512 research outputs found

    China Maritime Report No. 23: The Type 075 LHD: Development, Missions, and Capabilities

    Get PDF
    When the People’s Liberation Army Navy (PLAN) commissioned its first Type 075 class Landing Helicopter Dock (LHD) in April 2021, it represented an important advance in power projection capability for China’s maritime forces. For the first time, the PLAN had an amphibious warship capable of hosting significant rotary wing forces while acting as the flagship for an amphibious task force. Now with three Type 075 class ships either in or soon to be in service, the PLAN has expanded its amphibious capability even further. The Type 075’s dedicated aviation support capability, ability to conduct wet well operations, and expanded command and control and medical facilities reflect capabilities that previously did not exist within the PLAN amphibious fleet. With the Type 075 LHD, the PLAN clearly intends to bolster its ability to project power from the sea in order to protect China’s overseas interests, but will require time for amphibious task forces to become fully proficient.https://digital-commons.usnwc.edu/cmsi-maritime-reports/1022/thumbnail.jp

    VERTICAL REPLENISHMENT BY UNMANNED AERIAL VEHICLES.

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Seabasing and joint expeditionary logistics

    Get PDF
    Student Integrated ProjectIncludes supplementary material. Executive Summary and Presentation.Recent conflicts such as Operation Desert Shield/Storm and Operation Iraqi Freedom highlight the logistics difficulties the United States faces by relying on foreign access and infrastructure and large supply stockpiles ashore to support expeditionary operations. The Navy's transformational vision for the future, Sea Power 21, involves Seabasing as a way to address these difficulties by projecting and sustaining joint forces globally from the sea. This study analyzes logistics flow to, within and from a Sea Base to an objective, and the architectures and systems needed to rapidly deploy and sustain a brigade-size force. Utilizing the Joint Capabilities Integration and Development System (JCIDS), this study incorporates a systems engineering framework to examine current systems, programs of record and proposed systems out to the year 2025. Several capability gaps that hamper a brigade-size force from seizing the initiative anywhere in the world within a 10-day period point to a need for dedicated lift assets, such as high-speed surface ships or lighter-than-air ships, to facilitate the rapid formation of the Sea Base. Additionally, the study identifies the need for large-payload/high-speed or load-once/direct-to- objective connector capabilities to minimize the number of at-sea transfers required to employ such a force from the Sea Base in 10 hrs. With these gaps addressed, the Joint Expeditionary Brigade is supportable from the Sea Base.http://archive.org/details/seabasingndjoint109456918N

    Low airspeed systems for the naval SH-60 Seahawk aircraft

    Get PDF
    Pitot-static systems have long been used to measure helicopter airspeed. The Pitot-static system is inaccurate at low airspeeds (below 40 knots) due to the limited sensitivity of the sensor and interference of rotor down wash. Additionally, the Pitot-static system only measures unidirectional airspeed and unlike its fixed wing counterparts the helicopter is not limited to flight in one direction. With the changing roles of the US Navy Seahawk it is imperative that the pilot and aircrew have all the information necessary to safely complete the mission and prolong the life of the aircraft and dynamic components. With the addition of a dipping sonar to the remanufactured SH-60B aircraft (designated SH- 60R) and the conduct of combat search and rescue mission in the Navy\u27s Seahawks the aircraft will spend more time in a hover and will be flown more aggressively than in the past. This thesis examiness the advantages of incorporating a low airspeed system into the modem helicopter, in particular the SH-60 Seahawk. The author examines the low airspeed sensors and systems currently available and gives a brief description of each system\u27s operation. The author examines the challenges of installing a low airspeed sensor onto the SH-60 Seahawk. The author has determined that either a laser velocimeter or an analytical neural network system would be the best approach for a low airspeed system for the SH-60 Seahawk. The author recommends a combined approach be taken to develop both the laser velocimeter and analytical neural network, and incorporate the best system after further flight testing

    MH-60 Seahawk / MQ-8 Fire Scout interoperability

    Get PDF
    Approved for public release; distribution is unlimitedAs part of a Naval Postgraduate School's capstone project in Systems Engineering, a project team from Cohort 311-0911 performed a Systems Engineering analysis. This Project focused on defining alternatives for enhanced Anti-Surface Warfare (ASUW) mission effectiveness through increased interoperability and integration for the Fire Scout Unmanned Air Vehicle and Seahawk helicopter. Specifically, the Project explored the available trade space for enhancing communications back to the ship for analysis and decision-making. Modeling and Simulation (MandS) was used to assess the impact of enhanced communication on specific Key performance Parameters (KPPs) and Measures of Effectiveness (MOEs) associated with the ASUW mission. Once the trade space was defined, alternatives were analyzed and a recommendation provided that supports near-, mid-, and long-term mission enhancement

    Focused Mission High Speed Combatant

    Get PDF
    U.S. Navy, Naval Sea Systems Command, Program Executive Office SHIPS, PMS 500 DD X Progra

    Reducción de los movimientos del buque de guerra basándose en wavelets

    Get PDF
    In seakeeping terminology, the Quiescent Period is known as the period of calm in rough waters to allow the ship to perform operations such as landing aircrafts and unmanned aerial vehicles (UAVs), aswell as the entry of landing crafts in the basin. Quiescence refers to the interval of time where all ship motions are within acceptable limits to perform a desired activity. Among the key issues for Quiescent Period Prediction is to be able to measure waves from a suitable distance and predict ship motions in response to waves encountered; both aspects are crucial and must be taken into account. Many of the opearations performed at sea are carried under severe weather conditions, as a result of this situation there is a need to determine this called “window of opportunity” that allows carrying them out. The paper aims to explain from the point of view of Quiescent Period Prediction, the most promising wave measurement systems, which are currently based on radar, but the main question is that if we want predictions a few seconds ahead, it will be appropriate to measure waves at a distance of some hundreds of meters, describing the new mathematical model based on wavelets in determining the spread of the waves from their initial measurement until they reach the vessel.Dentro del ámbito del comportamiento en la mar, se denomina Periodo Quiescente a aquellos periodos de calma que se producen en un estado de mala mar que permiten al buque llevar a cabo operaciones como pueden ser el aterrizaje de plataformas aéreas, vehículos aéreos no tripulados (UAVs) o la entrada de lanchas en el dique. El término quiescente hace referencia al intervalo de tiempo durante el cual los movimientos del buque se encuentran dentro de los límites aceptables para llevar a cabo una actividad determinada. Las claves para llegar a predecir los Periodos Quiescentes están en ser capaz de llegar a medir las olas desde una distancia adecuada, y ser capaz de llegar a predecir los movimientos que dichas olas inducirán en el buque una vez le alcance; ambos aspectos son cruciales y deberán ser tenidos en cuenta. Muchas de las operaciones que se realizan en la mar se llevan a cabo bajo condiciones climatológicas adversas, y es en estos casos donde surge la necesidad de determinar una “ventana de oportunidad” que nos permita llevarlas a cabo. El artículo trata de explicar desde el punto de vista de la predicción de periodos quiescentes los sistemas de medida de oleaje más prometedores, actualmente basados en radar, pero la inquietud principal es que si queremos una predicción de varios segundos en adelanto es necesario medir las olas a una distancia de cientos de metros, para ello se describirá el nuevo desarrollo matemático basado en “wavelets” que se ha empleado para determinar la deformación que sufren las olas desde su medida inicial hasta que alcanzan la plataforma

    An Investigation of the Rotor Tip Path Height of the MH-60S Helicopter in View of Forklift Clearance in Support of the United States Navy Medium Lift Shipboard Logistics Mission

    Get PDF
    The purpose of this paper is to summarize Department of the Navy tests performed to measure rotor tip path height of the MH-60S helicopter and present an analysis of collected data to determine if safe cargo loading operations on the MH-60S can be conducted with a forklift while the rotor is engaged. Testing was conducted to measure the dynamic height of the rotor tip path plane during incremental cyclic displacements, rotor response to external disturbances, and pilot tendencies when centering the cyclic control stick. Additional information was gathered on representative forklifts in use on U.S. Navy ships, and shipboard operating procedures for cargo movement. A comparison between the forklift and rotor heights was conducted to evaluate the clearance available for forklifts transiting the rotor arc. While it cannot be concluded that cargo loading using a forklift with the rotor engaged can be conducted without incident, substantial data were gathered that indicated that current safety precautions coupled with the clearance from the engaged rotor would allow for safe conduct of the evolution. Specifically, if operations are conducted with low profile forklifts, which have an obstruction height shorter than the average male, rotor clearance is considered sufficient to preclude catastrophic interaction between the rotor and the equipment. Additional research, safety review, and equipment and publication changes are recommended to further increase the safety of conducting these operations

    An SoS Conceptual Model, LVC Simulation Framework, and a Prototypical Implementation of Unmanned System Interventions for Nuclear Power Plant Disaster Preparedness, Response, and Mitigation

    Get PDF
    Nuclear power plant disasters can have severe and far-reaching consequences, thus emergency managers and first responders from utility owners to the DoD must be prepared to respond to and mitigate effects protecting the public and environment from further damage. Rapidly emerging unmanned systems promise significant improvement in response and mitigation of nuclear disasters. Models and simulations (M&S) may play a significant role in improving readiness and reducing risks through its use in planning, analysis, preparation training, and mitigation rehearsal for a wide spectrum of derivate scenarios. Legacy nuclear reactor M&S lack interoperability between themselves and avatar or agent-based simulations of emergent unmanned systems. Bridging the gap between past and the evolving future, we propose a conceptual model (CM) using a System of System (SoS) approach, a simulation federation framework capable of supporting concurrent and interoperating live, virtual and constructive simulation (LVC), and demonstrate a prototypical implementation of an unmanned system intervention for nuclear power plant disaster using the constructive simulation component. The SoS CM, LVC simulation framework, and prototypical implementation are generalizable to other preparedness, response, and mitigation scenarios. The SoS CM broadens the current stovepipe reactor-based simulations to a system-of-system perspective. The framework enables distributed interoperating simulations with a network of legacy and emergent avatar and agent simulations. The unmanned system implementation demonstrates feasibility of the SoS CM and LVC framework through replication of selective Fukushima events. Further, the system-of-systems approach advances life cycle stages including concept exploration, system design, engineering, training, and mission rehearsal. Live, virtual, and constructive component subsystems of the CM are described along with an explanation of input/output requirements. Finally, applications to analysis and training, an evaluation of the SoS CM based on recently proposed criteria found in the literature, and suggestions for future research are discussed

    Creation and Analysis of an Enhanced RASCAL-LVC Framework Capable of Simulating Ionizing Radiation Damage to Emergency Responders During a Nuclear Power Plant Disaster: A Case Study in Unmanned Aerial Vehicle Electronic System Survivability

    Get PDF
    This study developed and analyzed the use of a live virtual constructive (LVC) framework capable of simulating ionizing radiation damage to Unmanned Aerial Vehicles (UAV) during a nuclear power plant disaster. UAV response promises greater safety to humans over helicopters as well as provides longer survivability in the presence of irradiated environments. However, electronics in unmanned systems are subject to radiation damage and over time eventual failure. A LVC simulation framework may offer an independent and low-cost assessment of equipment life expectancy. Knowing life expectancy of equipment for operational scenarios is critical for emergency management planners. This research creates an enhanced RASCAL-LVC simulation framework by modeling and simulating NPP disaster radiation release based on the NRC RASCAL simulation and radioactive cloud dispersion in STAGE. The resulting framework enables analysis of length of operational survivability of UAV electronics for three illustrative missions. The three scenarios examined are: (1) an In-And-Out Mission that simulates Parts Delivery, Surveillance, or passenger pickup/delivery; (2) a Fukushima-like Spent Fuel Pool water replenishment mission with radiation hot spot; and (3) an exploratory Chernobyl-magnitude Reactor Fire-extinguishing Mission with an open reactor radiation hot spot. More generally, the enhanced RASCAL-LVC framework is capable of: (1) supporting human-in-the-loop training and mission rehearsal; (2) design and analysis of a broad spectrum of NPP disaster scenarios and mission responses; (3) analysis of various response vehicles within mission-scenario combinations; and (4) system engineering support to each system\u27s life cycle
    corecore