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ABSTRACT 

The increased dependency on electricity of modern society makes reliability of power 

transmission systems a key point. This goal can be achieved by continuously monitoring 

power grid parameters, so possible failure modes can be predicted beforehand. It can be 

done using existing Information and Communication Technologies (ICT) and Internet of 

Things (IoT) technologies that include instrumentation and wireless communication 

systems, thus forming a wireless sensor network (WSN). Electrical connectors are among 

the most critical parts of any electrical system and hence, they can act as nodes of such 

WSN. Therefore, the fundamental objective of this thesis is the design, development and 

experimental validation of a self-powered IoT solution for real-time monitoring of the 

health status of a high-voltage substation connector and related components of the 

electrical substation. This new family of power connectors is called SmartConnector and 

it incorporates a thermal energy harvesting system powering a microcontroller that controls 

a transmitter and several electronic sensors to measure the temperature, current and the 

electrical contact resistance (ECR) of the connector. These measurements are sent remotely 

via a Bluetooth 5 wireless communication module to a local gateway, which further 

transfers the measured data to a database server for storage as well as further analysis and 

visualization. By this way, after suitable data processing, the health status of the connector 

can be available in real-time, allowing different appealing functions, such as assessing the 

correct installation of the connector, the current health status or its remaining useful life 

(RUL) in real time. The same principal can also be used for other components of substation 

like spacers, insulators, conductors, etc. Hence, to prove universality of this novel 

approach, a similar strategy is applied to a spacer which is capable of measuring uneven 

current distribution in three closely placed conductors. This novel IoT device is called as 

SmartSpacer. Care has to be taken that this technical and scientific development has to be 

compatible with existing substation bus bars and conductors, and especially to be 

compatible with the high operating voltages, i.e., from tens to hundreds of kilo-Volts (kV), 

and with currents in the order of some kilo-Amperes (kA). Although some electrical 

utilities and manufacturers have progressed in the development of such technologies, 

including smart meters and smart sensors, electrical device manufacturers such as of 

substation connectors manufacturers have not yet undertaken the technological 

advancement required for the development of such a new family of smart components 

involved in power transmission, which are designed to meet the future needs.  
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1. INTRODUCTION 

We are witnessing a fundamental change in the electricity sector: deregulation and privatization 

of the electricity market, distributed generation with renewable energies, generation of energy in 

remote locations and a growing demand for electrical energy. Global climate change poses new 

challenges for the generation and transmission of electrical energy. Innovative solutions are required 

to improve the efficiency of the electrical system, reduce CO2 emissions and optimize the use of energy 

sources. The most crucial points are sustainability, safety of supply and the efficiency of the electrical 

system. One of the bets to achieve these goals is the High Voltage Direct Current (HVDC) technology, 

which allows the interconnection of Alternating Current (AC) networks or renewable sources with the 

public network and at the same time, it allows increasing the power transmission of electrical energy 

[1], minimizing also the possibility of faults and increasing the efficiency and stability of the electrical 

system. The development strategy of large power systems is focused on the Smart Grids, which consist 

of AC / DC interconnections and highways of point to point electrical transmission with bidirectional 

power flow. These hybrid AC / DC systems offer significant advantages in terms of technology, 

economics and security of supply, allowing transmission costs to be reduced and bypassing the 

overloaded AC systems. 

In future, for the coordination in the Smart Grid, it will be essential to have transmission 

information services of the various components of the system in real-time [2]–[4]. There must be a 

coordination between the generation, distribution and consumption, through the use of Information 

and Communication Technologies (ICT), so areas that include instrumentation, synchronization for 

protection, control, and energy quality or energy management are found connected in a global 

management system. According to [5], during 2017, 36.7 million people were affected by power 

outages only in US, with estimated costs around $150 billion. Although it is impossible to avoid 

completely power outages, their effects can be greatly reduced. In addition, to the development of the 

new Smart Grids, it is important to have electrical components such as connectors, spacers and 

conductors that incorporate sensors and by means of wireless links they can transmit information in 

real time, which can be useful to make a diagnosis of their state of health, level of load, etc., to facilitate 

predictive maintenance tasks and to be able to contribute to the control of electrical installations in a 

more reliable, fast and efficient way [6][7].  
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1.1  BACKGROUND 

1.1.1  Wireless Sensor Network using Internet of Things devices 

Internet of Things (IoT) devices are hardware components consisting of different types of 

sensors that wirelessly transmit data from the sensors to another hardware system for real-time 

monitoring. Wireless sensor networks (WSN) are being developed worldwide [4], [8]–[21] using IoT 

devices for real-time monitoring of several parameters in diverse applications, to enable them to be 

more controllable and reliable. It is expected that Industrial Internet of Things (IIoT) can create $12 

trillion of global GDP by 2030 [22]. It has been proven that IoT solutions allow drastically improving 

power system reliability and availability by determining the health condition of vital elements [18], 

[20], [23]–[25]. By this way, early failure symptoms can be diagnosed, thus allowing to apply suitable 

measures to anticipate further degradation [26]. Figure 1-1 represents the proposed WSN for the future 

Smart Grids.  

Gateway

-   Nodes (IoT devices)

 

Figure 1-1. Smart Grid based Wireless Sensor Network using Internet of Things devices. 

Source: own. 

In this thesis it is proposed that electrical components like connectors, spacers and conductors 

can act as nodes for such WSN. Thus, this project is focused on the design, development and validation 

of an IoT system to be integrated with substation connectors, spacers and conductors which can acquire 

the data in real time for predictive maintenance. This new family of electrical components will be 

called SmartConnector, SmartConductor and SmartSpacer, respectively. This thesis is mainly focused 

on the development of SmartConnector. However, by using the same strategy, the SmartConductor 

and SmartSpacer are developed. Although there exist many IoT devices in the market, this is a very 
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specific application in a very particular High Voltage (HV) environment. So it is necessary to study 

the environment in order to develop a suitable IoT solution. 

1.1.2  Electrical Substations 

Depending on the application, electrical substations are located in the vicinity of a production 

plant, at the point of distribution to the end user or at the points of interconnection between the 

electrical lines. Substations employ various devices for safety, switching, voltage regulation, and 

measurement. Substation are usually located in an outdoor environment, thus being susceptible to 

harmful environmental conditions such as rain, solar heat, snow, wind, moisture, dust, etc. Moreover, 

substations themselves are hazardous zones, as they operate in the range of 10-400 kilo-Volts and carry 

current in the order of kilo-Amperes. Figure 1-2  represents an actual outdoor substation. This thesis 

is mainly focus on developing smart devices for HV substations. 

 

Figure 1-2.  Part of an Electrical Substation. Source: SBI catalogue. 

1.1.3  Electrical Conductor and Bus Bar 

Conductors are the primary elements for the transfer of power, which occupy a major area of 

the substation. Conductors can be of different types, like stranded conductors or bus bars as shown in 

Figure 1-3. But, within a substation, bus bars are the main current carrying conductors because they 

are rigid and provide mechanical stability. Substation bus bars are commonly made of aluminum, and 

are supplied in many configurations, including rectangular bars, round tubing, square tubing, etc. The 

challenge for substation conductor design is to meet dimensional, mechanical and electrical constraints 

to avoid vibration, corona, thermal expansion and overheating. 
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 a)              b) 

Figure 1-3.  a) Stranded Conductors b) Tubular hollow bus bar. Source: SBI catalogue. 

1.1.4  Electrical Connector 

The definition of an electric connector, according to the ANSI/NEMA CC 1-2009 standard, is 

“a device that joins two or more conductors for the purpose of providing a continuous electrical path” 

[27].  Thus, substation connectors are the joints that physically link the power transmission line and 

the substation conductors and bus bars. They are usually divided into different categories, depending 

on the physical junction between the connector and the conductor: mechanical, welded, and 

compression type are the most common ones. Substation connectors considered in this thesis are 

aluminum alloy devices of mechanical type. This means that the coupling parts, that is, the parts which 

transmit electrical power, are mechanically joined by applying a specific torque by means of bolts and 

nuts, with the aim to ensure an adequate contact resistance between the connector and conductor or 

bus bar. Mechanical type substation connectors have a wide range of geometries and sizes. Figure 1-4 

shows three types of substation connectors belonging to SBI Connectors Spain catalogue.   

a)    b)      c) 

Figure 1-4.  Mechanical-type substation connectors from SBI catalogue. a) Expansion 

connector (Conductor to bus bar), b) Straight connector (Bus bar to bus bar), c) Terminal 

connector (Conductor to bushing terminal). Source: SBI catalogue. 

Electrical connectors are key elements of substations, playing a critical role in their reliability 

and efficiency. Failure of such elements can cause severe outages with catastrophic and costly 

consequences [28]–[31]. Utilities and system operators must ensure a safe, reliable and continuous 

delivery of power to customers, while trying to minimize any outage in the service [32]. In addition, 

some substations are located in remote places, so they are not easily accessible. Nowadays, many 
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maintenance plans are almost corrective, so remedial actions are applied after failure occurrence, since 

no updated daily data is available for these devices. In order to make a transition towards predictive 

maintenance plans, daily data such as temperature, contact resistance or vibrations of such devices is 

required. To this end, they must incorporate sensors and wireless communication systems to transmit 

this data to a data analysis center to facilitate the application of condition monitoring programs. Thus, 

it is highly desirable to acquire real-time data to monitor the current health status of power connectors 

[33]–[35] for a real-time diagnosis and to predict the failure in advance, while estimating the reliability 

and useful lifetime [36]–[44]. This approach allows optimizing the life cycle management by 

considering different aspects such as efficiency, power losses and costs points [45].  

1.1.5  Intra Phase Spacer for Conductors 

Spacers considered in this work are intra phase spacers. These spacers are used to maintain a minimum 

distance between two or more conductors as shown in Figure 1-5.  

  a)      b) 

Figure 1-5.  a) Spacer with three conductors and terminal connectors b) Spacer. Source: SBI 

catalogue. 

Spacers are also used as dampers for preventing Aeolian vibration. The main objective of the 

spacer is to maintain the distance among conductors of the same bundle, to avoid collision of the 

neighboring conductors and minimize galloping effects. Galloping creates more mechanical stress in 

the conductor and in the supports, which can reduce the distance between the conductor and the ground, 

and ultimately it could lead to short circuit. Also, if the conductors are not symmetrically placed at 

equal distances, it can create an uneven current distribution among the three conductors, leading to 

premature ageing of some of them, which it could result in the failure of the system as a whole. 

1.1.6  Testing Standards 

International standards should be applied to conduct the experiments and to evaluate the 

performance of the substation connector. The main reference standard for substation connector is the 

American National Standards Institute (ANSI) / National Electrical Manufacturers Association 
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(NEMA) CC1 standard[27]. ANSI NEMA CC1 standard contains the procedure to be followed for 

proper evaluation of the electrical and mechanical characteristics of substation connectors. ANSI 

NEMA CC1 standard is primarily studied and used in this thesis to perform temperature rise tests and 

to correctly install substation connectors. ANSI C119.4 standard [46] is another standard which has 

been studied and applied in this thesis to evaluate the thermal behavior of the conductor and connector 

when subject to thermal heating and cooling cycles for a long period of time i.e., aging.  

1.2  OBJECTIVES 

Base Station Antenna Cloud Database 
Server

Gateway Real-time Data 
Access & Fault 

Diagnosis

SmartConnector

  

Figure 1-6. Proposed Wireless Sensor Network of SmartConnector. Source: own.  

The main objective of this work is to build smart IoT devices for substations to form a WSN 

as shown in Figure 1-6. A summary of the challenges involved in order to accomplish the objectives 

are described below. 

 Selecting the appropriate electronics for this special application. It means that the electronic 

system should be low cost, small size, robust, reliable under high operating temperature and 

extreme weather, and most importantly, compatible with both AC and DC electrical systems 

[47].  

 Measure critical physical parameters such as temperature, current, vibration and contact 

resistance using a combination of sensors and novel data processing techniques. 

 Moreover, in High Voltage (HV) facilities human intervention is restricted, being necessary to 

design an energy harvesting system, which can generate enough power from the environment 

to extend the lifetime of the IoT device, while avoiding periodic battery replacements.  

 Selection of a suitable microcontroller and wireless communication system for reliable data 

acquisition and transmission. 
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 Simultaneously, an appropriate gateway must be selected and programmed for receiving data 

from the SmartConnector and sending the data to the cloud in real time using Ethernet, optical 

fiber, 4G or 5G network, etc. 

 Suitable protection of the electronics to be able to operate in a high electric field environment. 

 Other objectives include identifying and analyzing the key design parameters for developing 

the SmartConnector by means of both, simulations and experimental tests.  

Therefore, it is necessary to build a self-powered low cost IoT system to be integrated within 

the substation connector, which is capable of acquiring meaningful data and wirelessly sending it to 

the cloud in real time for an extended period, focused to enable predictive maintenance plans [48]–

[50].  

SmartConnector electronic system includes three main parts:  

1. Sensors 

2. Wireless communication system (microcontroller with wireless communications) 

3. Power management system (supervises in energy generation, storage and consumption) 

Energy 

Harvesting

Battery /

Energy Storage

Power 

Management

Wireless 

Transmission
Microcontroller

Sensors

 

Figure 1-7. Block diagram of the SmartConnector electronic system. Source: own. 
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2. SMART SENSORS FOR 

MEASURING CRITICAL 

PARAMETERS 
This chapter introduces both the background study of the critical parameters affecting the 

efficiency of the electrical grids, particularly substation connectors, and the importance of monitoring 

such parameters in real time using different technologies.  

                      

Figure 2-1. Different parameter for selection and development of the electronic system. Source: 

own. 

Furthermore, the sensors to be used for the proposed electronic system are studied and 

identified in this section. Since, the aim of this thesis is also to satisfy the industry requirements, the 

selection of components should be done based on certain factors, such as low cost, low maintenance, 

universal solution, small size, reliability, robustness, range of environmental conditions at which they 

can operate, etc. as shown in Figure 2-1. New sensors can be developed to fulfill these requirement, 

but it would be time consuming and expensive for manufacturing. There exist already many 

commercial sensors available in the market, which can be applied for this application. For example, 

Electronic 
system

Small size 

Low cost

Universal 
Solution for 
AC and DC

Commercially 
available 

components

Range of 
environmental 

conditions
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the sensors which are being used in the automotive industry normally can work under high temperature 

and high vibration conditions. So, it is better to use the already existing sensors to apply for this 

application.  From the state of art [51], it is known that temperature, current, electrical contact 

resistance or vibration,  are among the main factors affecting the efficiency of the substation and hence, 

the same parameters are required to be measured in real time.  

Section 2.1 describes the importance of temperature measurement. Section 2.2 demonstrates 

current measurement using Hall effect and Magnetoresistive sensors. Section 2.3 shows the novel 

developed technique to measure the contact resistance in real-time. Section 2.4 details the method to 

eliminate the proximity effect on the current measurement. Finally, Section 2.5 explains the effect of 

vibration on the contact resistance. 

2.1  TEMPERATURE MEASUREMENT 

Temperature is one of the major causes of failure in an electrical grid. Joule effect is the primary 

reason for the increase in temperature and losses in electrical grid. Joule heating describes the process 

by which the energy of an electric current is converted into heat as it flows through a resistance. When 

the current flows through a body with finite conductivity, the conducting electrons impact with the 

atoms, thus releasing energy in the form of heat and increasing the temperature of the conducting body 

like bus bar, conductor, connector, etc. Thus, if more current passes though the conducting body than 

its nominal current rating, then the conducting body can reach inappropriate temperature point leading 

to failure of the electrical grid. For the same reason, power transmission is done at high voltage levels, 

allowing by this way decreasing the current circulating through the network and, therefore, also 

reducing the necessary cross section of the conductors, while limiting the maximum operating 

temperature. One could suggest that the voltage could be raised at a much higher level in order to drive 

electric current almost to 0 A. Unfortunately, high voltage levels close to and over the dielectric 

strength of the air insulation surrounding the conductor, produce losses in the form of corona effect, 

which is explained in detail in the section 3.3 .  

The change in temperature due to current cycling causes thermal expansion and contraction of 

the electrical components. This effect is more pronounced in flexible conductors like cables. Hence, 

the contact resistance between the connector and conductor tends to change due to the expansion and 

contraction effects because of the thermal cycling, which can affect the temperature, as the electrical 

resistance is linearly proportional to the temperature, as shown in equation (1). Thus, it is necessary to 
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3. WIRELESS 

COMMUNICATION  
As already mentioned in Section 1.2 , wireless communication is the most important aspect of 

IoT technology. In order to predict the failure of the substation, it is necessary to collect suitable real-

time data from the connector. This data can be any physical quantity such as temperature, electrical 

current, contact resistance or vibrations level among others. The data can be acquired using suitable 

sensors detailed in Section 2 and installed in close contact with the connector and further transmitted 

wirelessly for being monitored, processed and analyzed.  

The existing IEC 61850 standard [164]–[166] for communications within substations does not 

include any wireless communication protocol. It may have been avoided in the standard due to 

reliability issues, since high-voltage substations and transmission lines tend to produce radio 

interference (RI) due to corona discharge processes, thus affecting telecommunications reliability. 

However, with the improvement of low-cost low power electronics including wireless transmission and 

reception capabilities, it is possible to measure many parameters in the substation by minimizing cabling 

and maintenance costs.  

 Hence, in this work, a suitable wireless communications system is selected for data 

transmission from the SmartConnector and related devices to the cloud database server based on the 

use of low-power IoT devices in-line with smart grid applications [2]–[4], as shown in Figure 1-6.  

Recent studies suggest to use edge computing for IoT devices that need real-time response. Edge 

computing is a decentralized cloud processing closer to IoT devices, which reduces the computing, 

communication bandwidth, latency, and storage burden on cloud servers, thus increasing efficiency and 

quality of services [167], [168]. Therefore, to test the wireless communication, an entire IoT system is 

needed and hence, a suitable microcontroller for data acquisition from the sensors is selected, which 

along with a local gateway that computes the temperature, current, ECR and battery state of charge 

(SoC) values from the data received by the SmartConnector and transmits the processed values to the 

cloud server via Ethernet, 3G, 4G, etc. for being monitored in the IoT platform. Moreover, the 

performance of the entire IoT system is tested under high electric field and different corona discharge 
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severity conditions occurring in High Voltage Alternating Current (HVAC), Positive High Voltage 

Direct Current Positive (HVDC+) and Negative High Voltage Direct Current (HVDC-).  

 Section 3.1 details the literature review of the state of the art and the different wireless 

technologies along with their comparison on the important parameters to be considered for its 

implementation in a substation. Section 3.2 describes the proposed IoT system based on Bluetooth 5 

wireless communication. Section 3.3 presents an experimental set up to study the impact of corona on 

the Bluetooth 5 wireless communication and finally, Section 3.4 provides the solution for the shielding 

the SmartConnector along with the design of a suitable corona protection. 

3.1  LITERATURE REVIEW 

3.1.1  Related Work 

This section reviews the previous works related to the use of wireless communication in HV. In 

[169], a feasibility study of wireless communications in high-voltage substations is explained. However, 

issues arise when the transmission frequency of the wireless device is in the same range as that of the 

RI frequency range. The radiation levels associated to the electrical discharges in HV environment have 

wide frequency spectrum. The discharge noise will affect the frequency bands operating below 1 GHz, 

although interference power levels gradually decrease with increasing frequency [170]. Similar results 

are found in [171], [172] and [173]. Hence, previous studies report that RI mostly occurs with stronger 

amplitude at lower frequencies whereas trending wireless communication devices use the 2.4 GHz 

unlicensed ISM band. Results from [174] show that extremely high-voltage (EHV) transmission lines 

generate corona noise up to 2 GHz. In [175], it is concluded that the inter-electrode distance is an 

important parameter, since larger inter-electrode distances increases the RI power while shifting its 

spectrum towards the wireless communication bands.  

In [176], the classic Bluetooth was tested in a vacuum switch cabinet, proving that breakdown 

radiation signals produced in the vacuum gap overlap with the ISM frequency band used by the 

Bluetooth communication system, thus decreasing the data transfer rate. However, the Bluetooth device 

is bulky and consumes more power compared to BLE devices, hence being not feasible for long term 

testing in substation environments, which usually are powered through energy harvesting systems. 

Simulation results from [177] conclude that the impulsive nature of the noise signals generated in 

electrical substations is unlikely to obstruct the deployment of classic Bluetooth devices. The wireless 

local area network (WLAN) proposed in [178] to monitor leakage currents in electrical substation does 
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not show any evidence that the noise due to energized high-voltage equipment interferes WLAN 

sensors, although the experiments were only conducted under AC energization and not at a very high-

voltage levels. In [179], it is proved that the ZigBee communication link is prone to transceiver 

malfunction and disruption when exposed to strong levels of interference. In [180], it is stated that 5 

GHz Wi-Fi (IEEE 802.11a) provides improved interference immunity compared to ZigBee (IEEE 

802.15.4) and 2.4 GHz Wi-Fi (IEEE 802.11g). The model presented in [181] to compute corona RI 

levels in HVDC transmission lines is useful for selecting appropriate wireless communications. In 

[182], it is proved that the corona current frequency of an ultra-high-voltage (UHVDC) transmission 

line  increases with the voltage, as well as the amplitude of audible noise in the 6–20 kHz frequency 

band. It is also known that the speed of wireless communication changes under AC corona discharges 

[183].  

3.1.2  Wireless Technologies 

Low-power electronics industry is evolving at a very fast pace. This is an advantageous situation 

to implement small-size low-power electronic devices with wireless capabilities for industrial 

applications, thus promoting the development of the internet of things (IoT) market. Low-power long-

range wireless devices to serve the need of the emerging industrial IoT (IIoT) market are collectively 

known as low-power wide-area network (LPWAN). LPWAN devices are connected directly to a sensor 

and send the data to a base station which then transmits the data to the cloud. These devices can be 

deployed in the field and will continue to function based on battery power for around 10 years, 

depending on the quantity of the transmitted messages. 

Some of the latest LPWAN systems are cellular (NB-IoT, LTE-M/Cat-M1) and non-cellular 

(SigFox, LoRa, Weightless, etc.) technologies. Table 3-1 compares different LPWAN options. 

Narrowband IoT (NB-IoT) is a new cellular technology introduced in 3GPP Release 13 for providing 

wide-area coverage for the IoT [184]. Unlike LTE based IoT networks, in NB-IoT, the data from the 

sensors are sent directly to the main server, thus eliminating the gateway. Cellular based IoT 

technologies are expensive, as they use licensed bands. These technologies have been deployed by the 

existing telecommunication companies to extend their market in the IoT sector, using the existing 

infrastructure. 

 Non-cellular LPWAN systems such as SigFox, LoRa and Weightless use free ISM radio bands 

to avoid the expensive license fees required for exclusive use of frequencies. However, by using 

unlicensed radio bands, the control over the entire bandwidth is lost. At present, SigFox is the most 



WIRELESS COMMUNICATION 

88                              Akash Kadechkar - May 2020 

popular LPWAN in the IoT market. However, SigFox is not an open protocol, since it is restricted to 

SigFox networks with very low data transfer rate. Long Range (LoRa) is an open standard, since it 

belongs to a private network. SigFox and LoRa are not appropriate for the cases where downlink 

communication is important. Table 3-1 compares the different wireless commercially available 

communication networks. 

TABLE 3-1.  COMPARISON OF DIFFERENT WIRELESS COMMUNICATION NETWORKS 

Communication 

Protocol 

Data 

Transmission 

Capacity 

Typical 

Range 

Regulation Cost Maximum 

Output 

Power 

Backup 

Possibility 

Bluetooth 5 Moderate 0.4-1 km License free Low 0.003 W Yes 

SigFox Very Low 20-25 km License free Low 0.025 W No 

LoRa Low 5-10 km License free High 0.025 W Yes 

NB-IoT /  Cat-M2 Low 10-15 km 

Expensive 

dedicated 

channel 

Moderate 0.200 W Yes 

LTE Cat-M1 Low 10-15 km 

Expensive 

dedicated 

channel 

High 0.200 W Yes 

Weightless Moderate 2 km License free Moderate 0.050 W Yes 

LoRa is optimum when the coverage area is large and the required data transfer rate is low. 

However, in the case of electrical substations, the coverage area is not very large and it is required to 

collect a relatively large amount of data from the substation for a real-time monitoring and to take 

immediate action to avoid unwanted power failures. From the above mentioned disadvantages of 

LPWANs, a different IoT solution is needed for substations. Therefore, it is proposed to use Bluetooth 

5 which is a low-power technology with low cost, high data rate and short range, which can be increased 

when required by Bluetooth mesh networking. Also, with Bluetooth 5 it is possible to have bi-

directional communication, whereas the software can be updated over the air (OTA). 

3.1.3  Bluetooth Classic versus Bluetooth Low Energy 

Table 3-2 summarizes the difference between wireless Bluetooth classic and Bluetooth Low 

Energy (BLE) based on Bluetooth 5. Bluetooth classic is very different from Bluetooth 5, which is a 
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new generation wireless communication protocol based on Bluetooth Low Energy (BLE), i.e., BLE 

consumes less power as compared to Bluetooth classic.  

Depending on the application, a choice has to be made, because both are used for very different 

applications. Bluetooth classic is used for transfer of large amount of data and hence, it consumes more 

battery and also costs more. On the other hand, BLE is used to transfer small amounts of data at periodic 

intervals, to reduce battery consumption, so it is cheaper as compared to Bluetooth classic. In the 

proposed application, power consumption is a critical parameter, whereas the size of data to be 

transmitted is very small. Therefore, Bluetooth 5 wireless communication is selected for the 

SmartConnector application. 

TABLE 3-2.  DIFFERENCE BETWEEN BLUETOOTH CLASSIC AND BLUETOOTH 5 

Parameters Bluetooth Classic Bluetooth 5 

Connection speed 
Discovery on 32 channels 

leads to slower connections 

Discovery occurs on 3 channels, 

hence connection is faster 

Number of channels 79 RF channels 40 RF channels 

Power requirement High Low 

Protocols 
Profiles define their own 

protocols 

Profiles are built on top of 

GATT/ATT 

Applications 
Audio streaming and file 

transfer 

Sensor data and low-bandwidth 

applications 

3.2  BLUETOOTH 5 BASED IOT SYSTEM 

A suitable Bluetooth 5 module is needed for implementation in electrical substations. After 

extensive market research it was found that there exist many commercially available Bluetooth 5 

modules in the market. All of them come integrated with an Arm® Cortex™ CPU, which is an advantage 

in terms of size, cost, programming requirements and power consumption. There are several Bluetooth 

module manufacturers like Nordic Semiconductor, Cypress Semiconductor, NXP, Laird, Texas 

Instruments, Microchip, Adafruit, Panasonic, Seed Studio, STMicroelectronics, Silicon Laboratories, 

etc. providing Bluetooth modules with similar characteristics in terms of generous RAM, Flash, 

operating temperature, inbuilt ADC, input voltage, cost, etc.  

However, the nRF52832 (System on Chip) SoC Bluetooth device from Nordic Semiconductors  

includes low power consumption modes, which can be vital in the proposed application [185]. Also, 
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4. POWER MANAGEMENT 

Power management is the most important aspect for long term functioning of any IoT device, 

including the SmartConnector. The sensors required to sense the physical variables and 

microcontroller used to acquire and transmit the data, need a suitable power supply. Due to the 

constraints existing in high-voltage electrical substations, human intervention must be minimized to 

apply customary condition monitoring programs. Since the sensors are installed on the connector or 

the bus bars, dedicated cables are unfeasible. Also, many of the already installed connectors have more 

than 25 years lifetime expectancy [194]. In addition, some are placed in inaccessible locations where 

it is almost impossible the access to existing power sources, so their continuous supply becomes very 

difficult and challenging.  

Moreover, the sensing and wireless communication systems must be non-intrusive, with 

minimum impacts on the host equipment. Therefore, such electronic systems must be miniaturized, 

and must have long-live operation without the need of periodic battery replacements. Such smart IoT 

devices cannot be fed by batteries since their discharge cycle is limited. Therefore, SmartConnector 

and related IoT devices applied to HV substation must be powered autonomously, and thus, an ambient 

energy harvesting system is an appealing solution [195]. This approach allows maximizing the time 

interval between consecutive maintenance operations of the electronics. 

Section 4.1  details the literature review of the state of the art and the different energy harvesting 

techniques along with a comparison of the important parameters to be considered for its 

implementation in a substation for long term operation.  Section 4.2 presents the energy consumed by 

the SmartConnector. Section 3.3 describes the proposed thermal energy harvesting for the 

SmartConnector and its feasibility by performing different experimental tests. Finally, Section 4.4 

explores possibility of a solar energy harvesting unit powering the SmartConnector. 

4.1  LITERATURE REVIEW 

4.1.1  Related Work 

Diverse strategies have been analyzed such as harvesters based on the electric field, magnetic 

field, vibrations, solar radiation or thermal energy [195], [196]. However, when dealing with HVDC 
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(high-voltage direct current) power systems, electric and magnetic field based harvesting systems are 

unfeasible, whereas in indoor substations solar or vibrations based energy harvesting systems present 

inherent difficulties. Previous energy harvesting research for high-voltage and high-current 

applications is reported in [195]–[198]. In [195] a hybrid solution is proposed, which increases the cost 

and size of the energy harvesting system along with the complexity, [170] does not provide a universal 

solution for AC and DC systems, [197] proposes the use of solar energy harvesting which requires 

periodic maintenance, whereas [198] implements a heat dissipater in a rectangular bus bar, which 

requires liquid refrigeration and a big corona protection, thus making difficult its application. 

4.1.2  Energy Harvesting Techniques 

This section compares different energy harvesting techniques, which are well suited to be 

applied in high-voltage electrical substations. These technologies can be broadly classified as solar 

photovoltaic, thermal, magnetic/electric field, vibrations and radio-frequency (from ambient or 

specially radiated from an external antenna for the application) energy harvesting, whose main features 

are summarized in Table 4-1.  

TABLE 4-1. COMPARISON OF DIFFERENT ENERGY HARVESTING TECHNIQUES FOR ELECTRICAL 

SUBSTATIONS 

Harvesting 

Techniques 

Devices 

Used 

AC & DC 

Compatibility 
Cost Installation Maintenance 

Continuous 

Energy 

Solar 
Solar PV 

cells 
Yes Low Moderate Very high No 

Thermal Peltier Yes Moderate Moderate Low Yes 

Electric field Capacitor No High Difficult Low Yes 

Magnetic field Inductor No High Difficult Low Yes 

Vibration 
Piezo 

crystals 
Yes Low Difficult High No 

Radio frequency Antenna Yes Low Low Low No 
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From the comparison shown in Table 4-1, the only technologies simultaneously compatible 

with alternating current (AC) and direct current (DC) are solar photovoltaics, thermal, vibrations and 

radio frequency energy harvesting. 

Although sun is the main source of energy that exists, some substations are indoors, and thus, 

their effectiveness is limited. In outdoor substations, it is not possible to harvest during the night, and 

in some countries, there is almost no light during the whole day during some months of the year. 

Another problem of the solar photovoltaic energy harvesting is soiling, the accumulation of dust, dirt, 

and pollen, which reduces the amount of sunlight on the surface of the solar cells, thus requiring periodic 

cleaning. Vibrations from the wind or another origin can also be used for energy harvesting. However, 

in indoor substations, the potential of this technology is very limited and also in outdoor substations, 

since in some calm days the energy generated by this technology is very reduced, since the power 

generated is usually below 1 mW [199]. Another possibility is harvesting energy from the nearby radio 

waves using an antenna. But near to substation, it is not always feasible to find a continuous supply of 

radio waves, the antenna required to capture the radio waves is sometimes incompatible with corona 

requirements, and the power harvested is often in the range of the µW [200]. 

Electrical bus bars are very common in electrical substations, and their temperature increase 

due to Joule losses. Owing to the abovementioned reasons, it seems that the most universal energy 

harvesting solution compatible with HVAC and HVDC systems is the thermal energy harvesting, 

taking advantage of the temperature gradient between the ambient temperature and that of the reference 

bus bar of the substation connector. It can work for both indoor and outdoor applications, thus being 

feasible in a wide range of applications. This technology will always be able to generate electrical 

power as long as there is a sufficient current flowing through the bus bars. 

4.1.3  Energy Balance 

Even if there exist a suitable Energy Harvesting System (EHS) to power the SmartConnector, 

it will not be sufficient to power the entire SmartConnector to send the data continuously every second. 

Moreover, for this specific application, continuous data transmission is not required, because the 

connector, once installed, has a life expectancy of around 25 years. So, to trace the evolution of the 

SmartConnector, data transmission per second is not required. Therefore, a suitable strategy is applied, 

as shown in Figure 3-4, where the SmartConnector is in sleep mode for most of the time, while 

consuming very low power and then wakes up frequently for data acquisition and transmission. To 

make possible the long term operation of the SmartConnector, it is necessary to calculate the frequency 
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5. CONCLUSION  

 This thesis is a combination of several fields of research studies. Each chapter of this thesis 

represents a different field of research area. Therefore, each chapter of this thesis contributes 

individually in its particular research area. Section 5.1 describes the general conclusion of this thesis, 

Section 5.2 details the main contributions and finally, Section 5.3 explains the future scope of this 

work. 

5.1  GENERAL CONCLUSION 

The main objective of this thesis was to develop a low cost self-powered IoT device which can 

be applied to connectors and related components like conductors, bus bars, spacers, etc. for high 

current and voltage substations to acquire meaningful information from such components in real time. 

Therefore, different fields of research areas have been identified, studied and applied in this thesis in 

order to fulfill the objective of the project.  

In chapter 1, different components involved in the substation were analyzed. The critical 

parameters needed to be measured for evaluating the conditions of the electrical components were 

identified. Standard tests needed to perform the experiments were also detailed. The objectives of the 

thesis were described in detail in this chapter along with the list of the publications carried out during 

the course of this thesis. 

In chapter 2, the operating conditions and environment of the substation were studied. Different 

stresses encountered by the electrical connectors, conductors and bus bars in the form of Aeolian 

vibrations, high temperature and uneven current distribution were studied, analyzed and estimated by 

performing different experiments. Specific sensors (current, temperature, vibration sensors and 

instrumentation amplifier) were selected, depending on the accuracy, range, cost, size, power 

consumption, operating temperature, etc. for measuring the contact resistance of the connector using 

a novel method along with other critical parameters like current, temperature and vibration. Different 

experiments were performed to test the accuracy, robustness and repeatability of the selected sensors 

to validate their applicability for the SmartConnector, and finally, the results conclude that the selected 

sensors are suitable for the SmartConnector. 
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In chapter 3, the wireless communication of the entire IoT system was described in detail. 

Electrical components of the substation are non-moveable assets. Bluetooth 5 wireless communication 

was selected for implementation in SmartConnector. After through market research, Nordic 

Semiconductors nRF52832 microcontroller with System on Chip (SoC) Bluetooth 5 module was 

selected because of its small size, cost, RAM memory, inbuilt Bluetooth 5 module, 8 ADC inputs, low 

power consumption modes, etc.  The sensors included in the SmartConnector combined with the 

nRF52832 microcontroller, being an integral part of SmartConnector, were tested in both high voltage 

and high current laboratories to verify the impact of high voltage and high current on the wireless 

communications and the sensors outputs. After analyzing the results, a shielding enclosure and corona 

protection were added to the electronic circuit to minimize the effect of high current and high voltage 

on the SmartConnector. The data acquired by the SmartConnector is sent through Bluetooth 5 wireless 

communication to a local gateway (Raspberry Pi) which then computes the contact resistance, current, 

temperature and battery state of charge in real-time. Finally, the Raspberry Pi sends the final values to 

the SICAME IoT platform for monitoring purposes. 

In chapter 4, solar and thermal energy harvesting systems were selected to extend the lifetime 

of the SmartConnector because of their compatibility with both AC and DC substations. Different 

experiments were performed to validate the feasibility of the SmartConnector. First, the energy 

consumption of SmartConnector prototype was measured. Next, both the solar and thermal energy 

harvesting systems were tested to estimate the average daily energy harvested to determine the data 

transfer rate. Results concluded that SmartConnector can transmit in real-time data with acceptable 

error under high current and high current environment by extending its lifetime by harvesting energy 

from the increment of temperature of the bus bar or conductor due to the Joule effect and from the 

solar radiation as well. 

5.2  MAIN CONTRIBUTIONS 

 Selection and validation of the suitable sensors and electronic components required for the 

wireless communication system and the energy harvesting system. 

 Estimating the expected range of temperature, current and vibration in the bus bars of the 

substation. 

 Strategy to measure the contact resistance of the connector in AC using three novel methods. 

 Algorithm to validate correct installation of the connector and to measure the contact resistance 

of the connector in real-time in both AC and DC power systems. 
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 Cancelling the impact of the proximity effect on the current distribution measurement in 

parallel conductors using a combination of current sensors and a mathematical model. 

 Design of an experiment to analyse the impact of Aeolian vibrations on the contact resistance 

of the connector.  

 Programming the microcontroller of the SmartConnector for acquiring data from the current, 

temperature, vibration sensors, and instrumentation amplifier and from the battery. 

 Programming the Bluetooth stack of the SmartConnector to send more than 27 bytes of data. 

 Programming the microcontroller of the SmartConnector to enter different power modes, 

according to the designed power management algorithm. 

 Designing the electronic system of the SmartConnector and SmartSpacer prototypes. 

 Programming the Raspberry Pi to act as a gateway and to receive data from multiple 

SmartConnectors according to the designed power management algorithm. 

 Based on the guidelines of edge computing, programming the Raspberry Pi to compute in real-

time the values of contact resistance, current, temperature and battery state of charge from the 

data received by the SmartConnector and sending the final values to the cloud. 

 Design of an electromagnetic shielding solution for the SmartConnector. 

 Estimating the minimum temperature difference required between the bus bar and the ambient 

to enable thermal energy harvesting by performing several experiments. 

 Calculating the data transfer rate desired for both solar and thermal energy harvesting options 

for the SmartConnector for extending its lifetime. 

 Design and development of the PCB of the SmartConnector and the SmartSpacer prototypes 

along with some modifications of the SICAME IoT platform, which was done in collaboration 

with the SICAME IoT team.  

 Design, simulation and development of the corona protection and the installation structure, in 

collaboration with SBI connectors. 

5.3  FUTURE SCOPE 

The SmartConnector can have a deep impact because of the potential improvement on power 

system availability and reliability, as well as on economic benefits derived from such improvements and 

its compatibility with the application of predictive maintenance plans. This thesis provides the solution 

for real-time data acquisition from the critical locations of the substation. Now, the next logical step is 

to utilize the received data in order to diagnose the present health status of the connector, predict the 

future condition of the connector and also the Remaining Useful Life (RUL) of the connector. 
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Nowadays, RUL is used for predictive maintenance tasks to improve efficiency and productivity, thus, 

avoiding delays on schedules of industries or projects. Data alone will not be sufficient to allow the 

prediction. Different types of diagnostic models must be developed based on the behaviour of the 

connector in different conditions and under different stresses (thermal, mechanical and corrosion) by 

performing practical experiments.  

IoT is an emerging market and its application in the electrical grid is just evolving, based on 

the guidelines of the smart grid. Using the selection criteria and the key points identified in this thesis, 

a similar approach can be applied to develop IoT devices and diagnostic models for the other 

components of the HV power grid. This strategy will ease to apply condition monitoring and predictive 

maintenance tasks. 

Data security and data protection are the other important issues that should be addressed in the 

near future, before the actual implementation of IoT devices in power grids. Other functionalities like 

data encryption, Over the Air (OTA) firmware update, and increased range of the wireless 

communication can be added to the SmartConnector.  

In future, IoT devices will be the most commonly used data acquisition equipment for 

monitoring and control purposes. Therefore, a similar strategy proposed in this thesis can also be 

applied to develop IoT devices for industry sectors other than the power grids. 
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