28 research outputs found

    Patrol team language identification system for DARPA RATS P1 evaluation

    Get PDF
    This paper describes the language identification (LID) system developed by the Patrol team for the first phase of the DARPA RATS (Robust Automatic Transcription of Speech) program, which seeks to advance state of the art detection capabilities on audio from highly degraded communication channels. We show that techniques originally developed for LID on telephone speech (e.g., for the NIST language recognition evaluations) remain effective on the noisy RATS data, provided that careful consideration is applied when designing the training and development sets. In addition, we show significant improvements from the use of Wiener filtering, neural network based and language dependent i-vector modeling, and fusion

    Unicode-based graphemic systems for limited resource languages

    Get PDF
    © 2015 IEEE. Large vocabulary continuous speech recognition systems require a mapping from words, or tokens, into sub-word units to enable robust estimation of acoustic model parameters, and to model words not seen in the training data. The standard approach to achieve this is to manually generate a lexicon where words are mapped into phones, often with attributes associated with each of these phones. Contextdependent acoustic models are then constructed using decision trees where questions are asked based on the phones and phone attributes. For low-resource languages, it may not be practical to manually generate a lexicon. An alternative approach is to use a graphemic lexicon, where the 'pronunciation' for a word is defined by the letters forming that word. This paper proposes a simple approach for building graphemic systems for any language written in unicode. The attributes for graphemes are automatically derived using features from the unicode character descriptions. These attributes are then used in decision tree construction. This approach is examined on the IARPA Babel Option Period 2 languages, and a Levantine Arabic CTS task. The described approach achieves comparable, and complementary, performance to phonetic lexicon-based approaches

    Proceedings of the ACM SIGIR Workshop ''Searching Spontaneous Conversational Speech''

    Get PDF

    Spoken term detection ALBAYZIN 2014 evaluation: overview, systems, results, and discussion

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://dx.doi.org/10.1186/s13636-015-0063-8Spoken term detection (STD) aims at retrieving data from a speech repository given a textual representation of the search term. Nowadays, it is receiving much interest due to the large volume of multimedia information. STD differs from automatic speech recognition (ASR) in that ASR is interested in all the terms/words that appear in the speech data, whereas STD focuses on a selected list of search terms that must be detected within the speech data. This paper presents the systems submitted to the STD ALBAYZIN 2014 evaluation, held as a part of the ALBAYZIN 2014 evaluation campaign within the context of the IberSPEECH 2014 conference. This is the first STD evaluation that deals with Spanish language. The evaluation consists of retrieving the speech files that contain the search terms, indicating their start and end times within the appropriate speech file, along with a score value that reflects the confidence given to the detection of the search term. The evaluation is conducted on a Spanish spontaneous speech database, which comprises a set of talks from workshops and amounts to about 7 h of speech. We present the database, the evaluation metrics, the systems submitted to the evaluation, the results, and a detailed discussion. Four different research groups took part in the evaluation. Evaluation results show reasonable performance for moderate out-of-vocabulary term rate. This paper compares the systems submitted to the evaluation and makes a deep analysis based on some search term properties (term length, in-vocabulary/out-of-vocabulary terms, single-word/multi-word terms, and in-language/foreign terms).This work has been partly supported by project CMC-V2 (TEC2012-37585-C02-01) from the Spanish Ministry of Economy and Competitiveness. This research was also funded by the European Regional Development Fund, the Galician Regional Government (GRC2014/024, “Consolidation of Research Units: AtlantTIC Project” CN2012/160)

    Incorporating Weak Statistics for Low-Resource Language Modeling

    Get PDF
    Automatic speech recognition (ASR) requires a strong language model to guide the acoustic model and favor likely utterances. While many tasks enjoy billions of language model training tokens, many domains which require ASR do not have readily available electronic corpora.The only source of useful language modeling data is expensive and time-consuming human transcription of in-domain audio. This dissertation seeks to quickly and inexpensively improve low-resource language modeling for use in automatic speech recognition. This dissertation first considers efficient use of non-professional human labor to best improve system performance, and demonstrate that it is better to collect more data, despite higher transcription error, than to redundantly transcribe data to improve quality. In the process of developing procedures to collect such data, this work also presents an efficient rating scheme to detect poor transcribers without gold standard data. As an alternative to this process, automatic transcripts are generated with an ASR system and explore efficiently combining these low-quality transcripts with a small amount of high quality transcripts. Standard n-gram language models are sensitive to the quality of the highest order n-gram and are unable to exploit accurate weaker statistics. Instead, a log-linear language model is introduced, which elegantly incorporates a variety of background models through MAP adaptation. This work introduces marginal class constraints which effectively capture knowledge of transcriber error and improve performance over n-gram features. Finally, this work constrains the language modeling task to keyword search of words unseen in the training text. While overall system performance is good, these words suffer the most due to a low probability in the language model. Semi-supervised learning effectively extracts likely n-grams containing these new keywords from a large corpus of audio. By using a search metric that favors recall over precision, this method captures over 80% of the potential gain

    Development of the Arabic Loria Automatic Speech Recognition system (ALASR) and its evaluation for Algerian dialect

    Get PDF
    International audienceThis paper addresses the development of an Automatic Speech Recognition system for Modern Standard Arabic (MSA) and its extension to Algerian dialect. Algerian dialect is very different from Arabic dialects of the Middle-East, since it is highly influenced by the French language. In this article, we start by presenting the new automatic speech recognition named ALASR (Arabic Loria Automatic Speech Recognition) system. The acoustic model of ALASR is based on a DNN approach and the language model is a classical n-gram. Several options are investigated in this paper to find the best combination of models and parameters. ALASR achieves good results for MSA in terms of WER (14.02%), but it completely collapses on an Algerian dialect data set of 70 minutes (a WER of 89%). In order to take into account the impact of the French language, on the Algerian dialect, we combine in ALASR two acoustic models, the original one (MSA) and a French one trained on ESTER corpus. This solution has been adopted because no transcribed speech data for Algerian dialect are available. This combination leads to a substantial absolute reduction of the word error of 24%. c 2017 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the scientific committee of the 3rd International Conference on Arabic Computational Linguistics
    corecore