jump with stiff joint tendons
versus jump with compliant tendons. Vertical lines represent foot liftoff times.

Figure 6.10: Jump height versus hip muscle activation offset time for 10 kN/cm tendon
stiffness.

muscle and joint data for hip activation 50 ms before knee activation with stiff tendons

to simultaneous hip and knee activation at time zero. For simultaneous activation,

the hip and knee muscles reach peak pressures at close to the same time early in

the jump, with peak hip pressure just before peak knee pressure; consequently, peak

hip and knee forces have a similar timing relationship and are somewhat similar in

magnitude (difference of less than 150 N).

However, with a 50-ms delay in knee muscle activation, the gap between peak
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(a) (b)

(c) (d)

Figure 6.11: Comparison of robot joint dynamics for jump with hip activation 50 ms
before knee activation versus jump with simultaneous hip and knee activation at time zero,
both with stiff tendons: (a) joint angle, (b) linear displacement, (c) muscle pressure, (d)
muscle force. Solid lines represent knee joint and dashed lines represent hip joint; vertical
lines represent foot liftoff times.

hip and knee forces is larger, and peak knee force is significantly lower. This is due

to movement of the robot early in the jump before the knee muscles are engaged.

Figure 6.11b shows the linear displacement in direction of muscle contraction due to

joint angle rotation (6.11a)—by the time the knee muscle reaches a substantial force-

generating pressure of 200 kPa at around 100 ms, the knee joint has already displaced

nearly 2 cm. Thus, the knee muscles are operating lower on the muscle force-length

curve by the time they are activated, so that they have a significantly lower maximum
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force limit. In the case of hip activation 50 ms after knee activation, Figure 6.12, the

same is true for the hip muscles, although the effect is less pronounced. Overall, the

reduction in muscle force for the activation-delayed muscles, coupled with the timing

offset between peak hip and knee forces, reduces jump power, as shown in Figure

6.13.

(a) (b)

(c) (d)

Figure 6.12: Comparison of robot joint dynamics for jump with knee activation 50 ms
before hip activation versus jump with simultaneous hip and knee activation at time zero,
both with stiff tendons: (a) joint angle, (b) linear displacement, (c) muscle pressure, (d)
muscle force. Solid lines represent knee joint and dashed lines represent hip joint; vertical
lines represent foot liftoff times.
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(a) (b)

Figure 6.13: Comparison of robot center-of-mass power: (a) jump with hip activation 50
ms before knee activation versus jump with simultaneous hip and knee activation at time
zero; (a) jump with knee activation 50 ms before hip activation vs jump with simultaneous
activation. Vertical lines represent foot liftoff times.

Practical considerations. The above results suggest that to maximize squat jump

height for the pneumatic muscle-driven robot, tendon stiffness should be maximized.

However, the series stiffness characterized for the real jumping robot test platform in

Chapter 5 was approximately 80 kN/cm, significantly lower than the upper stiffness

range of 10 kN/cm in the aforementioned design optimizations. Consequently, the

maximum simulated jump height for the same control timing parameters with the true

robot stiffnesses was only 0.33 m, versus a greater-than 0.9-m height for maximum

tendon stiffness. Jump height versus hip activation offset timing was still similar for

the true stiffness configuration, although the timing window for the highest jumps

was broader, as shown in Figure 6.14.

There are multiple sources of compliance on the real robot that contribute to the

low series stiffness values, including:

• 3D-printed joint parts

• Tolerance stack-up of joint assemblies

• Metal tubing used to connect muscles to robot frame
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Figure 6.14: Jump height versus hip muscle activation offset time for true robot tendon
stiffnesses.

• Thin carbon fiber tubes used for robot links (in fact, these tubes visibly deflect

under muscle loading in slow-motion video)

• Connections between muscle and joint/robot frame (expandable polyester fabric

sleeving used for muscle mesh and polypropylene webbing to connect mesh leads

to joints).

Many of these design choices were made to minimize robot mass, and it would likely be

a challenge to increase the effective series stiffness without increasing mass. Possible

solutions to balance mass with stiffness include aluminum joint components and a

thicker carbon fiber frame.

6.3.2 Angle-dependent moment arm optimization

To investigate the impact of variable mechanical advantage on robot jumping perfor-

mance, the linear cam parameters—initial cam radius r0 and slope m—were optimized

with respect to jump height. The cam geometries at the hip and knee joints were

treated independently. The initial cam radius was bounded from 0 to 8 cm, while

the cam slope was bounded from -8 to 8 cm. Similar to the the series elasticity opti-

mizations, all muscles were initially activated at time zero and sealed at 150 ms. The
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series stiffness at the hip and knee joints was set to 80 kN/cm, as characterized in

Chapter 5.

The optimal hip and knee cam parameters, corresponding to maximum jump

height, are shown in Table 6.1: both the hip and knee joint cams start at a small initial

radius and increase with joint angle rotation. To quantify the jumping improvement

attributed variable mechanical advantage, additional optimizations were performed

with fixed-radii pulleys in place of the cams; the same pulley was used for both hip

and knee joints, such that the sole decision variable was pulley radius. As shown

in Figure 6.15, the maximum jump height was achieved with a 4.5-cm radius. The

optimized cams resulted in an 8.6 percent improvement in jump height over the pulley

configuration.

Table 6.1: Optimal hip and knee cam parameters for maximum jump height.

Joint Radius r0 (cm) Slope m (cm/rad)

Hip 0.0 3.0

Knee 1.3 3.8

Figure 6.15: Jump height versus pulley radius, with the same pulley for both hip and
knee joints.

An increasing moment arm versus joint angle boosts peak muscle forces and shift

peak forces and torques later into the jump sequence, as shown in Figure 6.16. While
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(a) (b)

(c) (d)

(e) (f)

Figure 6.16: Comparison of robot joint dynamics for jump with 4.5-cm pulleys versus
jump with optimized cams: (a) joint angle, (b) muscle contraction, (c) muscle pressure,
(d) muscle volume, (e) muscle force, (f) joint torque. Solid lines represent knee joint and
dashed lines represent hip joint; vertical lines represent foot liftoff times.
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muscle forces are similar early in the jump (e), initial joint torques are lower with

the optimized cams than with pulleys (f), since the initial radii of both the hip and

knee cams are very small. With smaller torques early in the jump, there is less joint

rotation at both the hip and knee joints (a), and consequently, there is less muscle

contraction (b). This means that each muscle is operating higher on its force-length

curve later in the jump. A second effect of reduced muscle contraction in early to

mid-jump sequence is that muscle volumes are lower (d), so the muscles inflate more

quickly and peak muscle pressures are higher (c). These altered muscle dynamics

yield higher forces later in the jump that—combined with increasing moment arm

versus joint angle—shift peak torques even further into the jump sequence, closer to

foot liftoff; peak knee torque is also higher, while peak hip torque is slightly lower.

This results in a higher robot jump power curve that is shifted closer to robot takeoff,

as shown in Figure 6.17.

Figure 6.17: Comparison of robot center-of-mass power for jump with 4.5-cm pulleys
versus jump with optimized cams. Vertical lines represent foot liftoff times.

From examination of joint angle and muscle force versus time for each jump, it

appears that each pneumatic muscle applies force over a relatively small angle range.

For the jump with cams in Figure 6.16, peak forces occur around 90-110 ms into the

jump; by this time, the knee and hip joints have only rotated through approximately 5
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18: Comparison of robot joint dynamics for jumps with pulleys versus optimized
cams, with 2x-length muscles: (a) joint angle, (b) muscle contraction, (c) muscle pressure,
(d) muscle volume, (e) muscle force, (f) joint torque. Solid lines represent knee joint and
dashed lines represent hip joint; vertical lines represent foot liftoff times.
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and 10 degrees, respectively. At 230 ms, by which time forces have tapered to zero, the

knee and hip joints have rotated approximately 64 and 80 degrees, respectively. This

raises the question of whether a longer pneumatic muscle with greater contraction

range may better utilize an angle-dependent moment arm by applying force over a

larger joint angle range. To explore this, additional design optimizations were run

with 1.5x and 2x nominal length muscles, again comparing jump height improvement

using optimized cams to optimized constant-radius pulleys. The nominal muscle

length—implemented on the experimental jumping robot test platform—is 21 cm,

with a contraction range of approximately 7 cm from maximum force to zero force.

Indeed, with 1.5x longer muscles, the vertical robot jump was 12.5 percent higher

using cams versus pulleys, and with 2x longer muscles, the jump was 14.7 percent

higher. The cam-induced effects of higher force magnitudes and time-shifted peak

forces/torques observed for the nominal length muscle study are more pronounced

with longer muscles. Figure 6.18 shows the muscle and torque dynamics for the

2x length muscles: there is a larger difference in early muscle contraction between

cam and pulley configurations, a larger difference in muscle force magnitudes, and

consequently, a more significant joint torque shift closer to takeoff. As hypothesized,

Figure 6.19: Comparison of robot center-of-mass power for jumps with pulleys versus
optimized cams, with 2x-length muscles. Vertical lines represent foot liftoff times.
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both the hip and knee muscles applied force over broader joint angle ranges (Figure

6.20). The joint angle displacement from time zero to the time at which muscle

force decreased from its peak back to zero was 12 degrees larger at the knee and

17 deg larger at the hip for 2x muscle length robot configuration, as compared with

the nominal muscle length configuration. Additionally, with longer muscles, there

was a larger increase in robot center-of-mass power from pulley configuration to cam

configuration, as shown in Figure 6.21.

Interestingly, longer pneumatic muscles also significantly increased jump height

versus the nominal length muscles. With 1.5x longer muscles, the vertical jump was

1.8 times higher; with 2x longer muscles, the vertical jump was 2.3 times higher. The

use of a longer muscle increases muscle volume, resulting in slower inflation rates

and significantly lower peak pressures, as shown in Figure 6.20c. However, increasing

muscle length allows each muscle to operate much higher on its force-length curve

over a larger linear displacement, outweighing the decrease in muscle pressure. For

example, at 100 ms into the jump, the nominal-length knee muscle has contracted 3.3

cm, 47 percent of its full range; the 2x-length knee muscle has contracted 4 cm (more

than the nominal case), but this is only 29 percent of its full range. This extended

contraction range, in turn, allows for the use of a much steeper increase in moment

arm throughout joint rotation, since a higher linear displacement is required with

a larger moment arm for the same angular displacement. As shown in Figure 6.20,

peak force magnitudes are similar for the nominal and 2x muscle length jumps (e),

but peak torques are significantly higher with 2x length muscles (f). Higher peak

torques produce a much faster jump sequence, in which the liftoff time is more than

50 ms earlier with 2x-length muscles. As a result, peak jumping power is significantly

higher with longer muscles and is shifted much closer to liftoff time.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.20: Comparison of robot joint dynamics for jump with 2x-length muscles versus
jump with nominal-length muscles: (a) joint angle, (b) muscle contraction, (c) muscle
pressure, (d) muscle volume, (e) muscle force, (f) joint torque. Solid lines represent knee
joint and dashed lines represent hip joint; vertical lines represent foot liftoff times.
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Figure 6.21: Comparison of robot center-of-mass power for jump with 2x-length muscles
versus jump with nominal-length muscles. Vertical lines represent foot liftoff times.

Practical considerations. The above results indicate that longer pneumatic mus-

cles can significantly improve jumping performance by allowing each muscle to oper-

ate higher along its force-length curve. In fact, additional optimizations showed that

pneumatic muscle lengths of 4-5x the nominal muscle length marginally improve jump

height, before the increase in muscle volume and corresponding decrease in muscle

pressure begin to outweigh the benefits of longer muscle contraction range. In prac-

tice, though, it is not necessarily straightforward to implement longer muscles on a

physical robot. For mono-articular muscles (acting on one joint), longer link lengths

are required to accommodate longer muscles. On the current jumping robot with

0.5-meter links, muscle lengths cannot be extended much further without increasing

link length.

A pulley system could potentially be used to add longer muscles without increasing

link lengths; however, this would add complexity and weight to the robot. A better

idea might be to imitate biology and use bi-articular muscles that span multiple

joints and links, in place of, or in parallel with mono-articular muscles. For example,

mono-articular knee extensor muscles in the human body have contraction ranges of

around 4 to 6 cm—similar to the nominal pneumatic muscle contraction range in this
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work—while bi-articular hip-knee muscles have contraction ranges of around 12 to 16

cm [102]. The use of bi-articular muscles would add many additional dimensions to

the design optimization of pneumatic muscle-driven robots.

6.3.3 Combined optimization

A combined design optimization study was performed to determine whether series

elasticity and angle-dependent moment parameters influence each other when these

mechanisms are used together. For maximizing robot squat jump height from a static

pose, optimal parameters were consistent with the individual design studies:

• Maximum series elastic stiffness

• Increasing moment arm versus joint angle, starting from small initial radius

• Minimal activation time offset between hip and knee muscles

The same results held true for the 2x muscle length configuration. These results rein-

force the analyses of of muscle dynamics in the previous sections, with series elasticity

and moment arm treated separately. However, it is likely that for sequential or cycli-

cal robot maneuvers, in which maximum stiffness might not be optimal, there may be

a stronger relationship between stiffness and moment arm profile. Therefore, in future

work, it is important to again analyze impact of these different joint mechanisms on

muscle dynamics and robot performance both individually and together.

6.4 Discussion

Series elasticity. Optimization of series elastic stiffnesses on the jumping robot

suggests that for squat jumps from a static pose, maximizing robot stiffness is critical

to jumping higher. Any amount of compliance permits each pneumatic muscle to

contract more during the first 100 ms of the jump sequence—this increases muscle in-

flation time, due to the muscle’s volume-contraction relationship, and reduces muscle
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force range, due to the muscle’s force-contraction relationship.

For the jumping robot test platform, the effective series stiffness at each joint is

quite low because of the materials and designs chosen to reduce overall mass (carbon

fiber links, 3D-printed joints, muscle attachment materials, etc.). A future study could

investigate the trade-off between robot stiffness and mass, with regard for jumping

performance. This would likely require multiple iterations of robot design, fabrication,

and experimental evaluation, as it is difficult to analytically quantify the influences

of material and design choices on robot stiffness.

Muscle activation timing did not affect optimal stiffness values. Additionally, it

was shown that nearly-simultaneous muscle activation times yield the highest jumps.

Any timing offset between hip and knee muscle activations delays peak knee muscle

pressures to later in the jump sequence, when muscle contraction is higher and max

force capability is lower (muscles operating lower on force-length curve); the same is

true for hip muscles when knee muscles are activated first. Thus, it is best for both

hip and knee muscles to contract nearly simultaneously to take advantage of higher

force output at longer muscle lengths.

Biological muscle has similar force versus length characteristics to the pneumatic

muscle, with reduced force output as the muscle contracts (though not necessar-

ily monotonically for biological muscles). However, biological muscle force is also

strongly dependent on contraction velocity, whereas the pneumatic muscle is not.

This difference may be one reason why series elasticity is not beneficial for pneumatic

muscle-driven squat jumps. Nevertheless, biological tendons are evolved for a broad

range of animal dynamics, not specifically for squat jumping. Stiffer tendons may

be better for squat jumps, while more compliant tendons may be favorable in other

activities. Particularly for sequential moves like countermovement jumping (squat

down and jump up in a continuous motion) or cyclical tasks like walking, running,

and hopping, series elastic elements can recover and redistribute kinetic energy to
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improve animal dynamics and energy efficiency [103]–[105]. As shown in many exam-

ples across the literature, the same is true for non-pneumatic-muscle-driven jumping

robots [52], [59], [93], [106]. Thus, series elasticity still may be advantageous for more

complex sequential or cyclical maneuvers on the pneumatic muscle-driven jumping

robot.

Variable mechanical advantage. Optimization of joint angle-dependent moment

arm showed that an increasing moment arm versus joint angle profile, starting from a

small initial moment arm, improves jumping performance. A small initial cam radius

allows each muscle to pressurize without generating as much robot movement early in

the jump. Less early muscle displacement subsequently allows each muscle to operate

higher on its force-length curve later in the jump and displace a larger moment arm

through a similar angle, as compared to a fixed-radius pulley configuration. This

ultimately increases peak torque later in the jump sequence, maximizing joint power

closer to robot liftoff. This effect was more pronounced with longer muscles.

Longer muscles also significantly improved overall jumping performance for a given

robot configuration, as the benefits of increased muscle contraction range—operation

higher on the force-length curve and angular displacement of a larger moment arm—

outweighed the reduced muscle operating pressures related to larger muscle volume.

As stated in the experimental section, increasing muscle length marginally improved

jump height up to 4-5x nominal muscle length. However, it is not feasible to config-

ure muscles of this length on a real robot; even 1.5x length muscles would be difficult

to swap into the robot without increasing link length. This motivates future de-

sign explorations using bi-articular muscles in parallel with mono-articular muscles,

were bi-articular muscles would provide longer contraction ranges, but with slower

pressurization.

A number of studies have explored the use of bi-articular pneumatic muscles on
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legged robots, aiming to replicate the musculoskeletal layouts of humans or animals

[63], [65], [107], [108]. Rather than trying to precisely match biology, it would be

valuable to investigate muscular configurations that maximize robot performance.

Mono- and bi-articular muscle configurations, and their corresponding muscle lengths,

would be added as design optimization parameters. Mono- and bi-articular muscles

could utilize the same cam geometry at each joint or act on separate cam profiles.

Based on the above design optimization results for longer mono-articular muscles,

optimization of pneumatic muscle configuration may have a significant impact on

robot capabilities.

Scope of results. The design optimizations in this chapter focused on a single robot

morphology for a squat jump from a specific robot pose. This study could be vastly

expanded in several directions. The relationship between robot morphology—link

lengths in particular—and design optimization parameters like series elastic stiffness

and variable moment arm cam geometry could be investigated; or, link lengths could

even be added as design optimization parameters. It would also be insightful to exam-

ine how optimal design parameters change for different initial robot poses. This would

be particularly important for robot operation in the wild, where the robot would likely

rarely jump from perfectly level ground. Additionally, this study focused specifically

on maximizing vertical jump height. Further optimization analyses may be expanded

to include multiple objectives such as lateral jump distance, countermovement jump

height, ground-foot clearance, etc. Finally, the burst inflation control methodology

used in this work is not necessarily limited to a single inflation window per muscle.

For sequential robot maneuvers, multi-step inflation-seal-deflation sequences could be

utilized. Like the other potential research directions discussed here, this would add

significant complexity to the design optimization.
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6.5 Significance

In this chapter, several design optimization studies were performed to gain insight

into impacts of series elasticity, joint angle-dependent mechanical advantage, muscle

activation timing, and nominal muscle length on robot jumping performance. While

these studies focused on one objective (vertical jump height) for one particular robot,

the overall pneumatic muscle-driven robot model and design optimization approach

developed in this work can be applied to any muscle-driven robot morphology. It is

straightforward to add series elastic elements and variable moment arm cams to any

robot morphology in simulation before building the robot. One can then evaluate key

performance objectives to inform the design of a muscle-driven robot.

This work also lays out future directions for pneumatic muscle-driven robot design

research. Optimization of mono- and bi-articular muscle configurations and muscle

lengths may be particularly promising for dynamic tasks like jumping. The muscle-

driven robot model and optimization approach in this thesis can be readily utilized

for these future studies.
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CHAPTER 7

CONCLUSION

7.1 Research contributions

Mechanical compliance brings a host of potential benefits to robotics, from enhanced

safety in human-robot interactions, to simplified low-level control, and increased re-

silience to uncertainty in the world. Soft robot actuators—such as pneumatic artificial

muscle—are well-suited for this purpose. However, there exist several core implemen-

tation challenges for the pneumatic muscle, including: compatible sensing technolo-

gies, limitations in actuation speed and force generation capabilities, and application

of conventional high-level planning and control strategies. This thesis makes progress

towards solving these challenges, specifically for pneumatic muscle-driven systems,

via three main contributions:

1. Sensing: A sensorized pneumatic artificial muscle is developed using a novel

reflective optical sensor design. This two-in-one sensor-actuator package can

be readily incorporated into a robotic system to provide lightweight, compliant

actuation with kinematic and dynamic estimation capabilities.

2. Modeling and planning: A pneumatic muscle-driven robot model is devel-

oped, incorporating pneumatic system dynamics, muscle dynamics, and rigid

body robot dynamics. The pneumatic system model is formulated for a ‘burst-

inflation’ control approach that eliminates the requirement for heavier propor-

tional valves which limit system mobility. The overall system model is integrated

into a trajectory optimization factor graph framework for planning agile robot

maneuvers. The trajectory planning approach accommodates hybrid robot dy-

namics for modeling robot-environment contacts with known contact sequence.
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3. Design optimization: The pneumatic muscle-driven robot model is used to

investigate how biological mechanisms, such as angle-dependent mechanical ad-

vantage, can compensate for pneumatic muscle force-length limitations. This

exploration provides insight into the impacts of various design parameters on

pneumatic muscle dynamics and their effects on robot performance, using a

jumping robot case study.

Building on these contributions, there are a number of potential directions for

future work, including:

Sensing

• Combining sensor-embedded pneumatic muscles with trajectory planning ap-

proach: For example, sensor-embedded muscles could be used on the jumping

robot to estimate muscle forces during takeoff, compare actual forces to those of

the planned jump, and compensate for trajectory error by adjusting the landing

pose of the robot. Furthermore, estimated muscle force could be used to sense

robot landing and strategically vent the pneumatic muscles to reduce robot

deceleration.

Modeling and planning

• Investigation of additional pneumatic system models : On one hand, a more

comprehensive pneumatic system model that explicitly includes all components

in the flow path and removes assumptions on the fluid dynamics could be eval-

uated; it would be insightful to determine whether the improvement in accu-

racy outweighs the significant increase in complexity, as well as to quantify

the computational impact on trajectory planning. On the other hand, a fully

data-driven approach could explore the performance of various models fit to
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experimental data; this would likely require a broader set of experiments to

capture the full pneumatic system dynamics.

• Application of trajectory planning to more complex maneuvers : It would be

valuable to investigate how well the trajectory planning approach in this work

performs for sequential robot maneuvers, such as a countermovement squat

jump or an immediate second jump upon landing. The ability to perform these

types of sequential movements could further improve the agility of pneumatic

muscle-driven robots.

• Incorporation of more sophisticated performance objectives into trajectory plan-

ning : Jumping robot objectives, such as foot-obstacle clearance and landing

pose on uneven terrain should be readily accommodated by the trajectory op-

timization approach in this work.

Design optimization

• Exploration of potential benefits of series elasticity for sequential robot maneu-

vers : Additionally, future work could revisit optimization of series elastic stiff-

ness for these same types of sequential moves, during which kinetic can be stored

and released via pneumatic muscle tendons.

• Investigation of optimal mono- and bi-articular muscle configurations to im-

prove robot performance: As detailed in Chapter 6, longer muscles can sig-

nificantly improve theoretical robot performance by allowing each muscle to

operate much higher on its force-length curve over a larger joint displacement;

however, it is difficult to accommodate longer muscles without changing robot

morphology. Taking inspiration from biology, bi-articular muscle configurations

can accommodate longer muscles.
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7.2 Application of pneumatic muscles

It is important to consider the practical implications of using pneumatic artificial

muscles on mobile robots. The main limitation of pneumatic-powered robotic sys-

tems, as compared to more common battery-powered motor-driven systems, is en-

ergy density—a battery can store more energy per mass than a compressed air tank.

However, in the right context, pneumatic muscles may be useful for incorporating

mechanical compliance into a robotic system. Consider a simple case study for the

two-legged jumping robot, exploring both pneumatic muscle and motor-driven con-

figurations. In each case, the design target is 15-Nm peak torque over a 200-ms jump

sequence, with maximum angular joint velocities of 10 rad/s.

For the pneumatic system, a 1.5-L carbon fiber-wrapped aluminum compressed air

tank (Ninja Paintball SL2) with 1.1-kg mass is selected to store compressed air. At its

maximum operating pressure of 4500 psi (31 MPa), the tank holds just over 0.5 kg of

air. The over-designed high-flow valve used for the jumping robot in this work has a

mass of 165 g; but, other suitable valves with similar flow rate performance are around

100 g. A small 450-mAh 50-g battery (Venom Fly 3S LiPo) is selected for valve power,

with energy storage several orders of magnitude above that required for the number of

jumps per air tank. Finally, each pneumatic muscle is approximately 80 g, resulting

in a total pneumatic system mass of around 2.4 kg. For muscle pressurization up to

345 kPa, each tank fill-up can supply about 200 jumps.

For the motor-driven system, a small brushless motor (Maxon EC 45) with 50:1

gearbox (Maxon GPX 42) is selected to actuate each joint; the total mass of the

motor and gearbox is 0.8 kg. Using a 3600-mAh battery with 0.56-kg mass (Venom

Fly 6S LiPo), the robot can jump nearly 2000 times. Yet, the total system mass

increases to about 3.8 kg. Thus, there are mass trade-offs between the two systems.

The pneumatic system operating time is limited by its energy source (air tank and
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compressed air) and the system will incur a significant increase in energy source mass

for operating times comparable to motor-driven systems. Conversely, the energy

source mass for the motor-driven system is much lower, but the minimum system

mass is limited by the larger actuator mass of the motor/gearbox, compared with the

pneumatic muscle.

More importantly, the motor/gearbox system provides no mechanical compli-

ance—the large gear ratio gear box is non-backdrivable, resulting in a very stiff robot

leg. One alternative to mitigate this disadvantage of motor-driven systems is to use

a quasi-direct-drive motor with very low gear ratio (in the range of 5:1), such that

torque can be transmitted in reverse from the robot link back to its driving motor.

This configuration allows for active control of joint impedance. However, direct-drive

motors must be bigger and heavier to achieve useful peak torques. For example, the

MIT Cheetah robot motor and gearbox mass is approximately 1.2 kg [109].

Another alternative is to use a series elastic actuator (SEA), in which mechanical

compliance is added between a motor’s gearbox output and the robot joint. This

reduces joint impedance and also allows for very precise torque measurement and

control. Like quasi-direct-drive motors though, SEAs are typically heavier; for exam-

ple, the ANYmal robot SEA is 0.87 kg [58]. Additionally, for both direct-drive and

SEA systems, virtual joint impedance requires active motor control, reducing energy

efficiency.

Overall, electric motor actuation systems are very efficient and provide extended

robot run times, but require higher-mass actuators to produce the torques required for

fast robot motion. In contrast, pneumatic muscle actuation systems offer the benefits

of low actuator mass and passive compliance, but have limited run times without

substantially increasing energy source mass. While several studies have explored

using chemical reactions, such as combustion and monopropellant decomposition,

to improve energy density, significant development work is still required [110]–[113].
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However, conventional compressed air-powered pneumatic muscle systems may still be

advantageous, particularly for hybrid drive systems, in which muscles are connected in

series with low-power motors. Small motors would be used for slower, energy-efficient

robot operation, without the torque and angular velocity capabilities required for

fast dynamics. The pneumatic muscle system would then enable a limited number

of explosive robot maneuvers using the burst inflation approach presented in this

work. Furthermore, the pneumatic muscles would act as tunable stiffness elements,

adding passive variable mechanical compliance to the robot. For example, a mobile

legged robot might use low-power motors to efficiently explore its environment over

an extended period of time, while periodically employing its pneumatic muscle system

to leap over large obstacles in its path. This hybrid motor-muscle actuation scheme

represents a promising research direction for mobile robots that require fast actuation

and mechanical compliance.

7.3 Summary

Mechanical compliance facilitates safe and robust robot adaptation to the surrounding

world, which is particularly advantageous in responding to environmental uncertainty

and in interacting safely with people. The pneumatic artificial muscle offers a unique

solution for passively-compliant robot actuation. However, the pneumatic muscle

is limited by a lack of compatible sensor technologies. Thus, a novel pneumatic

muscle design with integrated optical sensing is developed to overcome this challenge.

Additionally, the pneumatic muscle has limitations in its force and contraction range

characteristics, similar to biological muscle. But, like biological muscle in animals,

pneumatic muscles can generate fast, dynamic robot motion with appropriate design

and control strategies, as demonstrated in this work. Thus it is hoped that this thesis

serves as a guide to exploiting the benefits of compliant pneumatic muscle actuation—

via integrated muscle sensing, optimized joint mechanism design, and motion planning
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for burst-inflation control—while maximizing robot agility.

130



Appendices



APPENDIX A

JUMPING ROBOT SIMULATION DESCRIPTION FILE

Below is the Simulation Description Format (SDF) file for the planar two-legged

jumping robot.

<sdf version=‘1.6’>
<model name=‘jumping_robot’>

<link name=‘l0’>
<pose frame=‘’>0 0 0 0 -0 0</pose>
<inertial>

<pose frame=‘’>0 0 0 0 -0 0</pose>
<mass>0.0001</mass>
<inertia>

<ixx>0.0001</ixx>
<ixy>0</ixy>
<ixz>0</ixz>
<iyy>0</iyy>
<iyz>0</iyz>
<izz>0.0001</izz>

</inertia>
</inertial>

</link>
<link name=‘l1’>

<pose frame=‘’>0 0.437 0 0.148 -0 0</pose>
<inertial>

<pose frame=‘’>0 0 0.275 0 -0 0</pose>
<mass>0.285</mass>
<inertia>

<ixx>0.007212875</ixx>
<ixy>0</ixy>
<ixz>0</ixz>
<iyy>0.007212875</iyy>
<iyz>0</iyz>
<izz>0.0001</izz>

</inertia>
</inertial>

</link>
<link name=‘l2’>

<pose frame=‘’>0 0.356 0.544 0.148 -0 0</pose>
<inertial>

<pose frame=‘’>0 0 0.275 0 -0 0</pose>
<mass>0.428</mass>
<inertia>
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<ixx>0.010831966666667</ixx>
<ixy>0</ixy>
<ixz>0</ixz>
<iyy>0.010831966666667</iyy>
<iyz>0</iyz>
<izz>0.0001</izz>

</inertia>
</inertial>

</link>
<link name=‘l3’>

<pose frame=‘’>0 0 1.088 0 -0 0</pose>
<inertial>

<pose frame=‘’>0 0 0 0 -0 0</pose>
<mass>0.883</mass>
<inertia>

<ixx>0.022347258333333</ixx>
<ixy>0</ixy>
<ixz>0</ixz>
<iyy>0.0001</iyy>
<iyz>0</iyz>
<izz>0.022347258333333</izz>

</inertia>
</inertial>

</link>
<link name=‘l4’>

<pose frame=‘’>0 -0.356 0.544 -0.148 0 0</pose>
<inertial>

<pose frame=‘’>0 0 0.275 0 0 0</pose>
<mass>0.428</mass>
<inertia>

<ixx>0.010831966666667</ixx>
<ixy>0</ixy>
<ixz>0</ixz>
<iyy>0.010831966666667</iyy>
<iyz>0</iyz>
<izz>0.0001</izz>

</inertia>
</inertial>

</link>
<link name=‘l5’>

<pose frame=‘’>0 -0.437 0 -0.148 0 0</pose>
<inertial>

<pose frame=‘’>0 0 0.275 0 0 0</pose>
<mass>0.285</mass>
<inertia>

<ixx>0.007212875</ixx>
<ixy>0</ixy>
<ixz>0</ixz>
<iyy>0.007212875</iyy>
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<iyz>0</iyz>
<izz>0.0001</izz>

</inertia>
</inertial>

</link>
<joint name=‘j0’ type=‘revolute’>

<pose frame=‘world’> 0 0.437 0 0 0 0</pose>
<child>l1</child>
<parent>l0</parent>
<axis>

<xyz>1 0 0</xyz>
<limit>

<lower>0</lower>
<upper>0</upper>
<effort>1000</effort>
<velocity>0.5</velocity>

</limit>
<dynamics>

<damping>500</damping>
<friction>0</friction>
<spring_reference>0</spring_reference>
<spring_stiffness>0</spring_stiffness>

</dynamics>
</axis>

</joint>
<joint name=‘j1’ type=‘revolute’>

<pose frame=‘world’> 0 0.356 0.544 0 0 0</pose>
<child>l2</child>
<parent>l1</parent>
<axis>

<xyz>1 0 0</xyz>
<limit>

<lower>0</lower>
<upper>0</upper>
<effort>1000</effort>
<velocity>0.5</velocity>

</limit>
<dynamics>

<damping>500</damping>
<friction>0</friction>
<spring_reference>0</spring_reference>
<spring_stiffness>0</spring_stiffness>

</dynamics>
<use_parent_model_frame>1</use_parent_model_frame>

</axis>
</joint>
<joint name=‘j2’ type=‘revolute’>

<pose frame=‘world’> 0 0.275 1.088 0 0 0</pose>
<child>l3</child>
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<parent>l2</parent>
<axis>

<xyz>1 0 0</xyz>
<limit>

<lower>-1.57</lower>
<upper>1.57</upper>
<effort>1000</effort>
<velocity>0.5</velocity>

</limit>
<dynamics>

<damping>500</damping>
<friction>0</friction>
<spring_reference>0</spring_reference>
<spring_stiffness>0</spring_stiffness>

</dynamics>
<use_parent_model_frame>1</use_parent_model_frame>

</axis>
</joint>
<joint name=‘j3’ type=‘revolute’>

<pose frame=‘world’> 0 -0.275 1.088 0 0 0</pose>
<child>l3</child>
<parent>l4</parent>
<axis>

<xyz>-1 0 0</xyz>
<limit>

<lower>-1.57</lower>
<upper>1.57</upper>
<effort>1000</effort>
<velocity>0.5</velocity>

</limit>
<dynamics>

<damping>500</damping>
<friction>0</friction>
<spring_reference>0</spring_reference>
<spring_stiffness>0</spring_stiffness>

</dynamics>
<use_parent_model_frame>1</use_parent_model_frame>

</axis>
</joint>
<joint name=‘j4’ type=‘revolute’>

<pose frame=‘world’> 0 -0.356 0.544 0 0 0</pose>
<child>l4</child>
<parent>l5</parent>
<axis>

<xyz>-1 0 0</xyz>
<limit>

<lower>-1.57</lower>
<upper>1.57</upper>
<effort>1000</effort>
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<velocity>0.5</velocity>
</limit>
<dynamics>

<damping>500</damping>
<friction>0</friction>
<spring_reference>0</spring_reference>
<spring_stiffness>0</spring_stiffness>

</dynamics>
<use_parent_model_frame>1</use_parent_model_frame>

</axis>
</joint>
<joint name=‘j5’ type=‘revolute’>

<pose frame=‘world’> 0 -0.437 0 0 0 0</pose>
<child>l5</child>
<parent>l0</parent>
<axis>

<xyz>-1 0 0</xyz>
<limit>

<lower>0</lower>
<upper>0</upper>
<effort>1000</effort>
<velocity>0.5</velocity>

</limit>
<dynamics>

<damping>500</damping>
<friction>0</friction>
<spring_reference>0</spring_reference>
<spring_stiffness>0</spring_stiffness>

</dynamics>
</axis>

</joint>
</model>

</sdf>
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[35] T. Kerscher, J. Albiez, J. M. Zöllner, and R. Dillmann, “Evaluation of the
dynamic model of fluidic muscles using quick-release,” Proceedings of the First
IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomecha-
tronics, 2006, BioRob 2006, vol. 2006, pp. 637–642, 2006.
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