3,210 research outputs found

    Hydrogen Fuel Cell Gasket Handling and Sorting With Machine Vision Integrated Dual Arm Robot

    Get PDF
    Recently demonstrated robotic assembling technologies for fuel cell stacks used fuel cell components manually pre-arranged in stacks (presenters), all oriented in the same position. Identifying the original orientation of fuel cell components and loading them in stacks for a subsequent automated assembly process is a difficult, repetitive work cycle which if done manually, deceives the advantages offered by automated fabrication technologies of fuel cell components and by robotic assembly processes. We present an innovative robotic technology which enables the integration of automated fabrication processes of fuel cell components with robotic assembly of fuel cell stacks into a fully automated fuel cell manufacturing line. This task, which has not been addressed in the past uses a Yaskawa Motoman SDA5F dual arm robot with integrated machine vision system. The process is used to identify and grasp randomly placed, slightly asymmetric fuel cell components having a total alpha-plus-beta symmetry angle of 720o, to reorient them all in the same position and stack them in presenters for a subsequent robotic assembly process. The dual arm robot technology is selected for increased productivity and ease of gasket handling during reorientation. The initial position and orientation of the gaskets is identified by image analysis using a Cognex machine vision system with fixed camera. The process was demonstrated as part of a larger endeavor of bringing to readiness advanced manufacturing technologies for alternative energy systems, and responds the high priority needs identified by the U.S. Department of Energy for fuel cells manufacturing research and development

    Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines

    Get PDF
    The maintenance works (e.g. inspection, repair) of aero-engines while still attached on the airframes requires a desirable approach since this can significantly shorten both the time and cost of such interventions as the aerospace industry commonly operates based on the generic concept “power by the hour”. However, navigating and performing a multi-axis movement of an end-effector in a very constrained environment such as gas turbine engines is a challenging task. This paper reports on the development of a highly flexible slender (i.e. low diameter-to-length ratios) continuum robot of 25 degrees of freedom capable to uncoil from a drum to provide the feeding motion needed to navigate into crammed environments and then perform, with its last 6 DoF, complex trajectories with a camera equipped machining end-effector for allowing in-situ interventions at a low-pressure compressor of a gas turbine engine. This continuum robot is a compact system and presents a set of innovative mechatronics solutions such as: (i) twin commanding cables to minimise the number of actuators; (ii) twin compliant joints to enable large bending angles (±90°) arranged on a tapered structure (start from 40 mm to 13 mm at its end); (iii) feeding motion provided by a rotating drum for coiling/uncoiling the continuum robot; (iv) machining end-effector equipped with vision system. To be able to achieve the in-situ maintenance tasks, a set of innovative control algorithms to enable the navigation and end-effector path generation have been developed and implemented. Finally, the continuum robot has been tested both for navigation and movement of the end-effector against a specified target within a gas turbine engine mock-up proving that: (i) max. deviations in navigation from the desired path (1000 mm length with bends between 45° and 90°) are ±10 mm; (ii) max. errors in positioning the end-effector against a target situated at the end of navigation path is 1 mm. Thus, this paper presents a compact continuum robot that could be considered as a step forward in providing aero-engine manufacturers with a solution to perform complex tasks in an invasive manner

    On Aerial Robots with Grasping and Perching Capabilities: A Comprehensive Review

    Get PDF
    Over the last decade, there has been an increased interest in developing aerial robotic platforms that exhibit grasping and perching capabilities not only within the research community but also in companies across different industry sectors. Aerial robots range from standard multicopter vehicles/drones, to autonomous helicopters, and fixed-wing or hybrid devices. Such devices rely on a range of different solutions for achieving grasping and perching. These solutions can be classified as: 1) simple gripper systems, 2) arm-gripper systems, 3) tethered gripping mechanisms, 4) reconfigurable robot frames, 5) adhesion solutions, and 6) embedment solutions. Grasping and perching are two crucial capabilities that allow aerial robots to interact with the environment and execute a plethora of complex tasks, facilitating new applications that range from autonomous package delivery and search and rescue to autonomous inspection of dangerous or remote environments. In this review paper, we present the state-of-the-art in aerial grasping and perching mechanisms and we provide a comprehensive comparison of their characteristics. Furthermore, we analyze these mechanisms by comparing the advantages and disadvantages of the proposed technologies and we summarize the significant achievements in these two research topics. Finally, we conclude the review by suggesting a series of potential future research directions that we believe that are promising

    RABBIT: A Robot-Assisted Bed Bathing System with Multimodal Perception and Integrated Compliance

    Full text link
    This paper introduces RABBIT, a novel robot-assisted bed bathing system designed to address the growing need for assistive technologies in personal hygiene tasks. It combines multimodal perception and dual (software and hardware) compliance to perform safe and comfortable physical human-robot interaction. Using RGB and thermal imaging to segment dry, soapy, and wet skin regions accurately, RABBIT can effectively execute washing, rinsing, and drying tasks in line with expert caregiving practices. Our system includes custom-designed motion primitives inspired by human caregiving techniques, and a novel compliant end-effector called Scrubby, optimized for gentle and effective interactions. We conducted a user study with 12 participants, including one participant with severe mobility limitations, demonstrating the system's effectiveness and perceived comfort. Supplementary material and videos can be found on our website https://emprise.cs.cornell.edu/rabbit.Comment: 10 pages, 8 figures, 19th Annual ACM/IEEE International Conference on Human Robot Interaction (HRI

    Autonomous Applied Robotics: Ultrasound-Based Robot-Assisted Needle Insertion System Concept and Development

    Get PDF
    Ultrasound (US) is a popular imaging modality for image-guided minimally invasive surgery (MIS), enabling the faster and more reliable execution of numerous procedures, such as biopsy, electrode placement and vessel cannulation. Blood vessel cannulation is a common, routine intervention, e.g., for blood oxygen level testing. Yet, in particular cases, when the vessel is located deep or veins less stable (with the loss of subcutaneous tissue), it is hard to complete it without US assistance. In this paper, we present a solution for US-guided, robot-assisted needle insertion for vein cannulation. We developed an image-guided system to aid needle insertion via active targeting and anatomy-relevant positioning, together with safeguarding features, such as a kinematically enforced Remote Center of Motion (RCM) mechanism. The proposed system comprises a portable US transducer mounted on a KUKA iiwa collaborative robot, a custom designed needle insertion mechanism with adjacent controllers. The US and needle insertion mechanism are attached to the robot through a 3D printed custom designed mounting part with integrated force sensor. The robot arm is responsible for moving the needle to target position with impedance control. The needle insertion mechanism allows the manipulation of the needle along 3 axes. The mechanism was designed for near-surface vein cannulation with an RCM kinematic structure to avoid damage to the vein. The developed system was tested with different types of gelatin phantoms. Vein deformation and tissue motion was examined during US imaging. The control loop of our system is supplemented with vein deformation tissue model and US-based visual servoing

    Chess Robot

    Full text link
    ME450 Capstone Design and Manufacturing Experience: Winter 2021The Chess Robot is designed to be an autonomous robotic arm that is able to compete in a chess match against a human. The robot moves their own pieces and captures the opponent’s pieces in efforts to win a standard game of chess. Robotic arms that play chess have been created before, but are either industrial grade and expensive or very cheap/homemade and slow. This project aimed to create a functional chess robot that maximizes speed at a relatively low cost. It was also designed with potential for mass manufacturing in mind. With additional design and development, the skill of the robot should be easily changed, since the software is easily customized; thus, as the player improves, so will the robot. There will also be an opportunity to play chess against other humans through two intermediary robots or for one player to play while making use of an online chess platform. This feature, if fully developed, will enable chess instructors to play with children and not be limited by geographical proximity, further expanding the reach of chess education.Student Sponsor: UM Mechanical Engineering departmenthttp://deepblue.lib.umich.edu/bitstream/2027.42/167650/1/Team_5-Chess_Robot.pd

    Upper limb soft robotic wearable devices: a systematic review

    Get PDF
    Introduction: Soft robotic wearable devices, referred to as exosuits, can be a valid alternative to rigid exoskeletons when it comes to daily upper limb support. Indeed, their inherent flexibility improves comfort, usability, and portability while not constraining the user’s natural degrees of freedom. This review is meant to guide the reader in understanding the current approaches across all design and production steps that might be exploited when developing an upper limb robotic exosuit. Methods: The literature research regarding such devices was conducted in PubMed, Scopus, and Web of Science. The investigated features are the intended scenario, type of actuation, supported degrees of freedom, low-level control, high-level control with a focus on intention detection, technology readiness level, and type of experiments conducted to evaluate the device. Results: A total of 105 articles were collected, describing 69 different devices. Devices were grouped according to their actuation type. More than 80% of devices are meant either for rehabilitation, assistance, or both. The most exploited actuation types are pneumatic (52%) and DC motors with cable transmission (29%). Most devices actuate 1 (56%) or 2 (28%) degrees of freedom, and the most targeted joints are the elbow and the shoulder. Intention detection strategies are implemented in 33% of the suits and include the use of switches and buttons, IMUs, stretch and bending sensors, EMG and EEG measurements. Most devices (75%) score a technology readiness level of 4 or 5. Conclusion: Although few devices can be considered ready to reach the market, exosuits show very high potential for the assistance of daily activities. Clinical trials exploiting shared evaluation metrics are needed to assess the effectiveness of upper limb exosuits on target users

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Robotic Ultrasound Imaging: State-of-the-Art and Future Perspectives

    Full text link
    Ultrasound (US) is one of the most widely used modalities for clinical intervention and diagnosis due to the merits of providing non-invasive, radiation-free, and real-time images. However, free-hand US examinations are highly operator-dependent. Robotic US System (RUSS) aims at overcoming this shortcoming by offering reproducibility, while also aiming at improving dexterity, and intelligent anatomy and disease-aware imaging. In addition to enhancing diagnostic outcomes, RUSS also holds the potential to provide medical interventions for populations suffering from the shortage of experienced sonographers. In this paper, we categorize RUSS as teleoperated or autonomous. Regarding teleoperated RUSS, we summarize their technical developments, and clinical evaluations, respectively. This survey then focuses on the review of recent work on autonomous robotic US imaging. We demonstrate that machine learning and artificial intelligence present the key techniques, which enable intelligent patient and process-specific, motion and deformation-aware robotic image acquisition. We also show that the research on artificial intelligence for autonomous RUSS has directed the research community toward understanding and modeling expert sonographers' semantic reasoning and action. Here, we call this process, the recovery of the "language of sonography". This side result of research on autonomous robotic US acquisitions could be considered as valuable and essential as the progress made in the robotic US examination itself. This article will provide both engineers and clinicians with a comprehensive understanding of RUSS by surveying underlying techniques.Comment: Accepted by Medical Image Analysi
    • …
    corecore