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Abstract 

The most common diagnosis of prostate cancer is that of localized disease, and 

unfortunately the optimal type of treatment for these men is not yet certain. This 

uncertainty has led to the overtreatment of prostate cancer, leaving men with side effects 

from the treatment of disease that may not have been lethal. MRI-guided focal laser 

ablation (FLA) therapy is a promising potential treatment option for select men with 

localized prostate cancer, and may result in fewer side effects than whole-gland therapies, 

while still achieving oncologic control. However, while MRI provides excellent 

visualization tools for this procedure, it presents several technical challenges for needle 

guidance. These challenges result from the unique MRI environment and the limited 

access to the prostate within clinical scanners. The objective of this thesis was to develop 

new technology and techniques for accurately guiding needles to the prostate within the 

bore of a clinical MRI scanner for MRI-guided FLA therapy. 

To achieve this goal, a method of accurately tracking devices in MRI using a 

passive tracking frame was developed. The new design of tracking frame can localize 

devices with less sensitivity to image distortions than previous methods. Next, a 

mechatronic needle guidance system was developed. The system, which uses the newly 

developed tracking frame design, enables precise targeting of prostate tumours through 

angulated trajectories and insertion of needles with the patient remaining in the bore of a 

clinical MRI scanner. The system was rigorously tested for accuracy and repeatability of 

needle guidance, and MRI-compatibility. After confirming the system was capable of 

accurately guiding needles in tissue-mimicking phantoms, and that MRI-compatibility 

was acceptable, it was used to guide needles for MRI-guided FLA therapy in eight 
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patients. Results from this case series demonstrated an improvement in the time required 

to guide needles to their target and ease of needle delivery, as compared to conventional 

approaches. Methods of more reliable treatment planning and quantification of the effect 

of needle placement uncertainty on treatment outcome were sought, leading to the 

development of a systematic treatment planning method, and Monte Carlo simulations of 

needle placement uncertainty. The result was an estimate of the maximum size of focal 

target that can be confidently ablated using the mechatronic needle guidance system, 

leading to better guidelines for patient eligibility. These results also quantified the benefit 

that could be gained with improved techniques for needle guidance. 

Further technological and methodological improvements, including the 

incorporation of 3D finite-element modeling into a treatment plan optimization 

framework, real-time monitoring of steerable needles, and real-time monitoring and 

compensation of prostate motion will enable confident focal target ablation in men with 

larger tumours that what is currently achievable. If the clinical efficacy of focal therapy 

for men with localized prostate cancer is proven, these methods could have an enormous 

impact on the clinical management of these men. 

Keywords 

Magnetic resonance imaging, MRI, prostate cancer, focal therapy, laser ablation, 

treatment planning, MRI-guided interventions, image-guided interventions, transperineal, 

needle guidance, passive tracking 
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Chapter 1. 
  

Introduction 

 

The work in this thesis is concerned with advances in technology and techniques for the 

treatment of clinically localized prostate cancer. The need for less invasive prostate 

cancer treatments that cause fewer treatment-related side effects than traditional 

approaches has been widely recognized, resulting in the emergence of a wide variety of 

new ablative modalities for focal therapy. As a result, there is continued debate in the 

urologic community regarding which modality holds the most promise for achieving the 

goals of focal therapy. The answer depends not only on which energy modality is 

employed, but strongly on the specific technologies and techniques employed by the 

interventionalist delivering the therapy. To this end, the work described in this thesis is 

aimed at improving the technology and techniques used for the delivery of prostate focal 

laser ablation (FLA) therapy under magnetic resonance image guidance. Such 

improvements will allow a more accurate evaluation of the true potential of FLA for 

achieving the goals of focal therapy as clinical trials progress. 

 Prostate Cancer 1.1

1.1.1 Prostate Cancer Epidemiology 

Prostate cancer remains the most commonly diagnosed solid organ malignancy in North 

American men.[1] In Canada, this amounts to an estimated 23,600 new cases of prostate 

cancer in 2013, and a lifetime probability of developing prostate cancer of 14.3%.[2] In 
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other words, approximately 1 in 7 men will develop this disease during their lifetime, and 

it is estimated that 3,900 men will die of it in 2013 (approximately 1 in 6 diagnosed).  

1.1.2 The Impact of Prostate Cancer 

Cancer continues to be the biggest killer of Canadians, causing over a million potential 

years of life lost (PYLL) in 2009.[2] Having caused 35,600 PYLL in Canadian men in 

2009, prostate cancer is the third largest contributor to PYLL, next to colorectal (65,100 

PYLL) and lung (152,200 PYLL) cancers. 

While premature death is arguably the highest cost of prostate cancer, there are 

significant costs to health-related quality of life (HRQOL) for patients living with the 

disease. A recent study by Reeve et al.[3] prospectively compared HRQOL of patients 

diagnosed with prostate cancer before and after the diagnosis to a control group. Their 

results showed a significant decline in physical and mental health, and social aspects of 

the patient’s lives as compared to the control group, and that the largest declines were 

observed within the first 6 months of diagnosis. This finding, along with the observation 

that HRQOL before diagnosis of men diagnosed with prostate cancer was similar to that 

of the control group, suggests that the process of undergoing treatment as well as the 

diagnosis itself both carry a heavy burden. While the study by Reeve et al. is the only 

such study (to the authors of the study’s knowledge) incorporating HRQOL data taken 

before a diagnosis, the patient population studied was limited to American Medicare 

beneficiaries ≥ 65 years old. However, it is not difficult to imagine how a prostate cancer 

diagnosis could just as substantially affect a younger man, and evidence from other 

studies supports this theory.[4] In fact, some treatment-related effects have actually been 

shown to be worse in younger men.[5] Irrespective of age, the anatomical location of the 
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prostate gland relative to the rectum, bladder, urethra and delicate neurovascular bundles 

(NVBs) means that any treatment to the prostate is likely to result in a decrease in 

urinary, bowel, and sexual health.[4] This problem of challenging anatomy is reflected in 

the types of treatment-related side effects associated with common types of prostate 

cancer therapies. Pertinent examples include an association of radical prostatectomy with 

adverse urinary function, and external-beam radiation therapy with adverse bowel 

function.[6] 

 Prostate Cancer Diagnosis 1.2

The four most common methods by which prostate cancer is diagnosed are the prostate 

specific antigen (PSA) test, the digital rectal examination (DRE), biopsy, and imaging. 

This section highlights the benefits and shortcomings of each of these types of tests for 

detecting prostate cancer. 

1.2.1 The Prostate Specific Antigen Test 

Prostate specific antigen (PSA) is a glycoprotein produced by the prostate gland. In the 

early 1980s, researchers discovered that PSA could be detected in the blood, and shortly 

thereafter a landmark study by Stamey et al.[7] showed that PSA levels in the blood 

correlated with the stage of prostate cancer, and were proportional to the estimated 

volume of the tumour.[8] It is thought that the increase of PSA in the bloodstream is 

caused by the disturbance of the normal prostate glandular structure due to invasion by 

cancer.[9] Following this discovery, the use of PSA as a screening tool for prostate 

cancer became widespread, and the number of prostate cancer diagnoses in Canada saw a 

substantial increase, reaching a sharp peak in 1993 (see Figure 1.1).[2, 10] 
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Figure 1.1: Age standardized incidence rates of prostate cancer in Canada. (Image taken from [2].) 

The age-standardized mortality rate of prostate cancer in Canada since 1979 

reached a maximum of 31.2 deaths per 100,000 men in 1991 and is estimated to be 17.8 

deaths per 100,000 men in 2013. This 43% decrease in mortality rate in the last two 

decades is impressive; however, it is generally attributed more to advances in treatment 

than to the increased rate of early detection attributed to PSA screening.[2] For the same 

reasons, there is currently much debate regarding the true value of PSA screening, as it is 

now understood that PSA screening leads to overdiagnosis and overtreatment in some 

men whose cancer may not have ever progressed enough to alter their HRQOL if left 

undetected. 

The PSA test also suffers from several sources of inaccuracy. Most notably, 

factors other than prostate cancer may cause an increase in serum PSA, including benign 

prostatic hyperplasia (BPH), prostatitis, and prostate biopsy.[9] Any one of these factors 

can contribute to a false positive test result, causing a patient to receive an unnecessary 

biopsy, or, if the biopsy is positive, an overestimation of the aggressiveness of treatment 

required.[11] Despite these issues, and not being recommended as a population-based 
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screening tool in Canada, PSA testing is still available to men who have been well-

informed of the risks of overdiagnosis, and remains the most common method by which 

prostate cancer is initially diagnosed. 

1.2.2 Digital Rectal Examination 

The digital rectal examination (DRE) is a basic test for detecting prostate cancer in which 

the physician palpates the prostate through the patient’s rectum using a gloved finger. 

The DRE is sensitive to the presence of prostate cancer in the peripheral zone (PZ) of the 

prostate, as the PZ is adjacent to the rectal wall. In these cases, the physician may detect a 

hardening of the tissue that is especially suspicious if it is asymmetric with respect to the 

left and right lobes of the prostate. Generally, the result of a DRE is considered along 

with PSA level in determining the risk of prostate cancer. It has been shown that the 

positive predictive value (PPV) of DRE is low in patients with a low PSA (< 4.0 ng/ml), 

and it is therefore not a reliable independent predictor of prostate cancer in such 

patients.[12] In addition, DRE can miss prostate cancer in regions of the prostate other 

than the PZ, and it therefore must be used in conjunction with other tests that are 

sensitive to the presence of the disease in other regions in order to exclude its presence. 

1.2.3 Biopsy 

Biopsy of the prostate results in the collection of small tissue samples obtained by the 

insertion of specialized needles, usually through the patient’s rectum under transrectal 

ultrasound (TRUS) guidance. The small tissue samples (biopsy cores) obtained during 

biopsy are then prepared for examination under a microscope for analysis by a 

pathologist. By examining the appearance of the structure of the glands and the individual 
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cells comprising them, a pathologist is not only able to determine if cancerous tissue is 

present in the tissue sample, but is also able to grade the cancer, giving an indication of 

the aggressiveness of the disease. Figure 1.2 shows an example of a sample of cancerous 

tissue, as seen under a light microscope. The figure shows how the glands of the prostate, 

as well at the individual cells comprising them, are visible. 

 
Figure 1.2: Light micrograph of a sample of prostate tissue, stained with hematoxylin and eosin (H&E). At 

this level of magnification, the individual prostate glands and the cells comprising them can be seen. 
(Image © 2010 Nephron / Wikimedia Commons) 

If cancer is found in the biopsy cores, it is graded according to the Gleason 

grading system, which assigns the sample a number ranging from 1 (least aggressive) to 5 

(most aggressive). The Gleason score is calculated as the sum of the two most frequently 

occurring Gleason grades present in all biopsy samples. Note that, for example, a Gleason 

score of 4 + 3 = 7 differs from one of 3 + 4 = 7, in that pattern 4 occurs more frequently 

than pattern 3, making 4 + 3 a potentially more aggressive cancer than 3 + 4. 
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The Gleason score from biopsy samples has become a very important tool for 

estimating the prognosis of prostate cancer in each individual patient, and is a key tool for 

guiding the selection of the appropriate treatment. However, while an experienced 

pathologist’s grading of cancer within each biopsy core is generally considered to be very 

accurate (and is therefore considered the gold standard method of grading),[13] sampling 

errors inherent in the biopsy procedure can lead to unreliable estimates of the total 

gland’s burden and/or aggressiveness (i.e. Gleason score) of prostate cancer.[14] 

1.2.3.1 Transrectal Ultrasound (TRUS)-Guided Biopsy 

Transrectal ultrasound-guided biopsy (TRUS-GB) remains the most common method of 

obtaining tissue samples for the diagnosis of prostate cancer. In the TRUS-GB approach, 

the patient is placed in a lateral decubitus position, and an ultrasound probe is inserted 

through the anus to visualize the prostate and biopsy needles through the rectal wall. 

Biopsy needles are then directed through a needle guide mounted to the ultrasound probe, 

and biopsy cores are taken from regions in the prostate known to have a high probability 

of developing cancer. Figure 1.3 shows the zonal anatomy of the prostate. 
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Figure 1.3: Zonal anatomy of the prostate: a) young, healthy male, b) older male with benign prostatic 

hypertrophy (BPH), causing enlargement of the transition zone (TZ). (Reproduced with permission from 
Ref. [15]) 

70 - 80% of prostate cancers are found in the peripheral zone (PZ), and therefore 

the first round of systematic biopsies usually aims to exclusively or mostly sample this 

region. The accepted standard for several years was an initial sextant (6 core) biopsy 

scheme, but the standard number of cores has increased to 10 - 12, as it has been 

demonstrated that, in up to 1 in 3 cases, the sextant biopsy method will underestimate the 

underlying Gleason grade present in the gland.[16] Increasing the number of biopsy cores 

taken will increase the probability of sampling cancerous tissue, if it is present, but also 

results in an increase in symptoms including urinary retention, sepsis and dysuria.[17] In 

addition, the systematic TRUS-GB approach has difficulty sampling the anterior, 

midline, and apex of the prostate.[18] For these reasons, and with recent advances in 

imaging of prostate cancer, a targeted biopsy approach is receiving increased attention. 
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1.2.3.2 Targeted Biopsy 

If the presence of prostate cancer is still suspected after a negative biopsy, the common 

practice is to perform a repeat biopsy, perhaps increasing the number of cores taken. Not 

only is it undesirable to continue repeating a biopsy procedure due to the associated 

discomfort and side effects, but a repeat systematic biopsy may suffer from the same 

sampling error issues as the initial biopsy, making the test no more sensitive to the 

presence of cancer than the first biopsy.[19] Under TRUS guidance, the physician will 

attempt to sample previously unsampled areas in the prostate; however, there is no 

guarantee that previously sampled regions aren’t resampled. In addition, if high-grade 

prostatic intraepithelial neoplasia (HG-PIN) or atypical small acinar proliferation (ASAP) 

histopathological patterns are found on the initial biopsy, the area surrounding where 

these patterns were found should be resampled, as they are often markers for prostate 

cancer.[20, 21] The detection rate of a second systematic biopsy after an initial negative 

one has been demonstrated to range from 10% - 20%, clearly demonstrating the poor 

sensitivity of the initial biopsy for detecting prostate cancer in some patients.[19, 22]  

 In an attempt to remedy some of the aforementioned issues, the concept of 

targeted biopsy, in which regions of the prostate that appear suspicious on imaging are 

sampled, has recently developed growing interest.[18] This approach has been made 

possible by advances in imaging techniques, particularly those of magnetic resonance 

imaging (MRI), resulting in promising accuracy for detecting, localizing, and potentially 

grading prostate cancer using imaging.[23] By ensuring that regions suspicious on 

imaging are sampled during subsequent biopsy sessions, the goal is to increase the 

probability of detecting clinically significant cancer, thereby reducing the number of 
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subsequent biopsies required, and increasing the accuracy of the Gleason score obtained 

by biopsy.[18] Obtaining an accurate Gleason score is crucial in directing the optimal 

therapy for each patient, as an error as small as one point on the scale could substantially 

alter the type of treatment received.[16] 

The performance and potential clinical utility of the targeted biopsy approach has 

been studied by several researchers. The prevalence of a lesion deemed suspicious for 

prostate cancer on MRI among men with a clinical suspicion of prostate cancer has been 

estimated as 63%, when combining the results of two studies in which MRI was 

performed prior to biopsy.[24, 25] This relatively high prevalence suggests that there may 

be a role for MRI in guiding the biopsies of a substantial proportion of men with 

suspicion of prostate cancer. Pooled data from several studies comparing the systematic 

biopsy approach to targeted biopsy in either the same man or between randomized groups 

showed a cancer detection rate of 36% for systematic biopsy and 48% for targeted 

biopsy.[18] In addition, these studies found that cancer was detected in 30% of targeted 

cores, compared to 7% of cores from systematic biopsies, indicating that the number of 

cores required to detect cancer is less when using targeted biopsy (i.e. it is more 

efficient). One group studied the detection rate of MRI-guided targeted biopsy for 

clinically significant cancer in men with a previous negative TRUS-GB, and found a 52% 

detection rate.[26] This result is impressive, considering the 10% - 20% detection rate 

associated with subsequent systematic biopsies after an initial negative one. At least one 

group has studied the effect of augmenting systematic biopsy with targeted biopsy, and 

found that doing so increased the rate of detection of clinically significant cancer from 

14% to 19%.[18] 



 

11 

 

There are several issues with many of the studies on targeted biopsy performed to 

date, including variations in the definition of clinically significant disease, limited sample 

sizes, selection biases, and confounding effects such as the accuracy of the techniques 

employed. Because of these issues, and in light of the fact that the concept of targeted 

biopsy has shown promise for more accurately and efficiently providing estimates of the 

histopathological grade of prostate cancer, large multi-institutional prospective studies 

have been recommended in order to quantify the technique’s true clinical benefit.[18] 

1.2.4 Imaging 

This section gives a brief overview of the current state-of-the-art of the most common 

modalities of prostate cancer imaging. The discussion is limited to ultrasound and MRI, 

as these are the most common modalities used for imaging the gland itself. Other 

modalities, such as computed tomography (CT), positron emission tomography (PET), 

single positron emission computed tomography (SPECT), and PET/CT are more 

commonly used for evaluation of lymph node and/or distant metastases, and their use in 

imaging the gland itself is either limited (e.g CT), or the development of techniques for 

prostate gland imaging are premature (e.g. PET or PET/CT). As this work in this thesis is 

concerned with the imaging of the prostate gland in patients with localized prostate 

cancer, a discussion of these imaging modalities was excluded. 

1.2.4.1 Ultrasound 

Owing to its real-time nature, portability, and low cost compared to MRI, TRUS is the 

most commonly used modality for imaging the prostate. TRUS has the ability to visualize 

the zonal anatomy, and does have some ability to visualize prostate cancer in the 
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peripheral zone. TRUS is also an important tool for obtaining the prostate volume, which 

is used in some predictive nomograms, and is necessary for computing PSA density.[27] 

However, TRUS is generally only sensitive to the presence of higher grade, larger 

tumours,[28] and is not sensitive to tumours in the transition zone, the site of ~20% of 

prostate cancer.[29] Despite these pitfalls, TRUS is still regarded as an essential tool for 

guiding prostate biopsies and needles for brachytherapy.[27, 30] 

Because prostate tumours often exhibit hypervascularity, techniques such as 

Doppler and contrast-enhanced US (CEUS) have been developed for potentially 

increasing the sensitivity of US to prostate cancer. Dopper US is capable of measuring 

the amplitude of blood flow in the direction perpendicular to the transducer, and 

displaying this information as colour-coded regions on the screen. Similarly, CEUS 

employs the use of an injected contrast agent containing highly echogenic microbubbles 

to enhance visualization of hypervascularized regions. Findings of asymmetric or 

irregular flow may indicate the presence of prostate cancer.[31] Several studies of the 

potential utility of CEUS for detecting prostate cancer have been performed, with most of 

them concluding that the addition of CEUS for targeted biopsy increased the sensitivity 

of the biopsy procedure for detecting cancer. Results from these studies also generally 

agreed that biopsies targeted to areas suspicious on CEUS images could not replace 

systematic biopsy, as ~20% of patients with a positive systematic biopsy were negative 

on the targeted biopsy.[31, 32] Similar results have been found using Doppler US.[31] 

Another emerging technique receiving increased attention for improving the 

sensitivity of TRUS is US elastography (also called strain imaging). Similar to the age-

old technique of DRE, elastography aims to detect regions of prostate tissue with 
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increased stiffness, which may result from the loss of architecture, disordered growth, 

and increase in cell density that is typically associated with prostate cancer.[32] 

Elastography requires mechanical forcing of the tissue combined with real-time imaging 

to measure the induced tissue motion. The tissue motion data is then processed to provide 

estimates of tissue mechanical properties at various spatial locations, generating an image 

of estimated tissue stiffness.[33] Several studies have evaluated the sensitivity of US 

elastography for detecting prostate cancer and guiding targeted biopsies, with similar 

results as those for Doppler and CEUS.[31, 32, 34, 35] A recent study on the 

interpretation of US elastography images of the prostate found that US elastography 

images were superior to traditional b-mode images for visualizing prostate anatomy, 

suggesting that this technique could have particular utility in guiding interventional 

procedures such as brachytherapy and robot-assisted laparoscopic radical 

prostatectomy.[36, 37] In an attempt to exploit the superior contrast-to-noise ratio of US 

elastography images, fusion of US b-mode and elastography images has been performed 

for improving 3D segmentation of the prostate.[38] Research on improved techniques for 

performing US elastography is ongoing, and more potential applications are being 

explored.[39] 

1.2.4.2 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) has demonstrated promising performance in 

detecting and localizing prostate cancer.[27] As a result, MRI has recently seen increased 

use in clinical practice, most commonly for detecting cancer or for providing targets for a 

targeted biopsy in men with a previous negative biopsy and continued suspicion of 

prostate cancer.[40] The sensitivity of MRI for detecting prostate cancer has been 
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estimated in several studies, and varies greatly depending on the criteria selected for a 

positive result (which sometimes only includes tumours considered clinically significant), 

the zone in which the cancer is found in the gland, the type of MRI hardware used (e.g. 

field strength, type of rf coil used), and the sequence or combination of MR sequences 

employed.[41] 

Since the first publication of low-resolution T2-weighted prostate MR images in 

the 1980s, the technology of MR imaging, through advancements such as increased static 

field and gradient strengths and the introduction of endorectal (ER) receive coils, has 

developed to the point of providing high-resolution (i.e. ~3 mm slice thickness and sub-

millimeter in-plane resolution), high-contrast images of the prostate with fast acquisition 

times.[23] Modern T2-weighted prostate MR images provide detailed maps of prostate 

zonal anatomy, demonstrating clear differentiation between peripheral zone (PZ), central 

zone (CZ), and transition zone (TZ) tissues, though the CZ may not be discernable in 

men with substantial benign prostatic hyperplasia (BPH).[42] For prostate cancer 

detection, T2-weighted images demonstrate the best performance in the PZ, where cancer 

appears as a region of hypointensity compared to adjacent healthy PZ tissue, with the 

contrast between the two increasing in cancerous tissue of higher Gleason grade.[42] The 

use of T2-weighted images alone for detecting prostate cancer has demonstrated 

promising sensitivity, but it suffers from poor specificity in some patients, since the 

presence of prostatitis, scars, and post-biopsy hemorrhage can also cause regions of 

hypointensity on T2.[42] Despite this, T2-weighted images have found particular utility 

in assessing the extent of extra-glandular disease, including extra-capsular extension, 

neurovascular bundle and seminal vesicle invasion, and local lymphadenopathy and bone 
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metastases, especially when tri-planar images are used.[23, 27] In addition, T2-weighted 

images can be used to detect TZ tumours, and may be more sensitive to the presence of 

anterior PZ tumours than biopsy, since this is a region that is often difficult to sample 

with TRUS-guided biopsy.[27] Though there is substantial variability in the reported 

values of sensitivity of T2-weighted images (from 37% - 96%)[41] due to major 

differences in the definition of cancer, criteria chosen for a positive MRI result, and 

exclusion of TZ cancers in some studies, intensive work is currently being undertaken to 

accurately compare MR images of the prostate to whole-mount histopathology.[41, 43-

46] 

A functional MR imaging technique that has proved useful in identifying prostate 

cancer is dynamic contrast-enhanced (DCE) MRI. In a typical DCE MRI scan, the patient 

is injected with a contrast agent and imaged using a 3D T1-weighted MR sequence with 

high temporal resolution (~ 3 - 10 s), starting before the contrast agent reaches the 

prostate, and ending after it has completely washed out.[27, 47] Prostate cancer is 

associated with increased angiogenesis, with new blood vessels exhibiting higher 

permeability than those of healthy prostate tissue. This effect is thought to be the cause of 

earlier enhancement and washout of the contrast agent observed in regions of prostate 

cancer compared to that in healthy tissue.[27] Analysis of DCE MRI images can be 

performed qualitatively, but quantitative methods that measure pharmacokinetic (PK) 

parameters are becoming more popular, as they have the potential to reduce the inter-

observer and inter-patient variability in the analysis of DCE MR images.[23] As with T2-

weighted images, DCE MR images suffer from similar specificity issues, since prostatitis 

in the PZ and BPH nodules in the TZ appear as cancer, but the reported sensitivity of 
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DCE MRI is similar to that of T2-weighted images.[42] Current challenges in the clinical 

adoption of DCE MRI for prostate cancer detection include the limited availability of 

standardized analysis tools, a lack of consensus regarding optimal acquisition protocols, 

and limited spatial resolution due to the requirement for high temporal resolution and the 

inherent trade-off that exists between the two.[40] 

Another functional MR imaging technique that is seeing increased use for prostate 

cancer imaging is diffusion-weighted (DW) imaging. Unlike DCE MRI, DW imaging 

does not require the injection of a contrast agent, and instead employs the use of motion-

encoding gradients to produce image contrast that is related to the diffusion properties of 

protons in water.[42] By acquiring multiple DW images with different b-values (a setting 

that quantifies the level of diffusion-weighting in each image), it is possible to compute a 

quantitative image of apparent diffusion coefficient (ADC).[42] Areas with relatively low 

ADC values have been shown to correlate with regions of prostate cancer, a result that 

may be related to a decrease in the volume of fluid-filled ducts that is associated with 

cancerous prostate tissue.[42, 48] When combined with T2-weighted imaging, DW 

imaging has demonstrated a sensitivity of 81% and specificity of 84% for detecting 

prostate tumours larger than 4 mm diameter and Gleason score ≥ 6, though the specificity 

of T2-weighted and DW images combined was less than that of T2-weighted images 

alone.[48] Limitations of DW imaging include a high susceptibility to artifacts from 

magnetic field inhomogeneity, and low in-plane resolution. However, DW imaging can 

be performed in less time than DCE MR and does not require the injection of a contrast 

agent, making it potentially more practical for clinical use.[42] 



 

17 

 

Magnetic resonance spectroscopic imaging (MRSI) is a molecular imaging 

technique that has also seen use in the prostate. MRSI is unique in that it provides a 3D 

image of spectral profiles of tissue, and is therefore able to quantify the relative amount 

of the metabolites citrate, creatine, and choline within the prostate. Since levels of citrate 

tend to decrease, and those of choline increase in cancerous prostate tissue, a 

measurement of the relative concentrations of these two can be a marker for prostate 

cancer.[42] Though MRSI scans can be acquired within a reasonable timeframe (~ 10 - 

15 minutes), their interpretation requires special expertise and is very time-consuming, 

currently limiting the clinical applicability of this technique.[42] Other limitations 

include a sensitivity to static magnetic field inhomogeneity, limited spatial resolution, 

and limited specificity, since prostatitis in the PZ also lowers citrate and raises choline 

concentrations.[23, 42] However, MRSI has shown use in evaluating high-risk cancers, 

has demonstrated a good sensitivity for TZ tumours (~80%), and may be better than 

biopsy at detecting recurrent disease after radiotherapy.[27, 41] As such, continued 

research into improved methods of MRSI is ongoing.[49, 50] 

Emerging new techniques for prostate cancer MR imaging include sodium 

imaging and MR elastography (MRE). Cancerous prostate tissue may contain a higher 

concentration of sodium than healthy tissue, making sodium concentration a potential 

marker for the disease. The technique has been previously used to detect other 

pathologies including stroke, and breast and brain cancer, and a technique for producing 

quantitative sodium images of mouse prostate has recently been developed.[51] Sodium 

imaging, like MRSI, is a molecular imaging technique, but has the potential for 

producing higher resolution images, since there is a lack of other dominant resonances 
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near that of sodium.[51] As in US elastography, MRE produces images of the mechanical 

properties of prostate tissue, and has found use in improving registration between in vivo 

and ex vivo MRI of the prostate, and may hold promise for improved prostate cancer 

detection and localization.[52, 53] 

With so many available techniques for achieving different contrast in MRI, it is 

difficult to identify which technique provides the most clinical benefit for imaging 

prostate cancer. There seems to be a general consensus in the imaging and urologic 

communities that optimal detection and localization of prostate cancer using MRI will 

require some combination of T2-weighted images with one or more functional or 

molecular MR imaging sequences,[42, 54, 55] and the results from various studies have 

consistently shown that such combinations perform better than T2-weighted imaging 

alone, quite often improving the specificity over that of each individual technique.[27, 41, 

42] Figure 1.4 shows a series of multiparametric MR images of a prostate with 

histologically-proven prostate cancer, demonstrated how complementary MR images can 

improve the specificity of MR imaging for prostate cancer detection and localization. 
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Figure 1.4: Multiparametric MR images of a prostate with histologically-proven prostate cancer: a) T2-

weighted image correctly demonstrates the presence of cancer, as indicated by the region of hypointensity, 
b) a map of Ktrans (a DCE MRI PK parameter) showing sensitivity to the presence of the tumour, but a lack 

of specificity in this case, since several other benign areas within the prostate show enhanced areas, c) ADC 
map which also correctly identified the cancerous region, as shown by the region of hypointensity 

(restricted diffusion), and d) the region of histologically-proven prostate cancer. (Figure reproduced with 
permission from Ref. [42]) 

 Prostate Cancer Treatment 1.3

In this section, the prostate cancer treatments most commonly used in clinical practice are 

discussed in terms of their ability to control prostate cancer at various stages, and rates of 

treatment-related side effects. Following this, some of the most promising emerging 

modalities for delivering focal therapy are introduced, with particular attention to focal 

laser ablation (FLA) therapy, which is of relevance to the rest of the work in this thesis. 
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1.3.1 Conventional Approaches and the Focal Therapy Concept 

The three most common interventional procedures for localized prostate cancer are 

radical prostatectomy (RP), external beam radiation therapy (EBRT) and brachytherapy. 

Each of these treatments act on the whole prostate gland, and, since the prostate is in 

close contact with several sensitive structures (e.g. urethra, rectum, neurovascular 

bundles and bladder), each is associated with similar rates of long-term urinary 

incontinence, bowel toxicity and sexual dysfunction.[6, 56]. Studies have shown that, 

while whole-gland treatments such as RP can provide excellent control of disease in men 

with low- to intermediate-risk prostate cancer, men with this stage of the disease are 

currently over-treated.[57] In the PIVOT trial (Prostate Cancer Intervention versus 

Observation Trial), 731 men with localized prostate cancer were randomized to either RP 

or observation and followed for a median of 10.0 years. Results from the PIVOT trial 

showed no significant difference in the rates of prostate cancer-specific mortality 

between groups of patients treated with RP or observation, but patient-reported rates of 

urinary incontinence and erectile dysfunction were significantly different (17.1% vs. 

6.3% and 81.1% vs. 44.1%, respectively).[58] In a similar trial, RP was show to have an 

absolute reduction in risk of prostate cancer death of 5.4% over watchful waiting at 12 

years follow-up. However, it was also found that nearly all men in the RP group who died 

from prostate cancer had tumour growth outside the prostate capsule, suggesting that men 

with truly organ-confined disease may not require whole-gland therapy.[59] In addition, 

patients in the low-risk category have been shown to receive equal benefit from treatment 

with RP, EBRT, or brachytherapy.[60, 61] 
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While it may be agreed upon that men with low- and intermediate-risk prostate 

cancer are being over-treated, the optimal type of treatment for these men is not yet clear. 

Evidence in the literature suggests that watchful waiting may constitute under-treatment, 

and men who choose active surveillance often either suffer a decreased HRQOL knowing 

that the disease is left untreated, or eventually opt for definitive treatment even with a 

lack of evidence of progression.[62-64] In an attempt to provide a more optimal treatment 

option for men with low- to intermediate-risk prostate cancer, the concept of focal 

therapy is currently being investigated. The hypothesis of focal therapy is that treatment 

of the dominant prostate tumour, while leaving the rest of the gland intact, may provide 

sufficient control of the disease, while causing a minimal amount of treatment-related 

side effects.[65] There is currently much debate regarding the definition of a “dominant 

lesion”, which patients could benefit most from this approach, and which modality of 

treatment delivery is best suited to this approach.[66] However, several energy-delivery 

modalities, including high-intensity focused ultrasound (HIFU), cryotherapy, 

photodynamic therapy (PDT), and laser ablation have demonstrated an ability to create 

focal regions of ablated tissue within the prostate with limited morbidity.[67] 

1.3.2 Focal Laser Ablation Therapy 

Focal laser ablation (FLA) is an attractive modality for the controlled ablation of 

focal regions within the prostate. The first reported use of laser ablation for the treatment 

of localized prostate cancer was in 1984, in which Beisland et al. used a neodymium-

doped yttrium aluminum garnet (Nd-YAG) laser at 1,064 nm to ablate prostate tissue 

using a combined transurethral and suprapubic approach in 47 patients.[68] Results from 
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this case series showed that it was possible to ablate focal regions within the prostate 

while avoiding damage to the rectal wall. 

Following the work of Beisland et al., in which the only method of temperature 

monitoring was via a single temperature probe attached to a palpating finger in the 

rectum, Amin et al. reported laser ablation (referred to the authors as interstitial laser 

photocoagulation) of a focal lesion in one patient by inserting needles transperineally, 

and monitoring the region of ablation in real-time using b-mode and colour Doppler 

US.[69] Post-treatment biopsy of this patient revealed some remaining cancer, but the 

technique allowed re-treatment in this region without additive side effects. As more cases 

of prostate FLA were performed, the technique used for image-guidance advanced, with 

Lindner et al. completing a Phase I trial studying the safety of MRI-targeted, US-guided 

FLA therapy using CEUS to monitor treatment progression.[70, 71] In this trial, the 

authors found no significant decrease in erectile or urinary function due to the treatment, 

but unfortunately 50% of the 12 patients treated had positive post-treatment biopsies. The 

authors attributed the inaccuracy in the treatment delivery to registration accuracy 

between the pre-treatment MR and intra-treatment US images, as well as limitations in 

the ability of MRI to accurately visualize small tumours.[71] 

In an attempt to circumvent some of these issues, Raz et al. performed MRI-

guided FLA therapy in 2 patients, taking advantage of the ability of MRI to provide real-

time guidance of both needle insertion and temperature monitoring during laser 

application.[72] Following the treatments, a DCE MRI scan was performed to compare 

the estimated region of ablation to the pre-treatment region, as defined on combined T2-

weighted and DW MR images used for planning. They found that the DCE MR images, 
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which have been shown by Lindner et al. to correlate well with the region of ablated 

tissue on whole-mount histopathology, also correlated well with the region predicted by 

MRI thermometry.[72, 73] 

Over the last three decades, the technique of performing FLA therapy for 

localized prostate cancer evolved from using a 1,064 nm laser with only a single point of 

temperature monitoring, to a minimally-invasive transperineal procedure that is targeted 

and monitored using MRI, and delivered with a 980 nm laser at lower power and for 

shorter laser application times than previously achieved.[74] However, despite these 

technical advances, each case series or clinical trial studying FLA therapy has 

consistently demonstrated a high rate of detection of residual or recurrent cancer on post-

treatment biopsy. For this reason, it is part of the overarching hypothesis of this thesis 

that advances in the technology and techniques used to deliver MRI-guided prostate FLA 

therapy could enable this technique to consistently provide a high level of control of 

localized prostate cancer. The first proposed improvement is the development of an MRI-

compatible mechatronic system for the accurate guidance of needles for prostate FLA. 

 Challenges in MRI-Guided Needle-Based Prostate 1.4
Interventions 

The unique electromagnetic environment and physics of image encoding in MRI present 

several challenges to the development of mechatronic devices that must operate in the 

bore of an MRI scanner. The nature of each of these challenges will be described in this 

section. 
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1.4.1 The MRI Environment 

1.4.1.1 Effects of MRI on Devices 

The strong static (i.e. constant in time) magnetic field present in the bore of a clinical 

MRI scanner (usually 1.5 T - 3.0 T) places restrictions on the use of any magnetic 

materials. When placed near the bore of an MRI scanner, magnetic materials will 

experience a force that is proportional to magnitude of the spatial gradient of the 

magnetic field. This force has the potential to accelerate objects, turning them into deadly 

projectiles that could easily cause injury.[75] At the center of the MRI bore, where the 

static magnetic field is nearly spatially uniform, no force will be induced on an object; 

however, any non-spherical object will still experience a torque.[76] Unfortunately, this 

means that the use of some standard engineering materials such as martensitic stainless 

steel is prohibited. Since these materials have particular utility in the construction of 

precision devices, alternate custom solutions must be sought.[75, 77] 

Spatial encoding of the MR signal in tissue is performed by applying fast-

switching magnetic field gradients. Depending on their size, shape, and orientation, 

electrically conductive materials placed in the MRI bore during image acquisition may 

experience vibration or heating due to currents induced by these switching gradients.[77, 

78] This effect places further limitations on the materials available for use in an MRI-

guided device. For example, aluminum is an extremely versatile (non-magnetic) material, 

but its high electrical conductivity places restrictions on its use in MR. The use of large 

plates or loops of conductive materials should be avoided, especially if they are 

positioned near the gradient coils.[77] In addition to vibration and heating, the switching 

magnetic field gradients have the potential to induce currents in the electrical circuits of a 
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mechatronic device, thereby introducing noise into the signals from sensors, or causing 

erratic behavior of actuators. 

The third type of effect that an MRI scanner can have on a device is due to the 

transmitted rf field, which can induce currents in conductive materials. Objects with the 

greatest potential for rf heating are those with an elongated shape, or structures that form 

a loop.[76] In the context of the work in this thesis, rf heating presents the biggest 

challenge in terms of selection of MRI compatible needles. 

1.4.1.2 Effects of Devices on MRI 

In addition to avoiding negative effects to the device from the MRI, the presence of a 

device operating within an MRI scanner must not degrade the quality of the images being 

acquired. The primary mechanisms by which a device may degrade image quality are 

through the introduction of magnetic field inhomogeneity or rf noise. 

A magnetic object placed within an MRI scanner will cause a spatial distortion of 

the static magnetic field (inhomogeneity), an effect that can also be caused by eddy 

currents induced in a conductive material by the switching gradient fields.[75] Any 

deviation of the static field in the image field-of-view (FOV) from uniform will result in 

spatial distortions of the image that is generated.[79] Spatial distortions take the form of 

slice-select error, which is incorrect placement of the out-of-plane position of an image 

slice, and in-plane distortions, which cause the shape of objects (i.e. the patient’s 

anatomy) to contain error.[80] The magnitude of these errors is proportional to the 

magnetic susceptibility of the foreign material, inversely proportional to the strength of 

the gradient fields used to encode position, and inversely proportional to the cube of the 

distance from the image to the foreign object. The amount of image distortion can 
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therefore be proportionately reduced by increasing the strength of the gradients. 

However, for all other imaging parameters remaining the same, doing so requires an 

increase in rf receiver bandwidth (i.e. the range of frequencies to which the rf receive 

system is sensitive), thereby increasing the amount of noise in the image. In addition, the 

strength of the slice-select gradient is generally not user-controllable.[79] In regions 

where the magnetic material has caused a substantial gradient in magnetic field across 

image voxels, the resulting signal in the image in these voxels will be decreased unless a 

spin echo sequence is used.[79] 

Mechatronic devices may also emit rf signals (noise) that affect the quality of 

images acquired.[80] If the rf noise is concentrated at a particular frequency, it may result 

in a so-called “zipper artifact” in the images, appearing as a bright line. rf noise across a 

wide frequency range will result in uniform noise in the image, resulting in a decrease in 

the signal-to-noise ratio (SNR), and a decreased ability to visualize the anatomy being 

imaged.[80] SNR can be improved by decreasing the receiver bandwidth, but this comes 

at the expense of decreased gradient strength (with all other parameters the same), 

thereby increasing any distortions due to static field inhomogeneity. Therefore, attempts 

to shield all electrical components present in the mechatronic device should be made, and 

cables entering the MR scanner room should be connected through low-pass filters.[77, 

80] 

 Existing MRI-Guided Prostate Needle Guidance Devices & 1.5
Techniques 

The past decade has seen a substantial increase in the number of new devices developed 

for MRI-guided prostate interventions. Most of these devices have been developed for 



 

27 

 

biopsy, brachytherapy, or focal therapy of the prostate, and have taken either the 

transrectal, transperineal, or even transgluteal access approaches. This section will focus 

on a review of the current devices and techniques previously employed for transperineal 

delivery of needles to the prostate under MRI-guidance. 

1.5.1 The Conventional Approach 

The most commonly used approach for transperineal prostate needle guidance is with the 

use of a fixed grid template. The template consists of a regular grid of holes, with the 

rows identified by number, and columns identified alphabetically. In a TRUS-guided 

transperineal procedure such as brachytherapy, the grid template is fixed to a stabilizer on 

which the US probe is also mounted. This fixed relationship between the US probe and 

template allows the template holes to be superimposed onto the US image of the prostate, 

thereby allowing the physician to target specific regions in the prostate by using the 

appropriate template hole. Since this technique is so widely-used for brachytherapy, it 

should come as no surprise that the first attempts at MRI-guided transperineal prostate 

interventions were also performed using a fixed template. In 1998, D’Amico et al. 

reported MRI-guided prostate interstitial prostate brachytherapy in 9 patients. The 

authors performed the procedure in a 0.5 T interventional MRI unit, and inserted needles 

under real-time MR imaging guidance using a perineal template.[81] Two years later, the 

same group reported a similar case of transperineal MRI-guided prostate biopsy in which 

the prostate was imaged at the start of the procedure for identification of suspicious 

region(s). A random sextant biopsy was then performed, followed by targeted biopsy of 

the suspicious region(s). In this case, the MRI-guided approach proved especially 

valuable, since the patient had previously undergone a proctocolectomy, and was 
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therefore ineligible for TRUS-guided biopsy. In addition, the two targeted biopsy cores 

were positive for cancer, whereas the sextant samples were negative. This publication 

therefore made an excellent case for the advantages of performing prostate interventions 

under MRI-guidance.[82] Hata et al. followed a similar approach, performing MR-guided 

prostate biopsy in an open MRI using a grid template that was registered to the MRI 

using an optical tracking system. Similar to the case done by D’Amico et al., they 

visualized suspected tumours during the procedure, and in one of the two cases 

performed, found positive targeted biopsy samples and negative samples from the sextant 

cores. In the other case, while all biopsy cores were found to be negative, the use of MRI-

guidance proved valuable in ensuring biopsy needles reached the peripheral zone, which 

was very thin in this patient due to the presence of BPH.[83] 

1.5.2 Mechatronic or Robotic Devices 

As the technique of MRI-guided prostate interventions became more popular, the need 

for improvements in guidance technology became evident. While the technique of using a 

grid template to guide needles in an open-bore MRI had proved feasible, most clinical 

centers only have access to closed-bore MRI scanners intended for diagnostic use. In 

addition, closed-bore scanners have the potential for producing much higher quality 

images due to increased field strengths and higher gradient performance, making them 

more attractive.[84] However, closed-bore MRI scanners present a challenge in the 

available workspace for an MRI-guided prostate procedure: the patient, along with all 

interventional devices, must fit within a bore of ~55 - 60 cm diameter that is generally 

~1.5 - 2 m in length, while leaving enough room for physician access.[77] 
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In spite of these workspace constraints, Susil et al. and Menard et al. presented 

the results of 10 MRI-guided prostate HDR brachytherapy procedures performed on 5 

patients within the bore of a 1.5 T clinical closed bore MRI scanner. Their approach 

employed the use of a custom-made integrated grid template and endorectal (ER) receive 

coil device with the patient placed in a lateral decubitus position. The authors reported 

good dosimetric results with their technique, which they partially attributed to the 

advantage of having high-field intra-treatment MR images at their disposal for needle 

guidance and target delineation. However, they reported a long overall procedure time (> 

5 hours), and anticipated possible issues with having the patient in the lateral decubitus 

position, as well as instability of the prostate gland as compared to the standard lithotomy 

position used for brachytherapy.[84, 85] 

In attempts to overcome the issue of limited physician access in a clinical MRI 

scanner, several researchers developed novel custom needle guidance robots. One of the 

first reported robotic systems for an MRI-guided prostate procedure was designed for use 

in an open MRI scanner, and consisted of a 5 axis linear motion module located above 

the MRI bore that actuated the motions of two rigid arms reaching into the bore of the 

scanner. The authors suggested their device could be used for the navigation of needles 

for prostate brachytherapy.[86] Other seminal works included a pneumatic cylinder-

actuated robot presented by DiMaio et al., and a unique parallel robot called “MRI 

Stealth” employing the use of newly developed pneumatic stepper motors by Muntener et 

al. in 2006.[87-89] The pneumatic device originally reported by DiMaio et al., which was 

intended for biopsy and brachytherapy, demonstrated good MRI compatibility and 

accurate targeting abilities.[90, 91] The MRI Stealth robot saw extensive preclinical 
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evaluation in terms of positioning accuracy and repeatability, seed placement accuracy in 

tissue-mimicking phantoms, and tests in a canine model.[92, 93] Though clinical tests of 

the MRI Stealth robot (AKA MRBot) have yet to be reported, the same group indicated a 

possible clinical trial using the device, and development of a commercial system for 

brachytherapy.[94] Various devices employing novel MRI-compatible actuation 

techniques were developed, including a binary robot employing a parallel arrangement of 

dielectric elastomer actuators, a similar concept employing newly developed “air muscle” 

actuators, and a concept of a wire-driven manipulator for MRI-guided prostate 

cryoablation.[95-97] Fully-actuated robots that have seen use in humans include a device 

employing hydraulic actuation for positioning and a pneumatic needle-tapping system 

described by van den Bosch et al., and an ultrasonic motor-driven robot reported by 

Goldenberg et al.[98-101] Su et al. presented a unique design of a master-slave user-

controlled robot featuring a custom-made optical force sensor for haptic feedback.[102] 

Recently developed systems still in the preclinical phase include a 4 degree-of-freedom 

(DOF) pneumatically-actuated parallel robot, first presented by Song et al., and a 

piezoelectric motor-driven robot designed for the guidance of needles and adapted for the 

guidance of a concentric tube manipulator, demonstrated by Su et al.[103, 104] 

 Thesis Hypothesis and Objectives 1.6

The central hypothesis of this thesis is that an MRI-compatible mechatronic needle-

guidance system, combined with a treatment planning strategy that recognizes and 

compensates for the uncertainties in system performance, can provide an accurate and 

reliable method for completely ablating focal prostate cancer targets identified on 

imaging. Such a method would allow an accurate appraisal of the clinical efficacy of 
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focal laser ablation therapy for controlling cancer in men with localized prostate cancer, 

and the level of treatment-related side effects associated with this technique. 

1.6.1 Specific Objectives 

The four primary objectives of this thesis, described respectively in each of the four main 

chapters, are to: 

I. Develop and validate a method of accurately registering the coordinate system of 

an MRI-guided interventional device to that of a clinical MRI scanner under the 

unfavourable conditions generally found in the interventional MRI environment. 

II. Develop a mechatronic system for accurately guiding needles within the bore of 

an MRI scanner. Verify the system’s safety and MRI-compatibility, and quantify 

the achievable accuracy to which it can guide needles to the prostate. 

III. Use the system to perform focal laser ablation therapy in men who have 

consented to participate in an ongoing Phase I/II clinical trial. Quantify 

improvements gained in usability and clinical workflow, and quantify the 

achievable accuracy in needle placement. 

IV. Develop a method of treatment planning for MRI-guided focal laser ablation 

therapy that compensates for a given level of uncertainty in needle placement 

error. Combined with results from the previous objective, this will lead to more 

precise, evidence-based patient selection criteria for focal laser ablation 

eligibility, and improved treatment plans to ensure a high probability of complete 

focal target ablation in each case. 
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 Outline of this Thesis 1.7

The following four chapters form the body of this thesis, and are summarized here: 

1.7.1 Chapter 2: The Effects of Magnetic Field Distortion on the Accuracy 

of Passive Device Localization Frames in MR 

The intra-treatment magnetic resonance (MR) imaging environment presents many 

challenges for the accurate localization of interventional devices. In particular, geometric 

distortion of the static magnetic field may be both appreciable and unpredictable. This 

chapter aims to quantify the sensitivity of localization error of various passive device 

localization frames to static magnetic field distortion in MR. 

Three localization frames were considered based on having distinctly different 

methods of encoding pose in MR images. For each frame, the effects of static field 

distortion were modeled, allowing errors in rotational and translational pose estimation to 

be computed as functions of the level of distortion, which was modeled using a first order 

approximation. Validation of the model was performed by imaging the localization 

frames in a 3T clinical MR scanner, and simulating the effects of static field distortion by 

varying the scanner’s center frequency and gradient shim values. 

Plots of both rotational and translational error in localization frame pose estimates 

are provided for ranges of uniform static field distortions of 1 – 100 μT and static field 

distortion gradients of 0.01 – 1 mT/m in all three directions. The theoretical estimates are 

in good agreement with the results obtained by imaging. 

The error in pose estimation of passive localization frames in MR can be sensitive 

to static magnetic field distortion. The level of sensitivity, the type of error (i.e. rotational 
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or translational), and the direction of error are dependent on the frame’s design and the 

method used to image it. If 2D gradient echo imaging is employed, frames with pose 

estimate sensitivity to slice-select error (such as the z-frame) should be avoided, since 

this source of error is not easily correctable. Accurate frame pose estimates that are 

insensitive to static field distortion can be achieved using 2D gradient echo imaging if: a) 

the method of determining pose only uses in-plane measurements of marker positions, b) 

the in-plane marker positions in images are not sensitive to slice-select error, and c) 

methods of correcting in-plane error in the readout direction are employed. Results from 

the work in this chapter were critical to the development of the needle guidance system 

described in Chapter 3. 

1.7.2 Chapter 3: A System for MRI-Guided Transperineal Delivery of 

Needles to the Prostate for Focal Therapy 

The purpose of this chapter is to demonstrate the technical capabilities of a new magnetic 

resonance imaging (MRI)-guided system for delivering needles to the prostate for focal 

therapy. Included is a presentation of the design of the system and its user interface, 

evaluation of MR-compatibility, and quantitative evaluation of guidance accuracy and 

repeatability within the bore of a clinical MRI scanner. The system consists of a 

manually-actuated trajectory alignment device that allows a physician to precisely align a 

set of needle guides with an intended target in the prostate within the bore of a clinical 

closed-bore MRI scanner. Needle insertion is then performed transperineally, with the 

patient in the bore of the MRI, and custom software provides monitoring of thermal 

ablative procedures. 
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The system is shown to have a minimal effect on image distortion, and only a 6% 

decrease in image signal-to-noise ratio. Through needle insertion tests in tissue-

mimicking phantoms, the system’s potential for reliably guiding needles to intra-MR 

targets within 2.64 mm has been demonstrated. Use of the system to deliver focal laser 

ablation therapy to two patients showed that it can be used to deliver needles with 

minimal disruption of workflow, and in less time than when insertions are performed 

freehand or with a fixed grid template. 

Results from needle insertion tests in phantoms suggest that the system has the 

potential to provide accurate delivery of focal therapy to prostate tumours of the smallest 

clinically significant size. Initial tests in two patients showed that needle deflection was 

larger than in phantoms, but methods of manually compensating for this effect were 

employed and needles were delivered to treatment sites with sufficient accuracy to 

deliver effective treatment. In addition, the treatment was delivered in less time than with 

a fixed grid template or freehand insertions. Despite this success, methods of reducing or 

compensating for needle deflection are needed in order to fully utilize the potential of this 

system, and further reduce total procedure time. 

1.7.3 Chapter 4: A Mechatronic System for In-Bore MR-Guided Insertion of 

Needles to the Prostate: Experiences Using the System for Prostate Focal 

Laser Ablation in Eight Patients 

The purpose of this chapter is to present our experiences in development and initial 

clinical evaluation of a novel mechatronic system for in-bore guidance of needles to the 

prostate for magnetic resonance (MR)-guided prostate interventions. We report feasibility 

of use and accuracy of this device in the context of focal laser thermal ablation therapy 
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for localized prostate cancer. Patients underwent MR-guided focal laser thermal ablation 

with device-mediated laser fiber delivery. We recorded targeting error and needle 

delivery time and compared device performance to a fixed grid template approach. 

Eight patients, requiring a total of 29 needle insertions, were treated with use of 

the system. Median needle guidance error was 3.4 mm (IQR 2.1 – 5.2 mm) and median 

needle guidance time was 8 min (IQR 6.5 - 10.5 min). The median time required to guide 

each needle to its target using this device was significantly less than with use of the 

template: 8 vs. 18 min (p < 0.0001, 95% CI of difference: 5 – 13 min). 

Needle guidance time was significantly decreased compared to a fixed grid 

template approach, and the needle guidance error was within the acceptable range for 

clinically significant prostate tumours. This system provides a reliable method of 

accurately aligning needle guides for in-bore needle delivery to the prostate, and an 

improved workflow for an in-bore procedure. 

1.7.4 Chapter 5: Treatment Planning for Prostate Focal Laser Ablation in the 

Face of Needle Placement Uncertainty 

The purpose of this chapter is to study the effect of needle placement uncertainty on the 

expected probability of achieving complete focal target destruction in focal laser ablation 

(FLA) of prostate cancer. Using a simplified model of prostate cancer focal target, and 

focal laser ablation region shapes, Monte Carlo simulations of needle placement error 

were performed to estimate the probability of completely ablating a region of target 

tissue. 

Graphs of the probability of complete focal target ablation are presented over 

clinically relevant ranges of focal target sizes and shapes, ablation region sizes, and levels 
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of needle placement uncertainty. In addition, a table is provided for estimating the 

maximum target size that is treatable. The results predict that targets whose length is at 

least 5 mm smaller than the diameter of each ablation region can be confidently ablated 

using, at most, 4 laser fibers if the standard deviation in each component of needle 

placement error is less than 3 mm. However, targets larger than this (i.e. near to or 

exceeding the diameter of each ablation region) require more careful planning. This 

process is facilitated by using the table provided. 

The probability of completely ablating a focal target using FLA is sensitive to the 

level of needle placement uncertainty, especially as the target length approaches and 

becomes greater than the diameter of ablated tissue that each individual laser fiber can 

achieve. The results of this work can be used to help determine individual patient 

eligibility for prostate FLA, to guide the planning of prostate FLA, and to quantify the 

clinical benefit of using advanced systems for accurate needle delivery for this treatment 

modality. 

1.7.5 Chapter 6: Conclusions and Future Work 

This chapter describes the overall conclusions of all major chapters in the thesis, and 

provides recommendations for future work that could address some of the remaining 

challenges.  
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Chapter 2. 
  

The Effects of Magnetic Field Distortion on the 

Accuracy of Passive Device Localization Frames in MR† 

 

 Introduction 2.1

Magnetic resonance (MR) imaging is an attractive modality for guiding minimally-

invasive procedures. This is due to several features that MR offers: high soft tissue 

contrast, true 3D acquisition capability, multiparametric imaging capability, and a lack of 

ionizing radiation.[1] For these reasons, MR-guided procedures have been explored for 

applications such as prostate biopsy and therapy,[2-10] breast biopsy,[11] liver 

ablation,[12, 13] and neurologic intervention,[14-16] to name a few. In an attempt to 

provide a solution that can guide needles, catheters or surgical tools with high accuracy, 

MR-compatible robotic, mechatronic, or mechanically-assistive devices are often 

employed for these applications. Some salient examples of devices that have seen use in 

clinical procedures include: Neuroarm, an MR-compatible image-guided robot for 

neurosurgery;[17] DynaTRIM, a commercially available device for MR-guided 

transrectal prostate biopsy (Invivo Corporation, Gainesville, Florida, USA);[18]  and 

Innomotion, a commercially available general purpose robot for percutaneous MR-guided 

interventions (Innomedic, Herxheim, Germany).[19] Successful implementation of these 

                                                 
†. A version of this chapter has been submitted for publication: Cepek, J., Chronik, B., Fenster, A., “The 
Effects of Magnetic Field Distortion on the Accuracy of Passive Device Localization Frames in MR.” Med. 
Phys. (2013, In Revision). 
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systems for an MR-guided procedure requires accurate localization of the device within 

the MR image space.[20] This process allows MR-identified targets to be transformed to 

the interventional device’s coordinate system for device alignment and manipulation, and 

the device’s position in MR to be known for visualization or alignment verification 

purposes. Any error in localizing a device in MR image space will result in systematic 

errors in subsequent targeting tasks, and they should therefore be minimized. In the 

context of this thesis, the relevant metric of error is needle placement error, which is 

defined as the distance between a needle’s final position in tissue and the point in the 

tissue at which the needle was planned to be placed. This chapter aims to study the 

sensitivity of but one component of needle placement error, as illustrated in Figure 2.1. 

Specifically, this chapter will study the sensitivity of device localization error to static 

magnetic field distortions in MR. In Chapter 3, additional components of error will be 

evaluated, and the absolute value of localization error will be considered. 

 
Figure 2.1: Illustration of the various components that contribute to needle placement error. This chapter 

considers the sensitivity of error in device localization to the presence of static magnetic field distortions in 
MR. 

Three methods are commonly used to locate interventional devices in MR image 

space: positional encoding of the joints of the device,[2] active tracking,[21, 22] and 
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passive markers.[3, 23-25] The sole use of joint encoding requires that the device be 

fixed to the MR scanner and accurately calibrated to its coordinate system. As many 

interventional devices are designed for use in clinical diagnostic scanners, they are 

usually removable and portable, and are generally not placed at the same precise position 

for each procedure, making this approach impractical. For these reasons, active and 

passive tracking markers are used much more commonly, as these methods allow for 

localization of the device in the MR workspace for each procedure. 

Active tracking in MR involves the placement of small radiofrequency (rf) 

receive coils on the object to be tracked.[21] A minimum of three projection images are 

then acquired, providing 3D localization of the coil. While this method can provide high-

accuracy localization of interventional devices, it requires integration with the scanner’s 

software and connection of each coil to the scanner through wires, adding complexity. As 

well, each coil must be surrounded by an MR-visible material, a requirement that is 

trivially satisfied for applications such as endovascular catheter tracking, but can be 

cumbersome for tracking devices external to the body. In addition, as high-field scanners 

are commonly used for interventional procedures, sufficient signal-to-noise ratio in 

images of small tracking markers can be achieved using a body coil, making active 

tracking coils potentially unnecessary for tracking devices external to the body.[10] 

Passive localization frames employ MR-visible markers arranged in a known 

geometric configuration. Once imaged, a relationship between the device’s and MR’s 

coordinate systems can be established; allowing any point in MR space to be targeted by 

the interventional device. Common localization frames, such as the Brown-Roberts-Wells 

frame (hereafter referred to as the z-frame), developed for CT-guided neurosurgical 
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interventions, have recently seen use in MR.[3] However, since the nature of geometric 

distortion in MR images is much different from that in CT, it is important to consider the 

sources of localization error in the MR environment. This is especially true because 

geometric distortion in MR images is dependent on the level of magnetic field distortion, 

which can be both substantial and unpredictable in the region surrounding a patient’s 

body and near devices containing magnetic materials. 

In this work, a simplified mathematical description of MR imaging of ellipsoids 

in the presence of static field distortion is presented. Next, this formulation is applied to 

three characteristic MR device localization frames found in the literature to compare each 

of their sensitivities to static field distortion. Finally, each of the three localization frames 

were constructed and imaged in a clinical MR scanner to validate the simplified 

theoretical model. 

 Methods 2.2

2.2.1 2D Gradient Echo Imaging of Ellipsoids 

Any object placed in an external magnetic field will experience an induced 

magnetization, leading to a shift in the net magnetic field both inside and outside of the 

object. For a general shape, finding the spatial distribution of the magnetic field shift 

requires the solution of a partial differential equation in three dimensions. Fortunately, 

however, for the case of ellipsoids in a uniform external field, analytic solutions are 

readily available. Details of these solutions and the resulting location at which cylinders 

and spheres would appear in a 2D gradient echo image in the presence of static field 

distortion are provided in Appendix A. In the remainder of this section, a simple method 

of correcting in-plane distortion in 2D gradient echo images is described. 
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2.2.2 In-Plane Centroid Measurement 

In imaging cylinders or spheres using MR, three methods are considered: 1) a single 

image of each object is acquired with frequency-encoding along rows of image pixels, 2) 

a single image of each object is acquired with frequency-encoding along columns of 

image pixels, and 3) two images of each object are acquired, with the frequency-encoded 

direction switched in each acquisition, and measurements only made in the phase-

encoded direction of each image. Figure 2.2 demonstrates method 3. 

 
Figure 2.2: Accurate in-plane measurement of an object’s position in MR in the presence of static field 
distortion by acquiring two images with the frequency-encoded (F.E.) direction alternated: a) frequency-
encoding in the left-right (horizontal) direction, b) frequency-encoding in the anterior-posterior (vertical) 
direction, c) sum of images in a) and b), showing how measurements of the object’s position in the phase-

encoded direction in separate acquisitions can be combined to find the true position. 

The first two methods represent the simplest and quickest method of in-plane 

object localization, since they only require a single 2D image acquisition. Comparison of 

results using these two methods will show the sensitivity of each frame’s accuracy to the 

direction of frequency-encoding. By using the third method, in-plane measurements are 

insensitive to static field distortion, allowing error in frame localization to be studied 

independently of this source of in-plane error. Correction of out-of-plane error due to 

static field distortion in 2D gradient echo imaging requires more complex methods, and 

the ability to control the slice-select gradient strength or polarity.[26] Such techniques 
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were not considered in this work since they are not generally at the operator’s disposal on 

a standard clinical scanner. 

Practically, computation of the centroid of each ellipse is performed by first 

filtering the images using a circular averaging (pill-box) filter of radius 2 pixels to 

remove noise. A binary mask is then created by thresholding the filtered image such that 

the area of the resultant mask is equal to the known area of the elliptical cross section. 

Finally, the filtered image is masked to remove background information, and an intensity-

weighted centroid is computed. 

2.2.3 Localization Frames 

Three localization frame designs are considered: the z-frame, first developed for use in 

CT-guided neurosurgical procedures;[27] the + frame, developed for an MR-guided 

prostate needle delivery device;[10] and an arrangement of spherical fiducials.[19] Each 

frame is characteristic in the way in which it encodes pose (i.e. position and orientation) 

in images. The effect of static field distortion is therefore expected to affect each frame’s 

accuracy differently. Each of these localization frames consists of a fixed arrangement of 

either cylinders or spheres, enabling a theoretical analysis of pose estimation error using 

the expressions in Appendix A. For each frame, it is desired to find a rigid transformation 

that relates any point in the frame coordinate system to that in the MR scanner’s 

coordinate system. This transformation can be formulated using a 4x4 transformation 

matrix A , as follows 

 
1 1

   
=   

   
MR fp p

A , (2.1) 
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where MRp  is the point in the MR coordinate system, and fp  is the point in the frame’s 

coordinate system (column vectors). The transformation matrix can be decomposed as 

 
1T

 
=  
 

R t
A

0
, (2.2) 

where 

 
11 12 13

21 22 23

31 32 33

R R R
R R R
R R R

 
 =  
  

R  (2.3) 

is a rigid rotation matrix, and 

 
x

y

z

t
t
t

 
 =  
  

t  (2.4) 

is a translation vector. Inversion of A  allows points defined in the MR coordinate system 

to be found in frame coordinates 

 
1 1

   
=   

   
f MR-1p p

A . (2.5) 

Furthermore, since this work aims to study the sensitivity of localization frame 

error to static field distortion alone, the transformation relative to a reference pose is of 

interest 

 = -1
rel 0 iA A A , (2.6) 

where 0A  is the transformation matrix for the frame at a reference pose (i.e. in the 

absence of static field distortion), and iA  is that for the frame at its current pose. 0A  is 

obtained by imaging the frame in the absence of static field distortion, and using the third 

method of centroiding, as described in section 2.2.2. relA  quantifies the relative error. 
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In this chapter, error is represented by each of the three Euler angles and 

translational components of error in localizing each frame, represented by the rotation 

matrix relR  and translation vector relt , respectively. In defining the Euler angles, the 

rotation matrix is decomposed into rotations about the x, y, and z axes 

 ( ) ( ) ( )z z y y x xθ θ θ=relR R R R , (2.7) 

where xθ , yθ  and zθ  are the angles of rotation about the x, y and z axes, respectively, 

and the three rotation matrices are defined as 

 

( ) ( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )

( )
( ) ( )
( ) ( )

cos 0 sin1 0 0
0 cos sin ,  0 1 0 ,  
0 sin cos sin 0 cos

cos sin 0
sin cos 0 .

0 0 1

y y

x x x y

x x y y

z z

z z z

θ θ

θ θ θ θ
θ θ θ θ

θ θ
θ θ θ

     = − =       −    
 −
 =  
  

x y

z

R R

R

 (2.8) 

Using this definition, rotational and translational errors in localization of each 

frame in each axis can be studied independently. 

2.2.4 Z-Frame 

The z-frame consists of an arrangement of seven MR-visible cylinders. A single image 

slice will show seven ellipses, the centroids of which are used for localizing the frame. 

The z-frame is shown in Figure 2.3. 
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Figure 2.3: The z-frame: a) coordinate system and image intersection points, b) MR image showing the 

seven ellipses. 

Table 2.1 gives the values of the parameters for the equation of each cylinder in 

the MR coordinate system, with the frame aligned with the MR axes and centered at the 

scanner’s isocenter. Each cylinder’s axis is described by the parametric equation 

 t= +l s v . (2.9) 

Table 2.1: Line parameters for each cylinder in the z-frame. vz = 0, and sz = 1 for all segments. 

Segment vx vy sz sy α* 
1 0  0  2

xl−  2
yl−  0  

2  0  y
z

l
l

−  2
xl−  0  4

π  

3  0  0  2
xl−  2

yl  0  
4  x

z

l
l

−  0  0  2
yl  4

π  

5  0  0  2
xl  2

yl  0  
6  0  y

z

l
l  2

xl  0  4
π  

7  0  0  2
xl  2

yl−  0  
 *the angle that each cylinder’s axis makes with the longitudinal component of the static magnetic field 

The three corresponding points in the frame coordinate system can be found as 
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1 1 1
2 2 22 4 6
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f f f

x
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z

l f
l f f
l f f f

−

−

− − −

− 
   = − +  
 + + + 

p p p , (2.10) 

where if  is a function that measures the fraction along the length of the frame at which 

each diagonal cylinder is imaged 

 
( )

( ) ( )

1

1 1

MRMR

MR MR

ii
i

i i

f
+

+ −

−
=

−

p p

p p
, (2.11) 

and 
MRip  is the centroid of ellipse i identified in an MR image. The transformation matrix 

for the z-frame can be defined as that which minimizes the l2-norm of the error between 

the three points in the MR coordinate system, and the corresponding transformed set of 

points.[28] That is: 

 ( )arg minZ D=
A

A , (2.12) 

where D  is the sum of the squared error between the two sets of points 

 

2
, 2, 4,6

MR fi i
i

D i= − =∑ p Ap
. (2.13) 

ZA  was computed in MATLAB using the procrustes function without scaling or 

reflection. 

2.2.5 + Frame 

The + frame consists of two perpendicular MR-visible cylinders.[10] Localization of four 

points on the frame is achieved by imaging each cylinder in two image planes 

perpendicular to its axis. The frame is shown in Figure 2.4. 
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Figure 2.4: The + localization frame: a) coordinate system and localization points for the + frame, b) MR 

images showing the four points used for localization. 

Table 2.2 gives the parameters of each cylinder’s axis, in the MR coordinate 

system, with the frame centered at the MR isocenter and aligned with the MR axes. 

Table 2.2: Line parameters for each cylinder in the + frame. s = 0 for both segments. 

Segment vx vy vz α 
1 0 0 1 0 
2 0 1 0 π/2 

 
With the frame in this orientation, points 1MR

p  and 2MR
p  are localized in axial (x-y 

plane) MR images, while 3MR
p  and 4MR

p  are localized in coronal (x-z plane) images. Unit 

vectors in the direction of the axes of the frame can then be defined as 

 

2 1

2 1

ˆ MR MR

MR

MR MR

f

−
=

−

p p
z

p p
, 

( ) ( )
( ) ( )

2 1 4 3

2 1 4 3

ˆ MR MR MR MR

MR

MR MR MR MR

f

− − × −
=

− × −

p p p p
x

p p p p
, and 

  ˆ ˆ ˆ
MR MR MRf f f= ×y z x , (2.14) 

with the origin of the frame defined as 

 ( )1 2,
MRf =o M l l , (2.15) 
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where ( )1 2,M l l  is a point midway between a point on line 1l  and a point on line 2l  that 

are a minimum distance from each other. Using Equations (2.14) and (2.15), the 

transformation matrix for the + frame can be written as 

 
ˆ ˆ ˆ

0 0 0 1
MR MR MR MRf f f f 

=  
 

+

x y z o
A . (2.16) 

2.2.6 Spherical Marker Frame 

The third localization frame design considered in this work is an arrangement of MR-

visible spheres. Since the correspondence between spheres in the images and on the 

frame is known, a minimum of only three spheres is required. This arrangement is shown 

in Figure 2.5. 

 
Figure 2.5: The spherical marker localization frame: a) localization points and coordinate system, b) MR 
image of the frame. Note that, without acquiring multiple contiguous slices, accurate sphere localization 
requires the acquisition of additional images in at least one other plane perpendicular to the one shown. 

As for the z-frame, imaging the spherical fiducial frame provides three 

corresponding points in both the MR and frame coordinate system, and the frame’s 
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transformation matrix can be defined by the rigid transformation that minimizes the l2-

norm of the error between the corresponding points. 

2.2.7 Model Parameters 

Accurate tuning of a clinical MR scanner’s calibration values (e.g. rf center frequency, 

gradient shim values, transmit gain) to the object being imaged requires an object of 

sufficient volume to provide adequate signal for measurement.  Since localization frames 

generally contain a relatively small volume of fluid, this process may not always be 

performed successfully on a clinical scanner. A common approach is to obtain calibration 

values using a large object (human body or a phantom) and save these parameters for 

imaging of the frame. Assuming that the scanner is tuned to a spherical volume of tissue 

with uniform magnetic field equal to[29] 

 0
11
3tiss airB B χ = + 

 
, (2.17) 

the center frequency will be equal to 

 
0

11
3c airBω γ χ = + 

  . (2.18) 

Table 2.3 summarizes the rest of the MR parameters used in the model, selected 

to be representative of a typical MR sequence used for localization frames, and the 

localization frame physical properties. 
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Table 2.3: Parameters used in the model of localization frame imaging in MR. The gradient strengths are 
chosen to be representative of values typically used in clinical sequences. 

Parameter Value Units 

0B  3 T 

ssG  25 mT/m 

feG
 9.2 mT/m 

Repetition Time 150 ms 

Echo Time 4 ms 

Flip Angle 60 degrees 

Slice Thickness 3 mm 

Field-of-view 128 x 128 mm 

Acquisition Matrix 128 x 128 - 

,water tissχ χ * -9.05 x 10-6 unitless 

eχ † -9.05 x 10-6 unitless 

airχ  0.36 x 10-6 unitless 

dB∆  [10-6, 10-4] T 

' , ' , 'x y zG G G
 [0.01, 1] mT/m 

, , x y zl l l  76.2 mm 

 *Susceptibility defined as M
Hχ =  

 †Estimate of susceptibility for acetyl homopolymer[30] 

2.2.8 Error Measurement in MR 

Each of the three passive localization frames was constructed for validation of the 

theoretical model of error in a 3T clinical MR scanner (MR750, GE Healthcare, 

Milwaukee, WI). All cylindrical sections were manufactured as 6 mm drilled holes in 

plastic (acetal homopolymer), and spherical markers were manufactured from an Acrylic 

resin in a 3D rapid manufacturing system (Perfactory Mini, EnvisionTEC, Dearborn, MI) 

with a resolution of 25 μm. The cylindrical sections and spherical markers were filled 

with a 1% solution of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA, 



 

61 

 

Magnevist, Bayer Healthcare, Berlin, Germany) by volume. Figure 2.6 shows each of the 

three frames constructed for tests in MR. 

 
Figure 2.6: The three localization frames constructed for error sensitivity tests in MR: a) z-frame, b) + 

frame, c) spherical marker frame. 

Simulation of the effects of a magnetic field distortion on each localization frame 

was performed by varying the MR scanner’s center frequency and gradient shim values 

over several localization frame image acquisitions. Before imaging any of the frames, a 

spherical phantom (3T Head TLT Sphere Phantom, General Electric Company, 

Milwaukee, WI) was placed at the scanner’s isocenter and imaged to provide calibration 

values similar to what would be obtained for a human head. All center frequency and 

gradient shim offsets were relative to the initial values obtained by imaging the phantom. 

Error was defined relative to the pose of each frame, as estimated using images without 

simulated distortion, and with in-plane measurements only made in the phase-encoded 

direction. Localization of the centroid of ellipses and spheres in each image was 

performed semi-automatically using the method described in Section 2.2.2. 

 Results 2.3

Figures 2.7 - 2.9 show the localization error of each frame in the presence of a uniform 

magnetic field distortion ranging from 1 – 100 µT and static field distortion gradients of 
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0.01 – 1 mT/m in each direction. In the figures, theoretical results are shown using lines, 

and experimental results using point markers. Note that the range of gradient distortion 

values tested experimentally was limited to the maximum value available for manual 

adjustment on the scanner.  
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Figure 2.7: Error in pose estimation of the z-frame: a) rotational error, represented by the three Euler 

angles, b) translational error. Solid and dashed lines (denoted “Th.” in the legends) indicate theoretical 
results, while the markers (denoted “Exp.” in the legends) indicate results from the MR imaging 

experiments. 
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Figure 2.8: Error in pose estimation of the + frame: a) rotational error, represented by the three Euler 
angles, b) translational error. Solid and dashed lines (denoted “Th.” in the legends) indicate theoretical 

results, while the markers (denoted “Exp.” in the legends) indicate results from the MR imaging 
experiments. Note the lack of translational error with frequency encoding in the x-direction (Figure b, first 

column). This result is due to the polarity of the frequency-encoding gradient in the x-direction being 
reversed in axial and coronal scans, thereby cancelling out the translational error. 
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Figure 2.9: Error in pose estimation of the spherical marker frame: a) rotational error, represented by the 
three Euler angles, b) translational error. Solid and dashed lines (denoted “Th.” in the legends) indicate 

theoretical results, while the markers (denoted “Exp.” in the legends) indicate results from the MR imaging 
experiments. 
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In the presence of a uniform static field distortion, each frame exhibits components of 

translational error that are proportional to the magnitude of the distortion (Figure 2.7b - 

Figure 2.9b, first row). In cases where sensitivity was observed, the translational errors 

range from nearly zero at 1 μT of distortion to greater than 10 mm at 100 μT. For the + 

and spherical marker frames, these components of error are eliminated if a method of 

correcting in-plane distortion is used (Figure 2.7b - Figure 2.9b, first row, third column). 

However, errors using the z-frame were not eliminated using the in-plane distortion 

method, since some components are due to slice-select error. For all three frames 

considered, the translational error is not sensitive to static field distortion gradients. A 

constant level of translational error of ~ 1 mm is also observed for each of the three 

frames. This is due to the transmit rf frequency not being properly matched to the fluid in 

each frame. 

Static magnetic field distortion gradients result in rotational errors in frame pose 

estimates. For the frames tested, rotational errors ranged from zero to greater than 4 

degrees over a range of distortion gradients of 0.01 – 1 mT/m. As with translational error, 

a method of correcting in-plane distortion can eliminate this sensitivity for both the + and 

spherical marker frames, but not the z-frame. Note also the presence of constant 

components of rotational error of ~ 0.5 degrees (most notable in Figure 2.7a - Figure 

2.9a, first column) when in-plane distortion was not corrected. This trend is only 

observed in the experimental results, and is likely due to the presence of a baseline 

gradient shim from the spherical head phantom scan. 

A practical example is now presented to aid in interpreting the results. Consider a 

sphere of radius a placed within the bore of an MR scanner. The expression for the 
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external magnetic field distortion caused by the presence of this object in the bore of an 

MR scanner is given in Schenck et al.[30] as 

 
( )

3 2 2
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2 2 2
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s s

B a z xB
x z

χ∆ −
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+
 (2.19) 

where sz  and sy  are parallel and perpendicular to the main field direction, respectively. 

Consider such a sphere consisting of austenitic stainless steel, for which the magnetic 

susceptibility is estimated from Schenck et al.[30] as 5110 × 10-6, having a radius of 10 

mm, and placed in a 3T scanner 150 mm from the center of a + frame. Figure 2.10 shows 

the resulting external magnetic field surrounding the sphere and frame, with the value of 

magnetic field distortion at each sampling point shown. In this case, the distortion field 

can be modeled as 

 6 34.4 10 0.07 10dB z− −∆ ≈ × − × , (2.20) 

giving 
0

4.4 TdB µ= , ' 0xG = , ' 0yG = , and ' 0.07 T /zG m m= − . Referring to Figure 2.8, 

these values can be used to estimate the resulting translational and rotational errors in 

pose estimate using each of the three imaging methods. 
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Figure 2.10: The magnetic field distortion field created by the presence of a 10 mm radius austenitic 

stainless steel sphere located 150 mm from the center of a localization frame. The white circles represent 
the points at which the frame is imaged. For the purposes of estimating the effects of the distortion on 

frame localization error, a linear representation of the distortion field over the frame’s geometry is used. 

 Discussion 2.4

This work quantifies the effects of static field distortion on the accuracy of three types of 

passive localization frames in MR. The geometric nature of static field distortion across 

the geometry of each frame was modeled as the sum of uniform and linearly-varying 

components (i.e. magnetic field distortion gradients). 2D fast spoiled gradient echo 

sequences were used, as these represent the types of scans appropriate for quickly 

localizing objects in MR, and are readily available on any clinical MR scanner. 

The pose of each frame considered is encoded in MR images in a characteristic 

manner: by using diagonal cylinders, the z-frame encodes the out-of-plane position of the 

frame in the in-plane position of ellipses in a 2D image; the + frame employs 2D bi-

planar imaging to estimate frame position using only in-plane measurements of cylinder 

positions; and the spherical marker frame uses 2D tri-planar imaging to estimate frame 
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position using in-plane measurements of sphere positions. As a result, the sensitivity of 

localization error to field distortion is characteristic of each type of frame. Most notably, 

the behavior of the z-frame is quite different from that of the other two. This is due to the 

fact that the z-frame’s pose estimate from imaging is sensitive to slice-select error, 

resulting in components of rotational and translational error that are not eliminated by 

correcting in-plane error due to field distortion. Correction of the out-of-plane error 

would be possible by estimating the level of distortion based on the in-plane error, but 

this method requires knowledge of the slice-select gradient strength and polarity, which is 

not generally available on clinical scanner consoles or in DICOM files. Another notable 

trend in the results was the presence of error components that are (nearly) independent of 

the level of distortion. This source of error results from the transmit center frequency not 

being matched to the fluid in the frames. Table 2.4 summarizes typical sources of static 

field distortion and the types of localization error they cause in the absence of proper 

correction techniques. Sensitivity to all of these sources of error is eliminated using 2D 

gradient echo imaging if: a) the method of determining pose only uses in-plane 

measurements of marker positions, b) the in-plane marker positions in images are not 

sensitive to slice-select error, and c) methods of correcting in-plane error in the readout 

direction are employed. 

Table 2.4: Sources of static field distortion and their effects on frame localization error 

Source of distortion Geometric nature of the 
distortion Resulting error 

Magnetic materials Uniform + gradient Translation + 
rotation 

Center frequency offset Uniform Translation 
Frame susceptibility Uniform Translation 

Gradient shims Gradient Rotation 
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Some practical considerations must be made when interpreting the results of this 

work. The magnitude of the distortion-sensitive components of rotational and 

translational error is inversely proportional to the readout gradient strength (and slice-

select gradient strength, for the z-frame only). Therefore, a decrease in error could be 

achieved by increasing the readout gradient strength. However, doing so would result in a 

decrease in signal-to-noise ratio (SNR), and possibly an increase in localization error due 

to decreased accuracy in centroiding each marker. This effect was not explored in this 

work, and a fixed value of readout gradient strength of 9.2 mT/m was used for all images 

to maintain a reasonable SNR. Another important practical consideration is the location 

of the frame relative to the scanner’s isocenter. Since this work aimed to quantify the 

sensitivity of localization error to static field distortion alone, the frames were imaged at 

the isocenter. At a distance from the isocenter, the effects of gradient field nonlinearity 

become an important factor. However, this effect is scanner hardware dependent, 

requiring experiments to be performed on each scanner individually in order to quantify 

it. The methods used in this work are general; the trends in error as a function of uniform 

or gradient static field distortion level are valid for any scanner, but they are only valid 

for frames located near the isocenter.  
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 Conclusions 2.5

The error in pose estimation of passive localization frames in MR can be sensitive to 

static magnetic field distortion. The level of sensitivity, the type of error (i.e. rotational or 

translational), and the direction of error are dependent on the frame’s design and the 

method used to image it. If 2D gradient echo imaging is employed, frames whose pose 

estimate is sensitive to slice-select error (such as the z-frame) should be avoided, since 

this source of error is not easily correctable. Accurate frame pose estimates that are 

insensitive to static field distortion can be achieved using 2D gradient echo imaging if: a) 

the method of determining pose only uses in-plane measurements of marker positions, b) 

the in-plane marker positions in images are not sensitive to slice-select error, and c) 

methods of correcting in-plane error in the readout direction are employed. 

For the work in this thesis, the error characteristics of each tracking frame were 

considered along with practical considerations. The z-frame was rejected due to its 

sensitivity to slice-select error that is difficult to correct using only 2D imaging 

sequences, and its relatively larger size than the other two frames considered. Between 

the + and spherical marker frames, the + frame was chosen for practical reasons, since 

spherical markers are difficult to keep filled with fluid and free of air bubbles, and they 

also require more precise positioning of image slice locations to ensure the bulk of the 

marker appears in the image. In addition, the + frame is simpler to manufacture than 

either of the alternatives, as it only requires two perpendicular holes to be drilled. 

 

  



 

72 

 

References 

1. A. Melzer, E. Immel, R. Toomey and F. Fernandez-Gutierrez, "MR-Guided 
Interventions and Surgery," in Springer Handbook of Medical Technology,  (Springer, 
2012), pp. 477-501. 

 
2. K. Chinzei, N. Hata, F. Jolesz and R. Kikinis, "MR compatible surgical assist robot: 

System integration and preliminary feasibility study," in Med. Image Comput. 
Comput. Assist. Interv., edited by S. Delp, A. DiGioia and B. Jaramaz (Springer, 
2000), pp. 921-930. 

 
3. G. Fischer, S. DiMaio, I. Iordachita and G. Fichtinger, Med. Image Comput. Comput. 

Assist. Interv., 2007. 
 
4. A. A. Goldenberg, J. Trachtenberg, Y. Yi, R. Weersink, M. S. Sussman, M. Haider, L. 

Ma and W. Kucharczyk, "Robot-assisted MRI-guided prostatic interventions," 
Robotica 28, 215 (2010). 

 
5. A. Krieger, I. Iordachita, S. E. Song, N. B. Cho, P. Guion, G. Fichtinger and L. L. 

Whitcomb, Proc. IEEE International Conference on Robotics and Automation, 
Anchorage, Alaska, 2010. 

 
6. C. Ménard, R. C. Susil, P. Choyke, G. S. Gustafson, W. Kammerer, H. Ning, R. W. 

Miller, K. L. Ullman, N. Sears Crouse and S. Smith, "MRI-guided HDR prostate 
brachytherapy in standard 1.5 T scanner," Int. J. Radiat. Oncol. Biol. Phys. 59, 1414-
1423 (2004). 

 
7. M. G. Schouten, J. Ansems, W. K. Renema, D. Bosboom, T. W. Scheenen and J. J. 

Futterer, "The accuracy and safety aspects of a novel robotic needle guide 
manipulator to perform transrectal prostate biopsies," Med. Phys. 37, 4744-4750 
(2010). 

 
8. S. Song, J. Tokuda, K. Tuncali, C. Tempany, E. Zhang and N. Hata, "Development and 

Preliminary Evaluation of a Motorized Needle Guide Template for MRI-guided 
Targeted Prostate Biopsy," IEEE Trans. Biomed. Eng. (2013). 

 
9. H. Su, D. C. Cardona, W. Shang, A. Camilo, G. A. Cole, D. C. Rucker, R. Webster and 

G. S. Fischer, "A MRI-guided concentric tube continuum robot with piezoelectric 
actuation: A feasibility study," IEEE Int. Conf. Rob. Autom., 1939-1945 (2012). 

 
10. J. Cepek, B. Chronik, U. Lindner, J. Trachtenberg, S. Davidson, J. Bax and A. 

Fenster, "A system for MRI-guided transperineal delivery of needles to the prostate 
for focal therapy," Med. Phys. 40, 012304 (2013). 

 



 

73 

 

11. B. E. Dogan, C. H. Le-Petross, J. R. Stafford, N. Atkinson and G. J. Whitman, "MRI-
Guided Vacuum-Assisted Breast Biopsy Performed at 3 T With a 9-Gauge Needle: 
Preliminary Experience," Am. J. Roentgenol. 199, W651-W653 (2012). 

 
12. V. U. Fiedler, H. J. Schwarzmaier, F. Eickmeyer, F. P. Müller, C. Schoepp and P. R. 

Verreet, "Laser‐induced interstitial thermotherapy of liver metastases in an 
interventional 0.5 Tesla MRI system: Technique and first clinical experiences," J. 
Magn. Reson. Imaging 13, 729-737 (2001). 

 
13. T. J. Vogl, R. Straub, K. Eichler, D. Woitaschek and M. G. Mack, "Malignant Liver 

Tumors Treated with MR Imaging–guided Laser-induced Thermotherapy: Experience 
with Complications in 899 Patients (2,520 lesions)," Radiology 225, 367-377 (2002). 

 
14. G. Bourgeois, M. Magnin, A. Morel, S. Sartoretti, T. Huisman, E. Tuncdogan, D. 

Meier and D. Jeanmonod, "Accuracy of MRI-guided stereotactic thalamic functional 
neurosurgery," Neuroradiology 41, 636-645 (1999). 

 
15. G. Cole, J. Pilitsis and G. S. Fischer, IEEE International Conference on Robotics and 

Automation, 2009. 
 
16. W. A. Hall, W. Galicich, T. Bergman and C. L. Truwit, "3-Tesla intraoperative MR 

imaging for neurosurgery," J. Neurooncol. 77, 297-303 (2006). 
 
17. G. R. Sutherland, S. Lama, L. S. Gan, S. Wolfsberger and K. Zareinia, "Merging 

machines with microsurgery: clinical experience with neuroArm: Clinical article," J. 
Neurosurg. 118, 521-529 (2013). 

 
18. V. Mouraviev, S. Verma, B. Kalyanaraman, Q. J. Zhai, K. Gaitonde, M. Pugnale and 

J. F. Donovan, "The Feasibility of Multiparametric Magnetic Resonance Imaging for 
Targeted Biopsy Using Novel Navigation Systems to Detect Early Stage Prostate 
Cancer: The Preliminary Experience," J. Endourol. (2012). 

 
19. A. Melzer, B. Gutmann, T. Remmele, R. Wolf, A. Lukoscheck, M. Bock, H. 

Bardenheuer and H. Fischer, "Innomotion for percutaneous image-guided 
interventions," Engineering in Medicine and Biology Magazine, IEEE 27, 66-73 
(2008). 

 
20. A. B. Wolbarst, A. Karellas, E. A. Krupinski and W. R. Hendee, "Advances in 

Medical Physics: 2010," Med. Phys. 38, 4468 (2011). 
 
21. C. Dumoulin, S. Souza and R. Darrow, "Real-time position monitoring of invasive 

devices using magnetic resonance," Magn. Reson. Med. 29, 411-415 (1993). 
 
22. J. Anders, P. SanGiorgio, X. Deligianni, F. Santini, K. Scheffler and G. Boero, 

"Integrated active tracking detector for MRI-guided interventions," Magn. Reson. 
Med. 67, 290-296 (2012). 



 

74 

 

 
23. A. de Oliveira, J. Rauschenberg, D. Beyersdorff, W. Semmler and M. Bock, 

"Automatic passive tracking of an endorectal prostate biopsy device using phase‐only 
cross‐correlation," Magn. Reson. Med. 59, 1043-1050 (2008). 

 
24. S. DiMaio, E. Samset, G. Fischer, I. Iordachita, G. Fichtinger, F. Jolesz and C. 

Tempany, Med. Image Comput. Comput. Assist. Interv., 2007. 
 
25. I. Bricault, N. Zemiti, E. Jouniaux, C. Fouard, E. Taillant, F. Dorandeu and P. 

Cinquin, "Light puncture robot for CT and MRI interventions," Engineering in 
Medicine and Biology Magazine, IEEE 27, 42-50 (2008). 

 
26. H. Chang and J. M. Fitzpatrick, "A technique for accurate magnetic resonance 

imaging in the presence of field inhomogeneities," IEEE Trans. Med. Imaging 11, 
319-329 (1992). 

 
27. R. A. Brown, "A stereotactic head frame for use with CT body scanners," Invest. 

Radiol. 14, 300 (1979). 
 
28. S. Lee, G. Fichtinger and G. S. Chirikjian, "Numerical algorithms for spatial 

registration of line fiducials from cross-sectional images," Med. Phys. 29, 1881 
(2002). 

 
29. E. M. Haacke, R. Brown, M. Thompson and R. Venkatesan, Magnetic resonance 

imaging: physical principles and sequence design. (Wiley-Liss, 1999). 
 
30. J. F. Schenck, "The role of magnetic susceptibility in magnetic resonance imaging: 

MRI magnetic compatibility of the first and second kinds," Med. Phys. 23, 815 
(1996). 

 
 
 



 

75 

 

Chapter 3. 
  

A System for MRI-Guided Transperineal Delivery of 

Needles to the Prostate for Focal Therapy† 

 

 Introduction 3.1

Though the worldwide prevalence of prostate cancer is third only to lung and skin 

cancers,[1] evidence has shown that the key to survival may be early detection and 

treatment.[2] As a result, the use of prostate specific antigen testing as a screening tool 

has increased, and more prostate cancer is being detected at earlier stages.[3] Early 

detection often results in the diagnosis of a localized cancer that is confined within the 

prostate capsule. Recent studies have demonstrated a reduction in prostate-cancer-

specific mortality for patients with localized cancer treated with radical prostatectomy.[4, 

5] While early detection and radical treatments may decrease mortality rates, there is 

growing belief that localized disease is being over-treated, resulting in unnecessary 

morbidities such as permanent sexual dysfunction and incontinence.[6, 7] As an 

alternative, many patients with low-grade localized disease may be candidates for active 

surveillance. However, though groups followed under active surveillance have shown 

low rates of prostate-cancer-specific mortality,[8] patients often choose to elect for 

definitive therapy due to the psychological burden that accompanies the diagnosis.[9] 

                                                 
†. A version of this chapter has been published: Cepek, J., Chronik, B., Lindner, U., Trachtenberg, J., 
Davidson, S., Bax, J., Fenster, A., “A system for MRI-guided transperineal delivery of needles to the 
prostate for focal therapy.” Med. Phys. 40, 012304-1-15 (2013). 
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The great discrepancy between prostate cancer prevalence and mortality rates[10] 

indicates that many patients are being over-treated with radical prostatectomy; however, 

results of following men on active surveillance have also indicated that some are under-

treated.[11] Although localized prostate cancer is currently the most common 

diagnosis,[12] there is unfortunately no unified agreement regarding the optimal 

treatment of patients with this stage of the disease. 

An emerging treatment for the management of localized prostate cancer is focal 

therapy.[13] The potential efficacy of focal therapies is based on the hypothesis that there 

is an ‘index’ tumour, that is the most likely cause of extension of disease outside of the 

prostate and ultimately, metastases leading to death.[14] If methods of accurately 

identifying index lesions were available, focal therapies could potentially offer definitive 

treatment to patients with localized prostate cancer without the excessive morbidity 

associated with radical prostatectomy, and without the stress caused by leaving the 

disease untreated.[15, 16] Much work is currently being done to achieve this goal 

including: methods of accurately recording the locations of biopsy samples from the 

prostate,[17] advanced imaging techniques for visualization of tumours,[18-20] and the 

correlation of in vivo images of prostate cancer from multiple modalities to ground truth 

grading through registration of histopathologic sections to in vivo images.[21] Such 

techniques have the potential to provide accurate localization of aggressive prostate 

tumours as the primary targets for focal therapy. 

The most common emerging modalities for focal therapy include cryotherapy, 

high-intensity focused ultrasound, focal laser ablation and photodynamic therapy. While 

clinical trials investigating the efficacy of these techniques are ongoing, most have 
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reached phase I trials, and their safety has been proven.[15] In particular, focal laser 

ablation has shown promise with regards to its ability to completely ablate a targeted 

volume of prostate tissue, and the use of contrast-enhanced MRI for accurate 

identification of the ablated tissue volume has been demonstrated.[22]  Focal laser 

ablation is performed by inserting either an open-ended or translucent catheter into the 

prostate through the patient’s perineum. An optical fiber with a diffusing tip is then 

inserted through the catheter to the tumour site, and is attached to a laser for thermal 

ablation.[23]  MRI-guided focal laser ablation of prostate cancer has also been tested and 

it was found that MRI provided excellent visualization of the needle for guidance, 

thermal monitoring and damage estimation during the ablation using MR thermometry, 

and intra-treatment visualization of the ablated region.[23]  While MRI appears to 

provide a full suite of tools for image-guided focal laser ablation, a method of accurately 

guiding the therapy to the tumour site in a time frame that would make the procedure 

economically feasible in the clinic has yet to be demonstrated. This is likely due to the 

greater operating cost of MRI compared to other imaging tools conventionally used for 

guiding prostate interventions (namely ultrasound). In addition, the accuracy of focal 

laser ablation methods must be evaluated in vivo to enable evaluation of the potential 

clinical efficacy of MR-guided prostate cancer focal therapies. Only once the clinical 

benefit of MR-guided prostate focal therapies is proven to exceed that of their cost will 

such procedures become economically feasible in the clinic. 

The advantages of using MRI for guiding therapy or biopsies to the prostate have 

previously been recognized, and various research devices have been developed for needle 

guidance to the prostate in MRI scanners.[24-30] While several of these devices have 
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shown promise with respect to targeting accuracy, issues remain regarding reductions in 

image signal-to-noise ratio (SNR), procedure workflow, and patient safety.  SNR 

reduction is generally caused by the use of electromechanical actuators that increase 

noise in the MR scanner’s rf receive coils, especially if the actuators are moved during 

imaging.[25, 27, 31] The main obstacle with regards to procedure workflow appears to be 

the limited space around the patient in the MR scanner bore, and the fact that the prostate 

is generally about 1 m into the bore (at the scanner’s isocenter). The general solution to 

this problem has been to remove the patient from the MR scanner bore for needle 

insertion, and then move him back into the scanner for verification of needle depth with 

imaging.[26-28, 30] Since the needle cannot be visualized while it is being inserted, this 

method requires incremental insertions, with multiple translations of the patient in and 

out of the MRI bore. Doing so results in excessive movement - reducing potential 

accuracy, and longer procedure time. Finally, some existing devices have been fully 

automated, compromising patient safety since there is generally no haptic feedback or 

redundant safety systems in place.[25, 27] 

In this work, we hypothesize that a manually-actuated, MRI-guided needle 

trajectory alignment device could enable accurate and time-effective delivery of needles 

to the prostate for focal therapy while maintaining image SNR and patient safety, and 

allowing for real-time monitoring of needle guidance with the patient in-bore. We present 

the design and prototype of such a device, results from MR-compatibility tests, 

demonstration of its potential to accurately target tumours of the smallest clinically 

significant size (~10 mm diameter)[32], and preliminary results from clinical testing. 
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Preliminary results from this work have been previously described in a conference 

paper.[33] In this previous publication, the trajectory alignment device was briefly 

described and only one simple test of needle guidance accuracy was performed. This 

chapter includes rigorous testing of needle guidance accuracy and repeatability using a 

more realistic prostate phantom, demonstration of a user interface that is integrated with 

the MRI scanner and trajectory alignment device, and results from initial experiences 

using the system to deliver focal laser ablation therapy to two patients. In addition, the 

trajectory alignment device features an improved method of registration to the MRI 

scanner that has resulted in decreased needle guidance error. In the previous work, the 

registration component was placed nearly 20 cm inferior to the prostate. When the 

imaging field-of-view is this far from the isocenter, most clinical scanners will 

automatically translate the bed to place the center of the field-of-view at the isocenter, 

and output image positions relative to the isocenter. It was found that the scanners we 

used (GE Discovery MR750, and GE Signa HDxt 1.5T) could not accurately estimate the 

scanner bed movements, and therefore could not reliably give an accurate location of the 

device’s fiducials. 

The rest of this chapter will be organized as follows: Section 3.2 will describe the 

design of the trajectory alignment device and the system’s user interface, methods of 

evaluation of the system’s MR-compatibility, methods of quantifying the system’s 

targeting error, and the setup and workflow of the system for tests in patients; Section 3.3 

includes results from the MR-compatibility tests, targeting error tests, and experience 

using the system to deliver focal laser ablation therapy to two patients; followed by a 



 

80 

 

discussion of the results and recommendations for future work in Section 3.4; and 

conclusions in Section 3.5. 

 Methods 3.2

3.2.1 System Design 

The primary component of the system is the needle trajectory alignment device. The 

device is placed between the legs of the patient within the bore of an MRI scanner, and is 

used to precisely align a set of needle guides with a target in the prostate. 

Figure 3.1 shows a computer-aided design rendering of the device in position with 

a patient in an MRI bore. 

 
Figure 3.1: Computer-aided design drawing showing the trajectory alignment device in position with a 
patient in the bore of an MRI scanner. a) View from above, b) Side view with patient sectioned to show 

internal anatomy. The device is designed to allow oblique needle trajectories to reduce pubic arch 
interference while avoiding interference with the endorectal (ER) coil. 

The entire system consists of the trajectory alignment device and its supporting 

components: a laptop computer, embedded controller electronics, and an MR-compatible 

alignment interface. Custom focal laser ablation guidance software on the laptop 

communicates with the MRI scanner via the File Transfer Protocol for acquisition of 

images. The images are used to register the pose of the needle targeting device to the 



 

81 

 

scanner, select target points in the prostate, and monitor needles during insertion. The 

controller compares the device’s position to that required to reach the specified target and 

indicates to the physician, via the alignment interface, in which direction the device 

should be moved to be aligned with the target. 

Figure 3.2 shows how manual device alignment is achieved by the physician, and 

Figure 3.3 shows the device in position with a patient during a focal laser ablation 

procedure. 

 
Figure 3.2: Manual alignment of the trajectory alignment device using the targeting interface. a) The 

handle is misaligned and must be moved to the right and downward, as indicated by the ‘right’ grid display, 
b) the device has been successfully aligned with the selected target. 



 

82 

 

 
Figure 3.3: The trajectory alignment device in position with a patient in the bore of a 1.5T clinical MRI 

scanner (Signa HDxt, GE Healthcare, Milwaukee, WI). Access to the lock handles, alignment handle, and 
rear template are maintained with the patient still in the bore. Two catheters have been successfully 

inserted, and the physician is preparing a laser fiber for ablation. 

3.2.2 Mechanical Design and Kinematics 

Figure 3.4 shows the trajectory alignment device and its major components. The device 

consists of three needle guide templates mounted to a movable arm. The orientation and 

position of the arm is manually controlled by the physician, and it is supported by two 

sets of custom-built dual-axis linear stages through rotational joints. The position of each 

linear stage is encoded with MR-compatible linear optical encoders (LIA-20, Numerik 

Jena, Jena) and, through the use of forward kinematics equations, the precise position and 

pose of the needle trajectory is known. These encoders were selected over purely optical 

sensors because they are readily available off-the-shelf, and come in a compact linear 
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form factor that integrated well with our design. As well, our tests indicated that they 

cause a minimal reduction in image quality. The position of each set of the linear stages 

can be independently manipulated by locking the opposite set (with manual locking 

handles), and moving the alignment handle. In this way, the physician can control four 

degrees of freedom of the needle trajectory using three simple controls with the device in-

bore. Manipulation of the ‘front’ set of linear stages sets the approximate needle insertion 

point on the patient’s skin, while that of the ‘rear’ set modifies the angle of needle 

insertion. 

 
Figure 3.4: The trajectory alignment device. The pose of the needle templates is uniquely defined by the 

positions of the front and rear linear stages. Positioning of each set of stages can be independently achieved 
by unlocking the corresponding set using the locking handles and manipulating the alignment handle. The 
spring counterbalances maintain the position of each set of stages during positioning. The two rear needle 

templates allow the physician to insert a long catheter from outside the MRI bore and guide it into the front 
template, which is located adjacent to the patient’s skin. 
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When the stages are unlocked, the trajectory is maintained by spring-loaded 

counterbalances that oppose the force of gravity.[34] The counterbalances supply a force 

to the device’s vertical stages that are equal to their weight and constant throughout the 

device’s entire range of motion. MR-compatibility of the counterbalance assembly is 

maintained through the use of leaf springs made from plastic (polyetheretherketone), as 

opposed to conventional steel coil springs. Figure 3.5 shows the spring counterbalance 

system. 

 

Figure 3.5: Schematic of the spring counterbalance system. The leaf springs provide a force sF  that 

opposes the force of gravity gF  acting on the components with a vertical degree of freedom. The cam 

assembly ensures that sF  is constant throughout the entire range of angle θ . 

Figure 3.6 illustrates the variables used in the kinematics equations and the 

device’s coordinate system. The forward kinematics equations serve to compute the pose 
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of the needle guide (represented by tp  and ˆnv ), given positions of the linear stages (as 

measured by the linear encoder values: 1xe , 1ye , 2xe  and 2 ye ). Reverse kinematics 

equations compute the linear stage positions required for the device to be aligned with a 

given needle trajectory. Detailed kinematics solutions can be found in Appendix B. The 

device can be operated in two modes: “target only mode” and “target and entry mode”. In 

the former, the physician is allowed to reach a given target from any angle, and the 

forward kinematics solution is used to compare the selected target point with the 

intersection of the needle with an axial plane that contains the target point. In the latter, 

the reverse kinematics solutions are used to guide the physician to constrain all four 

degrees-of-freedom of the device to ensure the needle will pass through two given points: 

the target point and the entry point. 
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Figure 3.6: Device coordinate system and kinematics variables. Specification of all four linear stages 

positions 1xe , 1ye , 2 xe , and 2 ye  uniquely defines the intended needle trajectory, defined by ˆnv  and tp  
in a closed kinematic chain (forward kinematics). Likewise, a given needle trajectory corresponds to a 

unique set of linear stage positions (reverse kinematics). 

3.2.3 Registration of Device and MRI Coordinate Systems 

The precise position of the device in MRI coordinate space will differ in each procedure 

because: a) optimal device placement differs between cases depending on individual 

patient size and placement, b) each new MRI study requires a new landmark position, and 

the position of each image is given relative to that landmark position, and c) since the 

device is designed for use in a clinical MR scanner, it is likely that the scanner would be 

used for diagnostic scanning in between focal therapy procedures; requiring removal of 

the device. It is therefore necessary to register the device’s coordinate system to that of 

the MRI at the beginning of each procedure to ensure accurate guidance. This is achieved 

with the use of a detachable MR-visible fiducial component. The removable component 

2xe

2ye

1xe

1ye

do

ˆdy
ˆdz

ˆdx

tp
ˆnv
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consists of two perpendicular drilled holes in the shape of a +, filled with an aqueous 

solution of 1% gadolinium by volume (Magnevist, 469 mg/ml). The fiducial arrangement 

is embedded in a plastic component that is mounted to the front of the device. The 

fiducial component is shown in Figure 3.7, along with a sagittal MR image showing the 

four points that must be localized for registration. The dashed lines indicate the image 

planes in which each point is localized.  The points 0p  and 1p  are localized in axial 

images, and 2p  and 3p  in coronal images. Figure 3.8 shows an axial image of the 

registration fiducials. 

 
Figure 3.7: Detachable registration fiducial component. The component is imaged in both axial and 

coronal planes for the localization of four points, necessary for registration of the device’s coordinate 
system to that of the MRI. 
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Figure 3.8: Localization of registration fiducials in MR images. a) Original fiducial image, b) filtered & 

thresholded fiducial image. The red cross indicates the centroid. 

 
The images are filtered to reduce noise using a circular averaging filter (pill-box) 

of radius 2 pixels, then thresholded. The size of each fiducial tube is known, so the 

threshold is chosen such that the total area of the thresholded image is equal to the known 

area of a section of a fiducial tube. Fiducial localization is then performed by computing 

an intensity-weighted centroid of the filtered, thresholded image 
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where ( ),ix j k  is the ith coordinate of the pixel at index ( ),j k , ( ),I j k  is the 

corresponding pixel intensity, and ix  is the ith coordinate of the centroid of the image of 

size m n× . 

Sensitivity of fiducial localization to main field inhomogeneity is reduced by only 

measuring coordinates in the phase encode direction of each image.[35] Accordingly, two 
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sets of images of each fiducial are acquired, with the phase encode direction swapped in 

each acquisition. Since the device axes are generally nearly aligned with those of the 

MRI system, error in pose estimation of the fiducial arrangement due to slice-select error 

is minimal.[35] The four points are used to compute the unit vectors in the direction of 

each of the device’s axes, in MR coordinates, as: 
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and the origin as the closest point to the line that passes through 0p  and 1p , and that 

which passes through 2p  and 3p . Points in the device coordinate system can be 

converted to the MRI’s coordinate system using: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3
ˆ ˆ ˆmr d d d d d d di i i i i

p p x p y p z o= + + +
, (3.3) 

where dp  is a point in the device coordinate system, and mrp  is the point in the 

coordinate system of the MRI. Points in the MRI’s coordinate system can be converted to 

device coordinates by solving the linear system: 
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The registration fiducials are placed at the MRI isocenter, scanned before the 

patient is positioned, and removed from the device before the patient arrives; a process 

that generally takes less than ten minutes to complete. This approach reduces the amount 

of time the patient must be anesthetized. 
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3.2.4 Electrical Systems 

Measurement of the position of each of the device’s linear stages is achieved with 

LIA-20 optical encoders (Numerik Jena, Jena, Germany). The encoders are constructed 

from non-magnetic materials and output a sine-cosine signal in the kHz range. Since the 

rf system of the MRI operates in the MHz range, the encoders do not introduce an 

appreciable level of noise to the images. The encoder cables are connected through rf 

filters on the scanner room’s penetration panel to the console room, where the signals are 

converted to digital TTL levels and are read by the controller. The targeting interface was 

manufactured from non-magnetic surface-mount electrical components in a shielded 

enclosure and was connected to the controller through rf filters in the penetration panel. 

Though the targeting interface uses digital signals, it was not found to appreciably 

degrade image quality, and an alternative solution such as a fiber optic display was not 

deemed necessary. 

3.2.5 User Interface and Procedure Workflow 

The focal laser ablation guidance software is the hub of the procedure workflow. 

At the start of the procedure, pre-treatment T2-weighted MR images of the prostate, and 

the prostate and tumour boundaries (as identified on multi-parametric MR images), are 

imported into the visualization software. Intra-treatment T2-weighted MR images of the 

prostate are then acquired, transferred to the software, manually segmented, and 

registered to the pre-treatment prostate image using an iterative closest point method that 

compares the pre- and intra-treatment prostate boundaries. This process provides 

localization of predefined targets in the intra-treatment workspace for targeting. 
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Figure 3.9 shows the result of a registration between pre- and intra-treatment 

prostate images. 

 
Figure 3.9: Intra-treatment prostate registration. a) Pre-treatment image with prostate boundary (thin blue 

contour) and suspicious region (red contour) segmented, b) intra-treatment image showing both the manual 
intra-treatment contour (thick green contour) and registered pre-treatment contours (thin blue contour). The 

registration process locates the suspicious region in intra-treatment MR space. 

 
Images of the targeting device’s fiducials are imported and localized for 

computation of the device’s origin and coordinate axes in the intra-treatment coordinate 

space. Once the device registration transform has been sent to the controller, the needle 

pose is continually retrieved and the needle’s projected trajectory is visualized in real-

time (at approximately 10 frames per second) for verification of device positioning. 

Figure 3.10 shows the needle trajectory display. 
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Figure 3.10: Live 3D needle trajectory display overlaid on a coronal image of the prostate and surrounding 
anatomy. a) Device misaligned, b) device aligned to target and entry point, c) device aligned only to target 

point (target only mode). Orange line: expected needle trajectory, computed from device kinematics 
equations and displayed in real-time. Red line: desired needle trajectory, specified by the user. Green 

contour: prostate boundary. 

After device registration to the MR coordinate system is complete, targets within 

the prostate can be selected and the targeting interface guides the physician to align the 

device. The guidance interface consists of two grids of multi-coloured lights, shown in 

Figure 3.11.[33] 

 
Figure 3.11: Device alignment interface. a) Front and rear stages misaligned, b) front aligned, rear 

misaligned, c) device fully aligned with desired trajectory. 

The illuminated light on each grid indicates to the physician the direction in 

which the alignment handle must be moved. The device is aligned with its target 

trajectory only once the center lights of the grids are illuminated. In this way, the 

physician must always move the handle in the direction in which he/she wants to move 

the light, regardless of which set of stages is being moved, or which targeting mode is 

being used. In ‘target and entry mode’, one grid is used to align the front set of stages, 

and the other is used for the rear set. In ‘target only mode’, only one grid is used for 
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alignment. In this case, the physician is free to position the front set of stages as they see 

fit, and then adjust the rear set using the targeting interface. 

Custom needles, consisting of a tungsten trocar inside of an open-ended 

polyetheretherketone catheter, were used for all experiments and tests in patients, as 

shown in Figure 3.12. The use of custom needles was necessary as it was not possible to 

find an existing commercially available nonmagnetic needle with an optimal combination 

of stiffness, sufficient length, and sharpness, in a gauge that would accommodate the 

laser ablation equipment used for this procedure. 

 
Figure 3.12: Custom tungsten trocar and polyetheretherketone catheter. The assembly is 55 cm in length to 

allow for needle insertion with the patient in the MRI bore. The tungsten trocars feature a 3-sided 
symmetrical bevel tip. Standard Luer-Lok fittings mate the trocar to the catheter during insertion. 

Enhancement of needle MR images is achieved by periodically replacing the 

tungsten trocar with a gadolinium solution-filled tube during imaging. This method 

provides a well-delineated, bright image of the needle for localization. MR images of 

metal needles in a patient show a large susceptibility artifact at the needle tip, making 
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localization difficult, especially since the size and orientation of the artifact varies with 

scan parameters.[36] The software provides tools for measuring the remaining insertion 

depth required to reach the target. Once the target is reached, a laser fiber, housed in a 

plastic coaxial cooling sheath, is inserted to the end of the catheter. Verification of the 

position of the end of the laser fiber is achieved by imaging the cooling sheath, which is 

flushed with a 1% solution of gadolinium in water. The laser is then activated and tissue 

heating begins while the tissue temperature is monitored using the proton resonant 

frequency shift method.[37] Using this method, a temperature map can be computed 

relative to that of a baseline image. The change in temperature in each voxel is computed 

as 
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where ( )tφ∆  is the difference in phase between the image at time t  and the baseline 

image, α  is the proton resonant frequency temperature dependence coefficient of water 

(-0.01 ppm/°C), γ  is the gyromagnetic ratio for a 1H  nucleus (2.68 × 108 rad/s/T), 0B  is 

the main magnetic field strength, and TE  is the echo time. 

From the temperature map, tissue damage is estimated using an Arrhenius 

formulation wherein the tissue damage is quantified using a single parameter 
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where R  is the universal gas constant, aE  is the activation energy, T  is the temperature, 

and A  is the frequency factor. The parameter ( )tΩ  varies from zero to positive infinity, 

and the tissue is considered to be ablated once it reaches a value of unity.[38] 
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Figure 3.13 shows thermal and damage mapping in the prostate during a focal 

laser ablation procedure. 

 
Figure 3.13: MR thermometry and tissue thermal damage estimation. a) Temperature image showing the 

ablation zone and prostate and tumour boundaries, b) thermal damage map superimposed on an MR image 
of the prostate. Regions in red correspond to Ω >= 1 from Eq. (3.6) and are considered ablated. Note that in 
this case the ablated region did not reach the anterior edge of the tumour boundary, requiring the insertion 

of an additional needle. 

3.2.6 MR-Compatibility 

To enable an accurate delivery of needles to the prostate, the guidance system 

must not degrade the quality of MR images, and the MRI system must not affect the 

operation of the guidance system.[39, 40] Specifically, the presence of the device in the 

scanner must not cause detrimental image artifacts due to magnetic field distortions or a 

substantial reduction in SNR, and the scanner must not induce notable force, torque, 

vibration or heating effects on the device or affect operation of the device’s electronics. 

3.2.7 Image Distortion and Signal-to-Noise Ratio 

Our methods for evaluation of image distortion and SNR effects in MRI were based on 

the American Society for Testing and Materials “Standard Test Method for Evaluation of 

MR Image Artifacts from Passive Implants”,[41] and the National Electrical 
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Manufacturers Association standard for “Determination of Signal-to-Noise Ratio (SNR) 

in Diagnostic Magnetic Resonance Imaging”,[42] as these are the most relevant existing 

standards for such tests. Image distortion and SNR reduction effects were measured by 

acquiring images of a fluid-filled grid phantom adjacent to the device. The center of the 

phantom was placed a distance from the device equivalent to that expected for a patient’s 

prostate (~10 cm). Axial images of the phantom were acquired for each of the following 

cases: 1) device not present (baseline), 2) device in position, not connected, 3) device in 

position, cables connected, not powered, and 4) device in position, cables connected, 

powered. Axial gradient echo images were acquired on a 3T MR scanner (MR750, GE 

Healthcare, Milwaukee, WI) with the parameters: field-of-view: 400 mm x 400 mm, 

matrix: 256 x 256, repetition time: 270 ms, echo time: 4 ms, flip angle: 25°. Each set of 

images was acquired with bandwidths of both 195 and 977 Hz/pixel. The low bandwidth 

image set was used to evaluate image distortion, while the higher bandwidth set was used 

for SNR calculations. Doing so ensures that the test is sensitive to any distortions or SNR 

reductions due to the device presence. SNR was calculated using a mean signal in a 30 x 

60 voxel region near the middle of the field-of-view, and the standard deviation of the 

signal in a region of the same size outside the phantom. The SNR was calculated in 

image slices that contained only fluid. 

3.2.8 Effects of MRI on the Device 

The MRI system may induce effects on the device that compromise patient safety or the 

fidelity of its operation. These effects include induced force and torque, and rf-induced 

heating. In addition, the MRI must not cause enough interference in the device’s encoder 

electronics to introduce an error in the device’s encoded position. The American Society 
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for Testing and Materials (ASTM) has developed methods for evaluating the force and 

torque effects on passive implants.[43, 44] The ASTM methods are deemed appropriate 

for these evaluations since the targeting device will, at most, only make contact with the 

surface of a patient’s skin. The ASTM tests for induced force and torque evaluate 

whether the induced force is “less than the force on the device due to gravity”[43] and 

whether the induced torque is “less than the product of the longest dimension of the 

medical device and its weight”.[44] These conditions were tested qualitatively by holding 

the device in the MRI bore and observing the induced force / torque. rf-induced heating 

of the device was also judged qualitatively. Finally, errors in encoder operation can be 

detected by continually checking that the incremental encoder counts are equal to zero 

each time an index pulse is received. 

3.2.9 Targeting Accuracy 

Three tests were performed to quantify the system’s targeting abilities. The first 

measured the system’s ability to accurately position its needle guides throughout its 

usable workspace in free space. The second evaluated its ability to aim the needle guides 

at virtual targets in MRI space under MRI guidance. The third experiment quantified the 

system’s overall performance in guiding a needle to a target in a tissue-mimicking 

phantom under MRI guidance. Figure 3.14 illustrates each of the components of needle 

placement error that were measured in each of the three tests. Evaluation of target 

localization error was beyond the scope of this chapter. The components of error within 

the green box in Figure 3.14 represent an estimate of needle guidance error (NGE), which 

is equal to needle placement error in the absence of target localization error, which may 



 

98 

 

result from inaccurate registration of pre-treatment targets to the intra-treatment image 

space and target motion. 

 
Figure 3.14: Illustration of the components of needle placement error measured in each of the three 

accuracy tests. Red box: errors measured in the open-air targeting test. Blue box: errors measured in the 
intra-MR targeting test. Green box: errors measured in the intra-MR phantom needle guidance test. 

Evaluation of target localization error was not performed, as it was beyond the scope of this chapter. 

3.2.9.1 Open-Air Targeting Accuracy 

The device’s ability to align a needle to a target in free space was determined with the use 

of a coordinate measuring machine (FX7107, Brown & Sharp, North Kingstown, Rhode 

Island) with a volumetric accuracy[45] of 5.2 µm. The device’s arm was fitted with two 

steel tooling balls, and their positions were measured with the coordinate measuring 

machine over 81 different device positions. To reach the full range of needle trajectories, 

a regular grid of nine points was defined for each set of linear stages. The device was 

then moved through all combinations of these positions for the front and rear sets of 

stages. The tooling balls were mounted to the device at depths representative of the 

farthest typical target and entry point depths. Error in the position of each tooling ball, 

ETB, was computed as the absolute distance between its expected position as computed 

from the forward kinematics solution and that measured by the coordinate measuring 
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machine. Angular error, ATB, was computed as the angle between the expected needle 

trajectory from forward kinematics, and the line between the furthest and nearest tooling 

balls, as measured by the coordinate measuring machine. 

3.2.9.2 Intra-MR Trajectory Alignment Accuracy 

The system was evaluated for its ability to align its needle guides with targets in 3D 

under MRI guidance. This was done by fitting the device’s arm with two MR-visible 

spheres, coincident with the needle axis, and aligning the device to a set of five target and 

entry point pairs throughout the range of its workspace. The spheres were then imaged to 

determine the true trajectory of the needle guides in MR space. The 10 mm diameter 

spheres were filled with the same gadolinium solution as the registration fiducials. 

Centroids of the fiducials were localized using three sets of images: two sets of axial 

images with the phase encode direction swapped, and coronal images for the third 

coordinate (with phase encoding in the superior-inferior direction). Coordinates were 

only measured in the phase encode direction in each image. The target points t
ip  and 

entry points e
ip  are virtual and therefore independent of the device’s calibration and 

tracking errors. Errors were quantified following the methods described by Cool et 

al.[46] The needle axis, in , was defined as the line between the two spherical fiducials, 

and the needle guidance error (NGE) was calculated as the minimum distance between 

each target point and the needle axis 

 ( ),tr t
i i iNGE M p n= . (3.7) 

where the equation of the needle is defined by 

 
 ˆn n

i i in p v s= + , (3.8) 
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and ( ),M a b  is a function that measures the minimum distance from a point a  to a line 

segment ˆb p vs= +  

 ( ) ( ) ( ) ˆ ˆ,M a b a p a p v v= − − −   . (3.9) 

NGE represents the total error in using the system to point a needle at t
ip  through 

e
ip . 

One quantifiable contributor to NGE is needle guidance human error (NGHE). NGHE 

represents the ability of the user to align the device with the desired needle path using the 

alignment interface. NGHE was measured by computing the distance between the needle 

axis from the forward kinematics solution ik , and t
ip  

 ( ),tr t
i i iNGHE M p k= , (3.10) 

where the needle axis computed from the kinematics solution is defined as ˆk k
i i ik p v s= + . 

Needle trajectory error (NTE) evaluates the discrepancy between in  and the 

expected needle trajectory from the forward kinematics solution. NTE includes 

contributions from errors in device-to-MR registration, geometric distortions in images of 

the spherical fiducials, localization of fiducial centroids, and repeatability of the MR bed 

positioning. NTE is computed as the minimum distance between in  and the point ittp , 

defined as the nearest point to t
ip  along ik  

 ( ) ( ){ }ˆ ˆt t k t k k k
i i i i i i i ittp p p p p p v v = − − − − 

. (3.11) 

 ( ),tr t
i i iNTE M ttp n=  (3.12) 

 
The experiment was performed five times to quantify targeting repeatability. 
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3.2.9.3 Needle Placement in Tissue-Mimicking Phantoms 

Tissue-mimicking prostate phantoms were developed to quantify the system’s potential 

for delivering needles to tumours under ideal conditions. The phantoms were based on 

the design presented by Lindner et al.[47], with the 10% gelatin prostate substituted for 

3% agar (both by mass). Lindner et al. showed that the forces required to penetrate the 

perineum (alginate) and prostate (gelatin) of their phantom were nearly equivalent to 

those required for human tissue. Agar was used for this work because it has MRI 

relaxation values (T1 and T2) similar to human prostate tissue, and is stiffer than gelatin, 

thereby representing a more difficult challenge for needle guidance accuracy than gelatin 

would.[48, 49] Each phantom consisted of a 72 cm3 agar prostate, embedded in alginate 

impression material (Type II – Regular set, 25% by mass) inside a rectangular plexiglass 

box with an opening on one end to allow for needle insertions. The mold for the prostate 

was generated from a manually segmented 3D transrectal ultrasound image of a biopsy 

patient’s prostate and was scaled in size (6 cm R-L, 5 cm S-I, 4.5 cm A-P) to allow for a 

wider range of targets. The agar was prepared using a modified version of the method 

used by Rickey et al.[50], wherein the mixture only consisted of agar and distilled water. 

The center of the prostate phantom was located ~10 cm from the box opening, which 

corresponds to the average anatomical distance from a patient’s perineum to the center of 

the prostate. Five such phantoms were prepared and mock needle guidance procedures 

were performed on each on separate days. Each mock procedure followed the workflow 

outlined in section 3.2.5, but without thermal ablation, and five virtual points in each 

prostate were targeted during each session.  
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Evaluation of system accuracy was performed by computing NGE, NGHE, and 

NTE in a similar manner to that in the previous section (errors for the phantom 

experiment are denoted by the superscript ph). For NGEph, the virtual points t
ip  and e

ip  

were defined by the user manually selecting targets in the phantom and dragging the 

desired needle trajectory in the focal laser ablation guidance software, respectively. in  

was defined by the line through the segmented needle, as found in two axial images, one 

near the target and one near the selected entry point. Localization of the needle in each 

image was computed using an intensity-weighted centroid, following the method 

described in section 3.2.3 for the registration fiducials. 

3.2.10 Clinical Evaluation 

The system was tested clinically on two patients to determine its effect on the accuracy of 

needle delivery, time to deliver needles, and efficiency of the procedure workflow. The 

patients gave informed consent, and were enrolled in an ongoing University Health 

Network Research Ethics Board approved phase I study of MR-guided focal laser thermal 

therapy for patients with low-risk prostate cancer (ClinicialTrials.gov ID: 

NCT01094665). The system is only used in Canada, and has been classified as a Class I 

medical device under Health Canada’s regulations. Using the system, a total of nine 

needles were delivered to the patients’ prostates for focal laser ablation. Needle guidance 

accuracy was defined as in section 3.2.9.3 for the phantom experiment. Gradient echo 

images of the needles in their final positions were acquired in axial, sagittal, and coronal 

planes. Needle trajectories were measured in axial images using the method described in 

section 3.2.3 for registration fiducials. 
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3.2.11 MR Imaging Parameters 

Table 3.1 summarizes the MR imaging parameters used for all acquisitions described in 

this chapter. The imaging sequence used in each case was a 2D fast spoiled gradient 

echo. Imaging parameters used for visualizing needles in the clinical cases varied at the 

MR operator’s discretion, and the values included are only a representative example. 

Table 3.1: MR imaging parameters used for all images acquired in this chapter. 

Parameter B0 TR TE FA Slice 
Thickness FOV Acq. Matrix BW 

Distortion Test 3 270 4 25 3 400 x 400 256 x 256 195 

SNR Test 3 270 4 25 3 400 x 400 256 x 256 977 

Tracking Frame 
(Accuracy Tests) 3 270 4 30 3 140 x 140 128 x 128 244 

Spherical 
Markers 

(Accuracy Tests) 
3 270 4 30 3 140 x 140 128 x 128 244 

Tissue-Mimicking 
Phantom 

(Accuracy Tests) 
3 100 4 60 3 80 x 80 128 x 128 244 

Tracking Frame 
(Clinical Cases) 1.5 120 1.8 60 4 150 x 150 128 x 128 63 

Needle 
Localization 

(Clinical Cases)† 
1.5 6 1.5 60 4 300 x 300 256 x 256 244 

Units T ms ms deg. mm mm - Hz/px 
†. Varied at MR operator’s discretion. This is a representative example. 

 Results 3.3

3.3.1 MR-Compatibility 

3.3.1.1 Image Distortion and Signal-to-Noise Ratio 

Figure 3.15 shows the baseline and difference images from the distortion test. 
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Figure 3.15: Images from distortion test: a) baseline. Difference images: b) device only, c) device 

connected, d) device powered. 

Examination of the difference images indicates that there was no notable 

distortion produced by the presence or operation of the device. The obvious distortion at 

the top of the phantom in Figure 3.15 is due to field distortions produced by the 

rectangular phantom itself, and not the device. It is clear from the difference images that 

the distortion was not affected by the presence of the device. These distortions are larger 

than would be typically observed in clinical images because of the low bandwidth used 

for these measurements. 

Table 3.2: Summary of SNR measurements. 

 Baseline Device 
Only 

Device & 
Cables 

Device 
Powered 

SNR 29.4 30.0 28.0 27.9 
Change - + 1.8% - 5.0% - 5.3% 

 

Table 3.2 summarizes the SNR in each case. SNR was found to decrease by no 

more than 6% from its value in the baseline image (case 1) in all other cases. It is 

therefore concluded that the decrease in image SNR due to the device’s presence is 

minimal. 

3.3.1.2 Effects of MRI on the Device 

Effects of the scanner on the device were minimized by using non-magnetic materials for 

all major components. Accordingly, the induced force and torque on the device were not 
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detectable and were judged to be considerably less than the limits imposed in the ASTM 

standard. rf heating and encoder miscounts were not detected during device testing. 

3.3.1.3 ASTM Classification 

The ASTM has specified a standard for marking medical devices for safety in the MR 

environment.[51] Following the results of the MR compatibility tests, this system is 

classified as MR Conditional. While the system has been demonstrated to not experience 

rf heating, it has only been tested using a specific set of MRI sequences and parameters. 

As such, there is potential for this effect to become problematic if the device were used 

under a different MRI scanning protocol. Please contact the authors for more information 

regarding the specific scanner parameters and device configurations under which testing 

for rf heating was performed.  

3.3.2 Targeting Accuracy 

3.3.2.1 Open-Air Targeting Accuracy 

Error in positioning of the furthest tooling ball was ETB = 0.29 ± 0.11 mm, with the 

angular error in trajectory being ATB = 0.11 ± 0.04°. A one-tailed t-test showed that the 

mean positioning error of the furthest tooling ball was statistically significantly less than 

0.32 mm (p = 0.005, n = 81). The one-sided 95% prediction interval of ETB was found to 

be 0.48 mm. It is therefore expected that, for any target with a known position relative to 

the device coordinate system, the device will be capable of placing a needle at that target 

within 0.48 mm, in 95% of attempts. 
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3.3.2.2 Intra-MR Accuracy Tests 

The quantitative results from the intra-MR alignment and phantom needle guidance 

experiments are summarized in Table 3.3. 

Table 3.3: Summary of device accuracy tests in MR. Needle guidance error, NGE [Eq. (3.7)], needle 
guidance human error, NGHE [Eq. (3.10)], and needle trajectory error [Eq. (3.12)] quantify the system 

accuracy for both the intra-MR trajectory alignment, and tissue-mimicking phantom targeting tests. 95% CI 
is the confidence interval on the mean. 95% PI is the prediction interval for each error. All values are 

reported as mean ± STD. Values in bold are those mentioned in the discussion. 

 Trajectory Alignment Accuracy in MR Tissue-Mimicking Phantom Targeting 
Accuracy in MR 

Experiment NGE 
(mm) 

NGHE 
(mm) 

NTE 
(mm) 

NGE 
(mm) 

NGHE 
(mm) 

NTE 
(mm) 

1 0.96 ± 0.22 0.51 ± 0.19 0.70 ± 0.07 1.25 ± 0.33 0.47 ± 0.08 1.19 ± 0.30 
2 1.28 ± 0.48 0.56 ± 0.18 1.14 ± 0.13 1.96 ± 0.67 0.62 ± 0.26 1.77 ± 0.40 
3 1.22 ± 0.30 0.40 ± 0.35 0.99 ± 0.05 1.04 ± 0.74 0.51 ± 0.29 0.99 ± 0.46 
4 1.03 ± 0.28 0.51 ± 0.12 0.72 ± 0.11 1.52 ± 0.82 0.50 ± 0.19 1.49 ± 0.72 
5 1.13 ± 0.44 0.56 ± 0.29 0.85 ± 0.07 1.42 ± 0.69 0.47 ± 0.31 1.13 ± 0.39 

Mean 1.11 ± 0.34* 0.51 ± 0.22 0.86 ± 0.19 1.44 ± 0.69† 0.51 ± 0.23 1.31 ± 0.52 
95% CI (0.97, 1.26) (0.42, 0.60) (0.78, 0.94) (1.16, 1.73) (0.42, 0.61) (1.10, 1.53) 

95% PI‡ 1.71 0.89 1.19 2.64 0.91 2.22 
* Statistically significantly less than 1.4 mm using one-sided t-test (p = 0.0003, 22 DOF). 
† Statistically significantly less than 2.0 mm using one-sided t-test (p = 0.0002, 24 DOF). 
‡ One-sided prediction interval 

To aid in the interpretation of Table 3.3, refer to Figure 3.16, which graphically 

summarizes each component of needle guidance error that was measured. 
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Figure 3.16: Illustration of each of the components of needle guidance error that were measured: needle 

trajectory error (NTE), which includes errors due to needle deflection and device localization; needle 
guidance human error (NGHE), which measures the user’s ability to align the device with the desired 

needle trajectory; and needle guidance error (NGE), which includes contributions from NTE and NGHE. 

The mean needle guidance error for the trajectory alignment test was found to be 

NGEtr = 1.11 ± 0.34 mm. The one-sided 95% prediction interval of NGEtr was found to 

be 1.71 mm. It is therefore expected that, for a target identified in an MRI image, the 

device will be capable of pointing its needle guides at that target within 1.71 mm, in 95% 

of trials. This value can be viewed as the expected overall performance of the device in 

an MR scanner if there were no effects of tissue and needle deflection. The mean needle 

guidance human error over all trials was found to be NGHEtr = 0.51 ± 0.22 mm. This 

indicates that approximately half of the error associated with aiming a needle at a target 

in MR is due to misalignment of the device from its intended trajectory. NGHE can be 

reduced by proportionately reducing the precision to which the device must be aligned, as 

dictated by the alignment interface. The precision level used for these tests was 0.25 mm 
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(for linear stage positions), since it was found that most users could more quickly and 

easily align the device at this level than at the 0.125 mm precision level. 

The mean needle guidance error from the phantom targeting experiment was 

NGEph = 1.44 ± 0.69 mm. The one-sided 95% prediction interval of NGEph was 2.64 mm. 

From this it is expected that, given a target in a tissue with mechanical properties similar 

to the phantom used in our experiment and localized in an MR image, the device will be 

capable of guiding a needle to within 2.64 mm of that target in 95% of attempts. 

Analysis of NTE from both experiments provides insight regarding the sources of 

targeting error. In the trajectory alignment experiment, NTEtr includes contributions from 

registration errors, MR bed positioning errors, and modeling inaccuracies in the 

kinematics equations. It does not include effects of needle deflection, whereas NTEph 

does. The discrepancy between NTEph and NTEtr is therefore due to the effects of needle 

deflection alone. Since the error due to needle deflection, NDE, is independent of the 

other contributors to NTEph
, it follows that NDE adds to NTEtr in quadrature. It is thus 

possible to compute the rms NDE, which was found to be NDErms = 1.10 mm for the 

phantom experiment. 

3.3.3 Clinical Evaluation 

The system was used to successfully deliver laser fibers to two patients’ prostates for 

focal laser ablation. It was found that needle deflection was greater than in the phantom 

targeting experiments, with the mean needle guidance error over both patients being 

NGEpt = 7.45 ± 4.56 mm. The overall rms needle deflection error was found to be 

NDErms = 8.59 mm. While the needle deflection was much greater than in the phantom 

experiment, the therapy was successfully delivered in both cases. Much of this success 
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was owed to the fact that the needle could be clearly visualized in MR images, which 

were acquired intermittently during insertion. It was also found that needles inserted into 

adjacent template holes deflected similarly; a characteristic that was exploited to 

compensate for needle and tissue deflection effects. Table 3.4 summarizes the 

quantitative performance of the system for these two patients. 

Table 3.4: In vivo needle targeting errors in two patients. Patient 1 had four needles inserted, while patient 
2 had five. Needle deflection error in patient 2 was less than half that in patient 1, demonstrating how much 

tissue properties can vary between patients. 

Patient NGE 
(mm) 

NGHE 
(mm) 

NTE 
(mm) 

NDErms 
(mm) 

Time to Reach 
Target (min) 

1 10.79 ± 3.26 0.37 ± 0.09 10.93 ± 3.31 11.27 12 ± 6 
2 4.78 ± 3.67 0.39 ± 0.15 4.60 ± 3.71 5.60 6 ± 3 

Mean 7.45 ± 4.56 0.38 ± 0.12 7.41 ± 4.71 8.59 9 ± 5 
 

NDErms for the second patient was less than half that in the first. This result 

demonstrates how tissue properties can vary greatly between patients, which can result in 

vastly different degrees of needle deflection. The average time required to guide needles 

to their final location was 9 ± 5 min (n = 9), compared to 35 ± 17 min (n = 3) in a case 

where needles were inserted using a fixed grid template or 21 ± 17 min (n = 3) when they 

were inserted freehand. Imaging of the device’s registration fiducials did not interrupt the 

procedure workflow, as this was performed before the patient arrived in each case. The 

device was then removed from the scanner bed, and precisely repositioned on a set of 

custom-made rails once the patient had been anesthetized. 

 Discussion 3.4

Results from the MRI compatibility tests showed that the needle guidance system does 

not cause an appreciable level of image distortion or decrease in SNR in MRI images. In 

addition, the MRI was found to not impair the device’s operation through the introduction 
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of force, torque, rf heating, or interference with its electrical systems. The system was 

therefore deemed to be safe to operate within the bore of an MRI scanner with a patient. 

Results from the intra-MR trajectory alignment test indicated how well the system 

can perform its chief function: to align its needle guides with an MRI-identified target. A 

prediction interval on NGEtr indicated that, in 95% of trials, the device is expected to be 

capable of aiming its needle guides to within 1.71 mm of a selected target. This is well 

within the goal of 2.5 mm, indicating that this system has the potential to target the 

smallest tumours considered clinically significant.[32] The results from MRI-guided 

needle insertion tests provided quantification of the error associated with using the 

system to deliver needles to targets in a tissue-mimicking phantom. A prediction interval 

computed on NGEph indicated that the system is expected to be capable of delivering a 

needle to its target within the bore of an MRI scanner to within 2.64 mm, in 95% of trials. 

This result further suggests that the system has the potential to target prostate tumours of 

the smallest clinically significant size. A comparison between NTEph and NTEtr allowed 

quantification of the effects of needle deflection in the form of root mean squared needle 

deflection error, NDErms = 1.10 mm. Despite the fact that the prostate phantom used has a 

comparable stiffness to that of human tissue, it was not expected that the same 

performance measured in the phantom experiment could be achieved in vivo. The tissue 

between the perineum and prostate (which makes up the majority of the insertion length) 

exhibits inhomogeneous, non-isotropic material properties.[52] As such, the results of the 

phantom needle insertion tests represent the best performance that the system could 

achieve in placing a needle in a patient with tissue of homogeneous, isotropic material 

properties, and stiffness on the same order of that of human tissue. Differences in needle 
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guidance error between the patient trials and the phantom needle guidance test are mainly 

due to needle deflection. This is the case, as the intra-MR trajectory alignment test has 

confirmed that the system can accurately and reliably align its needle guides with a target 

in the bore of a clinical MRI scanner. 

The amount of needle deflection, as indicated by NDErms, was almost an order of 

magnitude larger in human tissue than in the phantom experiment, yet the system was 

still used successfully to deliver focal laser ablation to two patients. This was made 

possible by the system’s ability to monitor the trajectories of partially inserted needles in 

MR images. In this way, the needle deflection at its final depth could be predicted from 

the initial level of deflection, and the needle could be reinserted from a different angle if 

indicated. Using the device in ‘target only mode’ allowed the physician to quickly and 

easily modify the needle’s trajectory during this process. In addition, it was found that 

needles inserted in adjacent template holes deflected similarly. This allowed the final 

location of a subsequent needle to be predicted with some certainty. Figure 3.17 shows 

two needles inserted in a patient through adjacent template holes, demonstrating how 

both needles deflecting in the same direction. Finally, the time required to deliver needles 

to targets with sufficient accuracy was observed to be much less when using our system 

(9 ± 5 min) than with either a fixed grid template (35 ± 17 min) or freehand insertion (21 

± 17 min). While there were not enough trials performed for the timing data to be 

considered statistically significant, it is expected that this trend would continue based on 

the fact that the system: a) consistently provides initial needle trajectories that aim within 

1.71 mm of the intended target, b) allows simultaneous insertion of multiple needles in 

the same template, allowing for some prediction of subsequent needle deflection based on 
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the previous insertion, and c) provides a mechanism for quickly modifying needle 

angulation when the needle trajectory is deemed unsatisfactory. It was found that both 

NDErms and the time required to successfully place needles at their targets were 

approximately halved for the second patient compared to the first. It is believed that these 

differences were mostly due to differences in tissue properties between the two patients, 

but increased experience in using the system in the second case may have also been a 

factor. 

Clinical evaluation of the system is ongoing, and an optimal method of correcting 

for needle deflection is being sought, as a solution to this problem could considerably 

reduce procedure time by reducing the number of insertion attempts and needle image 

acquisitions required. 

 
Figure 3.17: MR images of needles in a patient's prostate. a) Axial image showing needles, b) sagittal 

image of needles showing how inserting a needle into a posterior template hole allowed the physician to 
reach the original, more anterior target. 



 

113 

 

 Conclusions 3.5

MR compatibility tests showed that the presence of the trajectory alignment device has a 

negligible effect on MR image distortion and SNR. Effects of the MRI on the operation 

of the system were also deemed negligible. The system was then shown to be capable of 

aiming its needle guides to within 1.71 mm of a target within the bore of a clinical MRI 

scanner, as indicated by a 95% prediction interval. Needle targeting tests in a tissue-

mimicking phantom showed the device to be capable of delivering needles to targets in 

the phantom within 2.64 mm, indicated by a 95% prediction interval. Although needle 

deflection was much greater than in the phantom experiments, use of the system in two 

patients for focal laser ablation procedures was successful, owing to effective methods of 

measuring and compensating for needle deflection. It was also observed that needles 

could be delivered using this system in less time than using a fixed grid template or a 

freehand technique. These promising results led to the use of this system for delivering 

needles for FLA therapy in eight cases, which will be described in Chapter 4.  
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Chapter 4. 
  

A Mechatronic System for In-Bore MR-Guided 

Insertion of Needles to the Prostate: Experiences Using 

the System for Prostate Focal Laser Ablation in Eight 

Patients† 

 

 Introduction 4.1

Prostate cancer remains the most common solid organ malignancy diagnosed in North 

American men.[1] In order to reduce the treatment related morbidity associated with 

radical therapies and attempt to provide immediate oncologic control, focal therapy has 

emerged as a novel minimally-invasive approach for prostate cancer treatment. Focal 

therapies aim to ablate the index lesion while leaving the majority of the gland, including 

the delicate neurovascular bundles and the urethral sphincters intact.[2] Prudent selection 

of appropriate candidates for focal therapy and treatment planning necessitates the use of 

novel imaging and biopsy protocols in order to locate and characterize the prostate cancer 

foci.[3] 

Multi-parametric magnetic resonance imaging (mpMRI) has the highest 

sensitivity of all prostate imaging modalities for detection and localization of prostate 

                                                 
†. A version of this chapter is in preparation for submission for publication: Cepek, J., Lindner, U., Louis, 
AS., Ghai, S., Davidson, SRH., Gertner, M., Hlasny, E., Sussman, MS., Trachtenberg, J., Fenster, A., “A 
Mechatronic System for In-Bore MR-Guided Insertion of Needles to the Prostate: Experiences Using the 
System for Prostate Focal Laser Ablation in Eight Patients.” J. Magn. Reson. Im. (2013, In Preparation). 
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tumours, and has superior anatomic resolution of the prostate and surrounding structures 

compared to other imaging modalities.[4, 5] These features make mpMRI an ideal 

modality for guiding both targeted prostate biopsy and focal therapy to prostate tumours. 

Also, many emerging focal therapy modalities use thermal energy for tissue ablation, and 

magnetic resonance (MR) imaging offers temperature mapping for real-time feedback 

during the procedure to confirm therapeutic temperatures are reached at the target, while 

ensuring damage to the surrounding tissues is limited.[6] Dynamic contrast-enhanced MR 

imaging may also be used immediately after treatment to confirm complete ablation of 

the target.[7] 

A number of different strategies have been evaluated to deliver percutaneous 

needles to prostate tumours under MR-guidance.[8-12] Our group has previously 

evaluated a brachytherapy-like template approach in the context of our ongoing trial of 

MR-guided focal laser ablation (FLA). An optimal needle delivery method should feature 

high targeting accuracy, needle angulation to accommodate large prostates, and 

demonstrated safety and compatibility with the MR scanner. In addition, the ability to fit 

within the limited confines of the MR bore and guide needles without removing the 

patient from the scanner bore is an ideal feature for maintaining an efficient intra-

procedural workflow and limiting patient motion, which could lead to inaccuracies in 

targeting and thermal mapping. In an attempt to satisfy these criteria, we recently 

developed a mechatronic system for in-bore MR-guided insertion of needles to the 

prostate, as described in Chapter 3 and in ref. [13]. This system could potentially be 

applied to transperineal prostate biopsy and focal therapies requiring interstitial delivery 

of laser fibers, electrodes or cryoprobes. Chapter 3 reported brief preliminary results from 
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the first two cases of MR-guided prostate FLA using this system. Following these two 

pilot cases, device and patient positioning was optimized. We now report comprehensive 

results from clinical evaluation of our system in eight cases of FLA for localized prostate 

cancer. 

 Materials and Methods 4.2

4.2.1 System Design 

Full details of our design process for the system are described in Chapter 3. Briefly, we 

constructed a needle guidance device using MR-compatible materials, comprehensively 

validated its safety and compatibility within the MR environment, and rigorously 

quantified its needle guidance accuracy in tissue-mimicking phantoms. The device has 

four degrees-of-freedom for aligning needle trajectories, including vertical and horizontal 

translation and angulation. The delivery arm is controlled by three handles that are 

manually manipulated by the operator from outside of the MR scanner bore. Visual 

feedback for needle guide alignment is provided based on proximity of the arm to the 

target position in the form of coloured lights displayed on an MR-compatible LED panel. 

The device’s principal function is to precisely align its needle guide with an MR-

identified target while remaining in the MR bore. Following this, needles are inserted 

manually under MR imaging guidance. 

The system provides the interventionalist with several advantages over other 

methods of transperineal prostate needle guidance. In contrast to a grid template 

approach, this system allows target points in the prostate to be specified at any position in 

3D space. This feature allows pre-treatment plans to be generated with complete freedom 

in the geometric arrangement of the planned needle locations. In addition, angulated 
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needle trajectories can be used to avoid critical structures, and, in the case of focal 

therapy, to ensure accurate conformation of the ablation volume to the target region. 

4.2.2 Integration with Clinical Workflow 

Prior to the beginning of each procedure, the device is mounted on the MR scanner table 

for localization within the MR image space using an MR-visible fluid-filled tracking 

frame. The device is then removed from the fixed mounting apparatus on the MR table to 

facilitate patient positioning, placement of the endorectal (ER) receive coil and 

administration of anesthesia. The device is then replaced on the mounting apparatus at the 

precise position where it was imaged and its base is locked in position. All subsequent 

movements of the device’s movable components are then tracked in real-time with MR-

compatible linear position encoders. Sterile draping is then applied to the procedural 

field, including draping of the device with a sterile plastic sheet. All components of the 

device in direct contact with the patient or interventionalist, including needle guides, 

guidance arm, and alignment handle, are sterilized using ethylene oxide and installed on 

the device immediately before use. Figure 4.1 shows the device during setup and its 

positioning for an MR-guided FLA procedure. 
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Figure 4.1: Needle guidance device setup and components. a) Device in place on MR table prior to patient 
positioning. LED grid panel indicates position of the needle guide relative to target position. b) Sterilizable 

components including (from top to bottom): guidance arm, mounting pin, alignment handle and needle 
guides. c) Device in operating position before moving the patient into the MR bore. d) Placement of laser 

fibers with the patient remaining inside the bore. 

4.2.3 Intra-Procedure Performance Assessment 

The mechatronic system was used to guide needles for prostate FLA as part of an 

ongoing Phase I/II clinical trial (ClinicalTrials.gov ID: NCT01094665). For this 

procedure, a custom cannula system (hereafter referred to as a needle) was used to deliver 

laser fibers for ablation. For each target, a desired needle trajectory was selected using 

custom 3D visualization software that displays the target and prostate contours on MR 

images of the prostate. The desired trajectory was then transmitted to the MR-compatible 

LED grid display in the MR scanner room. Using this display, the interventionalist 
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precisely aligned the needle guides of the device to the intended trajectory, and then 

manually advanced needles transperineally without removing the patient from the MR 

scanner bore. Needles were incrementally inserted and imaged to monitor their insertion 

path until they reached their final desired depth. 

After complete insertion of each needle, the trocar was removed and replaced by a 

16-gauge closed-ended catheter (Flexineedle, Best Medical International, Springfield, 

VA) filled with a 1% solution of Gd-DTPA for high contrast visualization of catheter 

placement.[14] A series of axial fast spoiled gradient echo (FSPGR) and balanced steady 

state free precession (bSSFP or FIESTA on GE scanners) MR images were then acquired 

of each catheter in its final position. The bSSFP images provide high soft tissue contrast, 

and can be used to confirm accurate placement of catheters relative to anatomical 

landmarks. The axis of each catheter was then identified in the FSPGR images, and 

compared to the intended target point for calculation of needle guidance error, defined as 

the perpendicular distance between the needle axis and the selected target point. Error in 

positioning of the needle along the insertion direction was not included in this definition 

because each needle was intentionally inserted beyond its target point, and a “pull-back” 

technique was used to create an elongated volume of ablated tissue. 

The time required to successfully guide each needle to its target was also 

recorded. Timing began immediately before insertion and ended once images of the 

needle had been acquired and the needle was confirmed to be in an acceptable location at 

the proper depth. Needle guidance time using this system in eight cases (29 insertions) 

was compared to that for nine cases (18 insertions) earlier in this trial in which needles 

were guided using the “MRI-compatible brachytherapy-like template”, as described by 



 

125 

 

Raz et al.[15] Unfortunately, needle guidance error could not be compared between these 

two approaches, since the template method did not target specified points – needles were 

inserted into the most favorable template hole available. All procedures were performed 

in a 1.5 T closed bore GE MR scanner (Signa HDxt 1.5T, GE Healthcare, Milwaukee, 

WI). 

4.2.4 Data analysis 

The Mann-Whitney U test was used to compare needle guidance times between the 

template- and mechatronic device-guided approaches, and the Wilcoxon signed rank test 

was used to test if the median of components of needle guidance error differed 

significantly from zero. Statistics were computed using GraphPad Prism version 6.02. 

 Results 4.3

Needle guidance error was successfully recorded for a total of 29 needle insertions. 

Figure 4.2 shows images of two catheters in their final position in the prostate on FSPGR 

and bSSFP images. Optimal visualization of both the needles and prostate anatomy was 

achieved with bSSFP sequences. 
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Figure 4.2: Images showing final catheter placement in two different prostates. a) Patient 7, sagittal 

FSPGR image showing 3D prostate (blue) and target region (red) surfaces, target point (red arrow) and 
needle at its final position (white arrow) in the left posterior peripheral zone. b) Patient 3, axial FSPGR 

image showing excellent visualization of the catheter, but poor contrast between prostatic and surrounding 
tissue. c) Patient 3, bSSFP image showing excellent visualization of the same catheter in (b), clear contrast 

between prostatic and surrounding tissue, and internal prostate anatomical detail. 

Table 4.1 shows the needle guidance error and needle guidance time for each 

patient. The median number of needles inserted per patient was 4 (range 1 – 4). 90% of 

the needles were placed within 6 mm of their target in less than 13 minutes each. 

Table 4.1: Needle guidance error and needle guidance time for each of six patients. Data are shown as 
median (interquartile range). 

Patient 
Prostate 
Volume 

(cm3) 

# of 
Targets 

Target 
Location(s)* 

Target 
Volume(s) 

(cm3) 

# of 
Needles 
Inserted 

Needle 
Guidance Error 

(mm) 

Needle Guidance 
Time (min) 

1 73 1 RPB 4.67 4 3.4 (2.9 – 4.8) 7.5 (5.3 – 9.0) 
2 49 1 LPA 1.53 4 3.4 (2.5 – 5.2) 8.5 (7.3 – 9.8) 
3 36 1 RPB 0.17 1 1.9 9.0 
4 44 1 RPB 0.81 4 2.8 (1.4 – 5.8) 6.5 (3.8 – 10.8) 
5 76 1 RPM 0.13 4 2.2 (1.1 – 4.8) 8.0 (5.8 – 9.5) 

6 36 1 RPA 3.96 4 2.4 (1.9 – 4.2) 12.0 (11.3 – 
12.8) 

7 268 2 LPB, 
MPM 

0.64, 
0.72 4 5.5 (1.2 – 9.3) 9.0 (5.0 – 11.5) 

8 28 1 RAA 0.48 4 5.1 (3.8 – 5.6) 7.5 (6.3 – 11.0) 
Median 47 1 RPM 0.72 4 3.4 (2.1 – 5.2) 8.0 (6.5 – 10.5) 
* Listed in order of lateral (R = right, L = left, M = midgland), anterior-posterior (A = anterior, P = 
posterior, M = midgland), and superior-inferior (B = base, A = apex, M = midgland) position of the 
target(s) in the prostate.  

Needle guidance error was also decomposed into orthogonal components in the 

anterior-posterior (AP) and medial-lateral (ML) directions. The components are shown in 
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Figure 4.3. The median needle guidance errors were 1.8 mm and 0.6 mm in the posterior 

and lateral directions, respectively. The median of both error components were found to 

be statistically significantly different from zero (p < 0.0001), suggesting that needles tend 

to deflect posteriorly and laterally in the prostate. Figure 4.3 also shows the empirical 

cumulative distribution function (CDF) of the measured values of needle guidance error. 

The figure indicates the fraction of needles inserted that reached their target within a 

given level of error. 

 
Figure 4.3: Needle guidance error for each of the 29 insertions. a) Components of needle guidance error in 
the anterior-posterior and medial-lateral directions. Positive values correspond to the posterior and lateral 
directions. The point (0,0) corresponds to the target point for each insertion. Needles tended to deflect in 

the lateral and posterior directions. b) Fraction of needles within a given level of error emax using the system 
described in this chapter. 

Needle guidance times for the two sets of patients treated with either template or 

the mechatronic system are shown in Figure 4.4. A statistically significantly shorter 

median guidance time was found with the device compared to the template approach: 8 

vs. 18 min (p < 0.0001, 95% CI of difference: 5 – 13 min). The variance in needle 

guidance time is also noted to be less when using our system. 
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Figure 4.4: Box plot showing the time required to guide each needle to its target using either a 

brachytherapy-like grid template, or the mechatronic system described in this work. Red line: median, blue 
box: interquartile range (IQR), black bars: extremum. The median time was statistically significantly 

different between the two methods (p < 0.0001). 

 Discussion 4.4

In an attempt to take full advantage of the capabilities that MR imaging offers for the 

delivery of prostate FLA, we developed a fully MR-compatible mechatronic system for 

the precise in-bore guidance of needles to the prostate.[11, 16-19] Our device has the 

advantage of being operated by an interventionalist while remaining in the scanner, 

reducing error introduced by moving the patient in and out of the bore, and decreasing 

needle guidance time. In using the system to guide 29 needles for prostate FLA in eight 

patients, the median needle guidance error achieved was 3.4 mm, with a targeting time 

significantly less than the grid template approach previously used. This difference may be 

attributed to the fact that our device does not necessitate patient removal from the scanner 

for advancement of needles, as well as the overall mechanical stability of the system. In 
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addition, our system has the ability to target any location within the prostate, rather than a 

fixed set of non-ideal targets based on the location of the template holes. For this reason, 

the needle guidance error could not be compared to that using the grid template approach. 

The potential clinical importance of the accuracy achieved with this system must 

be highlighted. In the context of targeted biopsy, the goal is to sample tissue from within 

an MR-identified target region, and a high probability of successfully doing so is desired. 

A spherical tumour of the smallest size generally considered clinically relevant is 0.5 cm3 

(5 mm radius).[20, 21] Our results suggest that, using this system, the probability of 

successfully sampling such a target is 72%, since approximately 72% of the data in 

Figure 4.3 falls within 5 mm of the target. If multiple attempts are made to biopsy the 

same target, the total probability of success increases to 92%, and 98% if 2 or 3 samples 

are taken, respectively (assuming the errors are independent). These probabilities would 

increase as the size of the target increases. In the context of needle-based focal therapy 

such as FLA, treatment success is defined as completely ablating the focal target region 

while avoiding damage to surrounding critical structures.[22] If a single laser fiber is 

used, the target will be successfully ablated if the needle placement error is less than the 

width of the planned treatment volume margin surrounding the tumour. An increase in 

tumour size would result in a smaller margin, and therefore a decreased probability of 

success. Lesions exceeding a threshold size necessitate insertion of multiple fibers per 

tumour, for which prediction of the probability of successful ablation requires a more 

complex analysis.[15, 17, 23] 

Another notable benefit encountered in using this system was its ability to target 

tumours in patients who may have been excluded from other whole-gland treatment 
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modalities. Patient 7 had a prostate with a volume of 268 cm3, yet we were able to target 

a tumour in the far lateral posterior peripheral zone using an angulated needle trajectory 

to avoid pubic arch interference. Patient 8 had an anterior tumour near the prostate apex 

for which needle access was occluded by the urethra. This patient’s tumour was also 

reached using an angulated needle trajectory. These cases are illustrated in Figure 4.5. 

 
Figure 4.5: Two cases for which the needle guidance system proved extremely valuable. a), b) Patient 7, 

with a prostate volume of 268 cm3. The use of an angulated needle trajectory allowed the tumour in the far 
lateral posterior peripheral zone to be reached while avoiding pubic arch interference. c), d) Patient 8, with 
an anterior tumour that would have been inaccessible using a parallel needle trajectory due to interference 

with the urethra. The target was reached while avoiding damage to the urethra using the angulated 
trajectory shown. 

Since error in needle placement is of clinical importance, the cause of it must be 

discussed. The median error in aligning this system’s needle guides to an MR-identified 

target was quantified in Chapter 3 as 1.1 mm. This number represents the accuracy with 

which the device can align its needle guides to targets at an insertion depth of 15 cm. 
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Needle insertion tests in phantoms then quantified the minimum error achievable using 

this system to insert needles into homogenous tissue with stiffness similar to that of 

human tissue as median 1.3 mm. Finally, results in this chapter demonstrated a median 

needle guidance error of 3.4 mm in human tissue. The increased error in human tissue is 

expected to be due to needle deflection during the initial skin puncture and along the 

needle’s long insertion path through heterogeneous tissue. It is not expected to be caused 

by other sources such as inaccurate registration of the device to the MR image space or 

movement of the device during the procedure, since these sources of error have been 

controlled. 

It must be pointed out that the definition of needle guidance error used in this 

work does not include prostate motion, meaning that the reported values of targeting error 

are potentially underestimated.[24] However, our use of a Foley catheter and a fully-

inflated endorectal MR coil may substantially reduce intra-treatment prostate motion 

caused by variable rectal and bladder filling and rectal peristalsis, which are generally 

considered major contributors to prostate motion during radiotherapy.[25] In addition, 

prostate motion is monitored in each procedure by acquiring T2-weighted whole-gland 

images when motion is suspected, and the final position of each needle is verified using a 

bSSFP sequence, which provides excellent soft tissue contrast for confirming the location 

of needles relative to prostate structures. Finally, while the time to guide each needle to 

its target was significantly reduced using this system compared to a template approach, 

there is still room for improvement. The limiting factor preventing a further reduction in 

needle guidance time is the lack of a readily-available method of controlling needle 

trajectories in real-time. 
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 Conclusions 4.5

We have developed a mechatronic needle guidance system for MR-guided transperineal 

biopsy and focal therapies of the prostate, and evaluated its performance in delivering 29 

needles in eight cases of MR-guided prostate FLA. The time taken to guide each needle 

to its target was significantly reduced compared to the fixed grid template approach 

previously used, and the system provided a reliable method of accurately aligning needle 

guides for in-bore needle delivery to the prostate. However, despite these successes, we 

suspect that needle placement error is currently substantially contributing to incomplete 

target coverage in some cases. To address this issue, we propose to develop a better 

understanding of the relationship between the uncertainty in needle placement error and 

target coverage, enabling the generation of treatment plans that will ensure a higher rate 

of treatment delivery success. This proposal led to the work described in the following 

chapter.  
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Chapter 5. 
  

Treatment Planning for Prostate Focal Laser Ablation 

in the Face of Needle Placement Uncertainty† 

 

 Introduction 5.1

The concept of focal therapy for the treatment of patients with clinically localized, low- 

to intermediate- risk prostate cancer is receiving increased attention, and the safety and 

efficacy of a variety of focal therapy delivery modalities is being evaluated in a number 

of trials.[1] One particularly attractive modality is focal laser ablation (FLA). Prostate 

FLA involves interstitial placement of one or multiple diffusing laser fibers into the 

“dominant lesion” or “index” tumour.[2] With recent advances in multi-parametric 

magnetic resonance (MR) imaging and its reported high sensitivity in detecting clinically 

significant tumours, localization of the tumour selected for FLA is commonly based on 

an assessment of T2-weighted, diffusion-weighted, and dynamic contrast-enhanced 

(DCE) MR images.[3, 4] This process provides the interventionalist with a well-

delineated 3D target for FLA (hereafter referred to as the target or focal target).[5-7] 

Most commonly, diode lasers at 980 nm (infrared) are used for ablation, as this 

technology is cheaper and more compact than alternatives such as Nd-YAG lasers, and 

water has good absorption at this wavelength.[8] In addition, systems with FDA approval 

                                                 
†. A version of this chapter has been published: Cepek, J., Lindner, U., Davidson, S., Haider, M., Ghai, S., 
Trachtenberg, J., Fenster, A., “Treatment Planning for Prostate Focal Laser Ablation in the Face of Needle 
Placement Uncertainty.” Med. Phys. (2014, In Press). 
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for use in prostate are now available. Once a fiber has been placed within the target 

region, usually through the perineum via a coaxial cannula system, ablation is performed 

for a period of ~ 2 – 10 minutes at a laser power of ~ 5 – 15 W. By performing multiple 

laser fiber insertions, regions of ablated tissue up to ~ 10 cm3 can be produced.[5, 6, 9, 

10] FLA is MR-compatible, allowing for intra-treatment visualization of prostate cancer, 

clear visualization of optical fiber placement in the prostate, and tissue temperature 

monitoring using MR thermometry.[1, 11] In addition, FLA allows the possibility of re-

treatment or secondary radical surgery, if necessary; has been shown to cause limited 

treatment-related morbidity in several Phase I clinical trials; and the ability to create 

confluent regions lacking any remaining viable cells using FLA has been 

demonstrated.[5-7, 10] As many of the academic centers studying FLA move towards 

Phase II studies, the level of oncologic control achievable using this technique will need 

to be proven. It is important at this transition stage to address any flaws identified during 

the Phase I trials of FLA, and correct them before moving forward. Such a strategy will 

ensure an accurate evaluation of the true potential that FLA offers for the treatment of 

prostate cancer. 

While the accurate specification of surrogate endpoints for prostate focal therapy 

are not yet established,[12] one fact regarding the planning of focal therapy remains true: 

any method of focal therapy should aim to destroy 100% of the tissue in the index 

tumour. While FLA has shown more promise in terms of preserving urinary, bowel, and 

erectile function than alternatives such as high intensity focused ultrasound and 

cryoablation,[1] evidence from the Phase I clinical trials and case studies on prostate FLA 

completed to date suggest that complete focal target destruction is not consistently being 
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achieved.[5-7, 13]. In their Phase I trial studying US-guided FLA in 12 patients, Lindner 

et al. reported a median fraction of pre-treatment target volume treated of 53% overall, 

and 81% in the last four patients treated.[5] In another trial, in which nine men were 

treated with MR-guided FLA, Oto et al. found that the target was not completely 

overlapped by the ablation zone seen on immediate post-procedure DCE MR images in 

two cases.[6] Furthermore, in most of these cases, one of the reasons for finding positive 

biopsy cores in the region previously treated (defined as treatment failure in these 

studies) was suspected to be poor overlap between the ablated and targeted regions.[5, 6, 

13] It has been hypothesized by several clinicians working in this field that a primary 

reason for insufficient overlap is error in needle placement, and several authors have 

identified the need for methods of planning prostate focal therapy.[1, 6, 14, 15]  These 

hypotheses are consistent with the findings of several previous studies in which the 

effects of needle placement errors on the dose delivered in prostate brachytherapy were 

shown to cause clinically significant deviations from the prescribed dose, and 

modifications to treatment planning methods were required to compensate for this 

effect.[16-18] At the time of writing, no systematic methods of planning laser fiber 

placement for FLA have been published. 

In this work, a systematic method of planning target points for the placement of 

laser fibers for prostate FLA is developed. The method assumes that the shape of the 

ablated tissue region created by each laser fiber is known to the interventionalist for a 

given laser power and application time, and assumes that ablated regions created by each 

fiber are independent. Each target is modeled as an ellipse of minimum area that encloses 

a projection of the true focal target along the needle insertion direction, and assumes that 
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FLA can create a cylindrical volume of ablated tissue that is elongated along the direction 

of needle insertion. This type of geometric planning has been employed for planning 

various types of ablative therapy including rf ablation of liver tumours,[15, 19, 20] and rf 

ablation of lung tumours.[21] In these works, each ablation volume was modeled as 

either a sphere or cylinder, and planning consisted of finding an optimal geometric 

arrangement of the ablation volumes to completely ablate the tumour. Other authors have 

identified a combined effect of performing multiple ablations in close proximity, 

resulting in a larger volume of ablated tissue than would be achieved by performing each 

of the ablations separately.[22-24] However, as the response of tissue to thermal therapy 

has been shown to vary greatly depending on the organ,[25] and a method of accurately 

specifying thermal properties and levels of perfusion in human prostate tissue has yet to 

be developed, an initial conservative approach of assuming independent ablations is taken 

in this work. 

Following the planning method, a method of estimating the probability of 

achieving complete target ablation for a given plan is presented, and results are shown for 

a range of realistic focal target sizes and shapes, and levels of needle placement 

uncertainty. Finally, a table is provided for estimating the maximum target size that can 

be confidently ablated over a range of target and FLA geometrical parameters, and the 

level of needle placement uncertainty expected. This table can be used to estimate patient 

eligibility for FLA based on a minimum required probability of achieving complete target 

ablation. 
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 Methods 5.2

5.2.1 Treatment Planning 

In this section, a systematic method for specifying the desired placement of laser fibers is 

developed. The method begins with a simplification of the geometry of the problem, 

thereby reducing the degrees-of-freedom in treatment planning. Next, the minimum plan 

required to completely cover a focal target of given shape and size with a fixed size of 

ablation region is defined, followed by a systematic method of augmenting the minimum 

plan by increasing the number of laser fibers. 

5.2.2 3D Ablation Volume Model 

In FLA, laser light is directed into tissue using a diffuser at the end of an optical fiber. 

Absorption of light energy causes an increase in tissue temperature over time, eventually 

resulting in irreversible tissue damage. In thermal therapy for cancer treatment, the 

ablated region is defined as the boundary within which the tissue is definitely irreversibly 

injured.[26] Estimation of the boundary of irreversible thermal injury is generally 

performed by monitoring tissue temperature over time, and is defined by thresholding 

either temperature or an integral parameter (e.g. Arrhenius integral or cumulative 

equivalent minutes at 43°C).[26] For pre-treatment planning, estimation of the boundary 

of the ablated region can be performed by numerical simulation of the 3D distribution of 

tissue temperature over time. Most commonly, such a simulation amounts to solving the 

Pennes bioheat equation using finite element or similar methods.[27] 

The most common type of laser diffuser used for FLA is cylindrical. Evidence 

from numerical simulations and DCE MRI indicate that the resulting volumes of ablated 
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tissue are approximately ellipsoidal, and elongated in the needle insertion direction.[28, 

29] Images of ablation regions, as visualized on immediate post-treatment dynamic 

contrast enhanced MR imaging, are shown in Figure 5.1. If each region of ablated tissue 

can be assumed to be independent and tissue properties are uniform, pre-treatment 

planning can be simplified as a geometric problem, i.e. the ablated region resulting from 

multiple confluent laser applications is equivalent to the superimposition of each 

individual ablation region. Ablated regions are expected to be independent if: 

i. laser fibers in close proximity are not fired simultaneously, and 

ii. for fibers that are fired in succession in close proximity, the amount of thermal 

tissue damage beyond the boundary of definite irreversible damage does not 

substantially contribute to the thermal damage caused by the next laser 

application. 

5.2.3 2D Approximation 

After a single catheter insertion, multiple confluent ablation regions can be created along 

the catheter’s axis by retracting the laser fiber in between or during laser application.[30] 

In accordance with these observations, and assuming that the extent of all positions of 

laser application covers the farthest and nearest volume of the target along the catheter 

axis, an ablation region can be idealized as a cylinder of diameter treatD . This idealized 

ablation region shape is conservative with respect to ensuring target ablation, since the 

actual ablation region will always be slightly larger. The idealized cylindrical ablation 

region concept is shown in Figure 5.2. The amount of healthy tissue damaged beyond the 

idealized cylindrical model of the ablated region depends on the separation between 

individual ablations along the axis of the laser fiber. If the laser fiber is retracted at a 
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constant rate, the resulting ablation region is expected to be cylindrical (in the absence of 

any heat sink effects). 

Using this model of ablation volume shape, planning for FLA only requires 

consideration of the target shape as projected onto a plane perpendicular to the needle 

insertion direction (i.e., as seen from the “needle’s eye view”). The targets are then 

idealized as an ellipse of minimum area that completely encloses the projection of the 

target onto this plane. Moreover, use of this model assumes that all needle trajectories are 

approximately parallel to each other, and that the depth of laser fibers can be accurately 

measured and controlled (e.g. using imaging). 

These simplified models of ablation and target shapes result in a reduction in the 

dimensionality and computational requirement of the problem (from 3D to 2D), and a 

reduction in the number of degrees-of-freedom in treatment planning. The resulting 

idealized problem can be systematically studied with much greater simplicity. 
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Figure 5.1: Estimated regions of ablated tissue in four patient’s prostates, as seen on immediate post-

treatment dynamic contrast-enhanced MR images (coronal slices): a), b) single fiber insertion with laser 
application at only one axial position; c), d) single fiber insertion with multiple laser applications at 

multiple axial positions, which created a region of ablated tissue that is elongated in the direction of the 
laser fiber (needle) axis. In all cases the insertion direction was approximately superior-inferior, with case 

d) showing a slight lateral angulation. 
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Figure 5.2: Idealized ablation volume. A set of confluent regions of ablated tissue in the direction of the 

needle insertion is modeled as a cylinder of maximum diameter that can be enclosed by the actual ablated 
region. As the axial spacing between laser applications is reduced, the amount of under-prediction of 

ablated tissue around the periphery of the ablation region decreases, and it increases at each end. 

Consideration of the planned axial positioning of the laser fibers must also be 

made in order to avoid strongly violating the cylindrical model of confluent ablation 

regions. The cylindrical model will be valid if the planned margin mp, as seen from the 

needle's eye view, is equal to the minimum distance from the target to the planned 

ablation volume in the direction perpendicular to the laser fiber's axis mmin. This is 

illustrated in Figure 5.3. 
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Figure 5.3: Effect of laser fiber axial positioning on the validity of the cylindrical ablation region model. 
a), c), view from "needle's eye view"; b), d), view perpendicular to needle axis. The cylindrical ablation 

region model is valid if the axial extent of the planned ablation region is chosen such that mp = mmin. In a) 
& b), the planned ablation region is not long enough (mp > mmin), in c) & d), mp = mmin and therefore the 2D 

model would reliably predict when needle placement error results in untreated target tissue. 

5.2.4 Specification of Planned Laser Fiber Locations 

A systematic method of planning the placement of laser fibers was designed based on the 

following constraints and guidelines: 

• For a given plan, an increase in the ablation diameter should result in a nearly 
uniform increase in margin of the treatment plan around the periphery of the 
target, 

• A maximum of eight target points (number of laser fibers) is permitted, and 
• All individual ablation regions are of equal diameter. 

 
Following these guidelines, two possible patterns of fiber placement were 

defined: Pattern A: the placement of laser fibers is equally distributed along the major 

axis of the ellipse-shaped target (linear pattern), and Pattern B: laser fibers are placed 
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around an ellipse that is concentric to the idealized target ellipse boundary (concentric 

ellipse pattern). These two patterns are shown in Figure 5.4. 

 
Figure 5.4: The two patterns considered for the ideal placement of laser fibers: a) Pattern A (linear pattern), 

b) Pattern B (concentric ellipse pattern). Solid black contour: idealized target boundary, red contours: 
idealized ablation region boundaries, dashed contour: concentric planning ellipse. For a given target width, 
target aspect ratio, and number of laser fibers, the ideal pattern of the two is that which requires the smallest 

ablation diameter. 

For each combination of target length, target aspect ratio AR (length divided by 

width), and number of laser fibers, the minimum required ablation radius and 

corresponding pattern can be defined as that for which the total ablation region 

completely covers the target with zero margins (i.e. the minimum distance from the target 

boundary to any exterior ablation region boundary is zero). This method defines a family 

of baseline treatment plans. Each baseline plan can subsequently be augmented by 

increasing the number of laser fibers; thereby increasing the overlap of ablation regions, 

and increasing the margins around the periphery of the target. Figure 5.5 describes this 

planning algorithm graphically. Figure 5.6 shows examples of how the minimum plan is 

modified by adding laser fibers. 
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Figure 5.5: Minimum treatment plan required to achieve complete target coverage for varying target aspect 
ratio and number of laser fibers used. Either Pattern A (fibers equally distributed along the major axis of the 

target) or Pattern B (fibers distributed around an ellipse concentric to the target boundary) is employed, 
based on whichever pattern gives the minimum required size of ablation region. Black contour: idealized 

target boundary, red circle: idealized ablation region boundary. 
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Figure 5.6: Examples showing how the planned number of laser fibers can be increased. Pattern A (the 
linear pattern) is used when the diameter of the ablation is large relative to the target width. Pattern B 

(concentric ellipse pattern) is used when the ablation diameter is small relative to the target width, in which 
case it becomes necessary to distribute laser fibers around the periphery of the target. As the number of 

laser fibers increases, Pattern B can be employed to increase the treatment margin around the periphery of 
the target. 

Table 5.1 summarizes the minimum required ratio of ablation diameter to target 

length /A treatR D L=  to completely cover a target with a given number of laser fibers. 

Table 5.1: Minimum required ratio of ablation diameter to target length RA for varying target aspect ratio 
and number of planned laser fibers. 

  Number of Laser Fibers (n) 

  1 2 3 4 5 6 7 8 

T
ar

ge
t 

A
sp

ec
t R

at
io

 
(A

R
) 

1 1.00A 1.00A 0.87B 0.71B 0.62B 0.58B 0.56B 0.54B 
1.5 1.00A 0.72A 0.68A 0.60B 0.50B 0.45B 0.42B 0.40B 
2 1.00A 0.63A 0.54A 0.52A 0.45B 0.39B 0.36B 0.33B 

2.5 1.00A 0.58A 0.47A 0.44A 0.42A 0.36B 0.33B 0.29B 
A Fibers placed according to pattern A 
B Fibers placed according to pattern B. 

5.2.5 Estimation of Treatment Overlap 

Errors in the final placement of needles relative to their planned locations will be present 

in all cases, and may result in the fraction of target treated being less than 100%. The 

actual result will be a function of the planned locations of laser fibers, the size of the 

ablation regions, and the probability density function (PDF) of needle placement error. In 
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this section, a mathematical description of treatment overlap in the presence of needle 

placement uncertainty is presented. Next, the PDF used to model needle placement error 

is specified. 

5.2.6 Mathematical Description of Treatment Overlap 

For a given target and corresponding treatment plan, the probability of ablating a 

specified fraction (or greater) of the target volume is desired to be known. This 

probability is given by the complementary cumulative distribution function (CCDF) F  

of the fraction of target treated: 

 ( ) ( )tF y P f y= ≥ , 0 1y≤ ≤  (5.1) 

where tf  is the fraction of the target volume treated, and ( )F y  is the probability that tf  

is greater than or equal to a given value y . Given ( )F y  for a specific target and 

treatment plan, one could answer questions such as: “what is the probability that at least 

90% of the target volume will be ablated?” or “what is the probability that the entire 

volume of the target will be ablated?” 

tf  is defined as the ratio of the volume of target tissue ablated 
ATV  to the total 

target volume TV  

 AT
t

T

V
f

V
= . (5.2) 

For a target region T  and n  planned ablation regions 1,..., nA A  with planned 

target points ,...,
1 nt tp p , the expression for 

ATV  becomes 

 ( ) ( ) ( ) ( )1,..., , ,..., ...
AT n

T

V T A A d = ∩ + ∪ ∪ + ∫1 n 1 n1 n t t t 1 t ne ' e ' p p x p e ' p e ' x , (5.3) 
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where ,...,1 ne e  are the needle placement errors for each of the n  ablation regions, and T  

and iA  are defined as 

 ( ) 1,  is within projected target boundary
 

0, elsewhere
T 

= 


x
x , (5.4) 

and 

 ( ) 1,  is within region of ablated tissue
 

0, elsewhereiA 
= 


x
x . (5.5)  

F  can be found by solving the integral 

 ( ) ( )
( )

2 2

1

... ,...,
n

i
iJ y

F y g d d
=

= ∏∫ ∫ i 1 ne ' e ' e ' , (5.6) 

where ( )ig ie  is the PDF of needle placement error of the ith needle ie , and ( )J y  is the 

set of ,...,1 ne e  for which tf  is greater than or equal to y  

 ( ) { },..., | tJ y f y= ≥1 ne e . (5.7) 

If the integration of Equation (5.6) is performed numerically, the computation 

time required is proportional to 2n
pN , where pN  is the number of grid points in each 

direction of a 2D numerical grid. In focal laser ablation of prostate cancer, most targets 

require multiple laser fibers (target points), making the direct numerical integration of 

Equation (5.6) impractical in terms of computation time.[5, 6] For example, if four 

ablation regions are planned, the integration becomes 8-dimensional. Using 100 grid 

points in each direction, the total time to numerically compute an 8-dimensional integral 

that takes 1 sµ  for each 2D component is 278 hours. This is impractical. 

Alternatively, Equation (5.6) can be rewritten as 
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 ( ) yF y E  =  1 , (5.8) 

where y1  is an indicator function, defined as 

 

( ) ( )1, ,...,
  

0, elsewherey
J y∈

= 


1 ne e
1

, (5.9) 

and yE   1  is its expected value. The function y1  is equal to one when the final 

placement of needles, including needle placement error, results in a fraction of target 

treated that is greater than or equal to y . Using this formulation, estimation of ( )F y  can 

be obtained using a stochastic Monte Carlo simulation that computes the empirical CCDF 

 ( ) ( )
1

1ˆ N

y j
j

F y
N =

= ∑ 1 , (5.10) 

which, by the strong law of large numbers, converges to the true CCDF of tf  as N  

approaches infinity.[31] Using this approach, N  random samples of y1  are obtained to 

estimate the CCDF. The probability of achieving complete target ablation is of particular 

importance, and is defined as ( )100 1P F= . This approach requires a model of the PDF of 

needle placement error E , which is described in the next section. 

5.2.7 Statistical Model of Needle Placement Error 

In this chapter, needle placement error is defined as the shortest Euclidean distance 

between a needle’s final location in the tissue after insertion and its planned location 

(target point). Using this definition, errors in the needle depth are ignored; a 

simplification based on the observation that FLA can create elongated regions of ablated 

tissue along the direction of needle insertion. Needle placement error includes three 
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major contributions: 1) error in registration between pre- and intra-treatment images, 

which results in an error in specification of the planned target point in intra-treatment 

image space, 2) errors in needle guidance caused predominantly by deflection of the 

needle during insertion, and 3) tissue motion and deformation during needle insertion. 

Prediction of a needle’s final position in human tissue is a difficult task, and requires a 

priori knowledge of the 3D distribution of tissue properties and structures. Even if real-

time imaging is employed during needle insertion, measurement of the current needle 

position will contain error, and knowledge of the current position cannot be used to 

predict the future deviations of the needle. For these reasons, needle insertion is 

considered to be a stochastic process, and the error in final needle placement is modeled 

with a continuous PDF.[32-34] This approach has been applied in several previous works 

studying the effects of needle placement error on: the dose distribution in transperineal 

prostate brachytherapy,[16-18, 35] the ability to detect prostate cancer using biopsy,[36] 

and trajectory planning for steerable needles.[32, 33] In most of the aforementioned 

works, either the final placement error, or the error in angulation of the needle is modeled 

with a 2D normal distribution with mean zero and equal variance 2σ  in all directions. 

This is the approach used in this work for modeling the needle placement error vector 

 ( )2
2~ 0,N σE I . (5.11) 

where I  is a 2D identity matrix. Modeling needle placement error in this way assumes 

that the needle is most likely to reach the point at which it was aimed, and that each 

orthogonal component of needle placement error is independent. Thus, systematic errors, 

which may include biases in the system used to guide the needles, asymmetry of the 

needle tips, and prostate rotation during needle insertion, are assumed to be insubstantial. 
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Systematic errors of this sort can reasonably be ruled out if: system biases have been 

detected and corrected (by device calibration), either symmetrically-tipped needles are 

used or beveled needles are used and the steering effect of the bevel is compensated, and 

that the physician is anticipating prostate motion and compensating for it.[37] In prostate 

FLA, symmetrically-tipped needles are most commonly used, so the steering effect of a 

beveled needle is not likely to be an issue in the context of this work. 

If the needle placement error is distributed as in Equation (5.11), then the 

magnitude of needle placement error follows a Rayleigh distribution with parameter σ

[31] 

 ( )~ Rayleigh σE  (5.12) 

The value of σ , which is equal to the standard deviation of each orthogonal component 

of needle placement error, depends on several factors, including: the diameter and 

material stiffness of the needles used, the imaging modality used for needle guidance, the 

depth to which needles are inserted, and technique and level of skill.[38, 39] 

Accordingly, a realistic range of σ  for transperineal insertion of needles into the prostate 

was estimated to be 1 – 4 mm, based on evidence from studies quantifying error in 

transperineal prostate needle placement.[16, 18, 35, 38, 40, 41] 

5.2.8 Numerical Implementation Considerations 

Sample Size. A practical value of the number of samples N  that gives a reliable estimate 

of 100P  is desired. The minimum N  required to estimate a proportion within an error of 

ε  with ( )100 1 α− % confidence is[42] 
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 ( )2

2
1

100 1001
Z

N P P
α

α ε
− 

= − 
 

, (5.13) 

where 
21Z α−  is the ( )21 thα−  percentile of the standard normal distribution, and α  is the 

error percentile. Alternatively, since the true value of 100P  is not known, a conservative 

estimate of N  can be obtained by substituting 0.25 for ( )100 1001P P− , since this is the 

maximum value this expression can achieve. For 0.05α =  and 0.01ε = , the minimum 

required number of samples is ~10,000. This value was used for all computations. 

Grid Convergence. The method of computing target overlap involves a binary 

image representation of target and ablation regions, and the accuracy of the solution 

depends on the pixel size of these images. To ensure that the grid convergence was 

achieved, the pixel size was successively refined until the estimate of 100P  (for cases with 

100 0.9P ≥ ) did not change by more than 0.02 with a decrease in pixel size by a factor of 

2. Following this criteria, a final pixel size of 0.125 mm was used for all simulations. 

PDF Truncation. Modeling the magnitude of needle placement error E  with a 

Rayleigh distribution implies that it can truly take on any value in the range [ )0,∞ . 

However, due to the stiffness of the needle and, ultimately, its finite length, E  will be 

limited to a finite range in practice. Therefore, to avoid overestimation of the effect of 

needle placement error, random samples of needle placement error must come from a 

truncated Rayleigh distribution. Evidence from studies quantifying needle placement 

error in human prostate suggest that the true truncation point is between 2σ  and 3σ , 

where σ  is the parameter of the Rayleigh distribution.[40, 41] The sensitivity of the 

results to the specification of the truncation point within this range was quantified. It was 
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found that truncating random samples of needle placement error at 3σ  compared to that 

at 2σ  resulted in, at most, an increase in the estimated number of laser fibers required of 

one. For the results presented, 3σ  was used, as this makes the results more conservative. 

5.2.9 Treatment Simulation Parameters 

Monte Carlo stochastic simulations of treatment coverage were performed over a range of 

target lengths and aspect ratios, treatment region radii, and levels of needle placement 

standard deviation. Realistic ranges of each of these parameters were chosen based on 

evidence found in the clinical literature, and that from an ongoing Phase I/II trial studying 

FLA of prostate cancer (ClinicalTrials.gov ID: NCT01094665).[9] The ranges of the 

parameters are summarized in Table 5.2, and the choice of each range is justified in the 

following sections. 

Table 5.2: Ranges of the parameters varied for simulations of the fraction of target treated. 

Parameter Range Units 
Target Aspect Ratio (AR) 1 – 2.5 - 

Target Length (L) 5 – 30 mm 
Ablation Diameter (Dtreat) 10 – 20 mm 

σ  1 – 4 mm 
 

5.2.10 Treatment Target Shapes 

A realistic range of focal target shapes was estimated using data from an ongoing phase 

I/II clinical trial investigating the use of FLA in men with localized prostate cancer.[9] A 

total of 47 target contours were considered. Each contour was defined by an expert 

radiologist (either M.A.H. or S.G.) on pre-treatment multi-parametric MR images using 

T2-weighted, dynamic contrast-enhanced, and diffusion-weighted MR sequences. Each 

3D target volume was projected onto a plane along the needle insertion direction 
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(approximated as the superior-inferior direction since needles are delivered 

transperineally), and an ellipse of minimum area was found for each. Histograms of the 

widths and aspect ratios of the fitted ellipses for the 47 targets considered are shown in 

Figure 5.7. Six examples of projected target volumes (generated from the set of 47 

expertly-delineated targets described above) and their corresponding elliptical 

representations are shown in Figure 5.8. 

 
Figure 5.7: Distribution of the sizes and aspect ratios of the ellipses enclosing the MR-identified targets in 
47 men included in a Phase I/II clinical trial of FLA for prostate cancer: a) histogram of ellipse lengths, b) 

histogram of ellipse aspect ratios, c) lengths vs. widths, d) aspect ratios vs. lengths. 
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Figure 5.8: Examples of ellipses of minimum area fitted to target shapes, as seen from the “needle’s eye 

view”. Gray regions: actual volumes of suspected tumours, as contoured on multi-parametric MR images; 
black contours: fitted ellipses. The aspect ratio AR is defined as AR = length/width. 

Based on the data shown in Figure 5.7, a range of target aspect ratios of 1 – 2.5, 

and a range of target lengths of 5 – 30 mm were chosen for the simulations. 

5.2.11 Ablation Sizes 

FLA, using a single 980 nm laser fiber, is capable of producing volumes of ablated tissue 

up to 50 mm in diameter (in a plane perpendicular to the laser fiber) using a bare fiber, 

and up to 80 mm in diameter when a cooling sheath is used.[8] The cooling sheath 

consists of concentric tubes of recirculating fluid (saline) surrounding the laser fiber, and 

prevents the formation of carbonized tissue near the fiber, allowing the light to penetrate 

further into the tissue. However, due to the small size of the prostate gland, the range of 

ablation diameters practically used ranges from ~ 10 – 20 mm;[10, 43] thus this was the 

range considered in this chapter. 
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 Results 5.3

5.3.1 Idealized Treatment Simulations 

Figure 5.9 shows the estimated probability of achieving complete target coverage ( 100P ) 

over the range of parameters described in Section 5.2.9.  
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a)
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c)
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Figure 5.9: Probability of achieving complete focal target ablation (P100) for a given target aspect ratio, 
target length, standard deviation of needle placement error and various diameters of ablation regions: a) 10 
mm, b) 15 mm, c) 20 mm. For a given set of: minimum desired P100, target size and shape, size of ablation 

achievable, and estimated level of needle placement uncertainty, this figure can be used to estimate the 
number of laser fibers that should be used for the treatment. Cases for which target coverage cannot be 

achieved using 8 fibers or less are omitted. 

Figure 5.9 illustrates the sensitivity of P100 to the standard deviation of needle 

placement error under various conditions. When the target length is small relative to the 

ablation diameter, P100 is largely insensitive to σ. Specifically, if the ablation diameter is 

at least 5 mm larger than the target length, nearly all cases achieve P100 ≥ 0.9 using 4 laser 

fibers or less if σ ≤ 3 mm. However, as the target length approaches the ablation 

diameter, P100 decreases abruptly, and becomes considerably more sensitive to σ and the 

number of laser fibers used. The effect of increasing aspect ratio (i.e. a narrower target) is 

to increase P100, but this effect is only appreciable for targets that are larger in length than 

the ablation diameter. The sensitivity of 100P  to σ  is also noted to be higher when a small 

number of fibers are used (i.e. < 4). This observation is intuitive, since an increase in the 

number of fibers increases treatment overlap between individual ablations, so that a 

portion of target tissue missed by one fiber is likely to be ablated by an adjacent one. As 

well, in the limits of treatability with 8 fibers or less (targets with large length), the 

limiting factor is the uncertainty in needle placement error. It appears that σ  of 1 mm vs. 

2 mm would allow the size of targets that one could confidently ablate to substantially 

increase. 

While Figure 5.9 is useful for studying the trends in P100 as the various target and 

treatment parameters vary, it is difficult to interpolate between graphs for a particular 

case. A useful tool for determining eligibility for FLA is Table 5.3, which shows the 

maximum target length allowable to maintain P100 ≥ 0.9. 
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Table 5.3: Maximum allowable target length (in mm) to maintain a minimum probability of complete 
target ablation (P100) of at least 90%. 

# Laser 
Fibers 2 4 6 8 2 4 6 8 2 4 6 8 

 Target Aspect Ratio = 1 
  Dtreat = 10 mm Dtreat = 15 mm Dtreat = 20 mm 

σ 
(mm) 

1 7 10 12 12 12 17 20 21 17 24 29 ≥ 30 
2 < 5 6 8 9 9 12 15 17 14 20 23 25 
3 < 5 < 5 6 8 6 10 12 14 12 16 19 21 
4 < 5 < 5 < 5 6 < 5 7 10 13 8 13 17 19 

 Target Aspect Ratio = 1.5 
  Dtreat = 10 mm Dtreat = 15 mm Dtreat = 20 mm 

σ 
(mm) 

1 8 11 15 17 15 20 26 29 22 28 ≥ 30 ≥ 30 
2 5 7 10 12 11 15 19 22 17 23 ≥ 30 ≥ 30 
3 < 5 < 5 7 9 7 11 15 18 13 18 24 27 
4 < 5 < 5 < 5 6 < 5 8 12 15 10 15 20 24 

 Target Aspect Ratio = 2 
  Dtreat = 10 mm Dtreat = 15 mm Dtreat = 20 mm 

σ 
(mm) 

1 10 12 17 20 18 22 ≥ 30 ≥ 30 26 30 ≥ 30 ≥ 30 
2 5 9 11 13 12 16 22 26 20 25 ≥ 30 ≥ 30 
3 < 5 6 8 10 8 13 17 20 15 21 28 ≥ 30 
4 < 5 < 5 5 7 < 5 10 14 17 10 18 23 27 

 Target Aspect Ratio = 2.5 
  Dtreat = 10 mm Dtreat = 15 mm Dtreat = 20 mm 

σ 
(mm) 

1 11 17 19 23 20 25 ≥ 30 ≥ 30 28 ≥ 30 ≥ 30 ≥ 30 
2 5 9 12 15 13 18 25 28 22 29 ≥ 30 ≥ 30 
3 < 5 6 8 11 8 14 18 22 15 23 ≥ 30 ≥ 30 
4 < 5 < 5 5 7 < 5 11 14 18 11 19 25 ≥ 30 

 
The maximum number of fibers used is assumed to be constrained by a limit on 

the total treatment time and allowable tissue damage due to needle insertions. Ablation 

diameter is based on the power of the laser used and laser application time, and other 

considerations such as proximity to critical structures. The level of needle placement 

uncertainty varies based on the system used to guide needles, the type of needles used, 

and the modality used for image guidance, among other factors. 

In planning FLA for a particular clinical case, one would proceed as follows: 

1. Estimate: the target’s length (major axis) and aspect ratio (length/width) as 

seen from the needle’s eye view, the diameter of ablation region 

achievable, and the level of uncertainty in needle placement. 

2. Using Table 5.3, find the minimum required number of laser fibers. 
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3. Using Table 5.1, find the corresponding pattern of laser fibers. 

 Discussion 5.4

We have developed a simplified method for estimating the fraction of focal target volume 

treated in prostate focal laser ablation when uncertainty in needle placement is expected. 

The method involves a 2D idealization of both focal target and ablation region shapes, 

and a Monte Carlo stochastic simulation of needle placement error to predict the 

probability of achieving complete target coverage. The result is a set of graphs and tables 

that can be easily referred to in the pre-treatment planning process for estimating the 

number of laser fibers required to completely ablate a given target. These results may 

also be used to determine a patient’s eligibility for prostate FLA, since it may not be 

possible to achieve a high probability of full coverage with a reasonable number of laser 

fibers. The results also quantify the potential clinical benefit of systems that can place 

needles in the prostate with high precision in the context of prostate focal laser ablation. 

While these results provide a simple method of estimating the level of planning 

required for prostate FLA, there are several important clinical details that must be 

considered when interpreting them. The simulations do not consider the fact that the 

treatment outcome can potentially be predicted as treatment progresses (i.e. by measuring 

the locations of needles already inserted using imaging and/or monitoring tissue 

temperature using MR thermometry),[7, 19, 20] and dynamically augmented by 

performing more ablations than planned. For this reason, the results are conservative, in 

that they attempt to predict the probability of treating the entire target in the absence of 

any dynamic plan augmentation (i.e., dynamic re-planning). However, there are reasons 

why dynamic plan augmentation may not be reliably effective. Among them is the fact 
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that image registration error may not be entirely detectable. In this case, while the needle 

placement error relative to the intra-treatment prostate image may be measurable, there 

will likely remain some uncertainty in the true location of the target volume that was 

delineated on pre-treatment imaging.[44, 45] Another reason is a desire to attain 

consistent and predictable treatment times, and levels of treatment-related side effects. A 

plan that is not optimized considering uncertainties in needle placement may result in 

several non-confluent regions of target tissue left untreated. In this situation, the number 

of additional needles required to fully treat the target may result in a substantial 

(unplanned) increase in procedure time and an unnecessary increase in damage to healthy 

tissue from excessive needle insertions. Another potential deviation from the assumptions 

made in this work is variation in ablation diameter between laser applications, which may 

depend on: variations in performance of the equipment used, inhomogeneity of tissue 

optical and thermal properties, and the amount of local perfusion.[26] To illustrate this 

effect, Figure 5.10 shows two post-treatment DCE MRI scans acquired immediately after 

FLA treatments in two separate patients. It should also be noted that the non-perfused 

volume seen on post-treatment DCE MR imaging may not exactly represent the true 

volume of definite tissue necrosis.[46, 47] 
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Figure 5.10: Immediate post-treatment axial dynamic contrast-enhanced MR images showing variation in 
ablation region symmetry: a) more tissue was ablated medial to the laser fiber than lateral, b) the region of 

ablated tissue was much more axisymmetric about the laser fiber axis. 

Ideally, a map of tissue properties and perfusion rate would be used as inputs to a 

numerical simulation that could predict the volume of ablated tissue at each planned laser 

fiber location. The planned placement of each laser fiber could then be adjusted, and the 

damage volume recomputed until the plan was deemed optimal. Such an approach has 

been taken for planning rf ablation.[27] However, this approach requires knowledge of 

the level of perfusion and thermal properties of prostatic and surrounding tissue, and an 

accurate method of determining patient-specific maps of these properties is not currently 

available.[48] In addition, uncertainty in the values of these properties between the pre- 

and intra-treatment times is expected, and their effect on the probability of achieving a 

complete ablation could only be accounted for if statistical models of their uncertainty 

were available.[15, 49] In the absence of this information, this work aims to develop 

approximate guidelines for planning the number of laser fibers required for confidently 

ablating prostate focal targets, and corresponding target size limits to improve selection 

criteria for ongoing clinical trials. 
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Another important consideration is the potential for damaging surrounding critical 

structures (i.e. rectal wall, urethra, neurovascular bundles, or urethral sphincters). 

Increasing the ablation diameter by increasing the laser power or ablation time will 

always improve the predicted fraction of target treated, but may increase the level of 

treatment-related morbidity. Such considerations must be made on a case-by-case basis, 

since the idealized target representation used in this work ignores the target location and 

orientation relative to the rest of the prostate gland. If the geometry of the critical 

structure in question was known relative to the target, the techniques used in this work 

could be applied to estimate the probability of damaging that structure (due to inaccurate 

needle placement). However, unless a biological heat transfer model was employed, this 

estimate is not expected to be accurate, since the thermal properties and rates of perfusion 

in the neurovascular bundles, and rectal and urethral mucosae are expected to differ from 

that of prostate tissue. In addition, the thermal dose required to damage such structures 

differs from that of prostate tissue. For these reasons, such results were not included. 

Finally, the selection of the minimum desired value of 100P  is contentious, and 

depends on the cost of performing a repeat treatment, among other factors. If re-treatment 

can be performed safely and quickly, then a lower 100P (higher rate of re-treatment) may 

be acceptable. 

 Conclusions 5.5

Focal laser ablation of prostate cancer is receiving increased attention, as it has shown 

potential for ablating focal target regions within the prostate with a low rate of treatment-

related morbidity. However, the effects of needle placement error on focal target 
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treatment coverage have been suspected to be substantial, and the literature indicates a 

general consensus regarding the need for planning methods for prostate FLA. In this 

work, we used a simplified model of the focal target and ablation region shapes, and 

Monte Carlo stochastic simulations to quantify the effect of needle placement error on the 

probability of achieving complete target ablation. It was found that the predicted 

probability of completely ablating a focal target is sensitive to needle placement 

uncertainty, especially when the target width is large relative to the ablation size. The 

results of this work will be useful in planning prostate FLA, and quantify the potential 

clinical benefit of advanced systems for accurate needle delivery, several of which are 

currently under development.[50-53]  
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Chapter 6. 
  

Conclusions and Suggestions for Future Work 

 

 Conclusions 6.1

The work in this thesis represents several steps towards achieving the goal of enabling 

complete ablation of prostate focal targets with high confidence using MRI-guided focal 

laser ablation therapy. This work was divided into four logical chapters, each summarized 

as follows. 

In Chapter 2, the effects of MR image distortion on the accuracy of tracking 

interventional devices was studied and quantified. Results from the work described in 

Chapter 2 guided the development of the MRI-compatible needle-guidance system 

described in Chapter 3, ensuring that the accuracy of the system was independent of the 

level of magnetic field distortion encountered in the interventional MRI environment. 

The system described in Chapter 3 represents the foundation of the rest of the 

work in this thesis, and consists of an MRI-compatible mechatronic needle guidance 

device, MRI-compatible trajectory alignment interface, and software for integration of 

the device with the MRI scanner. The system was rigorously tested for its MRI safety and 

compatibility, open-air targeting accuracy, intra-MRI targeting accuracy, and potential 

needle guidance accuracy and repeatability. It was found that the system caused minimal 

distortion and reduction in SNR in MR images, and had the potential to deliver needles 

with sufficient accuracy for prostate FLA therapy. The system was also classified as a 
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Class I medical device under Health Canada regulations, the application for which can be 

found in Appendix C. The unique approach taken to guiding needles in the bore of an 

MRI scanner was incorporated into a patent that has been filed in the United States, and 

is included in Appendix D. 

Once safety, MRI-compatibility, and accuracy were proven, the system was used 

to guide needles to patient’s prostates in a Phase I/II clinical trial. Results from the patient 

trials were presented in Chapter 4, and include a comparison of the time required to 

deliver needles to targets in the prostate using the previously-employed fixed grid 

template approach, the needle guidance accuracy achieved in vivo, and qualitative 

experience in using the system for the MRI-guided procedure. The time taken to deliver 

each needle using this system was found to be statistically significantly shorter than that 

of the grid template approach (median 8 vs. 18 minutes), and needles were delivered 

within 5 mm of their target in 72% of attempts. Following this case series, methods of 

improving the probability of completely ablating focal prostate targets were sought, 

leading to the work presented in Chapter 5. 

In Chapter 5, the effects of needle placement uncertainty on the probability of 

achieving complete focal target ablation were quantified. This work has resulted in a 

modification of the selection criteria for patients entering the clinical trial, limiting the 

maximum target size to ~15 mm, and has quantified the clinical benefit that may be 

obtained by employing more accurate methods of needle guidance. Results in this chapter 

may also aid in planning cases of prostate FLA therapy for which the target size, 

maximum number of laser fibers to be used, size of ablation region created by each laser 

fiber, and uncertainty in needle placement error are known. 
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 Suggestions for Future Work 6.2

The techniques developed and the knowledge gained throughout this thesis have led to 

the identification of several areas of future work that could substantially further improve 

the technique of MRI-guided FLA therapy. Such improvements have the potential to 

impact the management of men diagnosed with localized prostate cancer, and will be 

described in the following sections. 

6.2.1 Procedure Time 

A major problem with the current technique of MRI-guided FLA therapy is the overall 

procedure time, which can last from ~ 3 - 6 hours, and is highly variable. In an attempt to 

identify which components of the procedure contribute most, the time required to 

complete various steps of the procedure was recorded over seven cases of MRI-guided 

FLA therapy. The data are summarized in Figure 6.1. 
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Figure 6.1: Time taken to complete various components of the MRI-guided prostate FLA procedure, as 

recorded over seven cases. Red line = median, blue box = IQR, black T’s = extrema, red crosses = outliers. 

As seen in Figure 6.1, patient setup time is currently the largest contributor to 

procedure time. While patient setup time is affected by the design of the needle guidance 

device and its integration into the clinical workflow, it is currently dominated by the time 

required to administer general anesthetic, insert an ER coil and confirm its position is 

acceptable on imaging, and preparation of a sterile field. The effect of device setup on 

patient setup time is limited, since the device is registered to the MRI coordinate system 

prior to patient arrival. 
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Baseline imaging includes acquisition of T2-weighted and DW images, and 

prostate segmentation and registration. The image acquisition time is relatively fixed; 

however, implementation of automated segmentation method could reduce procedure 

time. In addition, the current method of pre- to intra-treatment prostate registration 

requires a substantial amount of user interaction. Implementation of a reliable automated 

registration method could not only reduce procedure time, but would also increase the 

accuracy of the procedure, since appreciable changes in prostate shape may occur 

between pre- and intra-treatment imaging sessions, resulting in errors in localization of 

the target region in intra-treatment image space. 

Laser setup time is not dependent on the techniques relevant to the work 

described in this thesis, and will not be discussed. 

Major improvements in procedure time could be attained by modifying the 

workflow of needle insertions and laser power applications. Currently, laser applications 

are performed in multiple “sessions”, with each session consisting of two needle 

insertions followed by the concurrent application of two lasers. Each procedure consists 

of ~ 2 - 3 laser application sessions, resulting in a mean laser application time (AKA 

“burn time” in Figure 6.1) of 36 ± 9 minutes per procedure. Therefore, by performing all 

laser applications simultaneously, the burn time could be reduced by a factor of 2 - 3 x. In 

addition, the time required to transition from applying laser power to performing the next 

set of insertions consumes 11 ± 11 minutes, and the time transitioning from an insertion 

to a burn consumes 15 ± 9 minutes. Both of these components could potentially be 

eliminated if all burns were performed in one concurrent session. Implementation of this 

strategy is currently limited by the number of laser channels available, and the lack of a 
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treatment planning method that is compatible with this approach. In addition, the time to 

guide each needle to its target is also substantial, totaling 35 ± 12 minutes per procedure. 

Potential improvements in treatment planning and needle guidance will be discussed in 

the following sections. 

6.2.2 Improved Treatment Planning 

In Chapter 5, there were several simplifications made in the modeling of focal target and 

ablation volume shapes that may render the method unreliable in some cases. Relaxation 

of some of these assumptions requires more complex modeling. In addition, each 

treatment plan should be optimized to ensure an ideal balance between treatment 

coverage and damage to healthy tissue is achieved. These proposed improvements are 

described as follows. 

I. Finite-element modeling of thermal dose delivery. Heterogeneous rates of 

perfusion within the prostate and surrounding tissue may result in unexpected 

variations in the spatiotemporal distribution of temperature over the course of 

FLA therapy delivery. The treatment planning process should therefore include 

consideration of perfusion effects, preferably by performing 3D finite-element 

simulations of temperature and predicted tissue damage using patient-specific 

models of anatomy and maps of perfusion. Such simulations are especially 

important when treating tumours at the posterior boundary of the prostate, where 

the cooling effect of the Denonvillier’s space and rectal wall are purported to be 

substantial, thereby presenting the potential for leaving untreated cancerous tissue 

at the posterior prostate boundary.[1] Such an approach would also quantify the 

effect of performing multiple ablations simultaneously, whereas the current 
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method assumes that each ablated region is independent. Challenges in realizing 

this solution include obtaining accurate quantitative perfusion maps of the 

prostate and accurately modeling the distribution of laser light and its absorption 

in tissue. 

II. Treatment plan optimization. Given the potential for interference between needle 

trajectories and anatomical structures such as the urethra and pubic arch, as well 

as the inherent trade-off between the improvement in the probability of treating a 

focal target (e.g. by increasing the size of the planned treatment volume) and that 

of damaging surrounding healthy tissues, each FLA treatment plan should be 

optimized. The optimal treatment plan depends on the required probability of 

completely ablating the focal target, the size and shape of the target relative to the 

prostate and surrounding anatomy, the level of uncertainty in the localization of 

target contours on pre-treatment imaging, and the threshold of thermal dose 

tolerable by healthy surrounding tissues. Such an approach, employed in the pre-

treatment phase, would ensure that patients who were predicted to not receive a 

net benefit from this type of therapy would be diverted to the appropriate alternate 

management pathway, and those who would benefit would do so with an expected 

(minimal) level of treatment-related side effects, and a high expected probability 

of having their focal lesion completely ablated. 

6.2.3 Real-Time Control of Needle Trajectories 

Compensation of uncertainty in needle placement by increasing the planned ablation 

volume is not ideal, as this will increase the volume of healthy tissue that is ablated. This 

issue is particularly concerning in the prostate, for which the sensitive structures and 
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surrounding organs are in very close proximity. In addition, the size of focal prostate 

lesions treatable using MRI-guided FLA therapy is currently limited by the uncertainty in 

needle placement. For these reasons, it is hypothesized that an optimal FLA delivery 

system should incorporate real-time tracking and control of needle trajectories, and 

prostate motion tracking and compensation. Doing so will ensure complete ablation of 

focal targets in a higher proportion of patients, and will allow patients with larger 

tumours, who may otherwise be good candidates for prostate focal therapy, to be treated 

using this technique. Potential techniques for achieving these improvements in the future 

are outlined as follows. 

I. Needle steering. Much work has been reported on the topic of steering needles in 

soft tissue, including methods for steering beveled and symmetric needles, and 

optimization of planning steerable needle paths to avoid obstacles.[2, 3] Novel 

steerable needle devices have also seen recent development, and are promising in 

terms of providing the necessary control of the needle trajectory during 

insertion.[4] 

II. Real-time needle tracking. While the intra-treatment use of MRI has several 

advantages in terms of soft tissue contrast and functional imaging capabilities, 

there are issues in using MRI to track needles in real-time. Due to the small 

required needle diameter for prostate interventions, non-magnetic metals are still 

often the material of choice for needles. MR imaging of such needles results in a 

signal void of generally low contrast relative to surrounding tissue, often with an 

associated susceptibility artifact that reduces the precision to which needles can 

be localized. Alternative methods of tracking needle trajectories in real-time 
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should therefore be employed. While the instrumentation of needles for real-time 

tracking presents many engineering challenges, new methods, employing the use 

of fiber Bragg grating strain sensors, have been demonstrated to perform well in 

the MRI environment.[5, 6] Such methods, combined with a needle guidance 

device that can provide an accurate reference trajectory, could substantially 

reduce the uncertainty in final needle placement error, and therefore allow more 

patients to be confidently treated with FLA therapy. 

III. Prostate motion compensation. The current method of guiding needles to the 

prostate assumes that prostate motion during needle insertion is minimal. 

However, this effect may be appreciable and therefore real-time MR imaging 

should be employed to compensate for any prostate motion throughout the 

procedure. Such an issue has been previously identified when performing fusion 

TRUS-guided prostate biopsy and a method has been developed in our lab for 

performing 2D-3D registration between a real-time 2D image and a baseline 3D 

image to compensate this effect.[7, 8] A similar approach could provide a solution 

to reducing errors in needle placement in MRI-guided FLA, especially if needle 

steering was employed.  
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Appendix A. 2D Gradient Echo Imaging of Ellipsoids 

A.1 Cylinder 

A cylinder with its axis at an angle α  to a static, uniform magnetic field, will experience 

a uniform internal magnetic field shift equal to 

 ( )2
0 0

13cos 1
6 3cylz eB B Bχ α χ∆

∆ = − + , (A.1) 

where 0cyl cylz iB B B∆ = −  is the difference between the field inside the cylinder and the 

static field, and i eχ χ χ∆ = −  is the difference in magnetic susceptibility between the 

material inside the cylinder and that outside. Equation (A.1) quantifies the Lorentz-

corrected magnetic field shift; the field experienced by protons in MR, and is valid for 

1iχ  . 

For a cylinder with its axis described by the parametric equation 

 t= +l s v , (A.2) 

the angle α  that it makes with the z-component of the static magnetic field is given by 

 1cos zvα −  
=   

 v
. (A.3) 

Given a desired slice location ssr , the rf excitation pulse will excite spins with a magnetic 

field equal to 

 c
ssB ω

γ
= + ⋅ss ssg r , (A.4) 
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where cω  is the center frequency, and ssg  is the slice-select gradient for a slice of 

arbitrary orientation. During the rf excitation pulse, the slice-select gradient is on, and the 

magnetic field within the cylinder is 

 0 cylz z dB B B B= + ∆ + ∆ + ⋅ssg r , (A.5) 

where ( ), ,dB x y z∆  is the local distortion in the magnetic field, and is approximated as 

the sum of uniform and gradient distortion components: 

 
0

' ' 'd d x y zB B G x G y G z∆ = + + + , (A.6) 

where 
0dB  is the uniform component of the static magnetic field distortion and 'xG , 'yG , 

and 'zG  are components of a static magnetic field distortion gradient in the x, y and z 

directions, respectively. Equation (A.6) models bulk magnetic field distortions 

experienced by the entire frame, as well as spatial variation in the distortion across the 

frame. The purpose of this simplified model is to permit the effects of static field 

distortion to be studied systematically, and it is expected to yield an estimate of the order 

of magnitude of localization error. Figure A.1 illustrates this concept. This model also 

allows the theoretical analysis to be validated by imaging each frame in an MR scanner, 

since the uniform and gradient components can be simulated by manually applying center 

frequency and gradient shim offsets. 
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Figure A.1: Illustration of the simplified model of a magnetic field distortion profile in one dimension. If 

the frame is only imaged (i.e. sampled) at discrete points, then the effect of the distortion profile on 
localization accuracy may be reasonably captured using a linear model. 

For simplicity, it is now assumed that slices are oriented axially (in the -x y  

plane). Equating (A.4) with (A.5) gives the location sz  at which spins in the selected 

slice will be excited 

 
( )

00
1 ' '

11 ' ' '

cyl

c
ss z d x x y y

ss
s

x x y y z
ss

z B B B s G s G
gz

v G v G G
g

ω
γ

 
− + ∆ + + + − 

 =
+ + +

, (A.7) 

where ssz  is the desired axial slice location along the z-axis. Deviation of sz  from ssz  

quantifies the out-of-plane image distortion. 

Using (A.2), the x and y positions at which the spins in the cylinder are excited are 

 ( )x
s x s z

z

vx s z s
v

= + − , and (A.8) 

 ( )y
s y s z

z

v
y s z s

v
= + − . (A.9) 
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These spins will be encoded in the MR image at the location 

 

0
1 , frequency encoding in 

, frequency encoding in 

cyl

im

c
s z d

fecyl

s

x B B B x
gx

x y

ω
γ

  
+ − + ∆ + ∆  =   


 , (A.10) 

 
0

, frequency encoding in 

1 , frequency encoding in im

cyl

s

cyl c
s z d

fe

y x
y

y B B B y
g

ω
γ


=   + − + ∆ + ∆    , (A.11) 

 
cyli ssz z= , (A.12) 

where feg  is the gradient strength in the frequency-encoded direction. Note the additional 

term 0
1 c

fe

B
g

ω
γ

 
− 

 
 that represents a shift in the entire field-of-view due to center 

frequency tuning. 

A.2 Sphere 

As in the case of a cylinder, a sphere will experience a uniform internal magnetic field 

shift, in this case equal to 

 0
1
3sphz eB Bχ∆ = , (A.13) 

the magnitude of which is only dependent on the magnetic susceptibility of the 

surrounding fluid, assuming 1iχ  . It is assumed that slice-select error is small 

compared to the sphere’s radius; ensuring that some spins within the sphere will be 

excited, and a circle will appear in the image. This circle will appear in an axial image at 

the location 
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0
1 , frequency encoding in 

, frequency encoding in 

MR sph

im

MR

c
sph d d

fesph

sph

x B B B x
gx

x y

ω
γ

  
+ − + ∆ + ∆  
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 , (A.14) 

 
0
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MR

im
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y x
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γ




=  
+ − + ∆ + ∆ 

  , (A.15) 

where ( ), ,sph sph sph MR
x y z  is the true location of the sphere in the MR coordinate system. 
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Appendix B. Trajectory Alignment Device Kinematics 

Solutions 

 
Figure B.1: Device kinematics diagram showing device link constants used in the kinematics solutions, the 

device origin, and needle point and vector. 
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Figure B.2: Device kinematics diagram showing intermediate variables used in the kinematics solutions. 

B.1 Forward Kinematics 

Given: 1xe , 1ye , 2xe , and 2 ye , define intermediate variables 

 2 1y y y ye e offδ = − + , (B.1) 

where yδ  is the position of the rear linear stages relative to the front in the y-direction, 

 fr r fl lδ = − , (B.2) 

where frδ  is a link constant, equal to the difference in length of the front and rear pivot 

joints, 

 ( )22
yz z fr yh d δ δ= + −

,
 (B.3) 

where frh  is the direct distance between points 1p  and 2p , 

 1 1tan sinfr y fr

z yzd h
δ δ δ

θ − −
 − 

= −         ,
 (B.4) 

θ

2p

tp

1p

ep

qth

frh

ˆyv

qp
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where θ  is the angle the needle trajectory makes with the horizontal, and 

 ( )
( )

0
ˆ cos

sin
yv θ

θ

 
 =  
 −  .

 (B.5) 

where ˆyv  is a unit vector in the direction of the front pivot joint. Define the points rp  and 

fp  as: 

 ( )
( )

2

2 cos
sin

x

r y fr r y j

r z

e
p e l off l

l d
δ θ

θ

 −
 = − + + + 
 − −  ,

 (B.6) 

and 

 ( )
( )

1

1 cos
sin

x

f y f j

f

e
p e l l

l
θ
θ

 −
 = + + 
 −  .

 (B.7) 

The needle point pt and needle vector ˆnv are calculated as: 

 ˆ f r
n

f r

p p
v

p p
−

=
− ,

 (B.8) 

and 

 ˆ ˆ
y zt f t y t np p l v l v= + +

.
 (B.9) 
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B.2 Reverse Kinematics 

Given: tp  and ep , define intermediate variables 

 ˆ t e
n

t e

p pv
p p
−

=
− ,

 (B.10) 

where ˆnv  is the needle vector,
  ( )1 2 2ˆ ˆ ˆsin

y y zn n nv v vθ −= +
,
 (B.11) 

and 

 
( ) ( )tan

cos
zt

qt ty

p
h l θ

θ
= +

,
 (B.12) 

where qth  is the base of the triangle connecting tp  and 1p  in Figure B.2. 
 
Next, 1p  can be defined: 

 
( )

( ) ( )
( ) ( )

1

cos

sin cos
cos sin

x zqt z z

t qt ty

qt ty

h i i

p p h l
h l

θ

θ θ
θ θ

 
 

= − + 
 −  ,

 (B.13) 

and the linear stage offsets 
 ( ) ( )1 1 cos tany fr zdδ δ θ θ = − −  ,

 (B.14) 

and 
 ( )ˆ ˆsin

x zx n z fr nv d vδ δ θ = +  .
 (B.15) 

Finally, the required positions of the linear stages are calculated as: 
 1 1xxe p= − , (B.16) 

 1 1yy je p l= −
,
 (B.17) 

 2 1x x xe e δ= + , (B.18) 

and 
 2 1y y y ye e offδ= + − . (B.19)
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Appendix C. Health Canada Application 
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Appendix D. Patent Application: System and Method for 

Guiding a Medical Device to a Target Region 
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Appendix E. Permissions 

E.1 Permission to reproduce previously published material in 
Chapters 2, 3, and 5 
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