30 research outputs found

    Symmetric Kullback-Leibler Metric Based Tracking Behaviors for Bioinspired Robotic Eyes

    Get PDF
    A symmetric Kullback-Leibler metric based tracking system, capable of tracking moving targets, is presented for a bionic spherical parallel mechanism to minimize a tracking error function to simulate smooth pursuit of human eyes. More specifically, we propose a real-time moving target tracking algorithm which utilizes spatial histograms taking into account symmetric Kullback-Leibler metric. In the proposed algorithm, the key spatial histograms are extracted and taken into particle filtering framework. Once the target is identified, an image-based control scheme is implemented to drive bionic spherical parallel mechanism such that the identified target is to be tracked at the center of the captured images. Meanwhile, the robot motion information is fed forward to develop an adaptive smooth tracking controller inspired by the Vestibuloocular Reflex mechanism. The proposed tracking system is designed to make the robot track dynamic objects when the robot travels through transmittable terrains, especially bumpy environment. To perform bumpy-resist capability under the condition of violent attitude variation when the robot works in the bumpy environment mentioned, experimental results demonstrate the effectiveness and robustness of our bioinspired tracking system using bionic spherical parallel mechanism inspired by head-eye coordination

    Actuators and sensors for application in agricultural robots: A review

    Get PDF
    In recent years, with the rapid development of science and technology, agricultural robots have gradually begun to replace humans, to complete various agricultural operations, changing traditional agricultural production methods. Not only is the labor input reduced, but also the production efficiency can be improved, which invariably contributes to the development of smart agriculture. This paper reviews the core technologies used for agricultural robots in non-structural environments. In addition, we review the technological progress of drive systems, control strategies, end-effectors, robotic arms, environmental perception, and other related systems. This research shows that in a non-structured agricultural environment, using cameras and light detection and ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing, transmission, control, and operation, different types of actuators can be innovatively designed and developed to drive the advance of agricultural robots, to meet the delicate and complex requirements of agricultural products as operational objects, such that better productivity and standardization of agriculture can be achieved. In summary, agricultural production is developing toward a data-driven, standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based agricultural robots. This paper concludes with a summary of the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future

    System integration of magnetic medical microrobots: from design to control

    Get PDF
    Magnetic microrobots are ideal for medical applications owing to their deep tissue penetration, precise control, and flexible movement. After decades of development, various magnetic microrobots have been used to achieve medical functions such as targeted delivery, cell manipulation, and minimally invasive surgery. This review introduces the research status and latest progress in the design and control systems of magnetic medical microrobots from a system integration perspective and summarizes the advantages and limitations of the research to provide a reference for developers. Finally, the future development direction of magnetic medical microrobot design and control systems are discussed

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Visión por computador aplicado a manipulador paralelo de tipo planar 3-RRR para la manipulación de un objeto

    Get PDF
    En este trabajo se establecerá la implementación de un sistema de visión en un manipulador paralelo de articulaciones rotatorias, con el propósito de calcular las coordenadas cartesianas. Se utilizará una técnica de servo control visual denominada Eye-to-hand que permite observar el área del trabajo del manipulador paralelo, ubicando el actuador final, el maro de referencia y el objetivo a seguir. La cámara captura la imagen del objeto tomado. La imagen es procesada mediante algoritmos creados en el software Matlab extrayendo las características principales de las imágenes tomadas. Cada imagen se someterá a filtros gaussianos para la eliminación de ruido de las cámaras y a un descriptor SURF para estabilizar la imagen, una de referencia respecto a las tomadas por la cámara en intervalos de tiempo. En las imágenes procesadas de cada captura, se determinan las correspondencias entre las imágenes para obtener sus semejanzas utilizando el método RANSAC. Obteniendo el análisis de la semejanza de las imágenes. Luego de establecer la estabilización se procede a implementar el cálculo de la homografía que permitirá realizar el cálculo de las coordenadas en pixeles tomadas en la imagen, convertirlas en coordenadas reales. Al obtener todo el proceso se procede a aplicar el estimador y predictor filtro de Kalman para determinar la posición del objeto cuando el objetivo en qué dirección se desplaza, el cual se tiene resultado una coordenada donde esta es retroalimentada a la cinemática del manipulador paralelo de tipo planar 3-RRR, estableciendo el movimiento de la plataforma móvil hacia el objetivo. Inicialmente se realizando dos pasos: El primer paso fue realizar una trayectoria generada que se realizó en el manipulador sin la intervención del sistema de visión; el segundo lugar se genera la misma trayectoria donde el objetivo es manipulado y guiado con base en la trayectoria generada inicialmente..

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    Characterisation and State Estimation of Magnetic Soft Continuum Robots

    Get PDF
    Minimally invasive surgery has become more popular as it leads to less bleeding, scarring, pain, and shorter recovery time. However, this has come with counter-intuitive devices and steep surgeon learning curves. Magnetically actuated Soft Continuum Robots (SCR) have the potential to replace these devices, providing high dexterity together with the ability to conform to complex environments and safe human interactions without the cognitive burden for the clinician. Despite considerable progress in the past decade in their development, several challenges still plague SCR hindering their full realisation. This thesis aims at improving magnetically actuated SCR by addressing some of these challenges, such as material characterisation and modelling, and sensing feedback and localisation. Material characterisation for SCR is essential for understanding their behaviour and designing effective modelling and simulation strategies. In this work, the material properties of commonly employed materials in magnetically actuated SCR, such as elastic modulus, hyper-elastic model parameters, and magnetic moment were determined. Additionally, the effect these parameters have on modelling and simulating these devices was investigated. Due to the nature of magnetic actuation, localisation is of utmost importance to ensure accurate control and delivery of functionality. As such, two localisation strategies for magnetically actuated SCR were developed, one capable of estimating the full 6 degrees of freedom (DOFs) pose without any prior pose information, and another capable of accurately tracking the full 6-DOFs in real-time with positional errors lower than 4~mm. These will contribute to the development of autonomous navigation and closed-loop control of magnetically actuated SCR
    corecore