5,496 research outputs found

    Development of a WSN based real time energy monitoring platform for industrial applications

    Get PDF

    A Dual-Mode Adaptive MAC Protocol for Process Control in Industrial Wireless Sensor Networks

    Get PDF
    Doktorgradsavhandling ved Fakultet for teknologi og realfag, Universitetet i Agder, 2017Wireless Sensor Networks (WSNs) consist of sensors and actuators operating together to provide monitoring and control services. These services are used in versatile applications ranging from environmental monitoring t oindustrial automation applications. Industrial Wireless Sensor Network (IWSN) is a sub domain of the WSN domain, focussing the industrial monitoring and automation applications. The IWSN domain differs from the generic WSN domains in terms of its requirements. General IWSN requirements include: energy efïŹciency and quality of service, and strict requirements are imposed on the quality of service expected by IWSN applications. Quality of service in particular relates to reliability, robustness, and predictability. Medium Access Control (MAC) protocols in an IWSN solution are responsible for managing radio communications, the main consumer of power in every IWSN element. With proper measures, MAC protocols can provide energy efïŹcient solutions along with required quality of service for process control applications. The ïŹrst goal of the thesis was to assess the possibility of creating a MAC protocol exploiting properties of the application domain, the process control domain. This resulted in the creation of the Dual-Mode Adaptive Medium Access Control Protocol (DMAMAC) which constitutes the main contribution of this thesis. The DMAMAC protocol is energy efïŹcient,while preserving real-time requirements, and is robust to packet failure. This has been guaranteed by the thorough evaluation of the protocol via simulation, veriïŹcation, and implementation with deployment testing. In parallel, we also investigated the possibility of using an alternative development approach for MAC protocols. SpeciïŹcally, we have proposed a development approach based on MAC protocol model in CPN tools. The development approach consists of automatic code generation for the MiXiM simulation tool and the TinyOS platform. We used the related GinMAC protocol as a running example for the development approach. The generated code for MiXiM simulation platform and the TinyOS implementation platform are evaluated via simulation and deployment respectively. This results in a faster design to implementation time, and closely related protocol artifacts, improving on the traditional approach

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    Engine performance characteristics and evaluation of variation in the length of intake plenum

    Get PDF
    In the engine with multipoint fuel injection system using electronically controlled fuel injectors has an intake manifold in which only the air flows and, the fuel is injected into the intake valve. Since the intake manifolds transport mainly air, the supercharging effects of the variable length intake plenum will be different from carbureted engine. Engine tests have been carried out with the aim of constituting a base study to design a new variable length intake manifold plenum. The objective in this research is to study the engine performance characteristics and to evaluate the effects of the variation in the length of intake plenum. The engine test bed used for experimental work consists of a control panel, a hydraulic dynamometer and measurement instruments to measure the parameters of engine performance characteristics. The control panel is being used to perform administrative and management operating system. Besides that, the hydraulic dynamometer was used to measure the power of an engine by using a cell filled with liquid to increase its load. Thus, measurement instrument is provided in this test to measure the as brake torque, brake power, thermal efficiency and specific fuel consumption. The results showed that the variation in the plenum length causes an improvement on the engine performance characteristics especially on the fuel consumption at high load and low engine speeds which are put forward the system using for urban roads. From this experiment, it will show the behavior of engine performance

    An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking

    Get PDF
    Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform

    AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    Get PDF
    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network, the node deployment by means of an autonomous helicopter, and the surveillance and tracking functionalities of the platform. Furthermore, the paper presents the first general experiments of the AWARE project that took place in March 2007 with the assistance of the Seville fire brigades

    WSN and RFID integration to support intelligent monitoring in smart buildings using hybrid intelligent decision support systems

    Get PDF
    The real time monitoring of environment context aware activities is becoming a standard in the service delivery in a wide range of domains (child and elderly care and supervision, logistics, circulation, and other). The safety of people, goods and premises depends on the prompt reaction to potential hazards identified at an early stage to engage appropriate control actions. This requires capturing real time data to process locally at the device level or communicate to backend systems for real time decision making. This research examines the wireless sensor network and radio frequency identification technology integration in smart homes to support advanced safety systems deployed upstream to safety and emergency response. These systems are based on the use of hybrid intelligent decision support systems configured in a multi-distributed architecture enabled by the wireless communication of detection and tracking data to support intelligent real-time monitoring in smart buildings. This paper introduces first the concept of wireless sensor network and radio frequency identification technology integration showing the various options for the task distribution between radio frequency identification and hybrid intelligent decision support systems. This integration is then illustrated in a multi-distributed system architecture to identify motion and control access in a smart building using a room capacity model for occupancy and evacuation, access rights and a navigation map automatically generated by the system. The solution shown in the case study is based on a virtual layout of the smart building which is implemented using the capabilities of the building information model and hybrid intelligent decision support system.The Saudi High Education Ministry and Brunel University (UK
    • 

    corecore