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Speech is a desirable communication method between humans and computers. The 

major concerns of the automatic speech recognition (ASR) are determining a set of 

classification features and finding a suitable recognition model for these features. Hidden 

Markov Models (HMMs) have been demonstrated to be powerful models for representing 

time varying signals. Artificial Neural Networks (ANNs) have also been widely used for 

representing time varying quasi-stationary signals. Arabic is one of the oldest living 

languages and one of the oldest Semitic languages in the world, it is also the fifth most 

generally used language and is the mother tongue for roughly 200 million people. Arabic 

speech recognition has been a fertile area of reasearch over the previous two decades, as 

attested by the various papers that have been published on this subject.  

This thesis investigates phoneme and acoustic models based on Deep Neural Networks 

(DNN) and Deep Echo State Networks for multi-dialect Arabic Speech Recognition. 

Moreover, the TIMIT corpus with a wide variety of American dialects is also aimed to 

evaluate the proposed models. 

The availability of speech data that is time-aligned and labelled at phonemic level is a 

fundamental requirement for building speech recognition systems. A developed Arabic 

phoneme database (APD) was manually timed and phonetically labelled. This dataset was 

constructed from the King Abdul-Aziz Arabic Phonetics Database (KAPD) database for Saudi 

Arabia dialect and the Centre for Spoken Language Understanding (CSLU2002) database for 

different Arabic dialects. This dataset covers 8148 Arabic phonemes. In addition, a corpus of 

120 speakers (13 hours of Arabic speech) randomly selected from the Levantine Arabic 
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dialect database that is used for training and 24 speakers (2.4 hours) for testing are revised 

and transcription errors were manually corrected. The selected dataset is labelled 

automatically using the HTK Hidden Markov Model toolkit. TIMIT corpus is also used for 

phone recognition and acoustic modelling task. We used 462 speakers (3.14 hours) for 

training and 24 speakers (0.81 hours) for testing. 

For Automatic Speech Recognition (ASR), a Deep Neural Network (DNN) is used to 

evaluate its adoption in developing a framewise phoneme recognition and an acoustic 

modelling system for Arabic speech recognition. Restricted Boltzmann Machines (RBMs) 

DNN models have not been explored for any Arabic corpora previously. This allows us to 

claim priority for adopting this RBM DNN model for the Levantine Arabic acoustic models. A 

post-processing enhancement was also applied to the DNN acoustic model outputs in order 

to improve the recognition accuracy and to obtain the accuracy at a phoneme level instead 

of the frame level. This post process has significantly improved the recognition 

performance.  

An Echo State Network (ESN) is developed and evaluated for Arabic phoneme 

recognition with different learning algorithms. This investigated the use of the conventional 

ESN trained with supervised and forced learning algorithms. A novel combined 

supervised/forced supervised learning algorithm (unsupervised adaptation) was developed 

and tested on the proposed optimised Arabic phoneme recognition datasets. This new 

model is evaluated on the Levantine dataset and empirically compared with the results 

obtained from the baseline Deep Neural Networks (DNNs).  

A significant improvement on the recognition performance was achieved when the ESN 

model was implemented compared to the baseline RBM DNN model’s result. The results 

show that the ESN model has a better ability for recognizing phonemes sequences than the 

DNN model for a small vocabulary size dataset. The adoption of the ESNs model for acoustic 

modeling is seen to be more valid than the adoption of the DNNs model for acoustic 

modeling speech recognition, as ESNs are recurrent models and expected to support 

sequence models better than the RBM DNN models even with the contextual input window. 

The TIMIT corpus is also used to investigate deep learning for framewise phoneme 

classification and acoustic modelling using Deep Neural Networks (DNNs) and Echo State 

Networks (ESNs) to allow us to make a direct and valid comparison between the proposed 

systems investigated in this thesis and the published works in equivalent projects based on 

framewise phoneme recognition used the TIMIT corpus. Our main finding on this corpus is 
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that ESN network outperform time-windowed RBM DNN ones. However, our developed 

system ESN-based shows 10% lower performance when it was compared to the other 

systems recently reported in the literature that used the same corpus. This due to the 

hardware availability and not applying speaker and noise adaption that can improve the 

results in this thesis as our aim is to investigate the proposed models for speech recognition 

and to make a direct comparison between these models.   
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Chapter One 

Introduction 

 

Speech is a natural communication method between humans and is the fastest form 

of data input between humans and technology. Automatic speech recognition (ASR) is a 

process that converts an acoustic signal, captured by the device microphone or over a 

telephone line, to a set of textual words. Over the years, ASR systems have been 

developed for many via-voice applications. Examples include: speech to speech 

translation (Lavie et al., 1997, Wahlster, 2000), dictation (Murveit et al., 1993, Lee, 1997, 

Lee et al., 2009), Computer aided  language learning (Witt and Young, 1997, Xu et al., 

2009, Peabody, 2011), and voiced based information retrieval (Franz and Milch, 2002, 

Zue et al., 2000) etc. ASR also plays a significant role in helping handicapped people to 

interact with society. An additional advantage of speech input systems is that the speech 

capture devices are already built into a large variety of modern devices (mobile phones, 

PCs etc.). As a result, capture of the speech input requires no extra peripherals. 

Consequently, applications with speech interfaces are desirable.  

Accurate acoustic models (AM) are a significant requirement of automatic speech 

recognizers. Acoustic modelling of speech describes the relation between the observed 

feature vector sequence, derived from the sound wave, and the non-observable 

sequence of phonetic units uttered by speakers. Hidden Markov Models (HMMs) 

(Rabiner, 1989) using Gaussian Mixture Models (GMMs) are one of the most common 

types of acoustic models. Each HMM state typically models a 10 msec frame of the 

spectral representation of the speech signal. Other natural-based models have also been 

effectively used to model acoustic sequences. This thesis investigates acoustic models 

based on Deep Neural Networks (DNN) (Hinton and Salakhutdinov, 2006) and a Deep 

Echo State Networks (Jaeger, 2005) trained on labelled data. When used together with
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an HMM system for phonetic boundary detection, the Hybrid HMM/NN system is 

investigated as a state-of-the-art speech recognition system for multi-dialect Arabic 

speech recognition. 

 

1.1  Overview of  speech recognition 

Speech recognition can be basically classified into two modes. The first is isolated 

word recognition; where the words in this mode are surrounded by clear silence i.e. well 

known boundaries. The second is continuous speech recognition. This second mode is 

more difficult than isolated word recognition because the word boundaries are difficult 

to detect.  A word may be uttered differently from one speaker to another due to the 

differences in dialects, gender and age; words may also be uttered in different ways by 

the same speaker as a result of emotion and illness. Temporal variability, due to 

differences in speaking rates, is easier to handle than acoustic variability introduced as a 

result of different pronunciations, accents, volumes, etc. (Tebelskis, 1995). In addition to 

speaker variability, all speech recognition systems are also affected by variability 

between environments. The environment may introduce corruption into the speech 

signal because of background noise, microphone characteristics, and transmission 

channels (Yuk, 1999, Jou, 2008).  

Speech recognition systems can be further classified as being either a speaker 

dependent or a speaker independent system. A speaker dependent recognition system 

can extract uttered information from a specific speaker, or range of speakers, whose 

acoustic features have been previously installed from a training speech database. This 

type of system is called a ‘Closed-set’ speech recognition system as the training dataset 

contains uttered information for all speakers. An ‘Open-set’ speaker independent speech 

recognition system is one where there is no uttered information for the recognised 

speaker contained within the training dataset. 

Speech recognition can be achieved at a variety of levels of speech (Phone/ 

Phoneme/ grapheme, syllable, word, phrase, etc.). A phoneme is generally considered as 

“the smallest meaningful contrastive units in the phonology of a language” 

(O'Shaughnessy, 1987). They are defined by “minimal pairs” which produce a change of 

meaning if any one phoneme is changed. Thus, phonemes are specific to a particular 

language. A phoneme can also be single or a set of phones. While, a phone is a single unit 
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of speech sound, allophones are all possible spoken sounds that are used to pronounce a 

single phoneme. The human brain is presumed to perceive a given set of allophones as a 

particular phoneme (Hawkins, 1988).  If a phoneme is defined as the smallest unit of 

sound which can differentiate meaning, then a grapheme can be defined as the smallest 

unit in the writing system of any language that can differentiate meaning. A grapheme 

can be a symbol or a letter. Sound–letter correspondence refers to the relationship 

between sound (or phoneme) and letter (or grapheme). A phonetic transcription 

system, like the International Phonetic Alphabet (IPA), aims to transcribe the 

pronunciation of a language in a standard form. While a phonemic transcription system 

usually disregards all allophonic differences and represents them using the same 

grapheme; it is also known as a representation of phonemic structure. However, 

graphemic system uses one-to-one letter to sound (phoneme to grapheme) rules for 

each word to generate a pronunciation dictionary. In this work, phonemes are the 

symbols used to produce the Arabic pronunciation dictionary and phones will be used 

only to describe a particular HMM designed to represent a specific sound. 

Phonemes play a major role in most current continuous speech recognition systems, 

and they can be categorised into two main groups consonants and vowels. A definition 

of vowels and consonants as stated in (Mosa and Ali, 2009) is: “Vowels are produced 

without obstructing air flow through the vocal tract, while consonants involve 

significant obstruction, creating a noisier sound with weaker amplitude.” In the Arabic 

language, consonants are further categorised into four classes. These are: voiced and 

unvoiced stops, voiced and unvoiced fricatives, nasal and the trill & lateral classes. Long 

and short vowels then make up a fifth class (Mosa and Ali, 2009). 

Speech phoneme segmentation is a real challenge for continuous speech recognition 

systems. In limited vocabulary isolated word recognition, the problem can be easily 

solved by determining the correct boundary of the isolated words and rejecting the 

artefacts of speech such as noise and intra-word stops. With regard to large vocabulary 

continuous speech boundary detection, the problem becomes much more difficult 

because of the intra-word silences and other artefacts. These problems are commonly 

reduced by applying speech boundary detection algorithms. 

Speech activity detection algorithms can be applied on pre-emphasised speech 

signals to detect silence/speech boundaries. The most common methods used for end 

http://en.wikipedia.org/wiki/Phonetic_transcription
http://en.wikipedia.org/wiki/International_Phonetic_Alphabet
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point detection are Energy profile and Zero Crossing Rate (ZCR) (Chen, 1988). Typically, 

in the Energy profile and Zero Crossing Rate algorithms an adaptive threshold is applied, 

based on the characteristics of the energy profile, in order to differentiate between the 

background noise and the speech segments. However, this algorithm is very sensitive to 

the amplitude of the speech signal, such that the energy of the signal affects the 

classification results. This is especially a problem in noisy environments. Recently, a new 

end point detection algorithm has been proposed that uses Entropic contrast (Waheed 

et al., 2002). This algorithm uses features of the entropy profile of the speech signal, 

rather than the energy profile of the signal, for boundary detection. The calculation of 

the entropy is applied in the time domain. Crucially, this profile is less sensitivity to 

changes in amplitude of the speech signal. 

Despite the use of the above techniques, current speech segmentation techniques do 

still introduce errors into the segmentation process. An alternative is to perform the 

recognition process without prior segmentation. This method includes the ‘silence’ as a 

phoneme, and the network is trained to recognize it in the same manner as the other 

patterns. 

The phonemic representation of a given word is used in most speech recognizers to 

identify it. Thus, the availability of speech data that has time-aligned and labelled at 

phonemic level is a fundamental requirement for building speech recognition systems. 

Time-aligned phonemic labels can be either manually produced by expert human 

labellers or automatically produced using automatic methods. Though manually-aligned 

data is considered more accurate than automatically-aligned data (Cox et al., 1998, 

Hosom, 2000b), it is very time consuming to use manual aligning for large speech 

corpora. The most common method for automatic speech alignment is called “forced-

alignment.” The most common method for forced alignment is to build a phonetic 

recognizer based on a Hidden Markov Model (HMM) (Brugnara et al., 1993, Ljolje et al., 

1997, Wightman and Talkin, 1997, Hosom, 2000a, Toledano et al., 2003, Yuan and 

Liberman, 2008, Yuan et al., 2013). 

Irrespective of whether the signal is segmented or not, all speech recognition systems 

use a feature extraction algorithm as the initial speech processing stage. The most 

common feature extraction techniques are Mel Frequency Cepstral Coefficients (MFCC) 

(Davis and Mermelstein, 1980), Fast Fourier Transform (FFT) (Loan, 1992) and 
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perceptual linear prediction coefficients (PLP) (Hermansky, 1990). Typically, ASR 

system represents the speech signal with the state of the art Mel Frequency Cepstral 

Coefficients (MFCCs). 

The major concerns of the automatic speech recognition are determining a set of 

classification features and finding a suitable recognition model for these features. HMMs 

(Rabiner, 1989), which are a special case of regular Markov models, have been 

demonstrated to be a powerful model for representing time varying signals as a 

parametric random process (X.D. Huang et al., 2001, Rabiner, 1989). Commonly, Hidden 

Markov Models (HMMs) are used for modelling the MFCCs observation sequence. These 

features are computed every 10 ms with an overlapping analysis window of 25 ms. 

Artificial Neural Networks (ANNs) such as Multi-Layer Perceptron (MLP), Deep Neural 

Networks (DNN) Recurrent Neural Networks (RNN), and Echo State Network (ESN), 

have also been widely used for representing time varying quasi-stationary signals.  

 

1.2  Research Motivation 

Speech is a desirable communication method between humans and computers and 

automatic speech recognition (ASR) has been achieved to a large extent for the English 

language. Arabic is one of the oldest living languages and one of the oldest Semitic 

languages in the world, it is also the fifth most generally used language and is the mother 

tongue for roughly 200 million people. Arabic speech recognition has been a fertile area 

of reasearch over the previous two decades, as attested by the various papers that have 

been published on this subject. Hence, the Arabic language is selected to be the target 

language for this research. 

A phonemic represented Arabic speech database that is time-aligned and labelled at 

the phonemic level is a fundamental requirement for building an Arabic speech 

recognition system. The availability of such data is currently very limited for almost all 

Arabic corpuses. Thus, forced-alignment, based on a Hidden Markov Model (HMM), is 

used in this work as an automatic speech alignment method for large vocabulary speech 

recognition (LVSR).  

Motived by the simple and efficient deep learning training algorithms available in 

different types of neural networks, and their success for modelling acoustic signals for 
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many languages that achieved a higher classification accuracy than HMMs in many 

comparative speech recognition researches (Skowronski and Harris, 2006, Skowronski 

and Harris, 2007, Triefenbach et al., 2011, Dahl et al., 2012, Graves et al., 2013, 

Triefenbach et al., 2013, Mohamed, 2014), Deep neural networks (DNN, and Deep ESN), 

as well as conventional NN (MLP, ESN), are proposed in this work for creating Arabic 

acoustic models that  can be used for continuous speech unit recognition to classify an 

input sequence phoneme into specific output classes.  

 

1.3  Research Aim and Objectives 

The central aim of this research is to investigate phoneme and acoustic models based 

on Deep Neural Networks (DNN) and a Deep Echo State Networks for multi-dialect 

Arabic Speech Recognition. The TIMIT corpus with a wide variety of American dialects is 

also used to evaluate the proposed models. This aim was achieved through the following 

objectives: 

 To segment and label Arabic corpora that is suitable for implementing our aim. In 

order to investigate this objective, a developed Arabic phoneme database (APD) is 

manually timed and phonetically labelled. This dataset is constructed from the KAPD 

database for Saudi Arabia dialect and the Centre for Spoken Language Understanding 

(CSLU2002) database for different Arabic dialects. This dataset covers 8148 

phonemes. In addition, a corpus of 13 hours of Arabic speech randomly selected 

from the Levantine Arabic dialect database that is used for training and 2.4 hours for 

testing are revised and transcription errors are manually corrected. The selected 

dataset is labelled using the HTK Toolkit.   

 To analyse the extracted features using the state-of-the-art extraction technique, the 

Mel-frequency Cepstral Coefficients (MFCC), the Linear Predictive Code (LPC) 

algorithms are also used for comparison purpose.  

 To develop and evaluate MLP-based NN classifiers (Shallow and Deep models) for 

Arabic phoneme recognition and acoustic models. Shallow and Deep MLP NN are 

investigated for Arabic phoneme speech recognition. The systems are trained on the 

developed King Abdul-Aziz Arabic Phonetics Database (KAPD) Saudi Arabia database 
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and the Centre for Spoken Language Understanding (CSLU2002) database using 

MFCCs features only to train and test the systems. To evaluate the adoption of the 

DNN model in developing an acoustic modelling Arabic speech recognition system 

instead of a phoneme-based system. For large vocabulary Arabic dataset, the 

Levantine corpus is used to train DNN acoustic models using MFCCs features and 

online training algorithm (Stochastic gradient decent algorithm). 

 To apply a post-processing enhancement to the framewise DNN outputs in order to 

improve the framewise phoneme recognition acoustic model accuracy and to find the 

accuracy in phoneme level instead of the frame level.  

 To develop and evaluate an ESN for Arabic phoneme recognition with different 

learning algorithms. This investigated the use of the conventional ESN trained with 

supervised and forced learning algorithms. A novel combined supervised/forced 

supervised learning algorithm was also developed to enhance the performance of the 

ESN for speech recognition. In addition, deep ESN is implemented for Arabic 

phoneme recognition. These systems were trained on the developed KAPD Saudi 

Arabia dialect and the Centre for Spoken Language Understanding (CSLU2002) 

database using offline training algorithm. Both MFCCs and LPC techniques were used 

and compared as the input feature extraction technique. For large vocabulary Arabic 

dataset, the Levantine corpus is used to train ESN acoustic models using MFCCs 

features and online training algorithm (Stochastic gradient decent algorithm). 

 To investigate deep learning for framewise phoneme classification and acoustic 

modelling using Deep Neural Networks (DNNs) and Echo State Networks (ESNs) on 

TIMIT corpus. 

 To compare the respective performances of the RBM DNN and the ESN speech 

recognition systems as well as undertake a fine comparison between the 

performances of the proposed systems investigated in this thesis and the published 

works in equivalent projects based on framewise phoneme recognition using the 

various corpora. 
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1.4  Thesis Organization  

This thesis is organized as follows: 

 Chapter 2 provides a general overview of current methods for automatic speech 

alignment and recognition systems. A state-of-the-art HMM/GMM system is first 

presented. Previous ASR modelling efforts using the state of the art HMM and neural 

network techniques are then presented. Finally, existing Arabic speech recognition 

works are summarised in this chapter. 

 Chapter 3 provides an explanation for the linguistic aspects of Modern Standard 

Arabic (MSA), primarily the orthography and pronunciation rules of Arabic language 

and Arabic transcription systems. The proposed Arabic databases that used in this 

dissertation are described and their limitations mentioned.  

 Chapter 4ً briefly describes the Front-end speech processes such as speech 

segmentation and feature extraction techniques that are used in this thesis. An 

Entropy-based algorithm is firstly presented and investigated for speech 

segmentation experiments, the Mel-frequency Cepstral Coefficients (MFCC) feature 

extraction techniques are also briefly described.  

 Chapter 5 provides a description of the frame-based HMM that is considered the 

foundation for the forced-alignment algorithm which is used in this thesis for timing 

and labelling the Levantine Arabic dataset. The automatic speech alignment 

experimental setup including the proposed transcription system, text normalization, 

building the Arabic pronunciation dictionary and the frame work are presented. 

 Chapter 6 briefly describes the conventional and deep NNs based models for Arabic 

phoneme recognition. Experiments and the results of using conventional Shallow 

and Deep MLP NNs for isolated speech unit recognition are first presented. Deep 

neural networks that are proposed in this work for creating Arabic acoustic models 

are then described. 

 Chapter 7 details the conventional and deep Echo State Networks architectures with 

their experimentation applied on the proposed databases. Finally, fine comparisons 

between the performances of the conventional and deep MLP NN and the 
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conventional and deep ESN, as well as between the ESN performance for Arabic 

speech and the HMM equivalent performance for different languages are presented.  

 Chapter 9 explored deep learning for framewise phoneme classification and acoustic 

modelling using Deep Neural Networks (DNNs) and Echo State Networks (ESNs) on 

TIMIT corpus. 

 Chapter 8 provides a conclusion of the work undertaken as well as a discussion on 

the future work required to produce a continuous Arabic speech recognition system. 

 

1.5   Thesis Contributions 

The major contributions of this thesis are: 

 A developed Arabic phoneme database (APD) that is manually timed and 

phonetically labelled. This dataset is constructed from the KAPD database for Saudi 

Arabia dialect and the Centre for Spoken Language Understanding (CSLU2002) 

database for different Arabic dialects. This dataset covers 8148 phonemes. 

 A corpus of 13 hours of Arabic speech randomly selected from the Levantine Arabic 

dialect database that is used for training and 2.4 hours for testing. The main 

contribution for the selected dataset is that we revised and corrected the 

transcription errors manually. In addition we labelled this selected dataset using the 

HTK Toolkit to be ready for further research.   

 Deep Echo State Networks (DESN) acoustic models for Automatic Speech 

Recognition (ASR) are introduced. This new model is evaluated on the Levantine 

dataset and compared with the results obtained from the baseline Deep Neural 

Networks (DNNs). Both models we were first to introduce the for Arabic speech 

recognition system. 

 A novel adaptation for the ESN is presented that can be used to enhance the 

performance accuracy for the ESN. 

 Empirical comparison for the proposed machine learning techniques conducted on 

the three proposed corpora namely KAPD, CSLU2002 and Levantine Arabic speech 

are presented as well as to the TIMIT corpus with a wide variety of American dialects 
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is also aimed to evaluate the proposed models and to make a direct comparison 

them.   

 A Neural Network toolkit, updated to C++ visual studio 2010. This toolkit includes 

the MLP, ESN, and DESN algorithms and is made freely available. 

 The HTK toolkit is updated to C++ visual studio 2010.  
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Chapter Two 

Background and Literature Review 

 

State-of-the-art Automatic Speech Recognition (ASR) systems have, for many 

decades, used Hidden Markov Models (HMMs) for modelling the sequential structure of 

speech signals using a mixture of Gaussians. Since the early 90’s an alternative approach 

has been used, with limited success compared to Gaussian Mixture Models (GMMs), that 

estimates the fit using types of  Artificial Neural Networks  (ANNs) that takes contextual 

window of frames as input and produce posterior probabilities for the HMM states as 

outputs. Recently, there has been a renewed interest in exploiting Artificial Neural 

Networks (ANNs) since the Deep machine learning field was introduced in 2006 by 

(Hinton et al., 2006). The ESN can also be utilized as probabilistic models for extracting 

features that can be used in modelling time series prolems (e.g. speech and image data) 

whithin hybrid systems (ESN-ANN, ESN-HMMs).  The literature review in this Chapter 

presents a brief survey of relevant literature covering speech recognition technologies 

for a wide variety of languages and for Arabic language. A general overview of using 

Hidden Markov Models (HHMs) especially for speech alignment, as well as Artificial 

Neural Networks (ANNs) and Hybrid approaches for speech recognition tasks are 

presented. Specific attention is then applied to research that has explored Arabic speech 

recognition. 

The rest of this Section is described as follows: Section 2.1 focuses on providing a 

background description of the HMMs for speech recognition, specifically speech 

alignment and labelling. Section 2.2 then describes the shallow and deep neural network 

architectures that have been effectively exploited for speech recognition, whilst Section 

2.3 presents hybrid HMM/NN systems. In Section 2.4 an end-to-end neural network 

speech recognition system is described. Finally, a general literature review for Arabic 

speech recognition is presented.  
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2.1  A basic HMM model for ASR 

The goal of automatic speech recognition is to produce an accurate transcription of 

spoken words. The major concerns of modern ASR systems are determining a set of 

classification features and   finding a suitable recognition model for these features. 

HMMs (Rabiner, 1989) are a special case of regular Markov models that have been 

demonstrated to be a powerful model to represent time varying signals as a parametric 

random process (X.D. Huang et al., 2001, Rabiner, 1989). Typically, modern ASR system 

represent the speech signal using state-of-the-art Mel Frequency Cepstral Coefficients 

(MFCCs). The Hidden Markov Models (HMMs) are then used to model the MFCCs 

observation sequence.  

These features are computed every 10 ms with an overlapping analysis window of 25 

ms. The sequence of the acoustic feature vectors              that are extracted from 

the speech signal can be supposed as the observable data. The hidden state sequence 

              supposed as the underlying symbol sequence, can then be inferred 

from the observation sequence. Each HMM state is modelled using a Gaussian mixture 

model (GMM) with several diagonal covariance Gaussians.  HMMs are trained by 

maximizing the data likelihood: 

 

   ∑            

       

    
            (2.1) 

 

The decoder attempts to find  ̂ that maximizes the posterior probability        

using the Viterbi algorithm: 

 

 ̂          {      }         {          }             (2.2) 

 

       is challenging to model directly. However, there are many proposals that have 

been made which use discriminative models (Gales, 2007), such as maximum mutual 

information (MMI) (P.S. Gopalakrishnan et al., 1991, Woodland and Povey, 2002) and 

minimum phone error (MPE) (Povey and Woodland, 2002, Povey, 2004) to maximize 

the posterior probability       .  
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The likelihood         of   given  , and the prior probability     of the word 

sequence   are determined by an acoustic model and a language model respectively. The 

language model is an N-gram model trained separately on an enormous text in which the 

probability of each word      is conditionally obtained on its N-1 predecessors. 

The acoustic model for any given word   is produced by concatenating phoneme 

models of the word as defined by a pronunciation dictionary. Multiple pronunciations 

for each word can be found in the pronunciation dictionary. The sequence of the base 

phonemes    is defined as      

   
         

 for each pronunciation. Therefore, the 

likelihood         can be calculated over these pronunciations using this formula: 
 

 

       ∑                     (2.3) 
 

 

where the ∑   denoted by the overall pronunciation sequences for given   and   is a 

specific sequence of pronunciations  

 

       ∏            
 
          (2.4) 

 

where       is a one possible pronunciation for word   . 

Each HMM associated with a phoneme is called a phone model. Phones are used as 

the main speech unit to be modelled by HMMs, where each phone is modelled using left-

to-right HMMs with three states plus the entry and exit states as shown in Figure 2.1. 

 

 

 

 

 

 

 

 

 

Figure 2.1- HMM-based phone model (Gales and Young, 2007). 

HMMs make a transition from the current state to one of the neighbour states every 

time step  . A transition probability {   } is associated for each arc between two 
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connected states. On entering a state   , a feature vector is generated with the output 

distribution {     } associated with the state being entered. This form of the HMM 

process makes two unrealistic conditional independence assumptions:  
 

 The current state is conditionally independent from all other states given the 

prior state. 

 Observation frames are conditionally independent of all other observation frames, 

in the utterance, given the current state.  
 

For classification of frames, in state-of-the-art ASR, a context window of frames is 

taken. This context window includes the feature vector of the current frame and may 

include feature vectors of the surrounding frames. Gaussian Mixture Models (GMMs) are 

easily trained using the expectation-maximization (EM) algorithm (Dempster et al., 

1977) to estimate the phonetic likelihoods. Only one frame is covered in the contextual 

window, and the delta features, which implicitly contain information about 

neighbouring frames, are included. With a NN classifier, the input feature vector is often 

a context window that includes multiple of frames in addition to their delta features. 

These classifiers estimate the posterior probability distribution over the categories. 

These posterior probabilities are passed to the Viterbi decoder to search for all the 

possible word sequences for the utterance using pruning to eliminate the unlikely 

hypotheses. A description of Viterbi decoding algorithm can be found in (Huang et al., 

2001). Finally, the most likely word sequence is considered as output. The Viterbi search 

is also used to generate the timing of each state for each input utterance using a 

dictionary and word level transcriptions. 

The major reasons for the widespread use of HMM based systems are that the 

mathematics are well formulated and their performances are often the most superior to 

other approaches. However, the disadvantages of HMM systems are the amount of data 

required to train these systems and the fragility of these recognizers when applied 

under various conditions. In addition, independence between values of the frame cannot 

be fully justified. Also, since no speech specific knowledge (e.g. data-driven clustering of 

phonetic categories and perceptually related warping of the spectrogram) is used in the 

HMMs likelihoods computation at each frame of each phone, these values are estimates 

of phonetic qualities of the speech as well as the channel and noise conditions of the 

data. 
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2.2 Methods of automatic alignment systems 

Speech recognizers are used to identify the phonemic representation of a given word. 

Thus, the availability of speech data with time-aligned phonemic labels is a fundamental 

requirement for building many speech recognition systems.  

Time-aligned phonemic labels can be manually transcribed by expert human labellers 

or automatically produced using an automatic method. Though manually-aligned data is 

considered more accurate than automatically-aligned data (Cox et al., 1998, Hosom, 

2000b, Cosi. et al., 1991, Ljolje et al., 1994), it is very time consumption to use manual 

methods for aligning large corpora. Hence, a fast and accurate automatic alignment 

system is needed for time-aligned phonemic labels in large vocabulary speech 

recognition systems (LVSRS).  

A wide variety of approaches has been used for automatic alignment systems. The 

most common method is called “forced-alignment” several phonemic recognizers based 

on Hidden Markov Model (HMM) have been created (Brugnara et al., 1993, Ljolje et al., 

1997, Wightman and Talkin, 1997, Hosom, 2000a, Toledano et al., 2003, Yuan and 

Liberman, 2008, Yuan et al., 2013). Dynamic Time Warping (DTW) is another approach 

that has been used to align sequences. Dynamic Time Warping (DTW) is a dynamic 

programming approach that is used to align the features of the input utterance against 

the features of a reference utterance. Many publications have used DTW for phonetic 

alignment of speech (e.g. (Wagner, 1981, Malfrère and Deroo, 1998, Campbell, 1996)). In 

addition to HMM and DTW, a wide variety of other approaches have attempted to align 

and label speech based on different techniques. For instance, van Santen and Sproat in 

(Santen and Sproat, 1999)  tried to align the speech based on detecting phonetic 

boundaries using edge detectors on the energy information and spectral-domain 

representations in different frequency bands. 

Typically, the same process that is used for speech recognition is used for automatic 

forced alignment. Recognition of the utterance is, usually, performed using a search 

procedure, such as Viterbi search, that is constrained to prior known sequences of 

phones. This search produces the locations and the identities of the phones. The 

phonetic sequences are often prior determined by a pronunciation dictionary. Using this 
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way, the forced alignment method can produce the phonetic alignment by forcing the 

recognition result to obtain the utterance phonetics locations and identities. 

Many researchers have used this approach to perform the alignment of speech. For 

example, Brugnara et al. (Brugnara et al., 1992, Brugnara et al., 1993) developed  an 

automatic alignment and labelling speech system using a forced alignment HMM based 

system using a combination of spectral variation features and the standard cepstral-

domain features to compute the state occupation likelihoods. These additional features 

enhanced the system with a 2% reduction in error. Wightman and Talkin in (Wightman 

and Talkin, 1997) also developed an automatic alignment system based on HMMs, 

termed “the Aligner.” The Viterbi search was implemented using the HTK toolkit (Young 

et al., 2003) and trained on the TIMIT phonetic sequences. Ljolie and Riley (Ljolje et al., 

1997) built their HMM alignment system based on the availability of the date; i.e HMMs 

with different types of phonetic models. A complete triphone model is used if the 

training data is enough for the left and right contexts of the given phone. Alternatively, a 

quasi-triphone model (one side-state is dependent on the other side) is tried if sufficient 

data is not available. If the training data is still not enough, context-independent phone 

models are applied. Svendsen and Kvale (Svendsen and Kvale, 1990) segmented the 

speech signal into equal length segments of speech, and then the HMM was used within 

the segment during the Viterbi search. State transitions are then only allowed at the 

segments boundaries. A phonetic alignment system based on a hybrid HMM/ANN model 

was developed by Hosom (Hosom, 2000a) using the CSLU Toolkit. 

A wide verity of languages have been segmented and labelled using the HTK Toolkit. 

Rapp in (Rapp, 1995) trained the forced alignment system for German read speech. 

Sjölander (Sjölander, 2003)  also developed an automatic time-aligned phone 

transcription system of spoken Swedish. Wightman and Talkin in (Wightman and Talkin, 

1997) used the same HTK Toolkit for English language trained on the TIMIT database. 

The EasyAlign (Goldman, 2011) system, based on the HTK Toolkit, was implemented for 

aligning English and French speech. 

The reported performances for these systems, range from 80%-89% agreement 

within 20 ms of the standard HMM based forced alignment systems when compared to 

manual segmentation on the TIMIT corpus (Hosom, 2000a, Hosom, 2009). Many 

researches have attempted to develop alignment systems with higher performance. For 
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instance, Yuan et al. in (Yuan et al., 2013) investigated the use of phone boundary 

models within the forced alignment HMMs system. They achieved a 93.92% agreement 

within 20 ms using the HTK Toolkit. 

It is clear from the literature that aligning the speech is a fundamental task for large 

vocabulary speech recognition systems. Since there is no available aligned and labelled 

Arabic dataset that can be used for speech recognition area, the Levantine Arabic corpus 

that is described in Chapter Three has been aligned and labelled in this work using the 

HTK Toolkit. Details and the experimental results of forced alignment are presented in 

Chapter Five. 

 

2.3  Machine learning algorithms 

In general, machine learning algorithms have been classified into three main fields:  

 Supervised learning 

Supervised learning systems use a training dataset constructed from features of 

instances with its labels as pairs, represented by  1 1( , ),...,( , )n nx y x y   The aim of this 

learning is to predict the output y  for any given input feature x . There is an interesting 

type of supervised learning technique that replaces the actual output ( )y t  by the teacher 

output (desired output) ( )d t  during the training stage (hmidt et al., 2010, Williams and 

Zipser, 1989). This technique is called Teacher-Forced supervised learning. 

 Unsupervised learning 

Unsupervised learning systems use an unlabelled training dataset, represented only 

by the features of instances  1 2, ,..., nx x x . The main use of this type of learning is for 

clustering purposes, i.e k-Means (Lloyd, 1982). 

 Reinforcement learning 

Reinforcement learning systems observe an environment x , then implement an 

action a , and obtain a reward r  (Duda et al., 2001). Maximizing the future rewards is 

the main goal of this learning and this is achieved by choosing actions that lead to this 

maximum rewards. 
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2.3.1 Static Neural Networks 

2.3.1.1 Feed-forward Neural Networks 

The feed-forward Neural Networks (FNNs) are a widely used artificial neural 

network architecture (ANN). There are several architectures of neural networks (NNs); 

each with its own unique set of connections, training algorithms, and applications. They 

are all, however, based on common principles. Neural networks such as Multi-Layer 

Perceptron (MLP) are constructed from a large number of processing elements (called 

neurons, nodes or units). Each neuron influences the other’s behaviour via weighted 

connections; where each neuron output is computed as the sum of the product of 

nonlinear weights with its inputs. This output is broadcasted to all other units over its 

outgoing connections.  

Initially inspired by neurobiology, MLP connectionist systems have since developed 

into an interdisciplinary field that classify static features, covering physics, mathematics, 

linguistics, computer science and electrical engineering. Nowadays, the properties of 

neural computation are used in a wide range of research (Tebelskis, 1995). These 

properties are: 

 • Trainability. Neural network can be trained to learn the relationships between any 

set of input and output patterns. This can be used to teach a neural network to 

categorize speech patterns into phoneme classes. 

• Generalization. Rather than the network memorizing the training data; the 

underlying patterns are learnt by the neural network, so the new examples can be 

generated from the training data. This property is vital in a speech recognition task since 

the auditory input patterns are never precisely the same. 

• Nonlinearity. Nonlinear functions can be computed by neural networks on their 

input. This enables arbitrarily complex transformations to be performed on the data. 

This is useful because of the highly nonlinear processing nature of speech. 

• Robustness. Noisy training data can help a neural network to perform better 

generalization (Tebelskis, 1995). Speech patterns are notoriously noisy, so this property 

is valuable.  
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• Parallelism. Neural networks implement massive parallel computers since they are 

inherently parallel in nature. This potentially leads to very fast processing of data. 

Until recently, most machine learning techniques have exploited shallow-structured 

architectures which contain a single layer of nonlinear feature transformation. Examples 

of these architectures are support vector machines (SVMs), kernel regression, logistic 

regression, and multi-layer perceptron (MLP) neural networks that consist of a single 

hidden layer. The main properties of shallow learning models are that they have a 

simple architecture and are effective in solving simple problems. However, these 

shallow architectures have limited representational and modeling power that can lead 

to difficulties when dealing with perceptual problems such as human speech. 

 

2.3.1.2 Deep Belief Networks 

Deep Neural Networks (DNNs) are believed to achieve high performance on 

complicated real applications such as vision and speech by better representing their 

complex functions. Deep learning is a category of machine learning techniques, where 

hierarchical architectures are used to process natural signals (e.g. speech signals) using 

several non-linear information stages such signals often contain features that are 

inherently in nature. Feed-forward neural networks (FNNs) (e.g., Multi-Layer 

Perceptron (MLPs)) with many hidden layers are considered a good example of the deep 

models. Usually MLPs use the Backpropagation (BP) algorithm for learning the network 

weights. However, this learning algorithm does not work well for learning networks 

with several hidden layers (Bengio, 2009, Glorot and Bengio, 2010). The BP algorithm 

often gets trapped in local optima and the severity of this non-optimal learning increase 

as the depth of the neural networks increases.   

DNNs are a feed-forward Neural Networks that has many layers of non-linear hidden 

units between their inputs and their outputs. Such a network can be trained one layer at 

a time as a generative model of the input data, (i.e. a window of speech coefficients with 

one frame delay), using Restricted Boltzmann Machines (Smolensky, 1986). A 

subsequent discriminative fine-tuning phase using the backpropagation algorithm, then 

fine-tunes the features in every layer to make them more valuable for discrimination. 

This type of network is also called Deep Belief Networks (DBNs) in the literature (e.g., 

(Dahl et al., 2011, Mohamed et al., 2010, Mohamed et al., 2009, Mohamed et al., 2012)). A 
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DBN can be effectively used to initialize the DNN training; such a network is called DBN–

DNN (Hinton et al., 2012). The sparse encoding symmetric machine (SESM), developed 

by Ranzato et al. (Ranzato et al., 2007), has a similar approach to RBMs by way of 

building blocks of a DBN. SESM can also be used to initialize the DNN training.  

There are two key properties for deep learning techniques. A DNN is trained as a 

generative model1, and then an additional top layer is used to perform the 

discriminative tasks. An unsupervised pre-training phase, which train multilayer 

generative neural network one layer at a time, that makes them effective in extracting 

structures that represent the input features in large unlabelled training data is also 

employed. Most of the work, that uses deep learning, can be categoraized depending on 

how the  architectures are intended for use into three main classes: 

1) Generative deep architecture: this architecture aims to distinguish the high-order 

correlation properties of the visible or observed data for pattern synthesis or 

analysis purposes. Deep generative models are not always required to be 

probabilistic in nature (i.e., the parametric feature encoding techniques used in DNN 

auto-encoders, whose targets are the observed data itself, or “bottleneck-layer" that 

produce  low-dimensional codes for the original inputs). In this architecture, DNNs 

are similar to other dimensionality reduction methods such as Principle Component 

Analysis (PCA). Generally, the use of generative models played a significant role in 

the interest in deep learning for feature coding and speech recognition (Hinton et al., 

2012, Dahl et al., 2011, Deng et al., 2010). 

2) Discriminative deep architecture: this type of architecture is, often used to 

characterize the posterior distributions of classes, conditioned on the observed data, 

to provide discriminative power for pattern classification. Discriminative training 

using the back-propagation algorithms has been used in many Neural Networks 

(NNs) approaches for acoustic modeling. The discriminative approach was first 

proposed in (Brown, 1987) where generative training is replaced by discriminative 

modeling for acoustic modeling.  

3) Hybrid deep architecture: the goal of this architecture is discrimination. The 

outcomes of the generative model that are used in (1) are fed into the discriminative 
                                                           
11

  A generative model is a model for randomly generating observable-data values. 
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architicture in (2). such an approach is termed DBN-DNN (Mitra et al., 2014). This 

hybrid system is different from one that uses NN-HMMs such as (Bengio et al., 1991, 

Bourlard and Morgan, 1993, Morgan, 2012, Mohamed, 2014), for more discussion 

about NN-HMMs hybrid systems see Section 2.4. 

For large vocabulary speech recognition, deep neural networks must be trained with 

a large number of parameters. Therefore, overfitting is a potentially serious problem. 

The term overfitting refers to the gap between training error and test error; i.e. the 

neural net has learned the training examples very well, but has ‘lost’ its ability to 

generalize to a new situation. There are several techniques used to prevent overfitting 

that can be (e.g. cross-validation, early stopping, regularization, pruning). These 

techniques can be used to indicate when more training can lead to worse generalization. 

More recently, Dropout (Srivastava et al., 2014, Srivastava et al., 2012) is a 

regularization technique that has been used for addressing overfitting. This technique 

randomly drops units from the neural net during training to prevent units from co-

adapting too much. They showed that dropout can improve the performance of the deep 

neural networks on supervised learning tasks in speech recognition and benchmark 

data sets. Grubb and Bagnell in  (Grubb and Bagnell, 2013) also used a stacking training 

method that trains multiple simultaneous predictors to simulate the overfitting problem 

in early layers of a network. 

Deep learning has been successfully exploited for feature learning and pattern 

classification in many research (Hinton et al., 2006, Bengio, 2009, Bengio et al., 2013b). 

A recent progress in learning algorithms for deep neural network learning has had a 

strong impact with breakthrough results in classification tasks (Bengio et al., 2007, 

Ahmed et al., 2008, Lee et al., 2009), in regression (Salakhutdinov and Hinton, 2008), 

dimensionality reduction (Hinton and Salakhutdinov, 2006, Salakhutdinov and Hinton, 

2007a), modeling motion (Taylor and Hinton, 2009), object segmentation (Levner, 

2008), information retrieval (Ranzato and Szummer, 2008, Salakhutdinov and Hinton, 

2007b), robotics (Hadsell et al., 2008), natural language processing (Collobert and 

Weston, 2008, Mnih and Hinton, 2009, Weston et al., 2008), and most notably in area of  

large vocabulary automatic speech recognition (LVASR) (Dahl et al., 2010, Seide et al., 

2011, Dahl et al., 2012, Mohamed et al., 2012, Hinton et al., 2012). 

http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://en.wikipedia.org/wiki/Early_stopping
http://en.wikipedia.org/wiki/Regularization_(mathematics)
http://en.wikipedia.org/wiki/Pruning_(algorithm)
http://en.wikipedia.org/wiki/Regularization_(mathematics)
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Motivated by the significant gains over the state-of-the-art GMM/HMM speech 

recognition systems on a variety of small and large vocabulary speech tasks (Hinton et 

al., 2012, Vesel´y et al., 2013, Kingsbury et al., 2012, G.-Dominguez et al., 2014, Sainath et 

al., 2014, Sainath et al., 2013, Mohamed, 2014), Deep Neural Networks (DNNs) are used 

in this work for modelling the acoustic signals. Weights in the DNN are generatively pre-

trained to maximize the data likelihood before a fine tuning phase using the back-

propagation algorithm. Then in the second phase, a deep network is built by adding 

many hidden layers with many hidden units in each hidden layer. State-of-the-art DNNs 

(Hinton et al., 2006) is used in Chapter  Six and Eight to model the acoustic signals. This 

system is evaluated on the Levantine and the TIMIT corpora for a framewise phoneme 

recognition task. 

 

2.3.2 Dynamic Neural Networks 

2.3.2.1 Recurrent Neural Networks 

RNNs are nonlinear dynamical systems which map input sequences to output 

sequences. The depth of the RNN depends on the length of the observed data sequence, 

and it can be as large as that sequence data length. RNNs are dynamical in that output 

activations of a unit in one layer can feed back as input to units in preceding layers. Since 

the hidden state of the RNNs is a function of all preceding hidden states; they are 

inherently deep in time. RNNs are a very powerful model that can be used for modelling 

sequence data such as speech and text input. These types of task require a system that 

can store and update context-information, computed from the past inputs sequences, to 

produce desired output sequences. RNNs are well suited for those tasks as their internal 

states can represent context-information. There are many types of training algorithms 

that can be used to train recurrent networks: real-time recurrent learning (RTRL), back-

propagation through time (BPTT), and Extended Kalman Filtering techniques (EKF). 

Commonly these algorithms result in suboptimal solutions with slow convergence. 

Although RNNs gradient based learning algorithms (e.g. (Werbos, 1990, Williams and 

Zipser, 1989)) have simple computation for their gradients, they are relatively difficult 

to train on problems that have long range temporal dependencies. This problem 

increases as the duration of the dependencies increases (Bengio et al., 1994, Hochreiter 

and Schmidhuber, 1997, Martens and Sutskever, 2011). For instance, Cyclic 
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dependencies in RNNs can result in bifurcations during training, where infinitesimally 

slight changes to the RNN parameters compound into large discontinuous changes in its 

behaviour, this phenomenon can lead to non-converging (Doya, 1992). Another well-

known RNNs training problem is the “vanishing gradient” problem, in which RNNs 

based on the gradient learning algorithm take too much time as errors vanish with the 

backpropagation learning.  

There have been many attempts to resolve the RNN problems. Hochreiter and 

Schmidhuber (Hochreiter and Schmidhuber, 1997) developed a modified architecture 

named the Long Short term Memory (LSTM) and implemented it successfully for speech 

and handwritten text recognition (Graves and Schmidhuber, 2005, Graves and 

Schmidhuber, 2009). In this architecture, the standard RNN is augmented with 

“memory-units” to transmit long-term information along with set of “gating-units” that 

allow the memory-units to interact selectively with the standard RNN hidden state. 

Another recent effort, that has received much attention for solving the RNN training 

problems easily, is the Echo-State-Network (ESN) (Jaeger, 2001, Jaeger, 2007) . ESNs 

typically have thousands of hidden units. One disadvantage of ESN is that they must be 

initialized with a set of manually fixed connections correctly-scaled to drive the hidden 

states. Recent developments in Hessian-free optimization in (Martens, 2010) have to 

some extent overcome these problems by using stochastic curvature estimates or 

second-order information.  

RNN can be categorized depending on how the  architectures are intended for use 

into three main classes:  

1) Generative deep architecture: RNNs can be considered as deep generative 

architectures which can be used to generate and model sequential data (e.g., 

(Sutskever et al., 2011)).  In the recent work of (Martens and Sutskever, 2011), RNNs 

are used as a generative deep model for speech recognition tasks. Many other 

researcher have demonstrated the ability of RNN models for generating sequential 

text characters (Bengio et al., 2013a), and language models (LM) (Mikolov et al., 

2010).  

2) Discriminative deep architecture: for example, Hermans et al. In (Hermans and 

Schrauwen, 2013) they reached state-of-the-art performance for Deep RNNs in 
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character-level language modeling that was trained with the simple stochastic 

gradient descent. 

3)  Hybrid deep architecture: for instance to the ESN-ANN described in (Schrauwen and 

Busing, 2010).   

 

 

 

2.3.2.2 Echo State Networks 

Echo state networks (ESNs), invented by Jaeger, are a novel structure of recurrent 

neural networks (RNNs) that contain a large, random, and untrained recurrent “dynamic 

reservoir” network (several thousand hidden units) which represent a method for 

utilizing recurrent ANNs for online computations (classification, regression, 

prediction/generation) on time series. The learning algorithm of the ESNs is very simple 

and linear, in that only the weights from the reservoir to the outputs neurons are 

adapted (see Figure 2.2). As a result, the learning process is fast. The optimal output 

weights for the ESN are obtained when the MSE is minimized. 

 

 

 

 

 

 

 
 

Figure 2.2 - The basic ESN architecture. Dotted arrows indicate trained weights in the ESN 
approach. Shaded arrows point to optional connections (Jaeger, 2005). 

A comparison between conventional RNNs techniques and the ESNs technique in 

Figure 2.3 shows the main difference between them. In part A-RNN, all the RNN weights 

are changed during training whilst in part B-ESN only the ESN output weights are 

changed during training. The Dynamic reservoir in the ESNs, also, contains more 

neurons than used in the RNNs (Jaeger, 2005). In addition, whilst the RNN has full 

connectivity, the ESN has designed connectivity, leading to less computation overhead 

during training. As mentioned in Section 2.1.1.2, there is also a regulation technique that 
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can be used (Srivastava et al., 2014) for addressing overfitting, where units are 

randomly dropped from the neural net during training. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 2.3 - Shows a comparison between RNNs and ESN architecture and training.  

ESNs are capable of modelling nonlinear systems with multiple inputs and multiple 

outputs. Also, being a recurrent network, its outputs can be used as additional inputs by 

feeding them back to the input stage. This provides a possibility to train ESNs as 

generators or oscillators (Holzmann, 2008). Based on its ability to model nonlinear 

complex dynamic systems, Echo state networks have been used on a variety of 

benchmark tasks. ESN are particularly well suited for classifying temporal signals as 

part of a dynamic pattern recognition task (Ozturk and Principe, 2007). An ESN with 

delay and sum readout has been used to perform as a nonlinear identification system 

“An Audio signal identification” (Holzmann, 2008), and for time series modelling 

“Mackey-Glass example” (Jaeger and Haas, 2004)  and as a 10th order NARMA system 

(Jeager, 2003, Verstraeten et al., 2007). ESNs have also demonstrated their capability for 

modelling nonlinear systems and control (Dai et al., 2010). They have been used for 

predicting the speed deviations in multi-machine power system (Venayagamoorthy, 

2007), and for Motor Control (Salmen and Ploger, 2005). Moreover, ESNs have shown 
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good ability for learning grammar structure as part of a natural language task(Tong et 

al., 2007, Sakenas, 2010) . Some of most impressive applications of the ESNs are on 

pathological long range dependencies problems (Jaeger, 2012). ESNs have also been 

used for pattern recognition tasks. 

In approaches focused on isolated speech recognition, Japanese Vowels classification 

was effectively performed using an ESN (Jaeger et al., 2007). At a higher level, an ESN 

was also successfully used to classify ten isolated English digits (Verstraeten et al., 2007, 

Skowronski and Harris, 2007, Schrauwen and Busing, 2010, Ozturk and Principe, 2007). 

In (Skowronski and Harris, 2007) and (Ozturk and Principe, 2007) an echo state 

network (ESN) was combined with a competitive state machine to construct a predictive 

ESN classifier. The ESN classifier out-performed the HMM baseline on the same dataset. 

An ESN was also successfully used to classify ten isolated Arabic digits in 

(Alalshekmubarak and Smith, 2014). The ESN was combined with the Extreme Kernel 

machines which named ESNEKM. This system performance is also out-performed the 

baseline HMM. The ESNs in (Jalalvand et al., 2011) also demonstrate their ability to 

perform better than the standard HMM approaches on noise-robust recognition 

research. ESN has been implemented successfully for framewise phoneme and vowel 

classification task. An ESN with force supervised learning demonstrated the best 

performance for English vowel classification when compared with other networks 

(hmidt et al., 2010). Also, in (Hmad and Allen, 2013) an ESN-based Arabic phoneme 

recognition system trained with supervised, forced and combined supervised/forced 

supervised learning algorithms using a deep architecture was evaluated on the KAPD 

and CSLU2002 datasets.   

The ESN can also be utilized as probabilistic models for extracting features that can 

be used in modelling time series prolems (e.g. speech and image data) whithin hybrid 

systems (ESN-ANN, ESN-HMMs).  For instance, it has been shown that ESNs have the 

capability to extract low dimensional features from a dynamic reservoir for a 

handwriting recognition task. The main use of the ESN in this process was to generate 

the features of the data in a high dimensional representation (Sakenas, 2010). 

Schrauwen et al. in (Schrauwen and Busing, 2010) proposed the Temporal Reservoir 

Machine (TRM) probabilistic model which operated on sequential speech data and 

aimed to gain the advantages of ESNs and RBM-based models. In this model, they used a 

Principle Component Analysis (PCA) dimensionality reduction technique, with a random 
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recurrent network utilized as a feature extractor and the directed graph of RBMs for 

modelling the time series. This architecture was successfully tested on the classification 

of spoken English digits. In addition, competitive phone recognition rates was achieved 

in (Triefenbach et al., 2011) based on a front-end, ESN-HMM hybrid setup on the TIMIT 

speech recognition benchmark task using 20,000 hidden units. In the recent work of 

(Triefenbach et al., 2013), the Deep hierarchical architecture of an ESN with bi-

directional reservoir architectures was used for acoustic modeling. This produced a very 

competitive  Phone Error Rate (PER) on the TIMIT speech dataset. 

ESN has impressive performance in various applications. However, high-performing 

models potentially need millions of parameters that increase the calculation and 

memory capacity. 

In this thesis, a Deep ESN architecture is proposed for Arabic framewise phoneme 

classification and Arabic acoustic modeling. This architecture is applied on the proposed 

datasets namely the KAPD, CSLU2002, and the Levantine datasets.   

2.4 Towards End-to-End  ASR with Neural Networks 

The aim of the neural network in this case is to perform a mapping from the input 

sequence of frames of speech into a sequence of phoneme labels associated with these 

frames. When training neural networks for discrimination, typically, a pre-segmented 

and labelled training data are needed (forced-alignment using HMMs is using for this 

purpos). Also, a post-processing stage is required to transform the outputs of the 

discriminative network into label sequences. 

 However, An interesting approach was proposed in (Graves et al., 2006, Graves and 

Schmidhuber, 2009, Graves, 2012, Graves, 2008) which removed the necessity of pre-

segmenting and labelling the training data as well as the need for post-processing the 

outputs. This approach enables the RNNs to purely perform sequence classification by 

themselves. The main idea of this method is interpreting the RNN outputs as the 

conditional distributions over all probable label sequences given the input frame 

sequence. Then, a differentiable objective function can be used to optimize those 

conditional distributions through the correct label sequences. Consequently, no pre-

segmentation of data is needed. This approach has been successfully exploited for 

speech recognition (Graves et al., 2013, Graves and Jaitly, 2014). 
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In this work, we adopted a first approach with a post-processing stage to transform 

the outputs of the discriminative network into phoneme sequences. 

2.5 Hybrid HMMs/ANN for speech recognition systems 

Many research laboratories have developed hyprid HMMs/NN systems; such as 

Cambridge University (Robinson, 1994), Toronto University (Mohamed, 2014), and 

International Computer Science Institute (ICSI) (Bourlard and Morgan, 1993), …etc. The 

main use for the ANNs in these hybrid systems is to estimate phonetic probability 

(observation probabilities) that are then used as parameters for HMMs instead of 

estimating them using GMMs as in the standard HMM ASR. Feed-forward MLP NNs have 

been applied for this function in many ASR systems (Bengio, 1991, Bourlard and 

Morgan, 1993, Morgan et al., 2005, Yuk, 1999). Recently, The use of neural networks 

features for ASR have become a component of state-of-the-art recognition systems when 

they are also refered to as probabilistic features. 

Artificial Neural Networks which have been discriminatively trained have attractive 

advantages over GMMs: ANNs provide a better discrimination, they offer better 

probability density functions estimation, and the input features of ANNs do not 

necessitate being uncorrelated. Therefore, some of these HMM/NN hybrid-based 

solutions improved the ASR systems. Significant improvements are reported in the 

recent work in (Triefenbach et al., 2012, Triefenbach et al., 2013) with 0.9% better 

recogntion. This improvement was attained over the standard HMM baseline by using 

Reservoir Computing with a HMM (RC-HMM) system for  large vocabulary continuous 

speech recognition (LVCSR). Also, Mohamed in (Mohamed, 2014) has significantly 

improved acoustic models on small and large vocabulary tasks by replacing the GMM 

components with Deep Neural Networks (DNNs) by 2% better performance and 

Convolutional Neural networks (CNNs) by 2.4% better discrimination as Tandem 

features. 

A Tandem features model is another sucsseful way of using ANNs with HMMs in 

hybrid systems. In the Tandem model (Hermansky et al., 2000), the log of posterior 

probabilities, are the output of the NN (sometimes augmented with the PLP or MFCC 

features). These are decollelated via the Karhunen-Loeve (KL) transform and fed as 

feature vectors to the standerd HMM/GMM system. Hence, this model is a compromise 
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between the modeling power of ANNs and  all of the tools and algorithms previously 

developed for GMMs. The Tandem model has been applied in much recent research and 

has improved the recognition performance ASR for many corpora (Hermansky et al., 

2000, Triefenbach et al., 2012, Morgan et al., 2004, Ellis et al., 2001). 

Usually, a context window of n frames, shifted by 10 ms, is used as an input acoustic 

feature vector. The context window 10*n ms covers all the frequency bands of  the 

vertical slices from the MFCC spectrogram. In the TRAPS system (Hermansky and 

Sharma, 1998), horizontal slices represent the features, where each slice focuses on 

frequency band over 1sec time and a NN band filter is used to produce the posterior 

probability distribution through class labels. The outputs of these filters for all bands are 

then combined using another NN to generate the posterior probability distribution for 

every single frame that can be used in tandem or hybrid systems. The TRAP system was 

shown to achieve competitive recognition performance with the spectral-based ASR 

techniques (Hermansky and Sharma, 1998). 

In addition, MLP neural networks with a bottle-neck layer have been used to generate 

features for a GMM-HMM system; these features being termed “bottle-neck features” 

(Gr´ezl et al., 2007, Gre´zl and Fousek, 2008). This type of features are directly obtained 

from the neural network without the need of converting output probabilities and are 

used as features for the subsequent GMM-HMM systems. The MLP network used had 

more than 3 layers, usually with an odd number of layers and a bottle-neck layer in the 

middle layer. After training, the outputs of the bottle-neck layer are used as features for 

the GMM-HMM system. These type of features have improved the recognition system 

performance (Gre´zl and Fousek, 2008). 

The main weakness of the hybrid HMM/ANN systems is the amount of time needed to 

estimate the observation probabilities during training of the Artificial Neural Network 

classifier. However, using a special hardware chip with multiple DSPs (Morgan, 1990) 

produce a reduction in the time required for training neural networks and made them 

competitive with the GMMs for speech classification and recognition. 

A hybrid HMM-ANN systems is used in this work, where HMMs are used for 

alignment and labelling the uttrences, and the ANN types are used for recognition task. 

The observation probability distribution (the output vectors are normalised using the 



jhjhj  

 Background and Literature Review 

 

 

30 
 

softmax function) through the class labels are estimated during the recognition by the 

proposed neural networks. 

2.6 The related work on automatic Arabic speech recognition 

Arabic speech recognition has been a fertile research area over the previous two 

decades as attested by the various papers has been published on this subject. Most 

previous effort on Arabic ASR has focused on developing recognizers for the formal 

Arabic language (Modern Standard Arabic MSA). MSA is a linguistic standard used in the 

Arabic world and is usually employed in the formal media (e.g. broadcast news), 

courtrooms, lectures, etc. Recent recognizers for MSA in Arabic broadcast news could 

achieve word error rates (WER) of 15-20% (Billa et al., 2002b, Billa et al., 2002a). 

However, MSA is not the natural language for native speakers throughout Arabic world. 

In fact, everyday communication for Arabic speakers is carried out in one of four 

regional dialects. These Arabic dialects are: Levantine, Gulf Arabic, Egyptian, and North 

African. 

When developing ASR systems for dialectal Arabic, the early work was performed on 

the CallHome task for Egyptian Colloquial Arabic (ECA) within the framework of the 

1996/97 NIST benchmark evaluations with a performance of 61% word error rate 

(WER) (Zavagliakos et al., 1998). More recent systems obtain around 56% WER on the 

same task, which is still significantly higher than the word error rates on CallHome data 

in other languages. A significant word error rate improvements on the same dataset 

(53.7%) was achieved in more recent system by (Kirchhoff et al., 2002). This 

improvement was achieved by developing approaches to automatic vowel diacritization 

to address the lack of short vowels (a, i, u) and other pronunciation information in 

Arabic texts. However, many of the research implemented script-based recognizers used 

a grapheme rather than phoneme systems to train the acoustic models in modern and 

colloquial Arabic (Billa et al., 2002a, Billa et al., 2002b, Al-Shareef and Hain, 2011).  

One of the most challenging problems in developing an accurate ASR for Arabic is the 

lack of diacritized text material. Arabic texts are usually non- diacritized as diacritics are 

used to prevent missunderstandings for formal texts and beginner’ books for students of 

Arabic.  A number of researchers deal with the lack of diacritics by developing systems 

for automatic diacritization of various Arabic corpuses. Vergyri and Kirchho in (Vergyri 
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and Kirchhoff, 2004) use various procedures to insert the missing diacritics into the 

transcription. They evaluated the performance of these techniques against manually and 

automatically diacritized training data using acoustic models trained on these generated 

data. They, also, explored the effect of increasing the amount dialect training data by 

adding MSA data and the results showed that there was no much improvement over the 

baseline (CallHome data only).  Soltau et al. (Soltau et al., 2007) also addressed the lack 

of diacritized text material by generating vowelized pronunciations using the 

Buckwalter Morphological Analyzer and the Arabic Treebank. Their results showed 

error reduction of 1.5% with vowelization. In a similar study offered by Al-Shareef and 

Hain (Al-Shareef and Hain, 2012), their results showed an improvement in the 

recognition performance by 1.8% in Levantine colloquial Arabic by training the acoustic 

module on automatically diacritized data.  

In this thesis, two different diacritized datasets were used for our experiments. The 

first is manually labelled and diacritized by the Author. The KAPD and the CSLU2002 

Arabic datasets were used for phoneme classification experiments. The second was fully 

diacritized Levantine data offered by the LDC and was used for the acoustic modelling 

experiments.  

Mapping between the orthography and pronunciation (phonetization) is challenging 

work in many languages (El-Imam, 2004). Typically, a set of well-defined rules for 

phonetizing a written text is used to solve the pronunciation ambiguities in the text and 

to produce accurate phonetic transcriptions that can significantly improve phone 

recognition results. The correspondence (mapping issues) between graphemes and 

phonemes in Arabic is a relatively simple one to one mapping as compared to other 

languages such as French and English. Many researchers have addressed the impact of 

using the most common Arabic rules on the system performance. Fadi Biadsy (Biadsy et 

al., 2009) demonstrate that using Arabic pronunciation rules can achieve improvement 

on phone and word recognition for Modern Standard Arabic (MSA). They obtained a 

significant improvement in accuracy in ASR of 4.1% and they obtained a significant 

enhancement in phone recognition accuracy of 3.77%-7.29%.  

Due to the lack of short vowels and constant doubling (shadda) in the transcription of 

the Arabic news, Billa et al. in (Billa et al., 2002b) used grapheme-based modelling.  They 

only addressed the effect of applying the hamza/alef (glottal stop) rule on the 
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recognition performance of Arabic broadcast news. They mapped the glottal stop into a 

single character and they gained an improvement of 2.6% in WER. They showed that a 

further improvement of 3.8% in WER (19.1% to 15.3%) can be achieved by removing 

the glottal stop from the transcription as it is not pronounced by native speakers. Also 

Vergyri et al. addressed the impact of using a pronunciation dictionary on the system’s 

performance (Vergyri et al., 2008). They verified that pronunciation rules lead to small 

improvement in performance; only 1.1% improvement in WER. This result was reported 

for both BN and BC speech in various GALE datasets.  

Most of the common rules used by (Biadsy et al., 2009, Vergyri et al., 2008) for MSA, 

are also used by Al-Shareef and Hain in (Al-Shareef and Hain, 2011) and Vergyri et al. 

(Vergyri et al., 2005) for colloquial Arabic (CA) on Levantine telephone conversations. 

Al-Shareef and Hain evaluated the effect of each rule independently on ASR performance 

by generating a multiple dictionaries rule-based. Also, a final dictionary was generated 

to assess the effect of all rules on the recognition performance when they are applied 

jointly. They found that none of these rule-based dictionaries outperform the baseline 

grapheme dictionary. Indeed the impact of applying all rules hindered rather than 

helping increasing the WER by 5.1%  (59.3% to 64.4%). 

The approaches for the transcription of written text into sounds are various in the 

literature. A part from the differences mentioned above, most of the rules used in this 

thesis are derived from (Biadsy et al., 2009). For more details see Section 5.3.3.  

The Levantine Arabic dataset is fully diacritized and the statistics of 13 hours of 

speech dataset randomly selected from this Levantine Arabic dataset showed that 

vowels are the most frequent phonemes in Arabic language where it represents about 

52.35% of the total number of phonemes in the Levantine dataset (more details about 

these statistics see Chapter Three Section 3.3). Removing the diacritics may lead to 

difficulties for both acoustic and language modeling, also, can affect the accuracy of the 

system performance. Therefore, diacritics should not be ignored from the Levantine 

Arabic dataset. This encouraged using the phonemic-based rather than the graphemic-

based system for Arabic speech recognition. 
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Chapter Three 

Arabic linguistic background and proposed 
Arabic corpora 
 

The Arabic language has two variant forms; Modern Standard Arabic (MSA) is 

considered the formal written language of the culture, media and education throughout 

the Arab world. The morphological, syntactical, and phonologically of MSA are based on 

Classical Arabic. MSA, typically, is not a native spoken language of any Arab. The Arabic 

dialects are the true native spoken language forms and are not written at all. The Arabic 

dialects basically originate from historical dealings between languages of the 

contemporaneous cultures and Classical Arabic. For example, Algerian and Marco Arabic 

dialects have been influenced by French as well as Berber2. Significantly, Morphology, 

phonology, syntax and lexical choice of the Arabic dialects differ from MSA. 

What follows is a limited overview of the linguistic concepts of Arabic, for more 

details see (Habash, 2010, Biadsy, 2011, Elmahdy et al., 2012a). 

 

3.1 Arabic language: Orthography and Pronunciation 

MSA is written in Arabic script using an alphabet accented by optional diacritics. The 

Arabic language has 34 phonemes including 28 consonants, 3 long and 3 short vowels, 

and can transcribed using 36 basic letters (graphemes) accented with 9. In the most 

cases the Arabic letters are mapped to Arabic phonemes using a one-to-one conversion; 

though, there are some exceptions.  

                                                           
2 The Amazigh languages or dialects. 
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3.1.1 Hamza and morpho-phonemic spelling 
 

 The Hamza / ء  /: The glottal stop Hamza /</ has various forms in Arabic writing: alif 

with madda /|,آ /, hamza above alif />,أ /, and hamza bellow alif  /<,إ/  wa /&,ؤ /, and 

ya /},ئ /, hamza /’,ء/. Primarily, Hamza spelling depends upon its vocalic context. 

Also, Arabic writers very often substitute “Hamzated” consonant with “unhamzated” 

form i.e. (آ, أ  ) and (و ؤ) ,(ا  إ , ئ  ى). In addition, Arabic speakers in most of the 

cases do not pronounce the Hamza forms. However, all the forms of Hamza can be 

pronounced as a glottal stop. 

 Hamzat-Wasl /A, ا/: it appears at the beginning of the words. If the word initial 

Hamzat-Wasl and appears at the beginning of the sentence/utterance, the Hamzat-

Wasl is pronounced as a glottal stop; however, if the sentence medial Hamzat-Wasl, it 

is silent. For instance, /Ainkataba kitAbN/ is pronounced like /<inkataba kitAbun/, 

on the other hand, /kitAbN Ainkataba/ is pronounced as /kitAbun inkataba/. 

 Definite Article /Al, ال/:  the Arabic definite article comes only at the beginning of 

nouns and there are two pronunciation cases for the definite article in Arabic 

language. It is pronounced as /Al/ if the followed letter is one of the Moon letters, 

and it is silent if it is followed by one of the Sun letters3: For instance, the word 

/Alqamar/ means ‘the moon’ is pronounced as /Alqamar/, whereas word /Al$ams/ 

means `the sun' is pronounced as /a$$ams/. 

 Ta-marboutah /p, ة/: it is a word finally and it is also called a feminine ending. It is 

pronounced as sound /t/ when followed by an optional diacritic or sound /h/ when 

it appears at the end of the sentence; otherwise it is not pronounced. For instance, 

/madrasapN/ `a school' is pronounced / madrasatun/, also is pronounced as 

/madrasah/ or /madrasa/. 

 Silent Letters /A, ا/, /w, و/, /Y, ى/: silent Alif in plural conjugation in verbs appears 

in the morpheme /uwA/, for example, ward /yajnuwA/ is prounounced as /yajnuw/ 

and the alif is silent here. Also, /w/ comes silent in some irregular spelling such that 

in the name /Eamrw/ is pronounced as /Eamr/ where the final w here is silent. 

                                                           
3 The Sun Letters:/t,ت/, /v,ث/, /d,ذ,*/  ,/د/,  /r,ر/, /z,ز/, /s,ش,$/ ,/س/, /S,ص/, /D,ض/, /T,ط/, /Z,ظ/, /l,ل/, and 

/n,ن/. 
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Finaly, Alif-Maqsura (Y, ى) is always appears at the end of a word and preceded by 

the short vowel /a/. It is always silent. For example, /mashaY/ `has gone' is 

pronounced /masha/. 

 Foreign phonemes /ق,g/ Egyptian geem, the English letters /ڤ,v/, /P/ : in the MSA, 

these phonemes may possibly not be treated as additional sounds. They can be 

mapped to the closest pronunciation sound in the Arabic language. For instance, 

phonemes /ف, f/ and /ڤ,v/ may be treated as the one phoneme. The same manner 

might be applied on /ب,b/ and the English sound /p/. The main reason for mapping 

these phonemes using that manner is that foreign phonemes are not often used in 

MSA.  

 

3.1.2 Optional Diacritics 

 

 Short vowels (fatha /  َ a/, kasra /  َ i/, damma /  َ u/ and sukoun /  َ /): The sukoun 

mark indicates that the consonant is not followed by a short vowel, so there is no 

mapping for this mark. 
 

  Shadda diacritic /~/: doubles the previous consonant, for example word /kat~aAb/ 

(means the person who is writing) is pronounced like /kattaAb/. 
 

 Three nunation diacritics (F /  َ an/, N /  َ un/, K /  َ in/) are a combination of a short 

vowel and the sound /n/.  
 

Arabic diacritics can only follow a consonant. These diacritics narrow the gap between 

the spoken and written words in Arabic. However, Arabic text is not commonly 

discretised with these marks.  

 

3.2 Arabic transcription systems 

Phonemic and graphemic systems are the most common systems used to transcribe 

of Arabic. In a graphemic system, one-to-one letter to sound rules are used for each 

word to generate a phonemic Arabic dictionary. For example, the Arabic word “ktab-

 :means “book” in English, is written in the dictionary as  ”كتاب
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ktAb4  /k/ /t/ /A/ /b/ 

 This scheme generates 36 graphemes (28 consonants, 4 different alif: alif, alif with 

madda, hamza above alif and hamza bellow alif, variants of wa and ya (hamza above), 

hamza and ta-marboutah). The simplicity of this scheme allows the generation of an 

Arabic dictionary by automatically splitting a word into letters. In the graphemic 

scheme, the short vowels (/a/ fatha, /i/ kasra and /u/ damma), diacritics (sukoun, 

shadda), and word final nun /n/ are not used as Arabic text is not commonly marked 

with these symbols. 

 An alternative system is to use a phonemic scheme. In this approach, the 

pronunciation of each word includes the short vowels and nun moves. Thus, the same 

word “book” becomes in the dictionary as: 

 

KtAb  /k/  /i/  /t/  /a/  /A/  /b/. 

 

In the phonemic system the variants of alef, wa and ya were symbolized to their 

simple forms. Also, the Egypt G (the /J/ is pronounced /G/) phoneme is added to the 

Arabic phonemes list in this work. Thus, a total of 33 phonemes are used to build the 

Arabic phonemic lexicon. 

Arabic phonemes can be categorised into consonants and vowels, and the consonants 

can be further categorised into four classes as described in Figure 3.1 (Mosa and Ali, 

2009). 

 

                                                           
4  The Arabic text transcribed using the Buckwalter Arabic transliteration  Romanization scheme in this 

thesis. Note, it is written from left to right (see the appendix A). 

http://en.wikipedia.org/wiki/Romanization_of_Arabic
http://en.wikipedia.org/wiki/Romanization
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Figure 3.1 - Arabic Phoneme categorisation. 

 

3.3 The frequency of Arabic phonemes 

Many studies have been conducted for addressing and analysing the Arabic language 

for speech recognition and speech synthesis (Nahar et al., 2012, Al-Radaideh and Masri, 

2011). Providing valuable information about the phoneme length and frequency can be 

helpful to enhance the design of appropriate speech recognition systems. Phoneme’s 

length is a variant within the given language and can vary from one language to another. 

For example, glottal stops in the Arabic language are very short compared with the 

Fricatives such as /s, س  ,f/ ,/ ش,$/ ,/ ف  / phonemes. Phoneme length is important for 

deciding the length of frames (frame size). In other words, the maximum frame size is 

limited by the size of the smallest phoneme in the dataset, i.e. the frame size should be 

less than the smallest phoneme in the dataset. For example , in Arabic language the size 

of most glottal stop phonemes /‘ب‘ ,’^ ,ء, b’, ‘د, d’, ‘ت, t’, ‘ض, D’, ‘ط, T’, ‘ق, q’, ‘ك, k’/ was 

found to be very short (between 7 ms and 10 ms), thus dictating the selection of frame 

size to be 10 ms, in order to cover all phonemes . This is in agreement the frame size 

used in state-of-the-art ASR systems. 

Arabic Phonemes 

Consonants Vowels (Class 5) 
5) 

Class 1 
Stops 

Class 2 
Fricative

s 

Class 3 
Nasal 

Class 4 
Letretive 

Voiced Un voiced Voiced Un voiced 

Long 
vowels 

Short 
vowels 

 /b/ ب

 /d/ د

 /D/ ض

 /g/ غ

 /z/ ز

 /E/ ع

 /!/ ذ

 /^A/ ء

 /T/ ط

 /q/ ق

 /k/ ك

 /t/ ت

 /h/ هـ

 /f/ ف

 /x/ خ

 /s/ س

 /H/ ح

 /S/ ص

 /$/ ش

 /v/ ث

 /Aa/ ا

 /w/ و

 /y/ي

  َ  /a/ 

  َ  /i/ 

  َ  /u/ 

 /m/ م

 /n/ ن

 /j/ ج

 /l/ ل

 /r/ ر

 /Z/ ظ
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Studying the phonemes frequency can also give an indication as to whether a 

graphemic or phonemic system is useful for speech recognition. 

The frequency order of the Arabic phonemes from the speech of the 34 CSLU2002 

speakers (see Figure 3.2) is as follows from left to right:  

(/a, vowel a/,/i, vowel i /, /u,vowel u/, /A, ا   /, /b, ب   /, /y, ي  /, /t, ت  /, /k, ك  /, /w, و  /,  /m, م   

/, /l,ل/,  /d, د  /, /H, ح   /, /f, ف   /,  /E, ع  /, /s, س  /, /n, ن   /,  /r, ر   /,  /h, ه  /, /T, ط   /, />, ء     ,/ ش,$/  ,/

/j, ج   /,  /x, خ   /, /z, ز  /, /q, ق  /, /S, ص   /, /g, غ  /, /&, ذ  /,/v, ث  /, /D, ض   /, /Z, ظ  /) 

 This order is very close to the order of Al-Radaideh and Masri’s study (Al-Radaideh 

and Masri, 2011).  

 

 

Figure 3.2 - The frequency of Arabic phonemes based for the 17 female and 17 male 

speakers from the CSLU2002 database.  

Phonemes (/a, vowel a/,/i, vowel i /, /u,vowel u/, /A, ا   /, /b, ب   /, /y, ي  /, /t, ت  /, /k, ك  /, 

/w, و  /,  /m, م   /, /l,ل/,  /d, د  /, /H, ح   /, /f, ف   /,  /E, ع  /, /s, س  /, /n, ن   /,  /r, ر   /,  /h, ه  /) are the 

most frequent phonemes in the CSLU2002 dataset, therefore, they are easiest to find and 

to segment. Conversely, phonemes (/T, ط   /, />, ء  ,j/  ,/ ش,$/  ,/ ج   /,  /x, خ   /, /z, ز  /, /q, ق  /, 

/S, ص   /, /g, غ  /, /&, ذ  /,/v, ث  /, /D, ض   /, /Z, ظ  /) are not easy to find because they are less 

frequent than the other phonemes in this work’s study. Also, some phonemes, such as 

(/T, ط   /, /D, ض   /, /q, ق  /, /Z, ظ  /) are completely missed in some of the Arabic dialects i.e. 

Egyptian and Lebanese in the CSLU2002 dataset. 
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The statistics of 105295 phonemes that were derived from the Levantine dataset 

using the HTK Toolkit, tend to agree with the CSLU2002 study. These statistics shows 

the frequency order of the Arabic phonemes is as follows: 

(/a, vowel a/,/i, vowel i /, /A, ا   /, /y, ي  /, /l,ل/, /w, و   /, /t, ت   /, /n, ن   /, /u,vowel u/, /b, 

,m/ ,/ ب م   /, /r, ر   /, /E, ع  /, />, ء  /, /k, ك  /, /d, د  /, /h, ه  /, /s, س  ,f/ ,/ ش,$/ ,/ ف   /, /H, ح   /, /j, ج   /, 

/T, ط   /, /x, خ   /, /S, ص   /, /z, ز  /, /D, د  /, /g, غ  /, /&, ذ  /,/q, ق  /,/v, ث  /,/Z, ظ  /) 

As shown from the Figure 3.3 the phonemes (/a, vowel a/,/i, vowel i /, /A, ا   /, /y, ي  /, 

/l,ل/, /w, و   /, /t, ت   /, /n, ن   /, /u,vowel u/, /b, ب   /, /m, م   /, /r, ر   /, /E, ع  /, />, ء  /, /k, ك  /, /d, 

,h/ ,/د ه  /, /s, س  ,f/ ,/ ش,$/ ,/ ف   /, /H, ح   /, /j, ج   /, /T, ط   /, /x, خ   /, /S, ص   /) are the most 

frequent. However, phonemes (/z, ز  /, /D, د  /, /g, غ  /, /&, ذ  /,/q, ق  /,/v, ث  /,/Z, ظ  /) are rarely 

found in this dataset and  represent no more than 3.87% of the total number of phones 

in the dataset. As is clear from the Figure 3.3, vowels are the most frequent phonemes in 

Arabic language, representing about 52.35% of the total number of phonemes in the 

Levantine dataset. This indicates that using the phonemic system for Arabic speech 

recognition is more reasonable than using a graphemic system.  

 

  

Figure 3.3 - The frequency of Arabic phonemes extracted from the Levantine database.  

3.4 The Proposed Arabic databases  

Speech performance is sensitive to the transmission channel used to transmit the 

speech, due to the changes produced in the speech spectral characteristics by the 

transmission type and background noise (Rabiner and Juang, 1993). Speech can be 

recorded over the different channels with a variety of qualities. Telephone line and 

microphone channels have been widely used for capturing the speech signal in the 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

A b t v j H x d & r z s $ S D T Z E g f q k l m n h w y  a i u > G

The Levantine Arabic dataset-phonemes frequent 



  Arabic linguistic background and proposed Arabic corpora 
 
 

 

 

40 
 

literature with a range of sampling frequencies from the 8 kHz used for telephone line 

channels to the 32 kHz used, for instance, in High-quality digital wireless microphones. 

In this research, two different sampling frequencies are used: 10 kHz for the KAPD 

database, recorded over microphone line, and 8 kHz for the CSLU2002 and Levantine 

databases, recorded over telephone line.  

The performance of a speech recognition system is also very sensitive to the amount 

of available training data for each reference pattern (Rabiner and Juang, 1993). In the 

literature review, there have been several speech databases used to train and evaluate 

the speech recognition systems across the various languages. The key factor for 

evaluating the efficiency of any speech recognition system is to use standard speech 

databases (Tashan, 2012). In this Section, three Arabic databases are presented and 

used to train and evaluate the proposed Arabic speech recognition systems.  

 

3.4.1 The King Abdul-Aziz Arabic Phonemics Database (KAPD) 

The KAPD was recorded at the King Abdul-Aziz City for Science and Technology 

(KACST) in Saudi Arabia. This database consists of only 7 male speakers; where each 

speaker has recorded the 340 semi-Arabic words that were artificially created to 

construct the KAPD Saudi Arabia dialect database. All 340 words were recorded 7 times 

in the same environment. The speech was recorded using a microphone at a sampling 

frequency of 10 kHz and 16 bits.  

A total of 4346 pure Arabic phoneme samples were manually extracted in the 

frequency domain from the seven male speakers in the KAPD database to represent the 

33 different Arabic phonemes (26 consonant plus 3 short vowels /a/, /i/, /u/ and 3 long 

vowels /A/, /w/, /y/). Also, in this project, the silence between phones and words is 

represented as a phoneme. A total of 4346 phonemes were therefore segmented and 

labelled to build the KAPD Arabic phoneme database.  

Figure 3.4 shows an example of the boundaries of the phonemes of the word /  ا ت ف اع   /إر 

in both the time and frequency domains.  
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Figure 3.4- Phoneme classification for the utterance of the word /  ا ت ف اع   The word in (a) ./إر 

time domain (spectrograph). (b) The word in frequency domain (spectrogram).  

3.4.2  The Centre for Spoken Language Understanding (CSLU2002) 

database  

The CSLU2002 database consists of 22 datasets of telephone speech for 22 languages. 

Eastern Arabic is one of these languages. The Arabic corpus contains fluent continuous 

speech of 98 native callers (5 Children, 23 females and 70 males) from more than 12 

Arabic countries. Each speaker in this corpus talks about fixed topics (e.g. address, time 

home town, weather etc.). A total of 1997 sentence files were collected over telephone 

lines in different environments with an 8kHz 8-bit sampling rate. 34 speakers (17 

females and 17 males) were selected arbitrarily from this Arabic dataset to evaluate the 

Arabic phoneme recognition systems developed in this work.  

A total of 3802 phonemes were manually segmented and labelled from the CSLU2002 

database in the frequency domain to represent the 33 Arabic phonemes and to build the 

CSLU2002 Arabic phonemes database. 
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3.4.3 The Levantine colloquial Arabic (LCA) database 

The Levantine colloquial Arabic (LCA) corpora, called Appen corpora (Appen, 2007), 

is distributed by the Linguistic Data Consortium (LDC). This corpus makes available 

about 41 hours of Arabic speech with fully-discretised orthographic transcriptions using 

MSA scripts. The dataset consist of a collection of Levantine dialects including Syria 

(SYR), Jordan (JOR), Lebanon (LEB) and Palestine (PAL) dialects. This database contains 

982 Levantine Arabic speakers taking part in spontaneous conversational telephone 

speech (CTS) in Colloquial Levantine Arabic. The average duration per side is between 5 

and 6 minutes. This corpus contains 478 and 12 two-sided conversation for the train2c 

and devtest datasets respectively. The devtest dataset represents a reasonably balanced 

sample selected from the total collected calls. This dataset makes available 2.24 hours of 

Arabic speech for the same dialects. All audio files are 8 kHz, 8-bit. 

A dataset of 120 Levantine Arabic female and male speakers (60 conversational 

telephone speech (CTS) two-channel recordings) was randomly selected per dialect to 

use as training dataset in our experiments. This training dataset consist of 13 hours of 

speech covering the four dialects. The whole devtest dataset is used as the testing 

dataset in our experiments. Table 3.1 illustrates these major dialects and the 

distribution of gender. 

Table 3.1 - Amount of training and testing data (hours) for the major Levantine dialects and 

speaker gender. 

 Training dataset  Testing dataset 

Dialect 
Size 

(hours) 

Gender 
Dialect 

Size 

(hours) 

Gender 

M F M F 

SYR 6 4.48 1.12 SYR 0.36 0 0.36 

PAL 2.24 1.24 1 PAL 0.36 0.18 0.18 

JOR 2.24 0.48 1.36 JOR 0.36 0.24 0.12 

LEB 2.12 1.24 0.48 LEB 0.36 0.30 0.06 

Total 13 8.24 4.36 Total 2.24 1.12 1.12 
 
 

A word-list of 10k words was used for phonemic system, and about 284k words of 

training data were used. The acoustic model was trained on 6298 utterances (13 hours) 

of acoustic data. 
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3.4.4 Challenges of The Proposed Arabic Databases 

The KAPD database is very limited as it consists of only 7 male speakers. In addition, 

one of the speakers’ dataset is very noisy, meaning that it was excluded from the 

experiments. This dataset is, however, used here as it represents one of the few standard 

microphone based Arabic speech databases available. 

Both of the CSLU2002 and Levantine colloquial Arabic (LCA) databases are recorded 

using a telephone channel. As a result, the quality in general is low and is dependent on 

the speakers’ environments, with several of the utterances containing street and home 

noise. Moreover, both of the databases are unbalanced speech. A number of speakers 

were talkative, producing many phones. Some of recorded speech, however, contains 

very limited speech, producing recorded utterances that contained few or even zero 

examples of some phones.  

An additional problem is that speakers were from 22 different Arabic countries; 

consequently, they have different dialectics. Several of these dialectics omit some 

phones. For example, the Egyptian dialectic misses phones /q,ق/, /j,ذ,!/ ,/ج/, /Z,ظ/ whilst 

the Lebanese dialectic misses /!,ذ/ and /Z,ظ/. Furthermore, phoneme pronunciation is 

completely different from one dialectic to another. For example, phoneme /!,ذ/ in the 

Egyptian dialectic is pronounced as /z,ز/ - a standard Arabic sound. Likewise, the 

phoneme /q,ق/ in the Yamane dialectic has a sound that has no similar in standard 

Arabic sounds. Finally, different speakers had different speed of speech during 

recording.  

Dialectal Arabic Speech Recognition is very challenging. Preferably, a large speech 

dataset should be collected to train an acoustic model for each Arabic dialect. 

Unfortunately, collecting dialect speech data is very difficult in comparison to MSA. The 

difficulties are primarily due to the inability to record high quality speech using 

microphone for a huge number of speakers. In addition, a pronunciation dictionary for 

each Arabic dialect is not available and creating the set of dictionaries would be a 

challenge. Dialects in Arabic are only spoken and not written. There is no accepted 

standard for Arabic dialect orthography. Moreover, Arabic dialects are written without 

diacritics, so it hard to estimate the short vowels. Finally, automatic discretization 

systems are mainly not designed for Arabic dialects. 
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Chapter Four 

Front-end speech process  
(Speech Segmentation and Feature Extraction) 

 

It is not possible to perform speech recognition on the speech signal directly. Hence, 

the front-end speech process is concerned with the modelling of perception. The aim of 

this process is to produce features that are optimally used for the speech recognition 

task and robust to variant factors such as speaker variability, microphones and noise 

environment. The front-end processing phase can be divided into the segmentation and 

feature extraction stages (Duda et al., 2001). 

Speech segmentation is a real challenge especially in noisy environments, and there 

are a number of different algorithms that can be used to automatically segment a speech 

signal. Selecting a feature vector type is also significant for the speech recognition task 

and a variety of features have been widely used in the literature. In this chapter, the 

results obtained using Entropy-based algorithm for automatic speech segmentation 

technique is presented in Section 4.1. The proposed Mel-Frequency Cepstrum 

Coefficients (MFCCs) feature extraction technique is then described in Section 4.2.  

 

 

 

 

4.1 Automatic Speech Segmentation 

Having selected a speech database, the first major challenge in designing a speech 

recognition system is which speech activity detection algorithm to apply on the 

recorded speech databases. Speech segmentation techniques are used to divide the 

speech signal into recognizable chunks. This involves segmentations at several levels 

(sentence, word, phoneme, and pause or silence level) (Anwar et al., 2006 ). Speech 

segmentation systems can be used in a number of applications such as speaker 

identification, speech recognition, speech documentation and speech translators. 
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There are several techniques for automatically segmenting the speech signal into 

speech regions (syllables and phonemes), and non-speech regions (silence, noise etc.). 

Power Spectral Density (PSD), Zero Crossing Rate (ZCR), and Entropy-based speech 

segmentation algorithms are widely applied for automatic syllable segmentation. 

Phoneme boundaries detection is a greater challenge due to the difficulty of detecting 

the beginning and ending of phonemes, where there is no specific point to separate 

phonemes. Success in detecting phoneme boundaries leads directly to success in 

classification of phonemes into categories such as consonants and vowels. A successful 

phoneme boundary detection technique is also significant for phoneme recognition.  

In this work, the Entropic contrast algorithm (Waheed et al., 2002) was initially 

proposed for this function, and details of this algorithm are described in Chapter Four. 

However, since the performance of this algorithm is shown to have a percentage of 

error, and this error affects the subsequent performance of the recognition stage, this 

step was subsequently excluded from the system and a silence phoneme was proposed 

to allow for segmentation-free phoneme detection, as described in Chapter Six.  

 

 

 

 

 

4.1.1  Entropy-based algorithm speech segmentation 

An entropy-based contrast function is proposed to distinguish between the speech 

signal and the background noise. This algorithm has been shown to have less sensitivity 

to the amplitude changes of the speech signal compared to the energy-based algorithms 

(Waheed et al., 2002).    

The first step of this algorithm is a pre-processing stage. In this stage the incoming 

speech data is modified by applying a pre-emphasis filter to reduce the glottal pulses 

effects (Waheed et al., 2002). Then a low-pass filter is used to remove the low frequency 

noise of the background. In this stage, the speech is framed using 50% overlapped 

frames where the size of each frame is 25 ms of speech. 

A histogram of N bins is constructed to determine the probability distribution of each 

individual frame. Normalization of the histogram is then done. The selection of N 

(number of bins) for the histogram is based on computational load and sensitivity. 

Generally, the range of   bins is between 50 and 100. 
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 The computation of the entropy for each frame is then computed using Equation 4.1 

(Waheed et al., 2002). 

1
log

N

k kk
H P P


 

 

(4.1) 

 

It is assumed that there is entropy profile ξ for the whole speech data presented, 

where: 

1 2[   ... ]mH H H 

 

(4.2) 

and m  is the total frames in the speech data. 

Waheed and et al. (2002) assumed that this entropy profile can be used to guess an 

appropriate threshold 𝛾 as follows: 
 

max( ) min( )
min( ); 0

2

 
   


  

 

(4.3) 

 

  is chosen to make threshold value is a little higher than the mean entropy profile. 

Actually, this is not always true.  The threshold which is taken from this formula will be 

greater than the mean of the entropy profile. Hence, there are some parts of data speech 

that will be classified as silence or noise when this threshold is applied on the speech 

data. Practically, to avoid eliminating these parts of speech data, which have low energy, 

it is useful to use the threshold formula: 

 

( * )meanentropy meanentropy  

 

(4.4) 

 

where  0 <   < 1. 

After a threshold has been selected, any data greater than the threshold is considered 

as speech and any data less than the threshold is considered as noise or silence. i.e.: 

 

1,2,...
0

if
i i i m

otherwise

 



 


 

(4.5) 

Even with the improved threshold formula (Equation 4.4), the result of applying the 

threshold on the speech data will, in many cases, cause some valid speech data frame to 

be rejected as silence and some invalid speech data frame to be falsely reported as 

speech; it is therefore important to include post-processing criteria to eliminate these 

false results. 
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The first post processing criterion is to apply an intra-segment distance algorithm. 

This algorithm is used to remove very small silence (unvoiced) speech segments 

between syllables. These segments are then collected together to form words using a 

fragment size based on a speed of speech normalization algorithm. Because humans do 

not generate very small duration sounds, this process be applied if the fragments of 

speech (sub-segments) are smaller than a given minimum length of speech sample. The 

collection of small fragments were also prevented from becoming longer than the 

maximum word length of speech. i.e. if the length of thi  speech segment is 
i :  

 

         (4.6) 

 

Where:    is the starting sample of the     frame. 

          is the ending sample of the     frame. 

Then the intra-segment distance algorithm can connect fragment    with      if the 

collection of                is smaller than the maximum word length of speech, and 

   is smaller than the minimum length of speech as determined by the length of shortest 

phoneme in any language (Al-manie et al., 2006) – see Figure 4.1.  

 

 

 

 

 

 

Figure 4.1 - Speech segments (Waheed et al., 2002). 

In the Arabic language, the longest word is ‘فأسقيناكموها’, which is pronounced in English 

as ‘faaskinakomoha’. This word contains twelve letters and seven syllables. However, 

this word is not that frequent, therefore, it is not sensible to use the length of this word 

as a maximum word length of Arabic speech, or to use it as a reference for the speed of 

speech normalization algorithm. The length of the most frequent Arabic words (Gammas 

et al., 2013), is between 2 to 8 phonemes. Thus, the maximum word length used in this 

work is 8 phonemes, and the minimum Arabic word used in this work 2 phonemes. 

Experimentally, the smallest phonemes were found to be stops phonemes (‘ب‘ ,’^ ,ء, b’, ‘د, 

i1i  1i 

, 1i id 1,i id 

ie
1ie  1ie 1is 1is  is

voiced voiced voiced 

unvoiced 



 Front-end speech process (Speech Segmentation and Feature Extraction) 

 

 

48 
 

d’, ‘ت, t’, ‘ض, D’, ‘ط, T’, ‘ق, q’, ‘ك, k’) with phoneme length between 7 ms and 10 ms. The 

longest Arabic phoneme were found to be fricatives phonemes (‘ث,v’, ‘ج,j’, ‘ح,H’, ‘خ,x’, ‘ذ,!’, 

 .E’) with phoneme length up to 24 ms,ع‘ ,’h,ه‘ ,’f,ف‘ ,’g,غ‘ ,’S,ص‘ ,’$,ش‘ ,’s,س‘ ,’z,ز‘

The second post processing criterion was to remove very small silence periods based 

on the average silence length. This criterion is based on the length of any given silence 

period and the length of the neighbouring sub-segments of speech of this silence period. 

For example, in Figure 4.1, if 1,i id   is very small then the collection of the two neighbour 

sub-segments 
1i 

, and 
i , plus 1,i id   will be compared to the maximum word length. 

The final output of the Entropy-based algorithm is the detection of the syllables in the 

utterance. To achieve this successfully, it is important to normalize the speech based on 

the normalization of rate of speech (ROS). 

 

4.1.2 Normalization of speech 

One of the key factors in normalizing the speech is to normalize the Rate of Speech 

(ROS). This factor participates in the complexity of the mapping process between the 

phonetic categories and the acoustic signal (Benzeghiba et al., 2007).  

According to Benzeghiba and et al. (2007) there is a strong relationship between the 

performance of speech recognition and speaking rate variation; fast speaking has higher 

error rate than low-rate speaking. However, speaking very slow introduce pauses (short 

silence) within syllables. As a result the performance of speech recognition systems 

degrades.  

To normalize the speech, it is crucial to measure the rate of speech. Most ROS 

measure methods are based on the number of linguistic units (phonemes, syllables and 

words) in an utterance. Currently, there are two main types of ROS measurements: 

lexically-based and acoustically-based measures. The lexically-based technique counts 

the number of linguistic units (words and phonemes) per second (Benzeghiba et al., 

2007). Siegler and Stern (1995) suggests that the most meaningful measure is phoneme 

rate; as compared to word rate which is the more common (Siegler and Stern, 1995). 

However, use of this technique is not practical in the speech recognition field because 

phonemes and words are the final outputs of the system and ROS is required in the early 
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stages of processing. Therefore, an acoustically-based measure is proposed as an 

alternative technique that can directly estimate the ROS from the speech signal. Morgan 

and Fosler-Lussier have found that (1998) counting the syllables per second and 

dividing it by the segment length can be a sensible and reasonable measure of ROS. 

The Entropy-based algorithm can be used to count the number of syllables forming 

an utterance, so, it is relatively easily to estimate the rate of speech directly from the 

utterance by counting the number of syllables per second; Equation 4.4 is used for 

normalizing the ROS for speakers depending on the threshold value  . ROS can have 

other impacts on the pronunciation that effect the speech recognition accuracy 

(Benzeghiba et al., 2007) (Morgan and Fosler-Lussier, 1998). 

 

4.1.3 Experiment results 

Results were obtained when the entropy-based algorithm was applied on 31 

sentences for 9 speakers, one female and 8 male. The speakers used different rates of 

speech (ROS) and were from two databases: KAPD and CSLU corpora. The training 

sentences were chosen randomly from these Arabic databases. Several experiments 

were performed on the selected sentences using the Entropy based algorithm to 

examine the effectiveness of the selected number of bins (N) on the word segmentation 

performance. Moreover, to illustrate the effect of pre-emphasis and low pass filter 

factors on the results, four situations where tested: 

1. Speech signal without any changes. 

2. Speech signal with applying pre-emphasis only. 

3. Speech signal with applying low pass filter only. 

4. Speech signal with applying pre-emphasis and low pass filter. 

A profile constructed manually for each sentence describes the real word boundaries 

of the proposed sentence. False accept rates (FAR) for any sentence was calculated 

automatically by counting false boundaries generated by the Entropy algorithm when 

compared with its manual profile. Similarly, false reject rates (FRR) were calculated by 

counting true boundaries rejected by the Entropy algorithm when compared with its 

manual profile.  
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Figure 4.2 shows the average false accept and false reject error rates for the different 

numbers of bins when the entropy-based algorithm was applied on the four situations.  

 
Figure 4.2 - The averages of false accept and false reject error in different bins (N), and 

different situations: 1. Original speech signal. 2. Pre-emphasis applied. 3. Low pass filter 

applied 4. Per-emphasis and low pass filter applied. 

 

It is clear from Figure 4.2 that there is very limited effect on word segmentation 

performance with respect to the number of bins (N). In contrast, applying pre-emphasis 

to the signal has a detrimental effect on the results across all number of bins. The worst 

case of error (38.96%) is when N=77 with pre-emphasis only applied to the speech 

signal. The best word segmentation accuracy occurs for N=77 with the raw signal. The 

error obtained when N=77 is 32.95%. 

The results presented in Fig 4.2, clearly show the difficulty in performing word 

segmentation on 'real-world' continuous speech using conventional word segmentation 

algorithms. One possible reason for this is the absence of any phonetic information 

within the segmentation algorithm. As a consequence, it was agreed that the emphasis of 

the following work should concentrate on performing segmentation-free recognition by 

including a silence phoneme with the recognition process.  

 

4.2 Feature extraction process 

The choice of feature extraction technique plays an important role in speech 

recognition systems. Features can be extracted from speech signal in the frequency or 

time domains. Analytically, however, the speech signal is more understandable in the 
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frequency domain than in the time domain (Rabiner and Schafer, 1978). Thus, all of the 

techniques found in the literature (MFCCs, LPC, and PLP … etc.) extract features from the 

speech signal in the frequency domain.  

The speech signal, usually captured by a microphone or telephone line, is digitised 

and sampled over time. The feature extraction process is designed to deliver a feature 

vector to any efficient classifier for categorization of the patterns. Mel frequency 

cepstrum coefficients (MFCC) (Davis and Mermelstein, 1980) is a popular speech feature 

representation. The most important property of the MFCC technique is that it is more 

robust in the presence of background noise than other feature parameters. Generally 

speaking, other feature vector formats contain more information than an MFCC vector, 

but this greatly increases the computational load in terms of feature vector extraction 

and the subsequent recognition stages. The MFCC technique offers a trade-off between 

the computational and performance requirements. The MFCC is a Discrete Cosine 

Transform (DCT) (Huang et al., 2001) of the logarithmic Mel-Spectrum; where, the Mel-

Spectrum is the output of Mel Frequency filters. 

Feature extraction is typically carried out from speech frames every 10ms with an 

overlapping analysis window5 of 25 ms of speech., where, the waveform in this length is 

assumed to be stationary (Schafer and Rabiner, 1975) . The discrete Fourier transform 

(DFT) (Huang et al., 2001) is the state-of-the-art technique applied to compute the 

speech spectrum, where the peaks in the spectrum are denoted as “formants”. The 

Principal Component Analysis (PCA) has been investigated as a suitable transformation 

to compute the MFCCs instead of the DCT in many research (Vetter et al., 1999, Lee et al., 

2001, Lima et al., 2004, Lima et al., 2005). However, in all our experiments the MFCCs 

were extracted using the DCT for computing the speech spectrum. 

A sequence of triangular band-pass filters are applied for each frame to procedure a 

vector of filter bank coefficients. The number of filters is usually between 20-40 filters. 

The band-pass filters are spaced according to the linear frequency scale (Mel scale) as 

follows:  
 

                    
   

   ⁄   

                                                           
5 A Hamming window is commenly applied to each frame. 
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In fact, the human ear does not do a linearly react to the amplitude of the speech 

signal. So, the logarithm of filter output values was taken rather than using the output 

values in the previous equation. The features derived from this step are called the 

“MFSC” or the“log mel-frequency” spectral Coefficients. These coefficients were found to 

be highly correlated. Therefore, to reduce this correlation between the filter bank 

coefficients, a further transformation using the Discrete Cosine Transform (DCT) is 

applied on these coefficients. The DCT transform is given by 
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Where    
  denoted by the bth filter coefficient, and     

     is the ith Mel frequency 

cepstral coefficient. 

Commonly, 12 MFCC coefficients are computed, along with the 0th order cepstral 

coefficient to produce a 13 MFCCs dimensional static feature. Dynamic features (Furui, 

1986) are typically appended to enhance the recognition performance. The delta 

coefficients     (also known as first order dynamic features) can be computed as 

follows:  
 

    
∑               
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Where    is the regression coefficient, and   is the regression window size.  The above 

equation can be used to produce the delta-delta coefficients and so on. However, It is 

presented in Huang et al. (Huang et al., 2001) that a greater number of cepstral 

coefficients (more than the second-order) do not improve speech system accuracy. 

These dynamic coefficients are added to the static coefficients to form the speech 

feature vectors. Typically, the state-of-the-art dimensional feature vector for speech 

recognition is 39. This dimensional feature vector is useful for different Neural 

Networks and for HMM systems. So, this dimensional feature vector is used for all the 

experiments conducted in this thesis. 
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Chapter Five 

Automatic speech alignment system 

 

The phoneme is considered the basic unit of speech in much of speech processing. 

The phonemic representation of a given word is used in most speech recognizers to 

identify it. Thus, the availability of speech data that is time-aligned and labelled at 

phonemic level is a fundamental requirement for building speech recognition systems.  

Time-aligned phonemic labels may be manually transcribed by expert human 

labellers or automatically produced using automatic methods. There is common 

agreement that manual labelling is more precise than automatic labelling (Cosi. et al., 

1991, Cox et al., 1998, Ljolje et al., 1994). However, although manually-aligned data is 

considered more accurate than automatically-aligned data (Cox et al., 1998, Hosom, 

2000b), it is very time consuming to use manual methods for aligning large corpora. 

Automatic alignment methods are reported to consume 0.1 to 0.4 seconds to align one 

phoneme, whereas manual alignment method can require 11 to 30 seconds to align one 

phoneme (Kvale, 1994, Leung and Zue, 1984). Hence, there is a need for fast and 

accurate automatic alignment systems. However, manually-aligned data is needed to 

evaluate the accuracy of the automatic alignment systems (Hosom, 2000a).  

 

5.1 Methods of automatic alignment systems 

The most common method for automatic speech alignment is called “forced-

alignment.” In the main, there is a link between automatic forced alignment and speech 

recognition systems, in that they can use the same processes for both tasks. Recognition 

of utterance is performed in some systems using a search procedure constrained to 

prior known sequences of phonemes. This search produces the locations and the 

identities of the phonemes. Used in this way, the forced alignment method can yield the
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phonetic alignment by forcing the recognition result to obtain the utterance phonetics 

locations and identities. The phonetic sequence is usually prior determined by a 

pronunciation dictionary. The most common method for forced alignment is to build 

phonetic recognizer based on a Hidden Markov Model (HMM) (Brugnara et al., 1993, 

Ljolje et al., 1997, Wightman and Talkin, 1997, Hosom, 2000a, Toledano et al., 2003, 

Yuan and Liberman, 2008, Yuan et al., 2013). 

The next section will explain the mathematical formulation of the HMM model for 

forced alignment. 
 

5.2 HMMs for forced alignment 

As mentioned earlier, HMMs speech recognizer can be used to yield the phonemic 

alignments for a given utterance using the forced alignment process. In this process, the 

HMMs are projected to recognize the input speech using the Viterbi search constrained 

to the correct phonemics sequence. Consequently, the phonemic alignment is obtained 

with this Viterbi search. For given words, the phoneme sequence of each word is 

generated by phonemic dictionary. Then the sequences of these words are concatenated 

together to produce a phoneme sequence for the utterance. Forced alignment is useful in 

training to derive phoneme level transcriptions automatically. 

We implemented the acoustic and language modeling of a HMM speech recognition 

system (HTK v3.4.1 (Woodland et al., 1995))  which is used in forced alignment mode. 

However, to setup the HTK toolkit, several issues must be prepared. For example, Arabic 

transcriptions for the utterances and the Arabic phonemic dictionary are needed. Also, 

in Arabic language, text normalization (mapping rules) should be addressed. 
 

5.3 Automatic speech alignment experiment setup 

5.3.1 Data 

The experiment investigated the use of MFCC features and delta features in the 

Viterbi search. The Training was done on the Levantine colloquial Arabic (LCA) corpora, 

described in Chapter Three. This corpus makes available about 41 hours of Arabic 

speech with fully-discretised orthographic transcriptions using MSA scripts. The dataset, 

http://htk.eng.cam.ac.uk/download.shtml
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as described, consists of a collection of Levantine dialects including Syria (SYR), Jordan 

(JOR), Lebanon (LEB) and Palestine (PAL) dialects. A dataset of 120 Levantine Arabic 

female and male speakers (60 conversational telephone speech (CTS) two-channel 

recordings) randomly selected per dialect to use as training dataset on our experiments. 

This training dataset consist of 13 hours of speech covering the four dialects. The 

devtest dataset is selected to use as testing dataset on our experiments.  

A word-list of 10k words was used for phonemic system, and about 284k words of 

training data were used. The Levantine Arabic acoustic model was trained on 6298 

utterances (13 hours) of acoustic data. 
 

 

5.3.2 Arabic Transcription 

As mentioned early in Chapter Three, the most common Arabic transcription systems 

are the graphemic and phonemic systems. This thesis used the phonemic scheme for the 

reasons explained in Section 3.3. In this approach, the pronunciation of each word 

includes the short vowels and nun moves.  

Most of the Morphological Analysers do not attempt to generate the complete 

phonetic dictionary covering all the words in the lexicon used in the experiments. For 

example, the Buckwalter Morphological Analyser (Buckwalter, 2002) generates about 

75% of the lexicon words. Therefore, missed pronunciations must be added manually. In 

this work, more than 6k words were added using a script. A total of 59k words were 

subsequently created to produce the Arabic phonemic dictionary that used in the 

experiments of this thesis. In the phonemic system the variants of alef, wa and ya were 

symbolized to their simple forms. Thus, a total of 33 phonemes are used to build the 

Arabic phonemic lexicon.  

 

5.3.3 Text Normalization 

Mapping between the orthography and pronunciation (phonetization) is challenging 

work in many languages (El-Imam, 2004). Typically, a set of well-defined rules for 

phonetizing a written text is used to solve the pronunciation ambiguities in the text and 

to produce accurate phonetic transcriptions that can significantly improve phone 

recognition results as is demonstrated in (Billa et al., 2002b, Vergyri et al., 2008, Biadsy 
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et al., 2009). However, Al-Shareef and Hain in (Al-Shareef and Hain, 2011) showed none 

of these rules help to improve the performance of Levantine colloquial Arabic and none 

outperform the raw grapheme dictionary performance.  

The approaches for the transcription of written text into sounds are various in the 

literature. For instance, many forms of the glottal stop in the Arabic language /<,>,’,&/, 

these forms of glottal stops mapped into a single character as performed by (Billa et al., 

2002b, Biadsy et al., 2009, Vergyri et al., 2008). In this thesis, the glottal stop is also 

normalized to a single letter /A/ (see Table 5.1). Nunnations /AF,F,K,N/ are mapped as 

“n” sound preceded by a short vowel similar to (Vergyri et al., 2008, Al-Shareef and Hain, 

2011, Biadsy et al., 2009). The Geminates (shadda) letter /~/ is mapped differently in 

the literature, for example, the word ba$~ara is mapped into ba$ara by (Biadsy et al., 

2009). They ignored the shadda and dealt with the constant letter as normal. On the 

other hand, Vergyi et al. (Vergyri et al., 2008) doubled the consonant; the same word is 

mapped into ba$$ara. In this thesis, the shadda is doubled similar to (Vergyri et al., 

2008) where it is close to its pronunciation. Tah-marbutah is either pronounced as “t” or 

“h” or is silent. This rule is applied by (Al-Shareef and Hain, 2011), this rule is also used 

in this thesis, whereas (Biadsy et al., 2009) and Vergyri (Vergyri et al., 2008) map tah-

marbota into t and ignored other cases of t. Solar lam /l/ is removed if the definite 

article /Al/ is followed by a sun letter /t, v, *, d, r, z, s, S, $, T, D, Z, l, and n/. There is an 

agreement for mapping the Solar lam in the literature. Also, most of the references 

replaced Alif maqswra /Y/ as it is pronounced which is normal alif /A/. Apart from the 

differences mentioned above, most of the rules used in this thesis are derived from 

(Biadsy et al., 2009). A summary of these rules is shown in Table 5.1.  
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Table 5.1 Summary of rules used in this thesis compared with (Biadsy et al., 2009). 

Rule  Source 
Target by Biadsy et 

al.(Biadsy et al., 2009) 

Target used in 

this thesis 

Long Vowel (Dagger alif) /‘/ /A/ /A/ 

Long Vowel (Madda) /|/ /G A/ /< A/ 

Nunnation 

/F/ 

/K/ 

/N/ 

/a n/ 

/i n/ 

/u n/ 

/a n/ 

/i n/ 

/u n/ 

Glottal Stop (Hamza) /’}&< >/ /G/ /</ 

Tah-marbutah (word ending) /p/ /t/ /t/ /A/ or sil. 

Geminates (shadda) /~/ / / 

/previous 

consonant is 

doubled/ 

Suffixe (Waw Al-Jama’a) /uwoA/  /U/ /uw/ 

Hamzat-Wasl  /{/ / / / / 

Sun letters (t, v, *, d, r, z, s, S, $, 

T, D, Z, l, and n.) 

/Al+ Sun 

letter/ 
/A+ Sun letters/ /A+ Sun letters/ 

 

 

These rules were basically designed for MSA, even so they can be used for mapping 

Arabic dialects. However, these rules are not always right for the all Arabic dialects. For 

example, in the Levantine corpus used in this work, the rule of glottal stop as it 

explained earlier is converted into single letter /A/ is not always true, for example, word 

“is burning” is written as “biyHri}” in the transcription of Levantine dataset. The 

transcription of this word is the same with the pronunciation of the Syrian and Lebanon 

dialects but it is pronounced as “biHriG” in the Jordan and Palestine dialects, where is 

ends with /G/ “Egyptian Geem”. Table 5.2 shows many of similar examples. Many of 

these words were handled manually. 

 

Table 5.2 Shows examples of many words pronounced differently in the Levantine dialects. 
 

Word in the 

Levantine 

corpus 

Meaning 

in 

English 

Pronounced  in 

Syrian Lebanese Jordanian Palestinian 

/suwriyap/ Syria /suwriyay/ /suwriyay/ /suwriyap/ /suwriyap/ 

/Al>abiy~ip/ Proud /Al>abiy~iy/ /Al>abiy~iy/ /Al>abiy~ip/ /Al>abiy~ip/ 

/ha*aA/ This /hazaA/ /haydaA/ /haDaA/ /haA*/ 

/mavalan/ 
For 

example 
/masalan/ /masalan/ /mavalan/ /mavalan/ 

/bi*aAt/ Exact /bizaAt/ /bizaAt/ /bi*aAt/ /bi*aAt/ 
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5.3.4 Building the Arabic Pronunciation Dictionary 

A pronunciation dictionary maps words into one or more phonetic pronunciation 

variants. A single pronunciation dictionary that has one pronunciation per word or multi 

pronunciations per word is typically used for training and testing (decoding) in ASR 

systems. Results of experiments conducted on the effect of using the single or multi 

pronunciation dictionary in (Hain, 2001) showed that the word error rate (WER) is 

slightly lower when only a single pronunciation per word was used. Usually, most data 

available to train LVASR systems is not phonetically (orthographically) transcribed. 

Vowelized data, for instance, in Arabic transcription gives multiple pronunciations for 

each word. Hence, in our experiments, an Arabic dictionary with multiple 

pronunciations was built for training the acoustic model. There are two training types in 

ASR: firstly, bootstrap training; this training is used when certain data available is 

phonetically annotated. Secondly, flat start training is used when bootstrap data is not 

available (Young et al., 2006). The pronunciation dictionary is typically used, in the flat 

start training, for mapping the orthographic transcription of the utterance to sequences 

of phonetic labels. This flat start training is used to train the first monophoneme models. 

Then the dictionary is applied again to generate networks of probable pronunciations 

that may be used to find the most likely phoneme sequence using force alignment in 

order to match the acoustic data. The followed step is to re-estimate the monophoneme 

acoustic models.  

In the pronunciation dictionary, every entry is a fully diacritized word which is 

mapped into a set of possible pronunciations. Usually, automatic morphological tagger 

such as MADA and Buckwalter (Buckwalter, 2002) are used for generating the most 

likely diacritic marks with some success.  

In our work, the Levantine colloquial Arabic pronunciation dictionary is generated 

from the Arabic lexicon offered by the LDC. This contains 51730 words and is generated 

using the Buckwalter Morphological Analyser. However, for training, the Levantine 

acoustic data, 6708 words were manually added to generate a Levantine colloquial 

pronunciation dictionary that had all the Arabic words used in the input utterances. 
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5.3.5 Frame work 

The system used in this thesis followed a standard recipe. Timings suggested by the 

corpus are used to segment the audio data, and 13 Mel Frequency Cepstral Coefficients 

(MFCCs) features plus their first and second derivatives were extracted using 10 ms 

using a windowed speech signal of 25 ms., each conversation side was normalized using 

cepstral mean and variance normalisation as well as vocal tract length normalisation 

(VTLN). It was shown in (Hain and Woodland, 1998), that VTLN is more effective if it is 

used per conversation side variance normalisation. The Maximum Likelihood function 

was used to train all the models with context-dependence triphones. Each phone was 

modelled using left-to-right HMM with three states. A binary decision tree (Young and 

Woodland, 1994) with phonologically phonetic questions were used to cluster the HMM 

states. A single Gaussian mixture component for each state with a total of 2083 clustered 

states was used. The HTK Hidden Markov Model toolkit was utilized to perform the 

automatic labelling using forced alignment mode. The labelled Arabic dataset thus 

produced to be used for further experiments in Chapters six and seven.  
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Chapter Six 

Deep Neural Networks (DNNs) for phoneme 
classification and acoustic modelling  

 
Feed forward deep learning models have proven to be very successful in training 

artificial neural networks (ANNs) and have resulted in a wide adoption of the ANNs 

technique in many fields, including speech recognition applications. The acoustic 

modelling of speech is considered as a key component of most state-of-the-art speech 

recognition systems. Research in this area has recently used Deep Neural Networks 

(DNNs) with high success for acoustic modelling of the English language (Mohamed et 

al., 2009, Dahl et al., 2012, Hinton et al., 2012, Mohamed et al., 2012). This success 

encouraged us to be the first to attempt to investigate this type of network for 

developing acoustic models for an Arabic speech recognition system. The aim of this 

Chapter is therefore to explore deep learning for phoneme classification and acoustic 

modelling using Deep Neural Networks. 

In order to achieve this aim, we have explored different network architectures based 

on the Deep Neural network introduced in (Hinton et al., 2006). This chapter is 

organised as follows: the main concepts of the Shallow NNs supervised learning model 

and its use for Arabic framewise phoneme classification is first described in Section 6.1. 

Deep NNs models used in this work as Arabic acoustic modelling system are then 

described in Section 6.2. The systems’ concepts with their related technical details such 

as the hyper-parameters optimisation process and the software methodologies used are 

then discussed. This is followed by experiments results using small vocabulary datasets 

(the KAPD and the CSLU2002 phoneme datasets) to train Deep Neural Networks (DNNs) 

with the Back-propagation supervised learning algorithm for framewise phoneme 

recognition. Then the classified frames are processed in a post processing stage to detect
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 the phonemes. These datasets are used in order to address the behaviour and optimize 

the DNNs. Then, the Deep Neural Network (DNN) is used for large vocabulary speech 

recognition (the Levantine dataset) which we automatically labelled it using the HMMs 

using the HTK Toolkit as it was described in Chapter Five. This classification stage is also 

followed by a post processing stage to detect the acoustic sequences. A conclusion is 

finally drawn in the third Section. 

 

6.1 Shallow Multilayer Perceptron (MLP)  

Feed-forward Neural Networks (FNNs) are a widely used artificial neural network 

architecture. Multilayer Perceptron (MLP) NNs, trained using the Back-propagation (BP) 

algorithm, have been widely used for solving many patterns recognition problems. The 

network architecture of a MLP is illustrated in Figure 6.1. As shown, a MLP NN consists 

of several layers: an input layer, one or more hidden layers, and an output layer. 

Neurons in the input layer operate as buffers for distributing the input patterns to the 

neurons in the hidden layer. Also, biases   are connected with bias units. Each neuron 

influences the other’s behaviour via weighted connections; where each neuron output is 

computed as the sum of the product of nonlinear weights with its inputs in the previous 

layer.  

The output of each neuron is broadcasted to all other units over its outgoing 

connections. These outputs are calculated using equations of the following form: 

 

                             (6.1) 

 

where  is the hidden units,  is the weights,  is a bias with value 1 and  is the 

activation function where it is usually a non-linear function. 
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Figure 6.1 - Multilayer Perceptron (MLP). 

The activation function is often the asymmetric sigmoidal, hyperbolic tangent or 

softmax function: 

 

           
 

      
                            

 

(6.2) 

        
        

        
                            

 

(6.3) 

            
   

∑     
   

                            (6.4) 

 

where    is a slope control parameter on the sigmoid function and   is the network 

input. The most important advantage of these functions is their ability to be 

differentiable; as required when deriving the weight updating function in the back-

propagation learning algorithm. Selecting the output layer activation function is task 

dependant. For example in binary classification the sigmoid is used as it is guaranteed to 

have [0, 1] values. The “softmax”6 activation function is used for multi-way classification 

                                                           
6 Is a generalization of the logistic function that "squashes" a O-dimensional vector   of arbitrary real 

values to a O-dimensional vector      of real values in the range (0, 1) that add up to 1.  

𝒃𝒏 

𝒃𝟏 
𝐖𝟏 

𝐖𝐧 

https://en.wikipedia.org/wiki/Logistic_function
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which learn to classify correctly O classes, where it is not applied on the activations of 

the whole output vector. Instead it is applied independently to each neuron in the layer. 

The softmax is differ to the other functions in that it has a statistical view, where its 

outputs are posterior probabilities for O classes 

All Neural Network training algorithms are used to adjust the network weights in a 

network training phase. The Conjugate Gradient algorithm was used to adjust the 

weights in order to speed-up the learning phase. The adjustment is repeated over 

several training epochs until an adequately small value of error      is achieved or a 

given number of epochs are reached.  

A C++ visual studio code has been written to implement the Conjunction Gradient 

algorithm to adjust the weights for the MLP NN (for more details see (Salimi et al., 

2012)). 

6.1.1 Shallow MLP Hyper-parameters Optimisation 

Optimising the model’s hyper-parameters is one of the major problems when 

developing a shallow MLP classifier. There is no agreed methodology to select the 

number of hidden layers or the number of nodes in each hidden layer. This is commonly 

performed in a problem-based fashion. Typically, a logistic sigmoid function is selected 

to be used for activating each node. The network’s weights between [-1, 1] are randomly 

initialised. The Conjunction Gradient algorithm was used to adjust the weights using a 

suggested learning rate of 0.3, and momentum 0.9. 

6.1.2  Shallow MLP Experiments and results 

For the experiments conducted in this Section, a standard feature extraction 

technique was used. The 13 MFCCs and their first and second derivatives were extracted 

to create standard MFCCs feature vectors covering 10ms of speech, where each frame 

vector is normalized for DNNs experiments using Equation (6.5). 

 

                    
               

               
 (6.5) 

 

Where MaxCoef is the Maximum cepstral coefficient in the MFCCs feature vector and 

MinCoef is the Minimum cepstral coefficient in the MFCCs feature vector. In this thesis, 
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all experiments conducted on the three different corpora were repeated at least five 

times to ensure a valid conclusion. 

The main purpose of the experiment conducted in this Section was to compare the 

results of the shallow MLP networks that were trained with different dimension of 

MFCCs vector size. The networks were trained for a frame-based phoneme classification 

using the KAPD dataset. The first experiment used input vectors with the 13 MFCCs only. 

The second experiment used the 13 MFCCs plus their first and second derivatives. The 

results are presented in Table 6.1. 

Table 6.1 - The Framewise Phoneme Recognition for shallow MLP models trained with 

different dimension of MFCCs feature. The 13 MFCCs is published in ((Hmad and Allen, 

2012)). 

                     2       

47.36% 47.71% 
 

The performance of the system with 13 MFCCs plus their first and second derivatives 

feature vectors was about 0.35% better than the base 13 MFCCs. A two-tailed Matched 

Pairs T-test significance test using Matlab was conducted with the null-hypothesis that 

there is no performance difference between the shallow MLP models trained with two 

different MFCCs feature vector sizes. Since the P-value (0.5175) is greater than the 

significance level (0.05), the test cannot reject the null hypothesis. However, the 13 

MFCCs plus their first and second derivatives feature vectors are adopted over all 

experiments conducted in the remainder of this thesis unless otherwise indicated. 

6.2  Deep learning for acoustic modelling 

Until recently, Feed-forward neural networks have had limited success when 

compared to GMMs, in applied ASR systems (Bengio, 1991, Bourlard and Morgan, 1993, 

Morgan et al., 2005). However, there has recently been an upsurge in interest using 

Deep Neural Networks for speech recognition systems. The significant gains over the 

state-of-the-art GMM/HMM speech recognition systems seen on a variety of small and 

large vocabulary speech, as presented in the literature reviews, motivated our use of 

Deep Neural Networks (DNNs) for two small vocabulary phoneme classification tasks 

and for modelling the acoustic signals using a large vocabulary Arabic dataset. Weights 

in the DNN are generatively pre-trained to maximize the data likelihood before a fine 
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W 

v 

h 

Figure 6.2 – (a) The RBM structure from (Mohamed et al., 2009)). 

tuning phase using the back-propagation algorithm. Then in the second phase, a deep 

network is built by adding hidden layers with many hidden units in each hidden layer. 

This structure of the state-of-the-art DNN (Hinton et al., 2006) is used in this chapter to 

model the acoustic signals. In the following sections, the structure of the DNN is first 

described and then evaluated on the proposed datasets for phoneme recognition and 

acoustic modelling tasks. 

6.2.1 Deep Neural Networks Basics 

DNNs are feed-forward Neural Networks that have many layers of non-linear hidden 

units between their inputs and their outputs. This type of network is first trained one 

layer at a time as a generative model of the input data using Restricted Boltzmann 

Machines (RBMs) (Smolensky, 1986) to create the deep neural network. A subsequent 

discriminative fine-tuning phase using the backpropagation algorithm, then fine-tunes 

the features in every single layer to make them more valuable for discrimination.  

6.2.1.1 Restricted Boltzmann Machines (RBMs) and their Generalizations 

In RBMs, all visible units that represent observations are connected to all binary, 

stochastic hidden units. RBMs are restricted where there are no connections between 

visible nodes or between hidden nodes (see Figure 6.2-(a)). The hidden and visible units 

in the simple RBM are binary and stochastic. However, in a Gaussian-Bernoulli RBM 

(GRBM) (Freund and Haussler, 1994., Hinton and Salakhutdinov, 2006), the hidden units 

are binary and the visible units are linear. Gaussian RBMs have been used in many 

applications for modeling real-valued inputs such as speech recognition, image 

classification, and video action recognition (Lee et al., 2009, Taylor et al., 2010, 

Mohamed et al., 2012). We will first explain the RBM. 
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6.2.1.1.1 Binary Restricted Boltzmann Machines  

In the binary RBMs model, the stochastic visible variables are v  {   }  and the 

stochastic hidden variables h  {   } . The model defines the energy function 

  {   } x{   }    

  v h     ∑∑       

 

   

 ∑    

 

   

 ∑    

 

   

 

   

 (6.6) 

 

where   {     } are the RBM parameters:     represents the weight between visible 

unit   and hidden unit  , and    and    are bias terms.   and   represent the numbers of 

visible and hidden units. 

The probability that RBMs assign to visible and hidden vectors (v,h) is: 

 

  v    
        v h  

∑ ∑         v h    
 (6.7) 

where   ∑ ∑         v h    ⁄  is the normalizing constant. 

Since there are no visible-visible and no hidden to hidden connections, the 

conditional distributions over the visible and hidden are factorial and given by: 

 

  h v    ∏  (  |v) 
 
    with   (    | )   (   ∑      

 
   ) (6.8) 

 

  v h    ∏  (  | )  
    with             (   ∑      

 
   ) (6.9) 

 

where                   ⁄  is the logistic function. The gradient of the log-

likelihood of the training data with respect to the model parameters is given by: 

 

 

    
log   v    〈    〉     〈    〉      (6.10) 

The first term in Equation 6.5 〈    〉     denotes the conditional probability of h given 

v. This term is reasonably straightforward to compute. However, the term 〈    〉      

denotes the expectation under the distribution defined by the model over all (v, h) joint 
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configurations, and to compute it exactly, exponential time is needed. Hence, the 

Contrastive Divergence (CD) (Hinton, 2002) training procedure is often used to estimate 

this term. 

 

6.2.1.1.2 Gaussian-Bernoulli RBMs  

In Gaussian RBMs, the visible units are real-valued     , and the hidden units are 

binary stochastic h  {   } , The energy of the Gaussian RBM is defined as: 
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 (6.11) 

 

To keep Equation 6.6 simple, the Gaussian noise level   is assumed to be fixed at 1 for 

all the visible units. Equation 6.11 can therefore be simplified to: 
 

 

 

  v h     ∑∑       

 

   

 ∑
       

2

 

 

   

  ∑    

 

   

 

   

 (6.12) 

 

Since there are no connections between visible-visible units, the conditional 

distribution over the visible units is given by: 

 

  v h    
∑         v h     

∫ ∑         v h      

 (6.13) 

 

Similar to the RBMs, the conditional distribution is factorial and is given by: 

 

  h v    ∏  (  |v) 
 
    with   (    | )   (   ∑    

  

  

 
   ) (6.14) 

 

  v h    ∏  (  | )  
    with              (     ∑      

 
      

2) (6.15) 

 

where      2  indicates to a Gaussian distribution with mean and variance (   2).   

The derivative of the log-likelihood of the training data with respect to the model 

parameters is given by: 
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6.2.1.2 RBM for phoneme recognition 

The states of the visible units of the RBM are fed with a frame of the feature vector. 

When training the RBM to model the joint distribution of a frame with   possible phone 

(phoneme) labels, as in this thesis, the HMM states are produced by a forced alignment 

algorithm using a pre-existing ASR model using the HTK toolkit (Young et al., 2003). 

Hence, the energy function becomes: 
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(6.17) 
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Also,        can be computed using: 

 

       
∑         v  ,h   

∫ ∑         v l,h    

 (6.19) 

The visible-hidden weights are updated using: 

 

     〈    〉     〈    〉      (6.20) 

6.2.1.3 Stacking RBMs to construct a Deep Neural Network 

After training an RBM on speech data, the states of the hidden units can be treated as 

data to train another RBM. This generative “pre-training” process can be repeated many 

times to create many nonlinear feature detectors (see Figure 6.2 (b)). “Pre-training” a 

multilayer generative neural network, one layer at a time, has been shown to 

consistently give good phone recognition (Mohamed, 2014), and good MNIST 

handwritten digit recognition (Hinton and Salakhutdinov, 2006). The RBMs in stacks  

are then combined, similar to (Hinton et al., 2006), to produce only one, multilayer 

generative model named a Deep Neural Network (DNN). A subsequent discriminative 

fine-tuning phase is followed using all the generative weights in the opposite way to 
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𝐡𝑑 

𝐡2 
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𝐖𝟐 

Figure 6.2 – (b) The DNN is composed of RBMs (from (Mohamed et al., 2009)) 

initialize the feature detecting layers using the feed-forward standard backpropagation 

algorithm. The features are then adjusted in every layer for a more useful 

discrimination. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

6.3 RBM Deep Neural Networks Experiments with the KAPD corpus 

The aim of this set of experiments is to firstly compare Sallow MLP and Deep Neural 

Networks for frame-based classification system using the KAPD and CSLU2002 corpora. 

Deep Neural Networks are then used to develop Arabic acoustic models using the 

Levantine corpus. Several DNNs are developed and evaluated by comparing the obtained 

results to other results reported in the literature, where possible, with regard to the 

three proposed corpora. 

 

6.3.1 RBM DNN Hyper-parameters Optimisation 

For the developed systems in this section, the all conducted experiments followed a 

standard recipe. The stochastic gradient decent algorithm was used for pre-training 

phase with a mini-batch size of 100 training cases using learning rate 0.1, weight cost 

0.0002 and momentum 0.9. For the structure of the RBMs in the pre training stage, we 

used three Gaussian RBMs, and trained them using 100 epochs for the Gaussian RBMs 

and 0.1 for a learning rate with different number of nodes in each RBM layer. In the fine-

tune stage we used 10000 epochs for the KAPD and CSLU2002 datasets, and 5000 

epochs for the Levantine dataset due to the hardware availability. We ran the 
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experiments on the Matlab code offered by Geoffrey Hinton7 to implement the 

developed systems. 

 

6.3.2 Optimizing the size of the hidden layers in the RBM DNN  

As common in neural network, there are no clear rules to select the number of hidden 

layer and the number of nodes in each layer. Thus, As suggested by Mohamed 

(Mohamed, 2014) to optimize the number of nodes in the hidden layers, number of 

nodes in the hidden layers should be changed once a time. Figure 3.3 shows the effect of 

the size the final hidden layer on the framewise phoneme recognition accuracy using 3 

input frames KAPD dataset. For simplicity, the network used was optimised by fixing the 

size for the first and second hidden layers. 

 

 
 

Figure 6.3 - Framewise phoneme recognition Accuracy on the training and the core test set 

as a function in the size of the final hidden layer, using 3 input frames. 
 

These results were also proved using the HResult HTK performance analysis tool by 

comparing the label files obtained from the DNNs with the corresponding reference 

transcription files, where the accuracy is computed by: 

 

                                                           
7
 http://www.cs.toronto.edu/~hinton/ 

0

10

20

30

40

50

60

70

80

90

100

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

%
 F

ra
m

e
w

is
e

 P
h

o
n

e
m

e
 R

e
co

g
n

it
io

n
 

  KAPD Training and Testing results for different hidden units 
 
 

39*3-50-50-400-33-train

39*3-50-50-400-33-test

39*3-50-50-600-33 train

39*3-50-50-600-33 test

39*3-50-50-800-33 train

39*3-50-50-800-33 test

39*3-50-50-1000-33 train

39*3-50-50-1000-33 test



 Deep Neural Networks for phoneme classification and acoustic modelling 

  

 

71 
 

         
   

 
      (6.20) 

 

where H is the number of correct labels (frames), I number of insertions and N is the 

total number of labels defined in the transcription files. 

The main trend visible in Figure 3.3 is that adding more hidden units up to 800 nodes 

in the final hidden layer gives better performance in both training and testing datasets. 

However, 1000 nodes in the final hidden layer gives the worst perfomance compared 

with 400, 600, and 800 nodes in that layer.  

The effect of number of nodes in the first and  second hidden layers, on the framewise 

phoneme recognition accuracy using 3 input frames and a fixed number of 800 nodes in 

the first layer, and the results evaluated on the training and testing datasets are shown 

in Figure 3.4.  

 

Figure 6.4 - Framewise phoneme recognition Accuracy on the training and the core test set 

as a function in the size of the first and second hidden layers, using 3 input frames. 
 

Fixing the number of hidden units in the final hidden layer to 800 and varying the 

number of hidden nodes in the first and second hidden layers (Figures 6.4) shows that 

the best performance on the testing set is obtained using 50-50 hidden nodes in the first 

and second hidden layers respectively. Much smaller (20-20 hidden nodes) and much 

bigger (100-100 hidden nodes) in the first and second hidden layers give significantly 
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worse performance. Therefore, the structure of the hidden nodes for the experiments 

with the CSLU2002 and the Levantine datasets was chosen based on these optimized 

experiments to be 50-50-800 hidden nodes for the first, second and final hidden layers 

respectively. 

 

 

6.3.3 Optimizing the Range of Context (size of input windows) for the RBM DNN 

As discussed earlier, non-recurrent NN systems cannot handle dynamic systems 

directly. Thus, a window of feature vectors is used to represent a sequence of frames. 

This window was used as input to the RBM DNN. As a consequence, one of the most 

important parameters to be optimized is the number of frames in the input window that 

is fed to the network. For non-recurrent NNs, the amount of context is dependent on the 

number of frames in the input window (size of the time-window). To optimise this 

context, the network was trained with different number of frames of window as inputs 

to the network. A study was conducted on the segmented phonemes of the KAPD and 

CSLU2002 dataset to infer the suitable number of frames in window size as input to the 

network. 

The average length per phoneme was measured based on the number of frames per 

each phoneme and converted to the frame unit to represent the phoneme length in 

frames. Figure 6.5 shows the length of Arabic phonemes in “frame unit”. The window 

size sellected was 25ms with overlapped frames every 10 ms. The main finding shown in 

Figure 6.5 is that the average number of frames that could represent a suitable input 

window  is found to be 5 frames. 
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Figure 6.5 - The length of Arabic phonemes in “frame unit”. 

 

The range from 70ms to 110ms roughly covers the average size of phonemes in the 

KAPD and CSLU2002 datasets that are used in this work. However, 46% of the Arabic 

phonemes in these datasets are smaller than 45ms. Most of these phonemes are the stop 

phonemes (/ب/ ,/^ ,ء, b/, /د, d/, /ت, t/, /ض, D/, /ط, T/, /ق, q/, /ك, k/). Any smaller input 

windows can miss vital discriminative information in the context, whereas networks 

with a larger window size are more likely to be confused by irrelevant information that 

is far from the centre of the context frames of window. For segmented frames, similar to 

that found in the KAPD and the CSLU2002 dataset, context frames of windows between 

3 and 5 frames as input windows work best. However, the Levantine dataset is labelled 

using triphones which suggestes that the network may work better with larger input 

windows, in order to provide the network with additional information that can help for 

discriminative. 

Figure 6.6 and Figure 6.7 show the effect of varying the number of input frames in the 

context windows and the size of the final hidden layer with the RBM DNN network with 

3 hidden layers. The results for the RBM DNN with no time-window (i.e. represents only 

the current frame, i.e. 1frame) provide a baseline for performance without context 

information. We used the same number of hidden nodes 50-50 in the first and second 

hidden layers respectively. 
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Figure 6.6 - The effect of varying the number of frames in the context input window and the 

number of nodes in the final hidden layer on the KAPD training dataset. 

 

It is obvious from Figure 6.6 that smaller input windows provide better 

discrimination than the larger window size. 1frame and 3frame window sizes gives the 

best classification performance. It is likely that, networks with window size with more 

than 3 frames are distracted by irrelevant information that is far from the centre of the 

context frames of window. 

 
 

Figure 6.7 - The effect of varying the number of frames in the context input window and the 

number of nodes in the final hidden layer on the KAPD testing dataset. 
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Figure 6.7 shows the effect of using different size input features on the framewise 

phoneme recognition. The main trend visible in this figure is that adding more frames in 

the input window more than 5 frames gives worse performance. There is no significant 

difference in performance between the 1frame and 3frames window features found 

when using a two-tailed Matched Pairs T-test significance test using Matlab. Table 6.2 

shows the best achieved framewise phoneme recognition for each type of input window 

features on the test set. By analyzing the performance that different systems produce 

using a two-tailed Matched Pairs T-test significance test, it is found that a significant 

difference between 3frames input system and 5frames, 7frames, and 9frames input 

systems at the level of p=0.01. 

Table 6.2 - The average Framewise phoneme recognition Accuracy on the KAPD core test 

using various input window sizes. 

Number of frames in 
input window 

Framewise phoneme 
recognition% 

1frame-1000nodes 44.89 
3frame-800nodes 49.85 
5frame-800nodes 42.84 
7frames-1000nodes 32.69 
9frames-100nodes 37.38 

 

The results, summarised in Table 6.2, show the performance of the five models that 

were built to evaluate the optimum number of nodes in the final hidden layer. It is clear 

from the chart in Figure 6.7  and Table 6.2 that windows of 3frame size provide the best 

classification performance across all structures of the network. Increasing the number of 

hidden nodes in the final hidden layer upto 800 hidden nodes improves the 

classification performance of the network. The significance tests also prove that the 

3frames-50-50-800 structure gives the best RBM DNN. 

6.3.4 A comparison between Shallow and Deep NNs 

As the KAPD corpus had been manually produced for this study, it was impossible to 

evaluate the developed systems in this chapter with the other systems reported in the 

literature. However, the Shallow MLP model results provided in Section 6.1.2, can be 

compared directly with the RBM DNN model results. Table 6.3 shows the performance of 



 Deep Neural Networks for phoneme classification and acoustic modelling 

  

 

76 
 

the experiments conducted on the KAPD dataset using the Shallow and Deep NNs 

models. 

Table 6.3 - A comparison between Shallow and deep MLP Neural Networks. 

Shallow MLP NN RBM DNN 

47.71% 49.85% 
 

As can be seen in Table 6.3, the performance of the RBM DNN is about 2.13% better 

than the Shallow MLP NN. A two-tailed Matched Pairs T-test significance test was 

conducted with the null-hypothesis that there is no performance difference between the 

shallow MLP model and the RBM DNN model trained on the KAPD dataset. The test finds 

a significant difference at the level of p=0.05, with P-value (0.0147). Suggesting that 

RBM DNN to be adopted for the remainder work in this chapter. 
 

6.3.5 Post-Processing Experiment 

A post processing enhancement was also applied to the DNN outputs in order to 

improve the framewise phoneme recognition accuracy and to find the accuracy at the 

phoneme level instead of the frame level. This was achieved by selecting the phoneme 

classification of all frames within a phoneme as those given by the majority of frames 

within that phoneme i.e. if two narrowly separated blocks of frames are classified as the 

same phoneme then the intervening frames are also classified as that phoneme. A small 

example of this is shown in Table 6.4.  

Table 6.4 A small example of chart of phonemes (framewise phoneme recognition). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
 ظ ط ض ص ش س ز ر ذ د خ ح ج ث ت ب ا

  15           15           12   20   
              20       14       13  
  19 13         32   27     3 12 5 14   
              30   9               
        15     23         5 12 13 22   
        15         4       12   10 2 
    15                   12     21   
    14         20         12         
        22   22     9     12 12 17     
                17     8 14     14   
      13 16     13   4     12         
            20 5   19   19       4   
                19 24     12 15   14   
   13 20   18 4 16 19 25   8 3 12   14   
     5   18   20 19 25       12 20     
   4           19 25     12     20   
           20   19       12 5 9 4   
   12           10 26         12     
   20   15     3 33 24         12     
       16     4   24           15   
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The main reason for including this step was to overcome the effect of distorted/noisy 

frames within a phoneme and to construct the phoneme level. As a result, the accuracy 

of frames and phonemes recognition was significantly improved over the raw results as 

shown in Table 6.5.  

Table 6.5 - Shows the effect of the post-processing on the Framewise Phoneme Recognition 

using DNN model and the KAPD dataset. 

Framewise phoneme recognition Phoneme recognition 

Before the post-
processing 

After the post-
processing 

Before the post-
processing 

After the post-
processing 

49.85% 72.23% 50.55% 66.09% 

 

Table 6.5 shows the effect of using the post-process algorithm on the framewise 

phoneme recognition output to produce phoneme recognition results. It is obvious that 

applying the post-process significantly improved the framewise phoneme recognition 

results and constructed the phoneme level. The two-tailed Matched Pairs T-test 

significance test finds a significant difference at the level of p=0.05 that was conducted 

with the null hypothesis that there is no performance difference between the framewise 

phoneme recognition before and after applying the post-process. Likewise, this 

significance test finds similar finds when conducted on the phoneme level performance. 

However, this post-processing process can only be done on isolated phoneme speech 

samples. For acoustic modelling a different post-processing process is applied as 

presented in Section 6.4.3.  

 

6.3.6 RBM DNN experiments with the CSLU2002 corpus  

A different set of experiments were conducted for the RBM DNN with the CSLU2002 

dataset for a range of input frames fed to the RBM DNN network. Figure 6.8 shows the 

effect of varying the number of input frames in the context windows on the framewise 

phoneme recognition using 50-50-800 hidden nodes for the first, second and final 

hidden layers respectively. For these experiments, we used the same parameters of the 

RBM DNN as used for the KAPD dataset experiments.  
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Figure 6.8 - The effect of varying the number of frames in the context input window on the 

CSLU2002 training and testing datasets. 
 

The main trend visible in the Figure 6.8 is that adding more frames in the input 

window generally gives better test set performance. It is obvious that the larger 

5frames, 9frames and 11frames input windows seem to be discriminated more than the 

smaller window size. 9frame and 11frame window sizes give the best test set 

classification performance with accuracy of 42.02% and 42.53% respectively. By 

analysing the performance of the different systems using a two-tailed Matched Pairs T-

test significance test, the test finds a significant difference between the baseline system 

1frame input window and the 5frames, 9frames, and 11frames input systems at the level 

of p=0.05.  However, the performances of 9frames and 11frames systems are about 1.1% 

and 1.62% better than the 5frames system. A two-tailed Matched Pairs T-test 

significance test was conducted with the null-hypothesis that there is no performance 

difference between the 9frames, and 11frames systems and the 5frames system. The test 

could not reject the null hypothesis. Consequently, the 5frames input system is found to 

be the optimal input time-window for the Arabic language. This finding coincides with 

finding of the study conducted in Section 6.3.3 with the KAPD and CSLU2002 dataset. 

The relatively low Arabic phoneme recognition performance on the small sizes 

speech datasets is probably due to the dialect differences in the speakers who are from 

different countries. Moreover, the limited number of examples of some phonemes leads 

to less training for the models for these phonemes. Finally, noise from the environment 

and from the speakers has a corrupting effect on the RBM DNN performance. 
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In the next section we explore acoustic modelling for Arabic speech recognition with 

the large vocabulary Levantine corpus. 

 

6.4 The Levantine dataset Experiments  

The Levantine Arabic Corpus is unlike the corpora used in the previous sections, in 

terms of the size and type of the data-labelled speech. This allows us to explore the 

potential gain in building a RBM DNN based acoustic models for Arabic speech 

recognition. It thus allows us to directly compare our results with those of others 

presented in the literature. 

 

6.4.1 RBM DNN Hyper-parameters optimisation with the Levantine corpus 

As it described in Chapter five, 13 hours of conversational speech were randomly 

selected to produce the training dataset. However, the testing dataset that suggested 

from the LDC is completely maintained as a testing dataset for our experiments on this 

corpus to ensure a valid comparison of this acoustic modelling Arabic speech 

recognition system with any other developed systems published work in future. The 

experiments on this corpus is followed the same standard recipes that described in 

Section 6.3.1.  The inputs were decided to be 5frame input window based on the 

optimisation experiments that conducted in Sections 6.3.3 and 6.3.6 on the KAPD and 

the CSLU2002 corpora. However the structure of the network is slightly different due to 

the size of this dataset and the hardware availability. For this experiment we used 30, 

20, and 30 nodes in the hidden layers. These numbers of nodes were experimentally 

chosen within limit number of nodes in each layer.  

 

6.4.2 Experiment’s Results 

A different set of experiments were conducted for the Levantine corpus for a range of 

input frames fed to the RBM DNN network. Table 6.6 presents results of three systems 

with varying number of input frames in the context windows for framewise phoneme 

recognition. For these experiments, we used the same hyper-parameters of the RBM 

DNN as used for the KAPD and the CSLU2002 datasets experiments.  
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Table 6.6 - The average Framewise phoneme recognition Accuracy on the Levantine core 

test using various input frames. 

Number of frames in 
input window 

Framewise phoneme 
recognition% 

1frame 26.19 
5frame 28.80 
7frames 28.22 

 

The relatively low Arabic phoneme recognition performance on the Levantine corpus 

is probably due to the nature of the corpus that is conversational telephone speech for 

different dialects. See Table 6.7 for the performance of most published work for 

conversational telephone speech on the Levantine dialect for various corpora and sizes. 

It is difficult to make a direct comparison on these corpora as they all have different 

training and testing sizes and use different data catalogues. In addition, the metrics is 

different of the metric of our woe as all the published used the HMMs that offers the 

language model that uses the Word Error Rate (WER) metric instead of the Phone Error 

Rate (PER) or Frame-wise Phone Error Rate (FPER) metrics.  
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Table 6.7 - The performance of most published work for conversational telephone 
speech on the Levantine dialect for various corpora and sizes.  

 

 

6.4.3 A post processing for acoustic modeling investigated on the Levantine 

corpus 

A post-processing enhancement was also applied to the DNN acoustic model outputs 

in order to improve the recognition accuracy and to obtain the accuracy at the phoneme 

level rather than the frame level. This was achieved by a two-step process. The first step 

was to ‘window’ the sequence by choosing a window size with multiple frames then 

classify this window of frames according to the most frequent frame within the window. 

For example if we have chosen the window size is 3 frames then we will classified these 

selected frame to the most frequent one. i.e the window classification of all frames 

within a window as those given by the majority of frames within that window. This step 

will reduce the sequence by 1/w, where w is the window of frame size. 

For example if we take the following sequence of frames representing the acoustic 

utterances and we chose a 'winding' of 3 then 

Model 
Size of data in hours 

WER Reference 
Train test 

HMMs-MFCCs-grapheme-

based  

70 h-Conversational 

Telephone Speech 
3 h 46.7% (Vergyri et al., 2005) 

HMMs-MFCCs-grapheme-

based 
50 h- microphone speech 10 h 28.8%  

(Elmahdy et al., 

2012b) 

HMMs-PLP-grapheme-

based 

41 h-Conversational 

Telephone Speech 
1.12  h 70.6% 

(Al-Shareef and Hain, 

2012) 

HMMs-PLP-grapheme-

based 

143.3  h-Conversational 

Telephone Speech 
5.1 h 60.3% 

(Al-Shareef and Hain, 

2012) 

HMMs-PLP-grapheme-

based 

175 h-Conversational 

Telephone Speech 
5.1 h 59.3% 

(Al-Shareef and Hain, 

2011) 

HMMs-MFCCs-grapheme-

based 

32  h-Conversational 

Telephone Speech 
1 h 80.1% (Heintz, 2010) 

HMMs-MFCCs-phoneme-

based 

1 h 

10 h 

Conversational 

Telephone Speech 
2.5h 

75.2% 

60.9 % 

(Novotney et al., 

2011) 
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/sil//A//A//A//l//l//l//l//l//l//u//u//u//u//u//w//w//w//w//w//w//w//w//sil/ 

       /A/             /l/            /l/           /u/            /u/              /w/               /w/               /w/ 

As we can see a new acoustic sequence was produced from the windowing step. This 

new sequence has a number of repeating frames or labels. So, the second step was to 

remove the repeating frames in the sequence. The second step was applied by (Graves, 

2012) also as a post process stage. Thus the result of the sequence after the second step 

is: 

/A/ /l/ /u/ /w/ 

These steps are applied on the outputs of the DNN framewise acoustic model with 

5frames that achieved from Section 6.4.2. Figure 6.9 shows the accuracy as defined by 

Equation 6.20. 

 

Figure 6.9 - Effect the windowing and cancelling the repeating frames on the accuracy 

performance. 

It is obvious from the Figure 6.9 that applying various size of window has 

significantly improved the accuracy of phoneme recognition performance. About 3.84% 

phoneme recognition was increased in the accuracy performance by applying window 

size of 29 frames to the baseline which is the framewise phoneme recognition. By 

analyzing the accuracy performance for the base line and the best accyracy performance 

was gained by applying the 'window' procedure using a two-tailed Matched Pairs T-test 

significance test, the test finds a significant difference between framewise phoneme 
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recognition, which represent window with one frame, and the windwing with 29 frames 

procedure at the level of p=0.05. 

However, applying the cancellation procedure harmfully affected the accuracy 

performance due to the increase in the intersections in the sequence. 

6.4.4 External works comparison  

The results from our experiments should be compared to other published work on 

the same corpus. However, since we randomly select 13 hours of speech from the total 

size of the Levantine corpus, as described in Chapter five, there is no equivalent acoustic 

modelling published work on the same selected dataset. However, much work has been 

done on the Levantine dialect on many corpora and Table 6.7 shows comparison across 

previous research of WER using various systems for various Levantine corpora.  

The results, summarised in Table 6.7, show the performance of most published work 

on the Levantine dialect for various corpora and sizes. It is difficult to make a direct 

comparison on these corpora as they all have different training and testing sizes and use 

different data catalogues. However, the main trend visible in the Table 6.7 is that HMMs-

based models are the dominant technique used to investigate acoustic modelling for the 

Levantine Arabic dialect. So, to the best of our Knowledge, RBM DNN models have not 

been explored for any Levantine corpora. This allows us to claim priority for adopting 

this RBM DNN model for Levantine Arabic acoustic models. In addition, the Microphone-

based Levantine corpus system outperformed the conversational Telephone-base 

speech corpus systems. This is similar to that demonstrated by our results of the small 

corpora (the KAPD is a microphone-based corpus and the CSLU2002 a Telephone line-

based corpus). The nearest corpus in terms of training and testing sizes and 

conversational telephone line speech is the work of (Novotney et al., 2011) but with a 

different catalogue. The work of (Al-Shareef and Hain, 2012) was done on the same 

corpus from the same catalogue on the same testing dataset, the only one difference 

being the size of the training dataset at 41 hours. Our work is on selected 13 hours from 

these 41hours. Unfortunately all these reported work used a word error (WER) metric, 

which is different from our framewise phoneme error (FPER) and phoneme error (PER) 

metrics. Thus, we use the work presented in this section as a baseline for our work in 

Chapter seven in order to make legal and direct comparison. 
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6.5 Conclusion  

The objective of this chapter was to explore the potential advantages of developing a 

RBM DNN-based system for Arabic speech recognition. In order to achieve this aim, 

several RBM DNN-based Arabic speech recognition systems were developed and 

evaluated across various corpora. 

In this section, we discuss the findings of the conducted experiments through all of 

the proposed corpora. The performance of a state-of-the-art Shallow MLP based 

phoneme recognition system trained on the 13 MFCCs plus their first and second 

derivatives found to be about 0.35% better than the base system using only the 13 

MFCCs. Statistically there was no significant difference in performance between the two 

different MFCCs feature sizes. However, the state-of-the-art 13 MFCCs plus their first 

and second derivatives features was adopted over all experiments that conducted in this 

thesis. 

Deep Neural Networks (DNNs) were then developed and evaluated on small 

vocabularies (the KAPD and the CSLU2002 corpora) for phoneme classification task and 

for modelling the acoustic signals using a large vocabulary (the Levantine corpus) Arabic 

dataset. A direct comparison experiment was then conducted on the KAPD corpus 

between the results of the Shallow MLP model and the RBM Deep MLP model results. It 

was found that, the performance of the RBM DNN was about 2.13% better for Arabic 

phoneme recognition than the Shallow MLP NN.  

A study was conducted on the segmented phonemes of the KAPD and CSLU2002 

datasets to infer the suitable number of frames in window size as input to the network. 

The main finding from this study is that the average number of frames that represent a 

suitable input window is 5 frames. By anlysing the performance results of experiments  

conducted on the KAPD and the CSLU2002 corpora, were in agreement with 5 frames 

being more suitablt than 1, 3, 7, 9, and 11 frames to represent the time-window for 

Arabic speech recognition.  

A post-processing enhancement was also applied to the DNN outputs in order to 

improve the framewise phoneme recognition accuracy and to find the accuracy at a 

phoneme level instead of the frame level. We found that applying the post process was 

significantly improved the frame wise phoneme recognition and successfully 

constructed the phoneme level. However, this post-processing process can be done only 
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on isolated phoneme recognition. Hence, for acoustic modeling a different post-

processing process is applied. 

To evaluate the adoption of the DNN model in developing an acoustic modelling for 

Arabic speech recognition system instead of a phoneme-based system, the Levantine 

Arabic corpus was used to explore the potential gain in building an acoustic modelling 

Arabic speech recognition system using the DNN model. To the best of our knowledge, 

RBM DNN models have not been explored for any Levantine corpora. This encouraged 

us to investigate the DNN model for Arabic acoustic modelling on one of the proposed 

Levantine corpus. This allows us to claim priority for adopting this RBM DNN model for 

Levantine Arabic acoustic models.  

A post-processing enhancement was also applied to the DNN acoustic model outputs 

in order to improve the recognition accuracy and to obtain the accuracy at a phoneme 

level instead of the frame level. This was based on ‘windowing’ the acoustic sequence 

followed by cancelling the repeated frame in the sequence. The 'windowing’ post process 

was significantly improved the phoneme recognition performance. About 3.84% 

phoneme recognition was increased in the accuracy performance by applying window 

size of 29 frames to the baseline which is the framewise phoneme recognition. However, 

applying the cancelling procedure, harmfully affected the accuracy performance due to 

the increase in the number of intersections in the sequence as a result of this procedure. 

Since the most published work on the Levantine dialect were for various corpora and 

sizes. It was difficult to make a direct comparison between other work using these 

corpora and our work as they have different training and testing sizes and different data 

catalogue. Thus, we use the work presented in this chapter as a baseline for our work in 

Chapter seven in order to make legal and direct comparison. 

Despite the success of the RBM DNN, reported in this work, for phoneme 

classification and acoustic modeling, there is an inherent limitation in using feed-

forward neural network, even when using a deep structure with multiple context 

frames. Fundamentally, feed forward NNs are not capable of handling dynamic data 

directly. In the next chapter, the recurrent Echo State Network dynamic model is 

adopted for phoneme classification and acoustic modelling using the same corpora for 

Arabic speech recognition. 
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Chapter Seven 

Echo State Networks (ESNs) for phoneme 
classification and acoustic models 

 

Echo State Networks (ESNs) have recently been applied to various applications with 

impressive success. ESNs models have proven to be very successful in training for 

acoustic modelling; which is considered as the main component of the-state-of-the-art 

speech recognition systems. This success encouraged us to adopt ESNs models for 

developing Arabic speech recognition systems. The aim of this Chapter is to investigate 

Echo State Networks (ESNs) for phoneme classification and acoustic modelling. In order 

to achieve this aim, we have explored different ESN architectures. Similarly to the DNNs 

systems, described in Chapter six, these models were initially trained on small 

vocabularies (the KAPD and the CSLU2002 phoneme) corpora and then the large 

vocabulary (the Levantine) corpus. To the best of our knowledge, this work is the first 

effort in the literature to adopt ESNs for acoustic modelling of Arabic speech recognition. 

This Chapter is organised as follows: a description of the main concepts of the proposed 

Echo State Networks (ESNs) as an Arabic framewise phoneme classifiers and acoustic 

modelling system is first introduced in Section 7.1. Section 7.2 then describes the Echo 

State Network structures and algorithm implementations with a series of results and 

analysis for Arabic phoneme recognition systems with the KAPD and CSLU2002 corpora. 

Section 7.3 then presents ESN acoustic models for the Levantine corpus. A comparison 

between the best results achieved in this thesis and the results of other related works 

are presented in Section 7.4. Finally, in Section 7.5, conclusions from the ESN 

experiments are provided. 
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7.1  Conventional Echo State Networks (ESN) algorithm  

ESNs are capable of modelling nonlinear systems with multiple inputs and multiple 

outputs. Also, being a recurrent network, its outputs can be used as additional inputs by 

feeding them back to the input stage. This gives a possibility to train ESNs as generators 

or oscillators (Holzmann, 2008). 

 The ESN training stages can be divided into three main stages as follows: 

7.1.1 ESN activations 

Assuming an ESN with   input neurons,   internal neurons (forming a dynamic 

reservoir) and   output neurons. The input vector                       is the 

activation of the input neurons at time step  , and the reservoir vector      

                is the activation of the internal neurons. The output vector 

 ̂                    is the activation of the output neurons, and 

                     is the target output vector. The connection weights from the 

input neurons to the reservoir neurons are composed of a     weight matrix    . The 

weights of the reservoir connections are collected in an     weight matrix   and the 

weights of the connections from the reservoir to the output are in L         

weight matrix     . The weights of the connections from the output to the internal 

neurons are in     weight matrix      . 

Updating of the reservoir neurons is according to: 

 

                                    (7.1) 

 

Where   is the nonlinear activation functions of the reservoir neurons hyperbolic 

tangent (tanh), asymmetric sigmoidal function etc. The output neurons are then 

activated according to: 

 

                              
 

(7.2) 

where   is linear or nonlinear output activation function, and                 is a 

concatenation of the reservoir states and the input vectors. 
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7.1.2 Echo state property 

ESNs require specific properties to model a nonlinear system. The echo state 

property is determined by the untrained reservoir weights  , input weights     and 

feedback weights  
    . Although, there are no known specific algebraic conditions for 

the echo state property, there are several conditions specified in (Jaeger, 2005) to select 

the initial conditions and to generate    matrix weight that has an echo state property. 

The most important parameters for the success of modelling any nonlinear problem 

using an ESN are the spectral radius   and the size of the network. The ultimate success 

of an ESN mainly depends on diligently selecting the spectral radius  . Herbert Jaeger in 

(Jaeger, 2005) gives a reason for that as follows: 

“This is because   is intimately connected to the intrinsic timescale of the dynamics of 

the Dynamic Reservoir (DR) state. Small   means that one has a fast DR, large   (i.e., 

close to unity) means that one has a slow DR. The intrinsic timescale of the task should 

match the DR timescale”. 

 

7.1.3 ESN training algorithms 

Generally, the function of a training algorithm is to compute an optimal mapping from 

the collected state vector      to a teacher output        over time. ESNs use a 

regression algorithm to find a global minimum of the mean square error in order to find 

the right mapping (Holzmann, 2008). There are offline and online training algorithms 

for an ESN used to train a read-out function that lead to learning the output layer’s 

weights     . 

7.1.3.1 Offline ESN training algorithm 

Jaeger in (Jaeger, 2005) demonstrated an algorithm to calculate the output weights 

     which minimize the mean squared error MSE  during training. 

At time step   the error is calculated as the difference between a teacher output        

and the actual output obtained from the network: 

 

                                     (7.4) 
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Then the     is calculated as: 

 

         
 

         
∑           

    

    

 (7.5) 

 

where      is the number of vectors and      is the number of washout vectors. The 

dynamic reservoir usually needs   time steps to eliminate the initial transients, and 

these   samples are usually not considered for calculating      .  

 

The offline algorithm is mainly based on the pseudo-inverse method to calculate the 

output weights  
    and is obtained as follows: 

 

            2          (7.6) 

 

where   is the identity matrix,       is the pseudo inverse matrix of   which is the 

accumulated the autocorrelation matrix (state matrix)   of size                   

from the state vector      and the input vector      for each time step  , and    donates 

the transpose of matrix  . Also, B is the accumulated the cross-correlation matrix 

(output matrix)   of size               from the target output           for each time 

step  .   is the smoothing factor, where    , the strongest regularization is obtained 

when    . When     the system becomes a linear regression:  

 

                   (7.7) 

 

7.1.3.2 Online an ESN training algorithm 

The online training algorithm can be used to train an ESN in each time step  . The 

early stages of the online training algorithm are similar to the offline training algorithm. 

Generating and initializing the matrixes input weight matrix  
  , Internal weight matrix 

 , feedback weight  
    , and output weight  

   . The states in the dynamic reservoir 

are then calculated in a similar manner to the offline training algorithm using Equation 

7.1 and 7.2. With online training, it is no longer necessary to accumulate the states as a 

new row of an autocorrelation matrix A  at time  . 

The network output        is obtained by:  

 

                     (7.8) 
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Updating of the output weights      in the online training algorithm is completely 

dependent on the error vector of the same time step (only      are updated) this is 

similar to the Widrow-Hoff rule which is also known as the delta rule: 

 

                           (7.9) 

 

The output weights are then calculated using: 

 

                                  𝛾           (7.10) 

 

where   is the learning rate, and 𝛾 is the momentum and their valves are within [0,1] . 

These parameters have similar properties to those used in other kinds of Neural 

Networks training algorithms. The optimal output weights      is such that it 

minimizes the Mean Square Error    , calculated using Equations 7.4 and 7.5. 

In a regime in which the size of data is very large, the Widrow-Hoff rule can be 

implemented during an online or mini-batch training. This type of training was used for 

training the DNNs and the ESNs acoustic models for the Levantine corpus. 

For implementing the Echo State Network algorithm, C++ code has been written that 

follows the steps of the algorithm described above. 

 

7.2  ESN phoneme recognition experimental results 

Based on the ability of ESNs to model nonlinear complex dynamic systems, and the 

simplicity of their learning algorithm, ESNs were proposed for Arabic speech 

recognition. The KAPD Saudi Arabia dialect corpus and the CSLU2002 multi-dialect 

corpus were used to train and test an ESN with supervised and forced supervised 

learning algorithms. Furthermore, a novel combined supervised/forced supervised 

learning algorithm was developed and tested on an optimised Arabic phoneme 

recognition echo state network using both datasets.  

7.2.1 Experiments of ESN with supervised learning (conventional ESN) 

The architectures of the ESN used in this work was based on the work of Ted et al. 

(hmidt et al., 2010) and Jaeger (Jaeger, 2005). The ESN connections used are shown in 
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Figure 7.1. During ESN training and testing, the activations of the reservoir and output 

neurons were calculated using either a supervised learning or forced supervised 

learning algorithms.  

The activations of reservoir and output neurons are calculated using Equations (7.12) 

and (7.13) respectively:  

 

           (                         )           (7.12) 

 

Where        is the reservoir state for time step      ,        is the input 

vector,      is the calculated output for the supervised learning for time step    , and the 

        , as used in (hmidt et al., 2010), is calculated as: 

 

                             (7.13) 

 

The calculated output        is then given by: 

 

                                 (7.14) 

  

 Where        is the calculated output states for time step      . 

Weight vectors    ,  ,       and,      are initially generated with random values 

between -1 and 1, and with a connectivity parameter between 0 and 1 in order to 

generate random connections between neurons (see Figure 7.1). 

 

 

 

 

 

 

 

 
Figure 7.1 - ESN connections with supervised learning. 

 

The ESN network was implemented and optimized for the proposed Arabic speech 

databases, and the hyper-parameters values used for the experiments in this Chapter 

are shown in Table 7.1. 

𝑊𝑜𝑢𝑡 

𝑊𝑜𝑢𝑡 

𝑊𝑖𝑛 

𝑊 

𝑊𝑏𝑎𝑐𝑘  

𝑙𝑒𝑓𝑡𝑜𝑣𝑒𝑟 

O
u

tp
u

t
 

In
p

u
t

 

 

   Reservoir 

 



Echo State Networks (ESNs) for phoneme classification and acoustic models  
 

 

 

92 
 

Table 7.1 - The ESN hyper-parameters. 
 

Parameter Value 

Reservoir size:  

Connectivity:  

Spectral Radius:  

Activation function:  

Input size:  

Input connectivity:  

Input Shift:  

Input Scale:  

Output size:  

Output activation:  

Feedback connectivity:  

Feedback Shift: 

Feedback Scale: 

D_leakRate 

Alfa 

Wash-out time 

400 

0.2 

0.996 

tanh 

39 

0.5 

0 

1 

33 

tanh 

0.3 

0 

1 

0.6 

0.33 

0 
 

 

 

ESNs are designed especially for learning pattern sequences. Hence, it is crucial to 

order the Arabic frames as sequences. Consequently, all frames of each phoneme were 

connected to build one sequence to represent this phoneme. From the initial results it 

was found that the ESN had not learnt short sequences as well as it had learnt the long 

sequences.  

A validation dataset were used for early stopping and to save the output 

weights      that lead to the best performance (minimum ESN error). As is shown by 

Figure 7.2, training of the ESN with supervised learning continues until the ESN error 

increased at time step     Training was then stopped and the network weights were 

saved for time  . 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 7.2 - Time of saving the network and stop training. 
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The system performance was recorded over many different reservoir sizes; from 50 

to 700 neurons. The accuracy of the system, as shown in Figure 7.3, tends to improve 

significantly as the reservoir size increases up to 400 neurons. However, only 1% 

difference in the performances of the system were obtained between reservoir sizes of 

400 and 700 neurons. Figure 7.3 shows the system performance for the CSLU2002 

Arabic phonemes with the different reservoir sizes. 

 

 

 

 

 

 

 

 

 

Figure 7.3 - The performance of the ESN with different reservoir sizes. 

 

7.2.1.1 Experiments on the KAPD database  

ESNs differ from feed forward NNs in the way they access the context information. As 

mentioned in Chapter six, for feed forward NNs, the amount of context is dependent on 

the number of frames in the input window (size of the time-window). However, through 

their recurrent connections ESNs had access to the whole input sequence (i.e to the 

complete context in one direction only).  

The frames of the normalized KAPD dataset that were used to train the MLP NN in 

Section 6.2 are again used to train the ESN with the supervised learning algorithm. The 

ESN architecture used was as described in Figure 7.1 with the parameters presented in 

Table 7.1. The raw KAPD database was also used to train the ESN for comparison 

purposes. 

7.2.1.1.1 Experiment results 

An ESN was trained using all 33 Arabic phonemes extracted from the KAPD speakers. 

The average Arabic phonemes recognition results obtained are presented in Figure 7.4. 

0       50                     250           350         400                        700   

 

92.92 
87.47 
 

65.01 
 
 

Reservoir size 

 

%
 P

er
fo

rm
an

ce
 



Echo State Networks (ESNs) for phoneme classification and acoustic models  
 

 

 

94 
 

 
 

 

Figure 7.4 - The average train and test datasets results of the normalized KAPD for training 

and testing datasets. 
 

 It is clear from Figure 7.4 that, several phonemes of the normalized KAPD Arabic 

phonemes were recognized with accuracy below 60.0%. The average performances for 

the KAPD were 68.62% and 58.02% for training and testing datasets respectively.  

Figure 7.5 shows a comparison between the histograms of the average Arabic phonemes 

recognition results obtained for the raw and normalized KAPD training and testing 

datasets. 

 

 

Figure 7.5 - The histograms for Arabic phonemes recognition performances for training 

dataset for raw data (a) and normalized data (b), and for testing dataset for raw data (c) and 

normalized data (d).  
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The main trend visible in Figure 7.5 is that most of Arabic phonemes in the raw KAPD 

training dataset were recognized with performance between 80% and 100%; few 

phonemes are recognized below 70%. In comparison most of phonemes in the 

normalized KAPD training dataset were classified with only 40% to 100% accuracy. 

Moreover, for the testing dataset, most of the KAPD raw Arabic phonemes were 

recognized with superior performance 73.40% accuracy; with only 7 of the testing 

phoneme dataset being recognized with performance less than 50%. In contrast, 

approximately 14 phonemes of the KAPD normalized dataset were recognized with 

performance less than 50% with the average recognition of the KAPD normalized Arabic 

phonemes being 66.61%. 

The two-tailed Matched Pairs T-test significance test finds a significant difference at 

the level of p=0.05 with the null hypothesis that there is no performance difference 

between the accuracy of the raw KAPD dataset and the accuracy of the normalized 

dataset using the same corpus. 

For comparison between the ESN performance and the performance of the RBM Deep 

NN for the same database (the KAPD) see Table 7.2. 

Table 7.2 - A comparison between the overall average test dataset performance of the ESN 

and of the RBM Deep NN for the KAPD testing dataset.  

 

 

 

 

It is clear from Table 7.2 that the frame recognition performance of Arabic phonemes 

recognition using the KAPD were much improved (more than 23% difference) using the 

ESN with supervised learning model compared with the performance of the Arabic 

phoneme recognition when using the DNN model. The results clearly show that the ESN 

model has a better ability for recognizing phonemes sequences than the DNN model for 

the small vocabulary size dataset.  A two-tailed Matched Pairs T-test significance test 

was conducted with the null-hypothesis that there is no performance difference 

between the DNN model and the ESN model trained on the KAPD dataset. The test finds 

a significant difference at the level of p=0.05. 

 

Neural Network type Database type Performance  

RBM DNN Normalized dataset 49.85% 

Conventional ESN Raw dataset 73.40% 
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7.2.1.1.2 MFCC’s features verses LPC features using supervised learning 

In order to ensure that the performance of the ESN system was optimal, it was 

decided to perform an experiment to compare the performances of the ESN with 

supervised learning algorithm when trained on the KAPD Arabic phoneme datasets 

using both LPC and MFCC feature extraction techniques. 

Table 7.3 - A comparison between the KAPD testing dataset performance of the ESN with 

supervised learning algorithm when using 39 MFCC and 12 LPC features.  

 

 

 

 

It is clear from Table 7.3 that the ESN can correctly recognize more of the KAPD 

Arabic frames with the MFCCs feature extraction technique with an average 

performance of 73.40% frame recognition on the testing dataset. In contrast, only 

66.75% average frame recognition performance was obtained when using LPC’s 

features with the same ESN learning algorithm. Therefore, the MFCC technique is 

confirmed as the best format for extracting features for Arabic speech recognition – all 

further experiments used the MFCC extraction algorithm as the input feature extraction 

stage. 

 

7.2.1.2 Experiment on the CSLU2002 database  

In order to investigate Multi-dialect Arabic speech recognition, the ESN network 

architecture with supervised learning algorithm, described in Figure 7.1 with the 

parameters presented in Table 7.1, was also investigated using the CSLU2002 database 

for 34 female and male speakers. This dataset includes speakers from 12 Arabic 

countries. The average phoneme recognition results for this dataset are presented in 

Figure 7.6. 

Feature extraction technique Performance 

     MFCC 73.40 % 

     LPC 66.75% 
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Figure 7.6 - The average results of phonemes for female speakers’ dataset when it trained 

and tested on the ESN with supervised learning. 

As can be seen from Figure 7.6, for the training dataset, the average phoneme 

recognition result was 69.52%. The ESN with supervised learning algorithm can 

recognize most of the training dataset of CSLU2002 corpus with performance above 

60%. On the other hand, the testing dataset has an average phoneme recognition 

performance of 51.72%.  

 

7.2.2 An ESN with forced supervised learning algorithm 

For standard forced supervised training, the activations of the reservoir and output 

neurons are calculated using Equations (7.12) and (7.13): 

 

           (                      ̂   )           (7.15) 

 

where        is the reservoir state for time step      ,        is the input vector, 

 ̂    is the desired output vector (target output vector) for time step  . The          was 

calculated using Equation (7.13), and  ̂      the calculated output states for time step 

  using Equation 7.14 

 

When initializing the ESN network hyper-parameters, the initial weight vectors    , 

 ,       and,      are randomly generated as described previously using the 

connections shown in Figure 7.7. The main parameters used are as described in Table 

7.1. 
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Figure 7.7 - ESN connections with forced supervised learning algorithm. 

 
 

7.2.2.1 Experiment on the CSLU2002 dataset using forced supervised 

learning ESN  

The 34 CSLU2002 speakers dataset was used to train and test an ESN using a forced 

supervised learning algorithm. Firstly, each speaker was tested on a separate (speaker 

dependant) ESN with forced supervised learning algorithm are described in Figure 7.7 

and Table 7.1. Figure 7.8 shows the average results of the Arabic phonemes for each 

speaker. The complete CSLU2002 phonemes dataset was then trained and tested on one 

speaker independent ESN using the forced supervised learning algorithm. The average 

phonemes recognition results for the speaker independent system is presented in Figure 

7.9.  

 

Figure 7.8 - The average train dataset results of 34 speakers of the CSLU2002 database 

trained and tested on individual ESN with forced supervised learning algorithm.  
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As is clear from Figure 7.8, that the average phoneme classification results for each 

speaker were more than 99% when using individual ESN classifier trained with a forced 

supervised learning algorithm on the CSLU2002 corpus. Essentially an ESN trained with 

a forced supervised algorithm can be trained perfectly for phonemes classification. 

However, forced supervised learning is not suitable for general purpose speech 

recognition problem as the reservoir calculation depends on the target or desired 

output. In reality, this target output is not available in the testing stage for a speech 

recognition problem.   

 

7.2.3 Unsupervised Adaptation (Modified ESN with a novel combined 

supervised/forced supervised learning algorithm) 

Mismatches between the training model conditions and the input conditions may 

occur due to differences between speakers, environmental noise, and differences in 

channels. Many adaptation approaches have been suggested to compensate for these  

variabilities. Maximum likelihood linear regression (MLLR) and Maximum a posteriori 

(MAP) are the most popular adaptation methods for HMMs. The idea behind MLLR 

adaptation approach is to apply a set of linear transformation matrixes to transform the 

learned model parameters and to maximize the likelihood on the test data under the 

new model (Gales, 1998, Leggetter and Woodland, 1995). This adaption approach is 

practically used to transform the model means and covariances in order to improve the 

system performance for each test speaker. The MAP adaptation approach is used in 

statistical modeling and requires prior knowledge about the distribution of the model 

parameters for robust estimating of model parameters more than the EM estimation for 

small amount of data.  

There are two modes of adaptation, supervised and unsupervised. In supervised 

adaptation, an adaptation-data transcript is required during the estimation of the 

approach such as in the MLLR adaptation approach. However, in an unsupervised 

adaptation mode, the adaptation-data transcript is provided before the transform is 

estimated. Speaker adaptation can also be done using on-line adaptation or batch 

adaptation (Zavaliagkos et al., 1995). On-line adaptation is done after obtaining one 

utterance, whereas batch adaptation is done after collecting all the available utterances. 
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Feed forward Neural networks such as MLPs have also used different adaptations 

approaches for speaker adaptation in an attempt to minimize test errors on the 

adaptation data. For example, speaker identity vectors (i-vectors) (Dehak et al., 2011) 

have been used to extract low-dimensional representations of the speaker features and 

are used as an additional input feature to the network with the regular acoustic features 

for ASR as is adopted in (Saon et al., 2013, Miao et al., 2014). 

All the adaptation approaches mentioned above, attempt to deal with the poor fit 

between the training model conditions and the input conditions that may occur due to 

differences between speakers and for environmental noises. However, in this work we 

investigate an adaptation that is intended to minimize classification errors. Similar to 

the i-vector approach, this adaptation approach can be completely extracted in an 

unsupervised way. 

As mentioned previously, an ESN trained with the standard forced supervised 

learning algorithm is not suitable for general purpose speech recognition purposes 

because the target output would not be available for calculating the reservoir states 

during the testing stage. To address this shortcoming, a combined supervised/forced 

supervised learning was implemented (Unsupervised Adaption). In this novel algorithm, 

the calculated network outputs are passed through a winner-take-all (WTA) selection 

during training. This converts the output y(t) into a binary vector to effectively produce 

binary teacher outputs before being fed back into the reservoir (see Figure. 7.9). This 

adaptation is applied only on the hidden-to-output layer. The target outputs are thus 

used as feedback connections with binary values zero or one, whilst the calculated 

outputs are floating point numbers between -1 and 1 as a result of the activation 

function tanh. During testing, all the outputs are converted from floating point numbers 

into zeros or ones using the winner-take-all (WTA) selection algorithm. 

For the modified ESN with supervised/forced supervised training, the activations of 

the reservoir and output neurons are calculated using  

 

           (                      ̂̂   )           (7.17) 

 

where        and        are the reservoir state and the input vector respectively, 

and the          was calculated using Equation (7.13).  The Initial weight vectors 
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   , ,           are randomly initialised and the output matrix      is updated using 

the ESN offline training algorithm, as in Equation 7.7.  ̂̂    is the modified calculated 

output vector for time step   and is calculated using Equation 7.14 , where  ̂̂    is the 

winner-take-all (WTA) selection of the calculated output vector       for time step  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9 – (a)- Combined Learning ESN (1st modification). (b)- Deep combined 

supervised/forced supervised ESN (DESN) (2nd modification). 

For deep ESN model, the standard supervised learning algorithm was first used to 

train the conventional ESN until optimum weights are obtained. Training was then 

resumed using the modified forced learning algorithm described by Equations 7.14 and 

7.17. This 2nd phase modification significantly enhanced the speech recognition 

performance for the multi-dialect CSLU2002 training dataset (see Table 7.4). 

 

7.2.3.1 Experiments on the CSLU2002 corpus using the Modified ESN  

Two different feature vector dimensionalities were used to represent the CSLU2002 

corpus. The basic 13 coefficients MFCCs  and the extended 39 coefficients MFCCs feature 

vector datasets were extracted for training and testing these datasets were then applied 
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to three different ESN learning algorithms namely, conventional ESN, ESN with the 

Adaption (1st modification) and deep learning ESN (2nd modification). Firstly, the results 

of the 13 MFCCs dataset are compared together in Figure 7.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10 - A histogram used for a comparison between the average results of ESN with 

different learning algorithms for the CSLU2002 training dataset with 13 MFCCs coefficients. 

 

The main trend visible from the histogram of the training results is that the 1st 

modification greatly improved the performance on the training dataset compared to the 

supervised learning algorithm. The average performance results of the 33 Arabic 

phonemes of the CSLU2002 training dataset using this modification improved from 

51.28% to 60.50%. On the other hand, the 2nd phase modified for the ESN had a slight 

effect on the recognition performance compared to the 1st modification on the ESN 

system. Only an additional 1.1% an improvement was obtained on the average 

recognition performance of the 33 Arabic phonemes. However, about 66.6% of the 33 

Arabic phonemes were recognised with performance more than 60% using the deep 

learning (2nd modification).   
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 Figure 7.11 shows the histogram of the testing dataset results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11 - A histogram used for a comparison between the average testing dataset 

results of ESN with different learning algorithms for CSLU2002 testing dataset and 13 

MFCCs coefficient. 

It is clear from Figure 7.11 that the average phoneme recognition results of the 

CSLU2002 testing dataset was improved using the adaptation (1st modification), where 

the average results of the recognition performance was enhanced by 4.7%. There is a 

significant difference in performance between the the baseline conventional ESN and the 

adaption (1st modification) results found when using a two-tailed Matched Pairs T-test 

significance test. However, the 2nd modification for the ESN did not improve the 

recognition performance for the CSLU2002 testing dataset.   

The results with the same CSLU2002  corpus using the extended 39 coefficients 

MFCCs feature datasets with the three different ESN learning algorithms are compared 

together and with the 13 MFCCs features in Table 7.4. 
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Table 7.4 - A comparison between the CSLU2002 training and testing datasets framewise 

phoneme performance uses the ESN with supervised learning, combined supervised 

learning with adaption (1st modification) and deep combined supervised/forced 

supervised learning algorithms with 13 MFCC features and 39 MFCC features.  

 

It is obvious from Table 7.4 that the baseline ESN network with 39 MFCCs features 

vectors has the best overall framewise phoneme recognition performance. The 

performance of the 39 MFCCs features vector ESN was about 16.35% better than the 

baseline 13 MFCCs ESN system. The recognition performances on the CSLU2002 dataset 

was also considerably improved using the first and second modification for the 

supervised ESN when compared to the baseline ESN with the 13 MFCCs features. 

However, these modifications on the supervised ESN did not show comparable 

improvements over the baseline ESN performance with the 39 MFCCs features, where 

the performance results for the CSLU2002 dataset was increased by only about 1.31% 

for the training dataset and by only 0.43% for testing dataset. There is no significant 

difference between the baseline ESN system and the 1st and 2nd modified ESN trained 

on the CSLU2002 corpus with 39 MFCCs features using a the two-tailed Matched Pairs T-

test significance test conducted with the null hypothesis that there is no performance 

difference between the conventional supervised ESN system and the 2nd  and modified 

ESN system. The test failed to find differences at the level of p=0.05. 

7.2.3.2 A comparison between the performance of the ESN and other related 

works on the CSLU2002 dataset 

 The results of the experiments of these systems cannot be directly compared to many 

related work found in the literature as these KAPD and CSLU2002 phoneme dataset are 

corpora that were manually segmented and labelled by the author. There is only one closely- 

related work (Alalshekmubarak, 2014). We collaborated with them and offered our 

CSLU2002 Arabic phonemes database to them in order to allow us to make a valid direct 

Network 

inputs 
Learning technique 

Performance% 

Train Test 

13 MFCC 

coefficients 

Supervised learning 51.28 33.50 

Combined Supervised /forced supervised (adaption) 60.50 38.20 

Deep Combined supervised/forced supervised 61.06 35.80 

39 MFCC 

coefficients 

Supervised learning 69.52 51.72 

Combined Supervised /forced supervised (adaption) 70.38 51.87 

Deep Combined supervised/forced supervised 70.83 52.15 
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comparison between the systems. Thus, to evaluate the performance of the systems 

conducted on the CSLU2002 dataset, we compared our results to the work of 

(Alalshekmubarak, 2014) . They maintained the same reservoir size that we used in our 

work to ensure a valid comparison between the developed systems. This comparison is 

presented in Table 7.5, and the results show the superior performance of our developed 

system. 

 

Table 7.5 - A direct comparison between the overall average test dataset performance of 

the supervised ESN and other related works on the CSLU2002 testing dataset.  

 

The results, summarised in Table 7.5, show the performance of four models’ 

experiments that were conducted on the CSLU2002 corpus trained on the two 

classification approaches, namely, DNNs and ESNs. Our developed system (combined 

learning ESN-based) shows superior performance when it is compared to the other 

systems recently reported in the literature that used the same CSLU2002 selected 

corpus. Generally, the ESN system outperformed the RBM DNN when using the extended 

39 MFCCs feature vector as input. This promotes the adopting of ESN for Arabic speech 

recognition systems.  

A significance test was conducted between the base line DNN’s result and the ESN 

with combined learning result. The two-tailed Matched Pairs T-test significance test 

finds a significant difference at the level of p=0.05 that was conducted with the null 

hypothesis that there is no performance difference between the framewise phoneme 

recognition between the base line DNN’s result and the ESN with combined learning 

result.  

7.3 ESN acoustic modeling experimental results on the Levantine 

corpus  

In order to obtain statistically relevant large vocabulary dataset results, the Levantine 

Arabic Corpus was also used to explore the potential gain in building an acoustic 

Neural Network type Performance Reference 

Combined Learning ESN- 13MFCCs 38.20 % (Hmad and Allen, 2013) 

ESN -39 PLP 44.67 % (Alalshekmubarak, 2014) 

RBM DNN-39 MFCCs 42.53% This work Chapter 6 

Deep Combined  Learning ESN-39 MFCCs 52.15% This work Chapter 7 
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modelling Arabic speech recognition system using the ESNs model. This also allows a 

valid comparison to be made between our work and other developed systems presented 

in the literature. 

7.3.1 Hyper-parameters Optimisation 

The same selected dataset as described in Chapter five and used in Chapter Six for 

training and testing the RBM DNN acoustic models is also used in this experiment. The 

experiments on this corpus also used the same hyper-parameters values shown in Table 

7.1. As the size of this dataset is huge, the online training, described in Section 7.1.3.2, is 

used for training with mini-batch size of 500 for stochastic gradient descent (SGD). 

7.3.2 A comparison between the ESNs and DNNs acoustic models 

performances on the Levantine corpus 

The main purpose of this experiment is to a make a direct comparison between the 

ESNs and the RBM DNN acoustic model performances. For the ESN experiments 

conducted on the Levantine corpus, we used a separation line after each utterance to 

represent the sequences that are fed to the ESN network. Table 7.6 shows results of the 

DNNs system performance presented in Chapter Six without the post process and the 

ESNs system performance trained on the same Levantine dataset for Arabic speech 

recognition.  

Table 7.6 - A comparison between the average framewise phoneme recognition accuracies 

using the ESNs and DNNs acoustic models on the Levantine core test.  

Model name  
Framewise phoneme 
recognition% 

DNNs-5frames context window 28.80 
ESNs 42.81 

 

 

 

 

It is obvious from Table 7.6 that a significant improvement on the recognition 

performance was achieved when using the ESN model compared to the baseline RBM 

DNN model’s result. This was confirmed with a two-tailed Matched Pairs T-test 

significance test. The adoption of the ESNs model for acoustic modeling is shown to be 

more suitable than the adoption of the DNNs model for acoustic modeling speech 

recognition. This is because ESNs are recurrent models and support sequence models 

more than the RBM DNN models even with a contextual input window. 
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7.4  Comparison of ESN results with literature equivalents 

 Table 7.6 shows a comparison between the best performances achieved by the 

systems investigated in this project and systems in relative equivalent projects 

presented in the literature. 

Table 7.7 - A comparison between the best performances were achieved for the proposed 

corpora of this project with relatively comparable projects. 
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Reference 

Phonemes 

ESN 
Multi Arabic 

dialect 

The 

CSLU2002 

database 

33  1894 1894 1908 34 52.15 This work 

ESN 

One - Saudi 

Arabia 

dialects 

The KAPD 

Database 
33  2376 2376 1970 6 73.40 This work 

ESN 
Multi Arabic 

dialect 

The 

CSLU2002 

database 

33 1420 474 1908 34 44.67  
(Alalshekmubarak

, 2014) 

RNN 
One Arabia 

dialect   

Self-

created 

database 

20 800 - 400 6 82.3 
(Ismail and 

Ahmad, 2004) 

hierarc

hical 

MLP 

One - Iraq 

Arabia 

dialect 

Self-

created 

database 

33 396 - 396 1  68.18 
(Ali and Hwaidy, 

2007) 

MLP 

One-

Algerian 

dialect 

Self-

collected 

database 

28 - - 7393 6   68 
(Selouani and 

Caelen, 1999) 

HMM 
Moroccan 

dialect 

Self-

created 

database 

28 2240 - 560 10  87.66 
(Hachkar et al., 

2011) 

ESN 
Multi Arabic 

dialects 

13 hours 

Levantine 

corpus 

33 
Hours 

120 42.81  This work 
9.75 3.25 2.24 

 

 

It is obvious from the results in Table 7.7 that use of ESN models can improve the 

recognition performance of Arabic phoneme recognition systems. This finding is 

supported by comparing the ESN model results with the RBM DNN baseline model 
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results found in Table 7.5 and Table 7.6. The performance of ESN model is very 

promising and encourages researchers to adopt this model for various applications. The 

most challenging issue for state-of-the-art speech recognition is the amount of data that 

is need for training any model. ESN models can provide good performance when only a 

limited size of corpus is available. ESNs are also simple with less computation compared 

to other NNs (MLP, RNN) techniques. Thus, training time is very competitive compared 

with other approaches. 

 

7.5 Conclusion  

The aim of this Chapter was to investigate Echo State Networks (ESNs) for phoneme 

classification and acoustic modelling. In order to achieve this aim, we have explored 

different ESN architectures. 

In this chapter, we adopted ESNs for Arabic speech recognition. The KAPD Saudi 

Arabia dialect corpus and the CSLU2002 multi-dialect corpus were used to train and test 

an ESN with supervised and forced supervised learning algorithms. Furthermore, a 

novel combined supervised/forced supervised learning algorithm (unsupervised 

adaptation) was developed and tested on an optimised Arabic phoneme recognition 

datasets. In addition, the Levantine Arabic dataset is also used to train the mentioned 

systems as acoustic models. 

We also investigated an unsupervised ESN adaptation approach to minimize 

classification errors. The main idea was to use simi-target outputs that act as a forced 

teacher for supervised training. Thus, a combined supervised/forced supervised 

learning was implemented (Unsupervised Adaption) to effectively produce teacher 

outputs before being fed back into the reservoir. We discussed the findings of the 

conducted experiments using this adaptation with the CSLU2002 corpus. The baseline 

performance of the 13 MFCCs input ESN was firstly explored and the adaptation 

approach was found to greatly improve the recognition performance. The performance 

39 MFCCs feature vector ESN system was an about 16.35% better than the baseline 13 

MFCCs. However, only slight improvement was gained when using this adaption with 39 

MFCCs feature vectors. This was statistically not significant difference in the 
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performance. A trivial enhancement on the recognition performance of the core testing 

dataset was obtained when we used deep ESN architecture for both type of features.  

The results of the experiments of these systems cannot be directly compared to many 

related work found in the literature as these KAPD and CSLU2002 phoneme dataset are 

corpora that were manually segmented and labelled by the author. However, one 

closely-related work has been provided (Alalshekmubarak, 2014) that used our 

CSLU2002 Arabic phonemes database in order to allow us to make a valid direct 

comparison between the systems. We also compared the performance of four NN based 

models, conducted on the CSLU2002 corpus, with two classification approaches, namely, 

RBM DNNs and the ESNs. Our developed system (combined learning ESN-based) shows 

superior performance with 52.15% framewise phoneme recognition performance when 

compared to the other systems recently reported in the literature using the same 

CSLU2002 selected corpus. Generally, ESN outperformed the DNN under the considered 

the-state-of-the-art the 39 MFCCs features. This promotes the adopting of ESN in Arabic 

speech recognition systems.  

The Levantine Arabic Corpus was also proposed in this Chapter to explore the 

potential gain in building large vocabulary acoustic models for Arabic speech 

recognition system using the ESNs model. A significant improvement on the recognition 

performance was achieved when the ESN model was implemented compared to the 

baseline RBM DNN model’s result. The adoption of the ESNs model for acoustic 

modeling is seen to be more valid than the adoption of the DNNs model for acoustic 

modeling speech recognition. This is because ESNs are recurrent models and support 

sequence models better than the RBM DNN models even with the contextual input 

window. 

Finally, comparisons between the best performances achieved by the systems 

investigated in this thesis and systems in relative equivalent projects presented in the 

literature used relatively equivalent models and different Arabic corpora that found in 

the literature were presented. The ESN model is shown to give improved recognition 

performance as an Arabic phoneme recognition system. The performance of ESN model 

is very promising and encourages researchers to adopt this model for various 

applications. ESN models can also provide good performance when only a limited size of 
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corpus is available. ESNs are also simple with less computation compared to other NNs 

(MLP, RNN). Thus, training time is very competitive compared with other approaches. 

Comparisons between the proposed models with others used the proposed corpora 

in the literature were not possible as the differences in the corpora size and type. Thus, 

we purposed to use well known corpus even that it is not Arabic to evaluate the 

proposed models and to make a valid comparison with other published work on the 

same corpus. We used The TIMIT English corpus for this goal in the next chapter. 
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Chapter Eight 

Evaluation of the Deep Neural Networks 
(DNNs) and Echo State Networks (ESNs) on 
TIMIT corpus for acoustic modelling  

 
Deep Neural Networks (DNNs) have been successfully applied for acoustic modelling 

of English language (Mohamed et al., 2009, Dahl et al., 2012, Hinton et al., 2012, 

Mohamed et al., 2012). Echo State Networks (ESNs) have also recently been applied to 

various applications with impressive success. ESNs models have proven to be highly 

successful in training the acoustic modelling of speech which is considered as a key 

component of most state-of-the-art speech recognition systems. This success 

encouraged us to be the first to attempt to investigate these types of networks for 

developing acoustic models for an Arabic speech recognition system. However, the most 

published work on the proposed Arabic corpora were various in the corpora types and 

sizes. Hence, it was very difficult to make a direct comparison on different corpora types 

and sizes to our work using DNNs and ESNs on the proposed Arabic corpora. Thus, we 

suggested evaluating DNNs and the ESNs models on the benchmark task of framewise 

phoneme classification and acoustic models using the TIMIT database, in order to make 

a reasonable and direct comparison between these models.  

The aim of this Chapter is therefore to explore deep learning for framewise phoneme 

classification and acoustic modelling using Deep Neural Networks (DNNs) and Echo 

State Networks (ESNs) on TIMIT corpus. In order to achieve this aim, we have explored 

different experiments based on the work of Deep Neural Networks and on the work of 

the Echo State Networks (ESNs) introduced in Chapter Six and Chapter Seven 

respectively. This Chapter is organised as follows: in Section 8.1 the TIMIT database and 

the experimental setup used in this Chapter are described. In this section, TIMIT 

database, which is used for the experiments of this chapter, is first described. This is 
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followed by Deep Neural Networks (DNNs) and the Echo State Network Experiments for 

phoneme classification and acoustic models and their results on the proposed corpus. A 

conclusion is finally drawn in Section 8.2. 

 

8.1 Experimental Setup 

In this Section the TIMIT8 database and the experimental setup used in this Chapter 

are described. 

 
8.1.1 TIMIT corpus 

TIMIT corpus (Garofolo et al., 1993) is used in this thesis for evaluating the DNN and 

the combined learning ESN model for phone recognition and acoustic modelling 

experiments. The utterances of the corpus are spoken by speakers from a wide variety 

of American dialects. We used 3696 utterances from 462 speakers (3.14 hours) for 

training and 1344 utterances from 24 speakers (0.81 hours) as defined in (Mohamed, 

2014) for testing. The sentences of this corpus are divided into three types: 

phonetically-compact (SX), phonetically-diverse (SI), and dialect (SA). The (SA) 

sentences were designed to detect the dialectical variation of the speakers, we removed 

all SA records for all speakers in the dataset similar to (Mohamed, 2014) as they are 

identical and could bias the results. More details for TIMIT corpus are in (Halberstadt, 

1998).    

We analysed the speech signal using a 25ms Hamming window and 10ms frame rate. 

The speech was represented by the 13 MFCCs and their first and second derivatives.  We 

used 186 target class labels for the 62 phones in the corpus, i.e., 3 states for each phone. 

After decoding, the 62 phone classes were mapped into a set of 44 classes similar to 

(Graves and Schmidhuber, 2005) by making several identifications as following: 

 The closures ‘dcl’, ‘bcl’, ‘gcl’, ‘kcl’, ‘pcl’,‘tck’ and ‘tcl’ were identified with the 

following stops (‘d’, ‘b’, ‘g’, ‘k’, ‘p’, ‘t’ and ‘ch’, respectively). 

 The silence markers ‘sil’, ‘pau’, and ‘h#’ were considered equivalent and mapped 

to ‘sil’. 

                                                           
8 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1.  

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1
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 The flaps ‘nx’ and ‘dx’ were identified with ‘n’ and ‘d’ respectively. 

 The nasals ‘eng’, ‘en’ and ‘em’ were identified with ‘ng’, ‘n’ and ‘m’. 

 The semivowel/glides ‘hv’ and ‘el’ were identified with ‘hh’ and ‘l’. 

 The vowels ‘ax-h’, ‘ux’, and ‘ix’ were identified with ‘ax’, ‘uw’, and ‘ih’. 

 

8.1.2 Deep Neural Networks (DNNs) for phoneme classification and acoustic 

models Experiments 

The aim of these experiments is to explore Deep Neural Networks, introduced in 

Chapter six, for framewise English phoneme classification and acoustic modelling using 

the TIMIT dataset. In order to achieve this aim, we have explored different network 

architectures based on the deep neural network. The 39 MFCCs feature vectors that 

were used for the experiments in this Section are normalized using Equation (6.5).  

 

8.1.2.1  RBM DNN Hyper-parameters Optimisation and experiment’s result 

For the developed systems in this section, all conducted experiments followed a 

standard procedure. The stochastic gradient decent algorithm was used for pre-training 

phase with a mini-batch size of 100 training cases using learning rate 0.1, weight cost 

0.0002 and momentum 0.9, these values are experimentally chosen. For the structure of 

the RBMs in the pre training stage, we used three Gaussian RBMs, and trained them 

using 100 epochs for the Gaussian RBMs and 0.1 for a learning rate with different 

number of nodes in each RBM layer. In the fine-tune stage, we used 5000 epochs due to 

the hardware availability. The inputs were decided to be 5frame input window based on 

the optimisation experiments that were conducted in Sections 6.2.2 and 6.2.3. However 

the structure of the network is slightly different due to the size of this dataset and the 

hardware availability. For this experiment we used 60, 40, and 60 nodes in the hidden 

layers. These numbers of nodes were experimentally chosen within limit number of 

nodes in each layer based on the hardware availability. 

The baseline experiment was conducted for the TIMIT corpus using 5frames input 

windows that fed to the DNN network for framewise phoneme recognition. The result 

obtained for the system structure mentioned above is 42.79% framewise phoneme 

recognition.  
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8.1.3 Echo State Networks (ESNs) for phoneme classification and acoustic models 

experiments 

This section describes the adoption of the Echo State Networks (ESNs) models for 

framewise English phoneme classification and acoustic modelling on the TIMIT dataset. 

The raw 39 MFCCs feature vectors were used for the experiments in this Section rather 

than the normalized featured based on the finding of the experiment in Section 7.2.1.1.1.  

8.1.3.1  ESN Hyper-parameters Optimisation and Experiment’s Result 

The TIMIT dataset is also used in this experiment for evaluating the ESN acoustic 

modeling on the testing dataset to ensure a valid comparison of this acoustic modelling 

speech recognition system with other developed systems’ published work (Graves A., & 

Schmidhuber J., 2005), (Chen and Jamieson, 1996), (Robinson, 1994), (Schuster, 1999). 

The experiments on this corpus used the hyper-parameters values that are shown in 

Table 7.1. Online training (described in Section 7.1.3.2) is used for training with mini-

batch size of 500 for stochastic gradient descent (SGD). The result obtained for the 

system structure mentioned above is 62.74%.  

8.1.4 A comparison between the ESNs and DNNs acoustic models performances 

on the TIMIT corpus 

A direct comparison between the ESNs and the RBM DNN acoustic model 

performances presented in Section 8.1.2 and results of the ESN system performance 

presented in Section 8.1.3 without the post process is shown in Table 8.1. These systems 

trained on the same TIMIT dataset for speech recognition.  

Table 8.1 - A comparison between the framewise phoneme recognition accuracies using the 

ESN and DNN acoustic models on the TIMIT core test.  

Model name  
Framewise phoneme 
recognition% 

DNN-5frames context window 42.79 

ESN 59.74 
 

Our main findings are that ESN network outperform time-windowed RBM DNN ones. 

It is obvious from Table 8.1 that a significant improvement on the recognition 

performance was achieved when using the ESN model compared to the baseline RBM 

DNN model’s result. This was confirmed with a two-tailed Matched Pairs T-test 
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significance test that conducted with the null hypothesis that there is no performance 

difference between the framewise phoneme recognition between the base line DNN’s 

result and the ESN result. This significance test finds a significant difference at the level 

of p=0.05. ESN is more accurate and also much faster than the time-windowed RBM 

DNN. This result confirmed the finding of the experiments of ESN on Arabic corpora 

presented in Chapters six and seven that ESN support sequence models more than the 

RBM DNN models even with a contextual input window. 

 

8.1.5 A comparison between the performance of the ESN and other related 

works on the TIMT corpus 

In this section, the best performances achieved by the systems investigated in this 

thesis are directly compared to closely- related published works in equivalent projects 

based on framewise phoneme recognition in all cases, the same corpus is used.  This 

comparison is presented in Table 8.2. 

 

Table 8.2 - A direct comparison between the best performances achieved by various Neural 

Networks types found in the literature. 

 

The results, summarised in Table 8.2, show the framewise phoneme recognition 

performance of the most published works conducted on the TIMIT corpus and our best 

performance when it was trained on the ESNs. Our developed system ESN-based shows 

relatively lower performance when it is compared to the other systems recently 
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Reference 

utterances 

BLSTM (retrained) 
3512 184 1344 70.20 (Graves and Schmidhuber, 

2005) 

RNN 3696 - 1344 74.20  (Chen and Jamieson, 1996) 

RNN 3696 - 1344 65.30 (Robinson, 1994) 

BRNN 3696 - 1344 65.10 (Schuster, 1999) 

ESN-39 MFCCs 2772 924 1344 59.74 This work Chapter 8 
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reported in the literature that used the same corpus. This may be due to a number of 

reasons. First of all, increasing the reservoir size can increase the results. However, 

increasing the reservoir size increases the calculation and memory requirement. This 

completely dependent on the hardware availability that was relatively is not available 

for our research. In addition, speaker and noise adaption was not used to improve the 

results in this thesis as our aim is to investigate the proposed models for speech 

recognition and to make a direct comparison between these models.   

 

 
 

8.2 Conclusion  

The aim of this Chapter is therefore to explore deep learning for framewise phoneme 

classification and acoustic modelling using Deep Neural Networks (DNNs) and Echo 

State Networks (ESNs) on TIMIT corpus. In order to achieve this aim, we had explored 

different experiments to develop Deep Neural Network and Echo State Networks (ESNs) 

models introduced in Chapter Six and Chapter Seven respectively for speech recognition. 

 In this section, we discuss the findings of the conducted experiments using the 

proposed models through the TIMIT corpus. The performance of the ESN model 

outperformed the baseline RBM DNN model. ESN was found to be about 59.74% better 

than the base system trained with input window of 5frames. Statistically there was 

significant difference in performance between the two models. 

Finally, comparisons between the best performances achieved by the systems 

investigated in this thesis and the published works in equivalent projects based on 

framewise phoneme recognition found in the literature and used the TIMIT corpus were 

presented. Our developed system ESN-based shows lower performance when it was 

compared to the other systems recently reported in the literature that used the same 

corpus. This due to the hardware availability and not applying speaker and noise 

adaption that can improve the results in this thesis as our aim is to investigate the 

proposed models for speech recognition and to make a direct comparison between these 

models.   
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Chapter Nine 
Conclusion and Future Work 

 

In this thesis we investigate phoneme and acoustic models based on Deep Neural 

Networks (DNN) and a Deep Echo State Networks for multi-dialect Arabic Speech 

Recognition. The TIMIT corpus with a wide variety of American dialects was also used to 

evaluate the proposed models. 

9.1 Summary of Accomplishments  

 Arabic databases 

The phoneme is considered the basic unit of speech in much of speech processing. 

The phonemic representation of a given word is used in most speech recognizers to 

identify it. Thus, the availability of speech data that is time-aligned and labelled at 

phonemic level is a fundamental requirement for building speech recognition systems. 

In this thesis, we describe the segmentation and labelling of three Arabic corpora that 

were used to investigate the thesis’s aim. In order for the accomplishment of this stage, a 

developed Arabic phoneme database (APD) was manually timed and phonetically 

labelled. This dataset was constructed from the KAPD database for Saudi Arabia dialect 

and the Centre for Spoken Language Understanding (CSLU2002) database for different 

Arabic dialects. This dataset covers 8148 Arabic phonemes. In addition, a corpus of 13 

hours of Arabic speech randomly selected from the Levantine Arabic dialect database 

that is used for training and 2.4 hours for testing are revised and transcription errors 

were manually corrected. The selected dataset is labelled automatically using the HTK 

Toolkit.  In order to achieve automatic alignment and labelling, a set of well-defined 

rules for phonetizing a written text was used to solve the pronunciation ambiguities in 

the text and to produce accurate phonemic transcriptions. Then a pronunciation 

dictionary was constructed to map words into one or more phonemic pronunciation 
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variants. Multi pronunciations per word were typically used for training and testing 

(decoding) in Automatic Speech Recognition systems. So, the Arabic phonemic lexicon 

was built and the missed pronunciations were added manually. A total of 59k words 

were subsequently to create this phonemic dictionary and more than 4k words were 

added manually. In addition, timings suggested by the corpus are used to segment the 

audio data, and 13 Mel Frequency Cepstral Coefficients (MFCCs) features plus their first 

and second derivatives were extracted using 10 ms using a windowed speech signal of 

25 ms., each conversation side was normalized using cepstral mean and variance 

normalisation as well as vocal tract length normalisation (VTLN). The Maximum 

Likelihood function was used to train all the models with context-dependence triphones. 

Each phone was modelled using left-to-right HMM with three states. A binary decision 

tree with phonologically phonetic questions were used to cluster the HMM states. A 

single Gaussian mixture component for each state with a total of 2083 clustered states 

was used. The HTK Hidden Markov Model toolkit was utilized to perform the automatic 

labelling using forced alignment mode. The labelled Arabic dataset thus produced to be 

used for acoustic models experiments. 

 

 Arabic speech segmentation and features extraction 

The Entropy-based algorithm was applied as an automatic speech segmentation 

process. The results of using this technique on 30 sentences from 9 speakers from the 

KAPD and the CSLU2002 databases with different rates of speech (ROS) showed that the 

best word segmentation accuracy, obtained when applying the pre-emphasis and low 

pass filter together on the speech signals, gave an error rate 32.95%. This error would 

be added to any errors in the following recognition stage. So, it was decided to move to 

segmentation-free phoneme recognition effectively using a trainable silence phoneme. 

The MFCC and the Linear Predictive Code (LPC) algorithms were also compared as 

potential feature extraction techniques. The results showed that the MFCCs is the best 

for Arabic speech recognition with a performance of 73.40% compared to the LPC  

performance of 66.75% when using the ESN with supervised learning algorithm on the 

KAPD training database.  
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 Deep Belief Networks (DNNs) for phoneme classification and acoustic 

modelling experiments on Arabic corpora 

The objective of the experiments was to explore the potential advantages of 

developing a RBM DNN-based system for Arabic speech recognition. In order to achieve 

this aim, several RBM DNN-based Arabic speech recognition systems were developed 

and evaluated across various Arabic corpora. 

The performance of a state-of-the-art Shallow MLP based phoneme recognition 

system trained on the 13 MFCCs plus their first and second derivatives found to be about 

0.35% better than the base system that used only the 13 MFCCs. Statistically there was 

no significant difference in performance between the two different MFCCs feature sizes. 

However, the state-of-the-art 39 MFCCs features were adopted over all experiments 

conducted in this thesis. 

During this study, a direct comparison experiment was then conducted on the KAPD 

corpus between the results of the Shallow MLP model and the RBM Deep MLP (RBM 

DNN) model results and found that, the performance of the RBM DNN was about 2.13% 

better for Arabic phoneme recognition than the Shallow MLP NN.  

MLP models cannot handle dynamic systems directly. Thus, a window of feature 

vectors (a time-window) was used to represent a sequence of frames which are used as 

input to the MLPs NN. As a consequence, one of the most important parameters that 

were optimized is the number of frames in the window input that fed to the network. A 

study was conducted on the segmented phonemes of the KAPD and CSLU2002 datasets 

to infer the suitable number of frames in the input window. The main finding from this 

study was that the average number of frames that represent a suitable input window is  

5 frames. By analysing the performance results of experiments  conducted on the KAPD 

and the CSLU2002 corpora, it was confirmed that 5 frames is more suitable than 1, 3, 7, 

9, and 11 frames to represent the time-window for Arabic speech recognition. A post-

processing enhancement was also applied to the DNN outputs in order to improve the 

framewise phoneme recognition accuracy and to find the accuracy at a phoneme level 

instead of the frame level. We found that applying the post-processing significantly 

improved the frame wise phoneme recognition and successfully constructed the 

phoneme level.  
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To evaluate the adoption of the DNN model in developing an acoustic modelling for 

Arabic speech recognition system instead of a phoneme-based system, the Levantine 

Arabic corpus was used to explore the potential gain in building an acoustic modelling 

Arabic speech recognition system using the DNN model. To the best of our knowledge, 

RBM DNN models have not been explored for any Levantine corpora. This encouraged 

us to investigate the DNN model for Arabic acoustic modelling on one of the proposed 

Levantine corpus. This allows us to claim priority for adopting this RBM DNN model for 

Levantine Arabic acoustic models. A post-processing enhancement was also applied to 

the DNN acoustic model outputs in order to improve the recognition accuracy and to 

obtain the accuracy at a phoneme level instead of the frame level. This was based on 

‘windowing’ the acoustic sequence followed by cancelling the repeated frame in the 

sequence. The 'windowing’ post process significantly improved the phoneme recognition 

performance. About 3.84% phoneme recognition was increased in the accuracy 

performance by applying a window size of 29 frames to the baseline which is the 

framewise phoneme recognition. However, applying the cancelling procedure, harmfully 

affected the accuracy performance due to the increase in the number of intersections in 

the sequence as a result of this procedure. 

Since the most published work on the Levantine dialect were for various corpora and 

sizes. It was difficult to make a direct comparison between other work using these 

corpora and our work as they have different training and testing sizes and different data 

catalogue. Thus, we used the work presented in this chapter as a baseline for our work 

in Chapter seven in order to make direct comparison. 

Despite the success of the RBM DNN, reported in this work, for phoneme 

classification and acoustic modeling, there is an inherent limitation in using feed-

forward neural network, even when using a deep structure with multiple context 

frames. Fundamentally, feed forward NNs are not capable of handling dynamic data 

directly.  
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 Echo State Networks (ESNs) for phoneme classification and acoustic 

models on Arabic corpora 

To investigate Echo State Networks (ESNs) for phoneme classification and acoustic 

modelling Arabic speech recognition, we explored different ESN architectures and 

experiments. The KAPD Saudi Arabia dialect corpus and the CSLU2002 multi-dialect 

corpus were used to train and test an ESN with supervised and forced supervised 

learning algorithms. Furthermore, a novel combined supervised/forced supervised 

learning algorithm (unsupervised adaptation) was developed and tested on an 

optimised Arabic phoneme recognition datasets. In addition, the Levantine Arabic 

dataset was also used to train the mentioned systems as acoustic modeling. For these 

experiments using the ESN-based model, we used the raw dataset instead of the 

normalized dataset based on the significant difference found when we compared the 

performance results of two systems experiments that used the normalized and the raw 

KAPD dataset using the two-tailed Matched Pairs T-test significance test.  

For comparison between the ESN performance and the performance of Deep Multi-

Layer Perceptron (MLP) for the KAPD database; we found that conventional ESN model 

outperformed the Deep MLP (DNNs) model, where The frame recognition performance 

of Arabic phonemes recognition were much improved (more than 23% difference) using 

the ESN with supervised learning model compared with the performance of the Arabic 

frame phoneme recognition when using the DNN model. The results clearly show that 

the ESN model has a better ability for recognizing phonemes sequences than the DNN 

model for small vocabulary size dataset.   

We also investigated an unsupervised ESN adaptation approach to minimize 

classification errors. The main idea was to use adapted-target outputs that act as a 

forced teacher for supervised training. Thus, a combined supervised/forced supervised 

learning was implemented (Unsupervised Adaption) to effectively produce teacher 

outputs before being fed back into the reservoir. We discussed the findings of the 

conducted experiments using this adaptation with the CSLU2002 corpus. The baseline 

performance of the 13 MFCCs input ESN was firstly explored and the adaptation 

approach was found to greatly improve the recognition performance. The performance 

39 MFCCs feature vector ESN system was an about 16.35% better than the baseline 13 

MFCCs. However, only slight improvement was gained when using this adaption with 39 
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MFCCs feature vectors. This was statistically not significant difference in the 

performance. A trivial enhancement on the recognition performance of the core testing 

dataset was obtained when we used deep ESN architecture for both type of features.  

The results of the experiments of these systems cannot be directly compared to many 

related work found in the literature as these KAPD and CSLU2002 phoneme dataset are 

corpora that were manually segmented and labelled by the author. However, one 

closely-related work has been provided (Alalshekmubarak, 2014) that used our 

CSLU2002 Arabic phonemes database in order to allow us to make a valid direct 

comparison between the systems. We also compared the performance of four NN based 

models, conducted on the CSLU2002 corpus, with two classification approaches, namely, 

RBM DNNs and the ESNs. This comparison was presented in Table 7.5, and the results 

showed the superior performance of our developed system (combined learning ESN-

based) with 52.15% framewise phoneme recognition performance when it was 

compared to the other systems recently reported in the literature that used the same 

CSLU2002 selected corpus. Generally, ESN outperformed the DNN under the considered 

state-of-the-art 39 MFCCs features. This promotes the adoption of ESN in Arabic speech 

recognition systems.  

The Levantine Arabic Corpus was also proposed to explore the potential gain in 

building large vocabulary acoustic models for Arabic speech recognition system using 

the ESNs model. A significant improvement on the recognition performance was 

achieved when the ESN model was implemented compared to the baseline RBM DNN 

model’s result. Table 7.6 showed results of the DNNs system performance and the ESNs 

system performance trained on the same Levantine dataset for Arabic speech 

recognition. A significant improvement on the recognition performance was achieved 

when using the ESN model compared to the baseline RBM DNN model’s result, where 

ESN was found to be about 14.01% better than the base system trained with input 

window of 5frames. This was confirmed with a two-tailed Matched Pairs T-test 

significance test. The adoption of the ESNs model for acoustic modeling is seen to be 

more valid than the adoption of the DNNs model for acoustic modeling speech 

recognition. This is because ESNs are recurrent models and support sequence models 

better than the RBM DNN models even with the contextual input window. 
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The performance of ESN model is very promising that encourages the researchers for 

adopting this model for various applications. ESN models can provide good performance 

with a limited size of corpus is available. ESNs are also simple with less computation 

compared to other NNs (MLP, RNN). Thus, training time is very competitive compared 

with other approaches. 

We proposed to use well known corpus even that it is not Arabic to evaluate our 

proposed models and to make a valid comparison with other published work on the 

same corpus. We used The TIMIT English corpus for this goal. 

 

 Evaluating  the Deep Neural Networks (DNNs) and Echo State Networks 

(ESNs) for acoustic modelling on TIMIT corpus 

To investigate deep learning for framewise phoneme classification and acoustic 

modelling using Deep Neural Networks (DNNs) and Echo State Networks (ESNs) on 

TIMIT corpus, we had explored different experiments to develop DNN and ESN models 

introduced in Chapter Six and Chapter Seven respectively for speech recognition. 

The main findings of the conducted experiments using the proposed models through 

the TIMIT corpus was that, the performance of the ESN model outperformed the 

baseline RBM DNN model, where ESN was found to be about 16.95% better than the 

base system trained with input window of 5frames. This was a statistically significant 

difference in the performance of these two models. 

Finally, comparisons between the best performances achieved by the systems 

investigated in this thesis and the published works in equivalent projects based on 

framewise phoneme recognition found in the literature and using the TIMIT corpus 

were presented. This comparison was presented in Table 8.2. All the resented research 

used the whole TIMIT testing dataset for testing their systems. However, the TIMIT 

training dataset has been divided into training and validation set as cleared in Table 8.2 

by some research. In this research, we used the smallest training dataset (2772 

utterances) compared to the other research (3696 utterances) to overcome with the 

hardware availability. Our developed system ESN-based showed lower performance 

when it was compared to the other systems recently reported in the literature that used 

the same corpus. This might due to the small size of training dataset used for this 
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research, hardware availability and not applying speaker and noise adaption that can 

improve the results in this thesis as our aim is to investigate the proposed models for 

speech recognition and to make a direct comparison between these models.   

It can be concluded that speech recognition is a big challenge due to the similarity 

between phoneme pronunciation and the effect of time varying frequency patterns for 

different phonemes. Moreover, different dialectics, limited examples of phonemes in the 

training set and noise from the environment and from the speakers has a significant 

degradation effect on the speech recognition system performance. 

 

9.2 Future work 

Further research can be done based on the work was done in this thesis to improve 

Arabic phoneme recognition and acoustic models. There are several potential points 

that would be worthwhile investigating. 

 Database. A fundamental key point in this research is using a suitable database for 

the proposed task. The 41 hours of the Levantine corpora needs to be used for 

training the proposed models that will lead to more confident work. In addition, 

constructing a well prepared Libyan dialect database with a large number of 

speakers is needed for region research. 

 Input features. More focus on the feature extraction methods needs to be directed 

towards in developing speech systems. Other features type could be investigated 

with ESNs for speech recognition task to improve the speech recognition 

performance such as cochlear data (hmidt et al., 2010), and the delayed rank order 

coding scheme (Tashan, 2012). Moreover, of the mel-frequency spectral coefficients 

(MFSC) has demonstrated to be input features more effective than the MFCCs 

features for the DBNs applied by (Mohamed, 2014) for acoustic models, this type of 

features needs to be examined as input features for the ESNs models.  In addition, 

neural network features such as bottle-neck features and Tandem features model are 

another sucsseful ways of using ANNs with HMMs in hybrid systems. These features 

sould be examined with the NN/NN hybrid system. 
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 Hybrid systems. Using combination of different neural network types to construct 

Hybrid systems such as ESN/DNNs or DNN/ESN networks need to be investigated 

for phoneme classification problem and acoustic modelling systems. Also, ESN/HMM 

system needs to be used for acoustic models. These combined models could 

effectively improve the recognition performance of Arabic speech.  

 Adaptation algorithms. Using various adaptation approaches that have been 

suggested to compensate mismatches between the training model conditions and the 

input conditions may occur due to differences between speakers, environmental 

noise, and differences in channels. Such as speaker identity vectors (i-vectors) 

(Dehak et al., 2011).  
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Appendixes   
 
Appendix A - (Characters of Arabic Script, Buckwalter Transliteration, and 
Arabic pronunciation in romans letters) 
 
 
Table A.1 - Characters of Arabic Script, Buckwalter Transliteration, and Arabic 

pronunciation in romans letters.  

Alphabet 

 د

d 

/d/ 

 خ

x 

/kh/ 

 ح

H 

/h/ 

 ج

j 

/jh/ 

 ث

v 

/th/ 

 ت

t 

/t/ 

 ب

b 

/b/ 

 ا

A 

/ae:/ 

 ط

T 

/tt/ 

 ض

D 

/dd/ 

 ص

S 

/ss/ 

 ش

$ 

/sh/ 

 س

s 

/s/ 

 ز

z 

/z/ 

 ر

r 

/r/ 

 ذ

* 

/dh/ 

 م

m 

/m/ 

 ل

l 

/l/ 

 ك

k 

/k/ 

 ق

q 

/kq/ 

 ف

f 

/f/ 

 غ

g 

/gh/ 

 ع

E 

/ai/ 

 ظ

Z 

/zh/ 

 ي  

y 

/y/ 

 و

w 

/w/ 

 ه

h 

/hh/ 

 ن

n 

/n/ 

  

Additional letters 

 ء

, 

/q/ 

 آ

| 

/æ:/ 

 أ

> 

/q/ 

 ؤ 

& 

/q/ 

 إ

< 

/q/ 

 يء  

} 

/q/ 

 ى

Y 

/æ:/ 

 

Diacritic Characters 

  َ  

a 

/æ/ 

  َ  

u 

/uh/ 

  َ  

i 

/ih/ 

  َ  

0 

null 

  َ  

~ 

Double  

letter 

  َ  

F 

/an/ 

  َ  

K 

/un/ 

  َ  

N 

/in/ 

  

 

 

 

 

 

 

 

 

 


