5,235 research outputs found

    Experimental study of visual corona under aeronautic pressure conditions using low-cost imaging sensors

    Get PDF
    Visual corona tests have been broadly applied for identifying the critical corona points of diverse high-voltage devices, although other approaches based on partial discharge or radio interference voltage measurements are also widely applied to detect corona activity. Nevertheless, these two techniques must be applied in screened laboratories, which are scarce and expensive, require sophisticated instrumentation, and typically do not allow location of the discharge points. This paper describes the detection of the visual corona and location of the critical corona points of a sphere-plane gap configurations under different pressure conditions ranging from 100 to 20 kPa, covering the pressures typically found in aeronautic environments. The corona detection is made with a low-cost CMOS imaging sensor from both the visible and ultraviolet (UV) spectrum, which allows detection of the discharge points and their locations, thus significantly reducing the complexity and costs of the instrumentation required while preserving the sensitivity and accuracy of the measurements. The approach proposed in this paper can be applied in aerospace applications to prevent the arc tracking phenomenon, which can lead to catastrophic consequences since there is not a clear protection solution, due to the low levels of leakage current involved in the pre-arc phenomenon.Peer ReviewedPostprint (published version

    Time domain analysis of switching transient fields in high voltage substations

    Get PDF
    Switching operations of circuit breakers and disconnect switches generate transient currents propagating along the substation busbars. At the moment of switching, the busbars temporarily acts as antennae radiating transient electromagnetic fields within the substations. The radiated fields may interfere and disrupt normal operations of electronic equipment used within the substation for measurement, control and communication purposes. Hence there is the need to fully characterise the substation electromagnetic environment as early as the design stage of substation planning and operation to ensure safe operations of the electronic equipment. This paper deals with the computation of transient electromagnetic fields due to switching within a high voltage air-insulated substation (AIS) using the finite difference time domain (FDTD) metho

    Power system applications of fiber optic sensors

    Get PDF
    This document is a progress report of work done in 1985 on the Communications and Control for Electric Power Systems Project at the Jet Propulsion Laboratory. These topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described

    Power system applications of fiber optics

    Get PDF
    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described

    Development of the future generation of smart high voltage connectors and related components for substations, with energy autonomy and wireless data transmission capability

    Get PDF
    The increased dependency on electricity of modern society, makes reliability of power transmission systems a key point. This goal can be achieved by continuously monitoring power grid parameters, so possible failure modes can be predicted beforehand. It can be done using existing Information and Communication Technologies (ICT) and Internet of Things (10T) technologies that include instrumentation and wireless communication systems, thus forming a wireless sensor network (WSN). Electrical connectors are among the most critical parts of any electrical system and hence, they can act as nodes of such WSN. Therefore, the fundamental objective of this thesis is the design, development and experimental validation of a self-powered IOT solution for real-time monitoring of the health status of a high-voltage substation connector and related components of the electrical substation. This new family of power connectors is called SmartConnector and incorporates a thermal energy harvesting system powering a microcontroller that controls a transmitter and several electronic sensors to measure the temperature, current and the electrical contact resistance (ECR) of the connector. These measurements are sent remotely via a Bluetooth 5 wireless communication module to a local gateway, which further transfers the measured data to a database server for storage as well as further analysis and visualization. By this way, after suitable data processing, the health status of the connector can be available in real-time, allowing different appealing functions, such as assessing the correct installation of the connector, the current health status or its remaining useful life (RUL) in real-time. The same principal can also be used for other components of substation like spacers, insulators, conductors, etc. Hence, to prove universality of this novel approach, a similar strategy is applied to a spacer which is capable of measuring uneven current distribution in three closely placed conductors. This novel IOT device is called as SmartSpacer. Care has to be taken that this technical and scientific development has to be compatible with existing substation bus bars and conductors, and especially to be compatible with the high operating voltages, i.e., from tens to hundreds of kilo-Volts (kV), and with currents in the order of some kilo-pm peres (kA). Although some electrical utilities and manufacturers have progressed in the development of such technologies, including smart meters and smart sensors, electrical device manufacturers such as of substation connectors manufacturers have not yet undertaken the technological advancement required for the development of such a new family of smart components involved in power transmission, which are designed to meet the future needs.La mayor dependencia de la electricidad de la sociedad moderna hace que la fiabilidad de los sistemas de transmisión de energía sea un punto clave. Este objetivo se puede lograr mediante la supervisión continua de los parámetros de la red eléctrica, por lo que los posibles modos de fallo se pueden predecir de antemano. Se puede hacer utilizando las tecnologías existentes de Tecnologías de la Información y la Comunicación (1CT) e Internet de las cosas (lo T) que incluyen sistemas de instrumentación y comunicación inalámbrica, formando así una red de sensores inalámbricos (WSN). Los conectores eléctricos se encuentran entre las partes más críticas de cualquier sistema eléctrico y, por lo tanto, pueden actuar como nodos de dicho VVSN. Por lo tanto, el objetivo fundamental de esta tesis es el diseño, desarrollo y validación experimental de una solución IOT autoalimentada para la supervisión en tiempo real del estado de salud de un conector de subestación de alta tensión y componentes relacionados de la subestación eléctrica. Esta nueva familia de conectores de alimentación se llama SmartConnector e incorpora un sistema de recolección de energía térmica que alimenta un microcontrolador que controla un transmisor y varios sensores electrónicos para medir la temperatura, la corriente y la resistencia del contacto eléctrico (ECR) del conector. Esta nueva familia de conectores de alimentación se llama SmartConnector e incorpora un sistema de recolección de energía térmica que alimenta un microcontrolador que controla un transmisor y varios sensores electrónicos para medir la temperatura, la corriente y la resistencia al contacto eléctrico (ECR) del conector. De esta manera, después del procesamiento de datos adecuado, el estado de salud del conector puede estar disponible en tiempo real, permitiendo diferentes funciones atractivas, como evaluar la correcta instalación del conector, el estado de salud actual o su vida útil restante (RUL) en tiempo real. El mismo principio también se puede utilizar para otros componentes de la subestación como espaciadores, aislantes, conductores, etc. Por lo tanto, para demostrar la universalidad de este enfoque novedoso, se aplica una estrategia similar a un espaciador, que es capaz de medir la distribución de corriente desigual en tres conductores estrechamente situados. Hay que tener cuidado de que este desarrollo técnico y científico tenga que sea compatible con las barras y "busbars" de subestación existentes, y sobre todo para ser compatible con las altas tensiones de funcionamiento, es decir, de decenas a cientos de kilovoltios (kV), y con corrientes en el orden de algunos kilo-Amperes (kA). Aunque algunas empresas eléctricas y fabricantes han progresado en el desarrollo de este tipo de tecnologías, incluidos medidores inteligentes y sensores inteligentes, los fabricantes de dispositivos eléctricos, como los fabricantes de conectores de subestación, aún no han emprendido el avance tecnológico necesario para el desarrollo de una nueva familia de componentes intel

    New methods and results for quantification of lightning-aircraft electrodynamics

    Get PDF
    The NASA F-106 collected data on the rates of change of electromagnetic parameters on the aircraft surface during over 700 direct lightning strikes while penetrating thunderstorms at altitudes from 15,000 t0 40,000 ft (4,570 to 12,190 m). These in situ measurements provided the basis for the first statistical quantification of the lightning electromagnetic threat to aircraft appropriate for determining indirect lightning effects on aircraft. These data are used to update previous lightning criteria and standards developed over the years from ground-based measurements. The proposed standards will be the first which reflect actual aircraft responses measured at flight altitudes. Nonparametric maximum likelihood estimates of the distribution of the peak electromagnetic rates of change for consideration in the new standards are obtained based on peak recorder data for multiple-strike flights. The linear and nonlinear modeling techniques developed provide means to interpret and understand the direct-strike electromagnetic data acquired on the F-106. The reasonable results obtained with the models, compared with measured responses, provide increased confidence that the models may be credibly applied to other aircraft

    Sensor comparison for corona discharge detection under low pressure conditions

    Get PDF
    ©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Low pressure environments, situate insulation systems in a challenging position since partial discharges (PDs), corona and arc tracking are more likely to develop. Therefore, specific solutions are required to detect such harmful phenomena before major failure occurrence. This paper deals with three low-cost and small-size sensing methods, i.e., a single loop antenna, a visible-UV imaging sensor and the measurement of the leakage current to detect corona in the early stage, thus anticipating the appearance of severer effects such as arc tracking or disruptive breakdown. The three studied methods can be applied for an on-line monitoring of corona activity under low pressure environments, thus being compatible with predictive maintenance approaches. This on-line monitoring can be used to develop improved electrical protection devices able to detect such effects in an initial stage, thus improving current solutions which are unable to do so. All three studied sensors give consistent linear responses within the studied pressure range, i.e., 10-100 kPa, with almost no drift. The sensitivity of the visible-UV imaging sensor is slightly lower than that of the others, but it has the advantage of directly locating the discharge points. Results presented in this paper can be very useful for the more electrical aircraft (MEA), which is forcing electrical distribution systems to operate at higher voltage levels. Due to the little experience and scarcity of published data, the experimental results presented in this paper can be valuable for a better understanding of the combined action of high voltage and low pressure environments.This work was supported in part by the Generalitat de Catalunya under Project 2017 SGR 967 & in part by the Spanish Ministry of Science and Innovation under Project RTC-2017-6297-3. J.-R. Riba is with the Universitat Politècnica de CatalunyaPeer ReviewedPostprint (author's final draft

    UHF diagnostic monitoring techniques for power transformers

    Get PDF
    This paper initially gives an introduction to ultra-high frequency (UHF) partial discharge monitoring techniques and their application to gas insulated substations. Recent advances in the technique, covering its application to power transformers, are then discussed and illustrated by means of four site trials. Mounting and installation of the UHF sensors is described and measurements of electrical discharges inside transformers are presented in a range of formats, demonstrating the potential of the UHF method. A procedure for locating sources of electrical discharge is described and demonstrated by means of a practical example where a source of sparking on a tap changer lead was located to within 15 cm. Progress with the development of a prototype on-line monitoring and diagnostic system is reviewed and possible approaches to its utilization are discussed. New concepts for enhancing the capabilities of the UHF technique are presented, including the possibility of monitoring the internal mechanical integrity of plant. The research presented provides sufficient evidence to justify the installation of robust UHF sensors on transformer tanks to facilitate their monitoring if and when required during the service lifetime
    corecore