2,006 research outputs found

    New Technology and Techniques for Needle-Based Magnetic Resonance Image-Guided Prostate Focal Therapy

    Get PDF
    The most common diagnosis of prostate cancer is that of localized disease, and unfortunately the optimal type of treatment for these men is not yet certain. Magnetic resonance image (MRI)-guided focal laser ablation (FLA) therapy is a promising potential treatment option for select men with localized prostate cancer, and may result in fewer side effects than whole-gland therapies, while still achieving oncologic control. The objective of this thesis was to develop methods of accurately guiding needles to the prostate within the bore of a clinical MRI scanner for MRI-guided FLA therapy. To achieve this goal, a mechatronic needle guidance system was developed. The system enables precise targeting of prostate tumours through angulated trajectories and insertion of needles with the patient in the bore of a clinical MRI scanner. After confirming sufficient accuracy in phantoms, and good MRI-compatibility, the system was used to guide needles for MRI-guided FLA therapy in eight patients. Results from this case series demonstrated an improvement in needle guidance time and ease of needle delivery compared to conventional approaches. Methods of more reliable treatment planning were sought, leading to the development of a systematic treatment planning method, and Monte Carlo simulations of needle placement uncertainty. The result was an estimate of the maximum size of focal target that can be confidently ablated using the mechatronic needle guidance system, leading to better guidelines for patient eligibility. These results also quantified the benefit that could be gained with improved techniques for needle guidance

    Focal Spot, Spring 2000

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1084/thumbnail.jp

    MRI robot for prostate focal laser ablation : An ex vivo study in human prostate

    Get PDF
    Purpose: A novel grid-template-mimicking MR-compatible robot was developed for in-gantry MRI-guided focal laser ablation of prostate cancer. Method: A substantially compact robot was designed and prototyped to meet in-gantry lithotomy ergonomics and allow for accommodation in the perineum. The controller software was reconfigured and integrated with the custom-designed navigation and multi-focal ablation software. Three experiments were conducted: (1) free space accuracy test; (2) phantom study under computed tomography (CT) guidance for image-guided accuracy test and overall workflow; and (3) magnetic resonance imaging (MRI)-guided focal laser ablation of an ex vivo prostate. The free space accuracy study included five targets that were selected across the workspace. The robot was then commanded five times to each target. The phantom study used a gel phantom made with color changing thermos-chromic ink, and four spherical metal fiducials were deployed with the robot. Then, laser ablation was applied, and the phantom was sliced for gross observation. For an MR-guided ex vivo test, a prostate from a donor who died of prostate cancer was obtained and multi-focally ablated using the system within the MRI gantry. The tissue was sliced after ablation for validation. Results: free-space accuracy was 0.38 ± 0.27 mm. The overall system targeting accuracy under CT guidance (including robot, registration, and insertion error) was 2.17 ± 0.47 mm. The planned ablation zone was successfully covered in both acrylamide gel phantom and in human prostate tissue. Conclusions: The new robot can accurately facilitate fiber targeting for MR-guided focal laser ablation of targetable prostate cancer

    Magnetic Resonance Imaging-Guided Transurethral Ultrasound Ablation of Prostate Cancer

    Get PDF
    Purpose: Magnetic resonance imaging-guided transurethral ultrasound ablation uses directional thermal ultrasound under magnetic resonance imaging thermometry feedback control for prostatic ablation. We report 12-month outcomes from a prospective multicenter trial (TACT). Materials and methods: A total of 115 men with favorable to intermediate risk prostate cancer across 13 centers were treated with whole gland ablation sparing the urethra and apical sphincter. The co-primary 12-month endpoints were safety and efficacy. Results: In all, 72 (63%) had grade group 2 and 77 (67%) had NCCN® intermediate risk disease. Median treatment delivery time was 51 minutes with 98% (IQR 95-99) thermal coverage of target volume and spatial ablation precision of ±1.4 mm on magnetic resonance imaging thermometry. Grade 3 adverse events occurred in 9 (8%) men. The primary endpoint (U.S. Food and Drug Administration mandated) of prostate specific antigen reduction ≥75% was achieved in 110 of 115 (96%) with median prostate specific antigen reduction of 95% and nadir of 0.34 ng/ml. Median prostate volume decreased from 37 to 3 cc. Among 68 men with pretreatment grade group 2 disease, 52 (79%) were free of grade group 2 disease on 12-month biopsy. Of 111 men with 12-month biopsy data, 72 (65%) had no evidence of cancer. Erections (International Index of Erectile Function question 2 score 2 or greater) were maintained/regained in 69 of 92 (75%). Multivariate predictors of persistent grade group 2 at 12 months included intraprostatic calcifications at screening, suboptimal magnetic resonance imaging thermal coverage of target volume and a PI-RADS™ 3 or greater lesion at 12-month magnetic resonance imaging (p <0.05). Conclusions: The TACT study of magnetic resonance imaging-guided transurethral ultrasound whole gland ablation in men with localized prostate cancer demonstrated effective tissue ablation and prostate specific antigen reduction with low rates of toxicity and residual disease

    Image-Guided High-Intensity Focused Ultrasound, A Novel Application for Interventional Nuclear Medicine?

    Get PDF
    Image-guided high-intensity focused ultrasound (HIFU) has been increasingly used in medicine over the past few decades, and several systems for such have become commercially available. HIFU has passed regulatory approval around the world for the ablation of various solid tumors, the treatment of neurologic diseases, and the palliative management of bone metastases. The mechanical and thermal effects of focused ultrasound provide a possibility for histotripsy, supportive radiation therapy, and targeted drug delivery. The integration of imaging modalities into HIFU systems allows for precise temperature monitoring and accurate treatment planning, increasing the safety and efficiency of treatment. Preclinical and clinical results have demonstrated the potential of image-guided HIFU to reduce adverse effects and increase the quality of life postoperatively. Interventional nuclear image–guided HIFU is an attractive noninvasive option for the future

    Focal Spot, Fall/Winter 2000

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1086/thumbnail.jp

    Low Temperature Plasma : A Novel Focal Therapy for Localized Prostate Cancer?

    Get PDF
    Despite considerable advances in recent years for the focal treatment of localized prostate cancer, high recurrence rates and detrimental side effects are still a cause for concern. In this review, we compare current focal therapies to a potentially novel approach for the treatment of early onset prostate cancer: low temperature plasma. The rapidly evolving plasma technology has the potential to deliver a wide range of promising medical applications via the delivery of plasma-induced reactive oxygen and nitrogen species. Studies assessing the effect of low temperature plasma on cell lines and xenografts have demonstrated DNA damage leading to apoptosis and reduction in cell viability. However, there have been no studies on prostate cancer, which is an obvious candidate for this novel therapy. We present here the potential of low temperature plasma as a focal therapy for prostate cancer

    Magnetic resonance imaging and navigation of ferromagnetic thermoseeds to deliver thermal ablation therapy

    Get PDF
    Minimally invasive therapies aim to deliver effective treatment whilst reducing off-target burden, limiting side effects, and shortening patient recovery times. Remote navigation of untethered devices is one method that can be used to deliver targeted treatment to deep and otherwise inaccessible locations within the body. Minimally invasive image-guided ablation (MINIMA) is a novel thermal ablation therapy for the treatment of solid tumours, whereby an untethered ferromagnetic thermoseed is navigated through tissue to a target site within the body, using the magnetic field gradients generated by a magnetic resonance imaging (MRI) system. Once at the tumour, the thermoseed is heated remotely using an alternating magnetic field, to induce cell death in the surrounding cancer tissue. The thermoseed is then navigated through the tumour, heating at pre-defined locations until the entire volume has been ablated. The aim of this PhD project is to develop MINIMA through a series of proof-of-concept studies and to assess the efficacy of the three key project components: imaging, navigation, and heating. First, an MR imaging sequence was implemented to track the thermoseeds during navigation and subsequently assessed for precision and accuracy. Secondly, movement of the thermoseeds through a viscous fluid was characterised, by measuring the effect of different navigation parameters. This was followed by navigation experiments performed in ex vivo tissue. To assess thermoseed heating, a series of in vitro experiments were conducted in air, water, and ex vivo liver tissue, before moving onto in vivo experiments in the rat brain and a murine subcutaneous tumour model. These final experiments allowed the extent of cell death induced by thermoseed heating to be determined, in both healthy and diseased tissue respectively
    • …
    corecore