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HYDROGEN FUEL CELL GASKET HANDLING AND SORTING WITH MACHINE 

VISION INTEGRATED DUAL ARM ROBOT 

by 

DEVIN FOWLER 

(Under the Direction of Daniel Cox) 

ABSTRACT 

    Recently demonstrated robotic assembling technologies for fuel cell stacks used fuel cell 

components manually pre-arranged in stacks (presenters), all oriented in the same position.  

Identifying the original orientation of fuel cell components and loading them in stacks for a 

subsequent automated assembly process is a difficult, repetitive work cycle which if done 

manually, deceives the advantages offered by automated fabrication technologies of fuel cell 

components and by robotic assembly processes.  

    We present an innovative robotic technology which enables the integration of automated 

fabrication processes of fuel cell components with robotic assembly of fuel cell stacks into a 

fully automated fuel cell manufacturing line. This task, which has not been addressed in the past 

uses a Yaskawa Motoman SDA5F dual arm robot with integrated machine vision system. The 

process is used to identify and grasp randomly placed, slightly asymmetric fuel cell components 

having a total alpha-plus-beta symmetry angle of 720o, to reorient them all in the same position 

and stack them in presenters for a subsequent robotic assembly process. The dual arm robot 

technology is selected for increased productivity and ease of gasket handling during 

reorientation. The initial position and orientation of the gaskets is identified by image analysis 

using a Cognex machine vision system with fixed camera. The process was demonstrated as part 

of a larger endeavor of bringing to readiness advanced manufacturing technologies for 



alternative energy systems, and responds the high priority needs identified by the U.S. 

Department of Energy for fuel cells manufacturing research and development.

INDEX WORDS: Dual arm robotics; Fuel cells; Robotic manufacturing; Robotic assembly; 

Machine vision system; Flexible materials handling; Robotic fuel cell assembly 
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CHAPTER 1. INTRODUCTION 

1.1 Hydrogen Fuel Cells 

Fuel cells (FC) use hydrogen and oxygen gas to generate electricity. A fuel cell (FC) is an 

electrochemical energy converter (EEC) that converts the chemical energy of a fuel directly 

(without passing through other forms of energy such as thermal or mechanical energy) into DC 

electricity. Unlike other EECs such as batteries and accumulators which use solid reactants 

(metals and metal oxides) incorporated into the units, FCs operate as long as they are 

supplied with a fuel (hydrogen or hydrogen-rich fluid) and an oxidant (oxygen or air). Fuel cells 

can operate extended times without requiring periodic replacement or recharging. FCs suffer 

from many challenges currently. The most debilitating challenge of fuel cells is the high cost to 

purchase and manufacture. 

1.2 Need for Automated Fuel Cell Assembly 

Due to their fast start-up time, low sensitivity to orientation, and favorable gravimetric 

power, PEMFCs are particularly suitable for use as prime power for fuel cell vehicles (FCVs), 

unmanned underwater vehicles (UUVs) and unmanned aerial vehicles (UUVs). As a 

consequence of the high interest in FCVs and hydrogen, the investment in PEMFC over the past 

decade easily surpasses all other types of fuel cells combined. PEMFC demand is rising as 

indicated in Figure 1.1 (Grand View Research 2016). Stationary fuel cell power plants are 

expected to emerge as the largest application segment and are expected to account for over 70% 

of the total shipments. Factors such as the flexibility to use different fuels, high efficiency and 

utilization of direct current are the key factors expected to propel stationary power plant demand 

(Grand View Research 2016). 
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Figure 1.1 - Global fuel cell market revenue by product, 2014 - 2025 (USD Million) (top) and 

global fuel cell market capacity by application, 2015 (MW) (bottom) (Grand View Research 

2016). 

The fuel cell stack and its components are currently being manufactured using mostly 

laboratory fabrication methods that have been scaled up in size, but do not incorporate high-

volume manufacturing methods. Manufacturing research and development is needed to prepare 

advanced manufacturing and assembly technologies that are necessary for low-cost, high volume 

fuel cell powerplant production. U.S. Department of Energy (DOE) has identified high-priority 

manufacturing research and development needs for PEMFCs. They include efforts to develop 
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technologies for high-speed manufacturing of fuel cell components; to develop automated 

processes for assembling fuel cell stacks; to develop agile, flexible manufacturing and assembly 

processes; and to establish flexible automated manufacturing technology facilities. 

Compared to other types of fuel cells, the PEMFC offers the advantages of delivering 

higher gravimetric and volumetric power density and for operating at lower temperatures, which 

result in a quick start up time and less wear on systems components. For these reasons, PEMFCs 

find today extensive applications in transportation and stationary uses. When compared to other 

types of fuel cells, PEMFCs dominated the market in recent years in both number of units and in 

total power shipped, accounting for over 65% of global shipments in 2015. PEMFCs generated a 

revenue over USD 2 billion in 2015 (Global Markets Insight, 2016) and are expected to generate 

USD 12 billion in 2025 (Grand View Research, 2016) 

1.3 Problem Statement 

Gaskets are used in the construction of hydrogen fuel cells (Fig 1.2). The function of the 

gaskets is to prevent the leaking of fuel cell gasses. Gaskets can be made from a variety of 

materials but are commonly made of thin poly(tetra)fluoroethylene or rubber sheet (EPDM).  

Fuel cell components are inserted in presenters before the robotic assembly process starts, 

all in the same orientation. In most cases fuel cell components are asymmetric, possessing a total 

alpha-plus-beta symmetry angle of 720° according to Boothroyd’s et al. classification system for 

manual insertion and fastening processes. This means that the angles through which the 

components need to be rotated to repeat their orientation is 360° around the axis of insertion, and 

360° around an axis perpendicular to the former. Before their insertion in presenters for the 

subsequent robotic assembly process, components need to be picked from bins where they have a 

random orientation. Their orientation must be examined relative to two axes of rotation 
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simultaneously. If necessary, they must be first flipped to bring them with the correct side facing 

the presenter. This is equivalent to an 180° rotation about axis 1. If necessary, they must then be 

also rotated in-plane, about axis 2 to bring them in the correct insertion position (Figure 1.2) 

 

Figure 1.2 - Gasket axis orientation 

In particular, fuel cell gaskets are typically only slightly asymmetric, making their orientation 

examination difficult. PEMFC gaskets are also flexible, flat, thin parts which also makes their 

manipulation challenging. For example, the gaskets of a PEMFC in the range of a few kW may 

have the planar area between one hundred to a few hundred cm2 while their thickness is at 

submillimeter-scale. This characteristic may lead to a time-consuming sorting and manipulation 

process. The combined effect of the gasket dimensional characteristic with that of the marginal 

asymmetry and with the high total alpha-plus-beta symmetry angle makes the gaskets 

transferring process from their fabrication workcell to the robotic assembly workcell a repetitive 

work cycle that can cause mental strain and fatigue to human operators. A manual sorting and 

transferring process of gaskets or other fuel cell components from their manufacturing cell to the 

assembly line may ultimately defeat the advantages brought by the automated manufacturing 

processes of fuel cell components and by the robotic assembly process.  

The objective of this work is to demonstrate a robotic process of transferring fuel cell 

components from their fabrication workcell to a robotic fuel cell assembly workcell. This gasket 

transferring process includes component pickup from a bin where they have a random 

orientation, handling, orientation examination, reorientation and insertion in the presenter for a 
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subsequent robotic assembly process. The demonstrated process uses a dual arm robot with 

integrated machine vision system. This robotic process enables the integration of automated 

manufacturing processes of fuel cell components with a robotic fuel cell stack assembly process 

into a fully automated fuel cell manufacturing line. The process was demonstrated with fuel cell 

gaskets due to increased complexity challenges these components present, but it can be readily 

used for other fuel cell components such as MEAs and bipolar plates. The process was 

demonstrated at Georgia Southern University as part of a larger endeavor of bringing advanced 

manufacturing technologies for alternative energy systems to readiness, and responds the high 

priority needs identified by the U.S. Department of Energy for fuel cells manufacturing research 

and development. Grasping these materials by robots can be done by using suction cups to allow 

for uniform gripping. The use of robotics also allows for better precision. 

 

  Figure 1.3 Single PEMFC stack (Sharaf and Orhan 2014, 844) 

1.4 Hypothesis 

 If hydrogen fuel cell gaskets are handled with a vision system integrated dual arm robot 

as compared to using a human, then errors will decrease even if cycle times increase. 
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1.5 Experimental Limitations 

 The scope of this work is to demonstrate the feasibility of a manufacturing process aimed 

to enable the integration of automated manufacturing processes of fuel cell components with the 

robotic assembly of fuel cell stacks in a single automation line. The gaskets were aligned to a 

corner before sortation was performed. This allowed the gaskets to be evenly picked up before 

being scanned (Chapter 3). The robot cycle times were also not completely optimized in terms of 

robot speed due to potential safety hazards. Ten cleaned gaskets were used during the experiment 

due to cost limitations.  
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CHAPTER 2. LITERATURE REVIEW 

2.1 Proton Exchange Membrane Fuel Cells 

2.1.1 Overview and Advantages 

 A proton exchange membrane fuel cell (PEMFC) is a modular one-step energy 

conversion device. A PEMFC converts chemical energy directly to electrical energy. This device 

is compared to a multi-step energy conversion device such as a combustion engine where energy 

is converted from chemical to thermal to mechanical to electric. Hydrogen is used as fuel to 

power fuel cells. Hydrogen fuel cell devices have many advantages over combustion-based 

energy conversion devices. Some advantages include reduced noise, no pollution during the 

operation of hydrogen fuel cells, and the capability to obtain hydrogen from renewable sources 

instead of the depleting fossil fuels used by combustion-based energy conversion devices. 

(Sharaf and Orhan 2014, 811) These advantages can be viewed in Figure 2.1 

 

Figure 2.1 - Principals, features, and applications of PEMFCs (Sharaf and Orhan 2014, 812) 
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2.1.2 History 

 The development of the first fuel cell started in the 1800’s with Sir William Grove, 

known as the “father of fuel cell science.” “Sir William Grove used his background of 

electrolysis to conceptualize a reverse process that could be used to generate electricity. Based 

on this hypothesis, Grove succeeded in building a device that combines hydrogen and oxygen to 

produce electricity (instead of separating them using electricity). The device, originally labeled a 

gas battery, came to be known as a fuel cell.” (Sharaf and Orhan 2014, 812). The first fully 

functioning fuel cell was developed in 1959 by Francis Thomas Bacon, which was later licensed 

and implemented by NASA on the Gemini and Apollo missions (Sharaf and Orhan 2014, 812). 

Table 2.1.1 is a brief overview of the history and milestones of fuel cells. 

Table 2.1 - Milestones in fuel cell history (Sharaf and Orhan 2014, 812) 

Year(s) Milestone 

1839 W.R. Grove and C.F. Schönbein separately demonstrate the principals of a 

hydrogen fuel cell 

1889 L. Mond and C. Langer develop porous electrodes, identify carbon monoxide 

poisoning, and generate hydrogen from coal 

1893 F.W. Ostwald describes the functions of different components and explains the 

fundamental electrochemistry of fuel cells 

1896 W.W. Jacques builds the first fuel cell with a practical application 

1933-1959 F.T. Bacon develops AFC technology 

1937-1939 E. Baur and H. Preis develop SOFC technology 

1950 Teflon is used with platinum/acid and carbon/alkaline fuel cells 

1955-1958 T. Grubb and L. Niedrach develop PEMFC technology at General Electric 
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1958-1961 G.H.J. Broers and J.A.A. Ketelaar develop MCFC technology 

1960 NASA uses AFC technology based on Bacon's work in its Apollo space 

program 

1961 G.V. Elmore and H.A. Tanner experiment with and develop PAFC technology 

1962-1966 The PEMFC developed by General Electric is used in NASA’s Gemini space 

program 

1968 DuPont introduces Nafion®  

1992 Jet Propulsion Laboratory develops DMFC technology 

1990s Worldwide extensive research on all fuel cell types with a focus on PEMFCs 

2000s Early commercialization of fuel cells 

2.1.3 Design 

 Hydrogen fuel cells are constructed with three main components: a fuel electrode as the 

anode, an oxidant electrode as the cathode, and an electrolyte inserted between the anode and 

cathode. The electrode material is porous and covered in a layer of catalyst, which is usually 

platinum. 

 Hydrogen gas is pumped into the anode catalyst, which electrochemically separates the 

gas into hydrogen ions and electrons. This process is represented by Equation 2.1.1 

  𝐻2 → 2𝐻+ + 2𝑒− Equation 2.1.1 

 After the gas has been separated, the hydrogen ions are drawn through the electrolyte and 

the electrons are drawn through an external circuit that connects to the cathode. Oxygen gas is 

pumped into the cathode. The hydrogen ions, oxygen gas, and electrons from the external circuit 

all combine at the cathode to form water and heat. Equation 2.1.2 represents this process. 



23 

 

  
1

2
𝑂2 + 2𝐻+ + 2𝑒− → 𝐻2𝑂 Equation 2.1.2 

 The governing reaction of the entire process is represented by Equation 2.1.3. The 

combination of hydrogen and oxygen gas produces water, heat, and usable electricity 

  𝐻2 +
1

2
𝑂2 → 𝐻2𝑂 +𝑊𝑒𝑙𝑒 + 𝑄ℎ𝑒𝑎𝑡 Equation 2.1.3 

2.1.4 Applications and Market Evaluation 

 Applications of FC’s can be classified as portable, stationary, or transportation based. 

Fuel cells hold promising potential to become competitive players in a number of markets due to 

their broad range of applications. And as a result of their high modularity, wide power range, and 

variation of properties among different types, fuel cells have applications ranging from scooters 

to large cogeneration power plants as fuel cells can theoretically be used for any energy-

demanding application (Sharaf and Orhan 2014, 824).  

2.1.4.1 Portable Applications 

 The two most common portable applications in market focus are portable power 

generators for personal, emergency, or disaster relief, and portable consumer electronic devices.  

(Sharaf and Orhan 2014, 824-825) The modularity and high energy density of fuel cells (5–10 

times higher energy density than a typical rechargeable battery) make them strong potential 

candidates for future portable personal electronics. Moreover, portable military equipment is 

another growing application for portable direct methanol fuel cells (DMFCs), reformed methanol 

fuel cells (RMFCs), and PEMFCs due to their silent operation, high power and energy density, 

and low weight compared to current battery- based portable equipment. In addition to lower 

weight and higher energy density, the fact that fuel cells do not require recharging from an 

electricity source makes them more favorable in comparison to batteries in the future portables 
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market. However, their cost and durability are yet to meet set targets (Sharaf and Orhan 2014, 

824-825). 

2.1.4.2 Stationary Applications 

 The three most common stationary applications are emergency power supplies (EPS), 

remote-area power supplies (RAPS), and distributed power or combined heating and power 

(CHP) generation (Sharaf and Orhan 2014, 825-827).  

 EPS systems are becoming more commonly used due to the ability to withstand harsh 

environments, higher energy and power densities, longer operation times, compact size, and 

modularity (Sharaf and Orhan 2014, 825-827).  

 The ability to use renewable resources, excellent load-following and high efficiency 

contributes to the usefulness of PEMFCs for RAPS. 

 Decentralizing power generation with PEMFCs is also a possibility for near-future 

implementation. Due to their static nature, lower emissions, excellent load-following, and high 

efficiency; fuel cells could be used for residential electric power or CHP distributed generation 

either on a household basis or a larger residential blocks basis. In fact, it is estimated that by 

2020, fuel cells could penetrate 50% of the world distributed generation market if cost and 

durability targets are met (Sharaf and Orhan 2014, 825-827). 

2.1.4.3 Transportation Applications 

 Transportation applications can be categorized into auxiliary power units (APUs), light 

traction vehicles (LTVs), light-duty fuel cell electric vehicles (L-FCEVs), heavy-duty fuel cell 

vehicles (H-FCEVs), aerial propulsion, and marine propulsion. (Sharaf and Orhan 2014, 828-

838) 
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 APUs can be compared to car batteries in transportation applications. APUs power non-

propulsion or secondary systems in a vehicle. (Sharaf and Orhan 2014, 828) 

 Vehicles such as forklifts, motorcycles, scooters, wheel-chairs, and golf carts fall into the 

category of LTVs. (Sharaf and Orhan 2014, 828) “Forklifts have been the most successful 

demonstration of fuel cells in the transportation sector, and one of the most successful 

demonstrations for fuel cells overall. Forklifts and other material handling vehicles and 

equipment are exhaustively used in the warehousing and distribution industry, with nearly 2.5 

million forklifts in operation in North America.” (Sharaf and Orhan 2014, 828). The success of 

fuel cell implementation in fork lifts are due to being able to run indoors or in non-ventilated 

areas, less harmful emissions, high efficiencies, excellent load-following, low maintenance, fast 

recharge times, longer operation times than conventional batteries, and do not degrade with each 

recharge as compared to conventional batteries. (Sharaf and Orhan 2014, 828-829).  

 L-FCEVs and H-FCEVs both utilize fuel cells as the source of electricity to power the 

primary propulsion system. L-FCEVs primarily include passenger cars, while H-FCEVs include 

industrial vehicles such as buses, utility-trucks, and other heavy vehicles. (Sharaf and Orhan 

2014, 829-832). Figure 2.2 represents a concept design of a modified 2005 Honda FCX L-FCEV 

(Sharaf and Orhan 2014, 830).  

 Aerial propulsion is an application of fuel cells that includes space and aviation. 

Unmanned aerial vehicles (UAVs) are the primary focus of aerial propulsion applications due to 

the low heat dissipation and static operation for reconnaissance, and higher energy density than 

conventional batteries allowing for longer flight times (Sharaf and Orhan 2014, 832-833).  
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 Marine applications are largely APU based, with future implications being used in 

submarines and boats. The issue with fuel cells used for marine application is primarily the 

durability and corrosion to salt water (Sharaf and Orhan 2014, 833-838). 

 

Figure 2.2 - L-FCEV concept design based on Honda 2005 FCX (Sharaf and Orhan 2014, 830) 

2.1.5 Technological Challenges 

 Challenges of fuel cells include high costs, low durability, hydrogen production, flooding 

and water balance of the cell, parasitic load of auxiliary plant balancing devices, and the lack of 

standard and internationally accepted codes.  

 The cost of fuel cells is the primary challenge of their societal implementation. “Experts 

estimate that the cost-per-kW generated using fuel cells has to drop by a factor of 10 for fuel 

cells to enter the energy market. Three main reasons behind the current high cost of fuel cell 

stacks are: the dependence on platinum-based catalysts, delicate membrane fabrication 

techniques, and the coating and plate material of bipolar plates.” (Sharaf and Orhan 2014, 822-

823).  

 Fuel cell durability is also a fundamental problem, especially for RAPs, marine 

applications, and other long-term usage applications. Fuel cell durability is also a large factor in 
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the cost of purchasing fuel cells. The production of hydrogen via steam reformation is also a 

technological challenge with hydrogen fuel cells. One of the benefits of hydrogen fuel cells is the 

ability to operate with heavily mitigated pollutant production. With steam reformation, fossil 

fuels are used to produce hydrogen, which produces pollution and defeats a primary benefit of 

the HFC (Sharaf and Orhan 2014, 823). 

2.2 Dual Arm Robotics  

 Dual arm manipulation or cooperative manipulation is a broad term for two separate 

manipulators cooperating to accomplish tasks. There is ambiguity in defining dual arm 

manipulation. “Two dexterous fingers mounted on the same hand may manipulate a small object 

using the same principles as two separate manipulators that are moving a large object. In fact, 

many authors do not distinguish between multi-agent or multi- arm systems.” (Smith 2012, 

1340-1353). One proposed classification of dual arm robotics is between coordinated and non-

coordinated manipulation. Coordinated manipulation is defined by two arms accomplish the 

same task and non-coordinated manipulation is defined by two arms performing different tasks. 

Coordinated manipulation is divided into goal-coordinated and bimanual manipulation. Goal 

coordinated manipulation is defined by both arms accomplishing the same goal such as typing 

and bimanual manipulation is defined by both arms physically manipulating the same object. 

(Smith 2012, 1340-1353)  

2.2.1 Dual Arm Robotics Applications 

2.2.1.1 Machine Tending 

 One application of dual arm robots is machine tending. Machine tending is the process of 

servicing industrial machinery using robots such as tool changes in a CNC or placing steel plates 

into a waterjet. Dual arm robots are useful to machine tending due to flexibility and the ability to 
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bimanually grasp materials. A paper written by Geismar et al. details the usefulness of using a 

dual arm robot to tend three machines simultaneously versus other configurations via computer 

simulation. The use of a dual arm robot allows for much higher throughput of the machine shop 

as compared to using either three operators or three robots. “Via a computational study, we have 

quantified the gains realized by using a dual-arm robot under a variety of circumstances in these 

smaller cells. We have also delineated the parameters under which a dual-arm robot generates 

higher throughput than a single-arm/dual-gripper robot. For two-machine cells that produce 

multiple part types, we showed how a special, easily understood and implemented class of dual-

arm cycles dominates all single-arm/single-gripper cycles.” (Geismar, et. al 2012) 

2.2.1.2 Assembly 

 Dual arm robots are also commonly used in assembly applications due to their flexibility 

and wide range of motion. Integrating dual arm robots into manufacturing facilities for the 

purposes of assembly is very practical due to the ability to replace human workers. Figure 2.4 

represents a Yaskawa Motoman SDA10 assembling an office chair. This demonstration shows 

the flexible tooling of the dual arm robot as it grips a screwdriver and various parts of the 

assembly. Certain larger parts of the assembly are bimanually grasped to allow for stability of 

placement. By using both arms, the complexity of the workcell is much more compact than using 

one robot with special holding tooling. This can reduce the cost of the workcell and allow for 

better modularity for a changing design. (Yaskawa Europe GmbH. 2012)  
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Figure 2.3 - SDA10 automated office chair assembly (Yaskawa Europe GmbH. 2012) 

 Another example of the efficacy of using dual arm robots for assembly was used by Kim 

Young -Loul, Hee-Chan Song, and Jae-Bok Song. In this study, a dual arm robot was employed 

to close the lid of a box without the use of a jig. Two methods were compared; one method relied 

on the use of friction on the bottom of the box in order for a manipulator to assemble the lid on 

to the box, and the other relied on the use of a second manipulator to grip the box during the lid 

assembly. Both methods employed force sensing to accommodate for the slippage and 

misalignment of the lid with respect to the box.  During the friction assembly strategy, the lid on 

the box is rotated and slid against the top edge of the box to align one edge of the box. This 

process is repeated for the second edge of the box to ensure alignment. After the lid is 

positioned, the manipulator pushed the lid down onto the box completing the assembly. During 

the dual arm assembly strategy, the same method is employed, but the base is kept in place by 

the second manipulator. The advantage of using the second manipulator is to reduce the use of a 

jig and not rely on the friction between the box and the surface it is rests on as this can vary 

depending on applications. (Young-Loul, Hee-Chan Song, and Jae-Bok Song 2013) 
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Figure 2.4 - Assembly method for the friction-based assembly strategy (left) and dual-arm 

assembly strategy (right). (Young-Loul, Hee-Chan Song, and Jae-Bok Song 2013)  

2.2.1.3 Sorting 

 Another application of dual arm robotics is sorting. Sorting is the process of arranging 

items systematically. The use of dual arm robots allows for a variety of items to be sorted with 

precision and accuracy. Employing dual arm robots also allows multiple objects to be sorted at 

once. This allows a complex workcell to be reduced, and allows for repurposing if the product 

changes at much less cost than by using a fixed system. 

 In a paper written by Stria et al., a vision sensing dual arm robot was used to sort various 

garments. The garments were segmented into contours from the camera, and then the dual arm 

robot executed folding. By segmenting the garment into contours, landmark points were 

determined, and the folded model was generated. Figure 2.5 represents the garment segmentation 

and folding operations (Stria et. al. 2019). “It is shown how folded variants of the unfolded 

model can be derived automatically. Universality and usefulness of the model is demonstrated by 

its favorable performance within the completely folding procedure, which is applicable to a 

variety of garments categories (towel, pants, shirt, etc.) and evaluated experimentally using the 

two-armed robot. The principal novelty with respect to the state of the art is in the new garment 
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polygonal model and its manipulation planning algorithm which leads to the speed up by two 

orders of magnitude.” (Stria et. al. 2019) 

 

Figure 2.5 - Dual arm robot garment segmentation and folding (Stria et. al. 2019). 

2.2.2 Future of 

 Many aspects will influence the future of dual arm robotics. One proposed future avenue 

for better incorporation of dual arm robotics is the integration of system theory with tools from 

cognitive methodologies, specifically the consideration of vision and learning capabilities in 

feedback design (Smith 2012, 1340-1353). The applications of allowing the robot to adjust 

according to global knowledge of the environment allows for advanced control. This control can 

allow for higher levels of collaboration between the manipulators of the robot and humans. 

(Smith 2012, 1340-1353) 
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 Utilization of machine learning would allow for complex interaction between multiple 

robots and humans. Tasks that are more complex can be completed by utilizing higher level of 

coordination. This tier of coordination would involve both robots and humans taking on roles of 

leadership of followership and would require careful planning and safety measures. “Current 

state of the art typically employs different types of compliance, such as admittance or impedance 

control approaches, putting the human in complete control. However, for robots to truly replace 

parts of the human work-force, we will need systems that can participate actively, as leaders as 

well as followers in collaborative tasks.” (Smith 2012, 1340-1353). 

2.2.3 Computer Vision Systems in Robotics 

 Machine Vision (MV) is the process of using imaging devices such as cameras or radars 

to transmit visual data such as pictures of videos to a computer to gain a better understanding of 

the images, videos, or live streams. The applications of MV include manufacturing, biometry, 

security, and more. To gain a better understanding of the image, it must first be segmented in a 

process known as image segmentation. “Image segmentation divides an input image into regions 

matching separate objects, visible in the image by finding in the image analyzed cohesive 

regions which are characterized by similar values of some attribute (e.g. lightness) or a set of 

features (e.g. texture). In this way, objects of interests are extracted for further processing such as 

description or recognition. The result of image segmentation should allow one to define the 

geometric features of objects placed in a scene as accurately as possible with the minimum 

computational complexity.” (Nowakowski and Sankowski 2014, Ch. 2.1). Methods of image 

segmentation include pixel, edge, region, model, and graph-based methods (Figure 2.6). 
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Figure 2.6 – Examples of image segmentation methods (Nowakowski and Sankowski 2014, Ch. 

2.1). 

2.3 Examples of Automated Hydrogen Fuel Cell Construction 

2.3.1 End Effector Designs  

 The design of end effectors for assembly of PEMFC construction initially used finger 

grippers for grasping of the bipolar plates and pneumatic grippers for grasping of MEAs and 

gaskets. The use of finger grippers required submillimeter accuracy and incorporated feeders and 

vision systems. Later designs of end effectors allowed for more flexibility and cost reduction. 

These designs incorporated vacuum cups and suspension mechanisms, which reduce the need for 

vision systems. Later designs of end effectors also utilize passively compliant mechanisms, 

which allow for flexibility that is not present in most robots and assist in placement (Gurau, 

Vladimir, Devin Fowler and Daniel Cox. 2017). 
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Figure 2.7 – “End-effectors used for PEMFC components manipulation: (a) double-acting finger 

gripper; reproduced with permission from [9]; (b) pneumatic end-effector with suspension 

mechanism; reproduced from [14]; (c) end-effector with vacuum cups and suspension 

mechanism used in [7]; (d) pneumatic end-effector; reproduced from [16].” (Gurau, Vladimir, 

Devin Fowler and Daniel Cox. 2017) 

2.3.2 Workcell Designs 

 Workcells for PEMFC stack assembly have been successfully demonstrated using fixed 

automation lines, multiple robots, and single robots. Two assembly strategies are used for 

automated assembly. The first strategy assembles and tests individual cells before adding them to 

the stack. The second strategy assembles the entire stack at once. The first strategy benefits from 

additional testing and servicing, but at the cost of more manufacturing operations. 
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Figure 2.8 “General purpose robot workcells for assembly of PEMFC stacks: (a) workcell 

consisting of 3 KUKA robots with 6 DOF (degrees of freedom); reproduced with permission 

from [9]; (b) workcell consisting of a single KUKA robot with 6 DOF; reproduced from [14]” 

(Gurau, Vladimir, Devin Fowler and Daniel Cox. 2017)  
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CHAPTER 3. METHODOLOGY 

3.1 Equipment and Instrumentation Precision 

3.1.1 Yaskawa Motoman - SDA5F Dual Arm Robot 

 The SDA5F robot used for the experiment has a 5 kg payload per arm with a 1,118 mm 

vertical reach, 845 mm horizontal reach per arm, and ±0.06 mm repeatability. Each arm has 

seven axes with a single axis for base rotation. (Appendix C) 

3.1.2 COGNEX ISM1403C Camera  

 The ISM1403C camera used in this experiment had 128MB of image processing 

memory, measured 8.8mm diagonal with 4.4 x 4.4μm sq. pixels (1600 x 1200 resolution), had an 

electronic shutter speed of 27μs to 1000ms 7 full frames per second, and had a CCD alignment 

variability of ±0.127mm from lens C-mount axis to center of imager. (Appendix D) 

3.1.3 Selectively Compliant End-Effector 

 The fabricated end effector utilized linear rails and springs to move in three degrees of 

freedom. Horizontally in both X and Y (with respect to the end effector pointing towards the 

base) the system allowed for ±3mm and Vertically (Z-axis) the end effector had a compliance of 

50mm. Figure 3.1 represents the end effector and associated reference coordinate system. 

 

Figure 3.1 – Selectively-Compliant End Effector with reference coordinate system 
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3.2 Robot Mounting Cart and Staging Tables Design and Fabrication 

3.2.1 Robot Mounting Cart Design 

The robot mounting cart was the first apparatus designed. This was done at the beginning 

of the experiment to allow for the robot and controller to be secured before any robot motion was 

performed as to prevent potential hazard. The cart design began by designing a 4ft by 4ft by 

0.25-inch plate with both mounting locations for the SDA5F and a bolt hole pattern for flexible 

mounting options. The bolt hole pattern was chosen to be 0.5-inch holes spaced 2 inches apart. 

The mounting holes were moved 2.5 inches from the edge of the top plate to allow the SDA5F to 

interface with a conveyor and to be near the steel tube frame for rigidity. The height of the cart 

was determined by finding the height of the FS100 controller and allowing for 0.25-inch 

clearance. This small clearance was chosen to avoid too much height added to the cart while still 

being able to fit the controller into the frame and underneath the robot to prevent unplanned 

collision between the robot and controller and to prevent instability. The 2-inch by 0.25-inch 

tube that was used for the frame was chosen for maximum strength and rigidity (Figure 3.2) 

 

Figure.3.2 – Robot mounting cart design 
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3.2.1.1 Manufacturing of Robot Mounting Cart 

 Once the cart was designed, the fabrication process began. The steel tubing was cut to 

length and welded. The top plate was waterjet to allow for accurate mounting hole locations. 

Figure 3.3 represents the finished cart with the SDA5F and controller. The controller was placed 

opposite of the robot to allow for the center of gravity of the system to be closer to the center of 

the cart to prevent instability. 

 

Figure 3.3 - Robot mounting cart with Yaskawa SDA5F on top and controller housed below 

3.2.2 Gasket Staging Table and Alignment Table 

 The staging and alignment table were designed such that both of the manipulator arms 

were able to pick up and place gaskets while avoiding singularities and without crashing into 

each other. This design was performed experimentally by manually moving the manipulators to 

positions of interest (pick, place, scan, etc.) and recording the positions that worked with 

minimal articulation or translational difficulty when jogging. 



39 

 

 The design of the tables and camera mounts were iterated several times. Initially the 

camera was positioned such that the gasket was viewed when it was in the staging table. This 

prevented the ability to see the gaskets when a manipulator was picking. This also caused 

detection errors due to the transparency of the gasket so a different approach was taken. The new 

design allowed the manipulators to scan the gasket after picking. Since scanning occured with 

only the gripper behind the gasket, the semitransparency of the gasket was mitigated, and 

scanning was found to be more accurate. Figure 3.4 represents the final design of the workcell. 

 

Figure 3.4 - Workcell final design with staging table (center left, smaller), alignment table 

(center right, taller), and SwivelLink® camera mount. 

 The staging table and alignment tables were fabricated using 1.5-inch 8020 aluminum 

extrusion (Figure 3.5). The top of each table was fabricated from waterjet 0.25-inch aluminum 

plate to accurately place holes for the alignment pins and work holding fixtures. The 8020 

aluminum also allowed for the attachment of the camera mount, which was made from 
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SwivelLink® connectors. The SwivelLink® connectors allowed for ease of camera manipulation 

in six degrees of freedom. 

 

Figure 3.5 – Gasket staging and alignment tables (left) and SwivelLink® camera mount (right). 

The work holding parts in the top left of the left image are 3D printed using ABS. 

3.3 Fuel Cell Gasket Design and Fabrication 

 The fuel cell gasket was designed by Dr. Gurau. The purpose of a fuel cell gasket is to 

prevent the hydrogen gas and oxygen from escaping their flow channels. This prevents flow 

between the cathode and anode. Flat gaskets instead of O-rings or other shapes have been 

demonstrated to insulate better. The current design has the outside dimensions equal to the 

dimensions of the bipolar plates, the inside dimensions are those of the gas diffusion layers 

(GDLs). GDLs are components of the membrane electrode assemblies (MEAs) and their 

principal role is to distribute the reactant gasses over the active area of the MEAs. The GDLs 

must be surrounded by the gaskets in the fuel cell assembly without overlap. This is why there 
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are alignment pins. The other gasket cuts are for the inlet and outlet manifolds of hydrogen, air, 

coolant fluid, and for alignment pins. The gasket geometry is similar to the MEA and bipolar 

plate designs. 

 The gasket thickness must be roughly 80% of the GDL thickness. Its material must 

withstand the operational temperature of the fuel cell, which in this case is between 120 and 200 

degrees Celsius. Teflon does not turn out to be a good material for this since it deforms 

permanently under compression. Another material candidate is perfluoroalkoxy alkane (PFA) 

which is recommended by the MEA manufacturer. From previous experiments performed by 

Vladimir Gurau, the fuel cells leaked when made from PFA. Silicone does not perform well in 

acidic environments in accordance to the MSDS, but silicone performs well at high temperatures 

and most importantly, is flexible, which makes it a good sealant. Vladimir Gurau is currently 

researching the best material to fabricate the gaskets time of writing. 0.35 mm PFA is the 

material that the gaskets used in this experiment are made from. 

 

Figure 3.6 - Gasket profile. The top right corner is notched for alignment purposes. 
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 The gaskets were fabricated using a laser cutter to ensure precision (Figure 3.7, left). The 

mechanism used for catching the gaskets was cedar wood, as using the onboard slats would 

result in the gasket falling through and inaccurate cutting due to the flexible material. 

 

Figure 3.7 – Gaskets in the laser cutter (left) and additional cedar residue (right). 

 The work holding cedar sheet created an additional problem, as the laser burned through 

the PFA leaving residue on the gasket edges and faces (Figure 3.7, right). The gaskets were 

washed with isopropyl alcohol to clean the burned material from the edges and faces. After 

scrubbing the gaskets most of the residue material was removed (Figure 3.8). 

 

Figure 3.8 - Stack of cleaned and polished gaskets 
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3.4 End Effector Design and Fabrication 

 The purpose of the end effector was to grasp the flexible gasket material while also 

remaining compliant. The compliance of the end effector was to prevent misalignment between 

the alignment holes in the gasket and the alignment pins during placement. 

 

Figure 3.9 - End effector overview 

 The purpose of the bottom plate (with reference to Figure 3.9) was to hold the level 

compensators that are attached to the suction cups. The design of the bottom plate was dependent 

on the geometry of the gasket. Figure 3.10 represents the final bottom plate design with a 

superimposed picture of the gasket and the placement of the suction cups. The placement of the 

suction cups was designed such that there would be sufficient suction regardless of the four 

orientations of the gaskets and sufficient suction regardless of the motion of the end effector. The 

suction cups also accomplish the task of providing rigidity to the gasket’s alignment holes when 

locating. 
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Figure 3.10 - Gasket underneath transparent bottom plate 

 The purpose of the middle and top plates was to allow for compliance in two degrees of 

freedom (DOF) when locating the gaskets to the alignment pins. This two DOF compliance was 

accomplished by using two sets of linear carriages and rails, where the sets were oriented 90 

degrees from each other. The design of the top plate was dependent on the “wrist” of the SDA5F. 

Both the top and middle plates have holes to allow the SDA5F’s air and electrical lines to pass 

though. Figure 3.11 represents the exploded view of the end effector.  

 
Figure 3.11 - End effector exploded view 
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 The end effector was also symmetric to allow for ease of transfer of a gasket from one 

manipulator to another. This symmetry also made it much easier to program the transfer process, 

as both end effectors were aligned such that the suction cups touched each other (Figure 3.12) 

 
Figure 3.12 - Symmetry of the end effectors 

 Fabrication of the end effector primarily relied upon OMAX waterjet (Figure 3.13). The 

plates and rail end stops were first waterjet. The rail end stops were then put into a CNC machine 

to fabricate the hole for the adjustable screw. Both the plates and end stops were then tapped. 

 

Figure 3.13 - OMAX waterjet fabrication (left) and CNC end stop drilling operation (right) 
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Figure 3.14 - End effector manufactured and assembled 

 After the plates, rails, and rail end stops were assembled, the end effector was affixed to 

the robot. Air and electrical lines were routed to the ANVER solenoid vacuum unit and suction 

cups. Caution was used to prevent the lines from being cut too short so other experiments could 

be performed later. The unit was tested to ensure proper suction was available and that it 

responded to the controller. This was determined to be satisfactory and the end effectors were 

considered completed (Figure 3.14). 

3.5 Programming 

 The program running on the FS100 controller to control the SDA5F robot used the 

INFORM III programming language. The program running on the In-Sight® CIO-MICRO-CC 
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I/O controller that received inputs from the ISM1403C camera used the In-Sight® Explorer 

software. Pseudocode program flowcharts (Figure 3.15 & 3.16) were developed before the 

programs were written. The flowcharts were used to develop ideas and generate the paths 

required to accomplish the goals of the experiment. 

 

Figure 3.15 – “Main Process” programming flowchart for the FS100 

 The “Machine Vision Process” flowchart was completed in tandem with the “Main 

Process” flowchart. This flowchart (Figure 3.16) indicated what manipulator process to employ 

(Place, Rotate, Flip, or Flip-Rotate) depending on the result of the inputs from the COGNEX 
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program. Both flowcharts were designed to work synchronously during the gasket sortation 

process. Once the flowcharts were completed, the programs were written. 

 

Figure 3.16 – “Machine Vision Process” flowchart 

 The programs were simulated using MotoSim EG VRC before they were run. This 

prevented the possibility of unwanted collision and allowed for better control and path iteration. 

The MotoSim EG VRC program allowed for simulated inputs that were manually controlled 

during program runtime. The ability to simulate inputs allowed for testing of all gasket 

orientations for both manipulators. The MotoSim EG VRC program also allowed for the 

importing of CAD models (Figure 3.17). This allowed for better control and understanding of the 

manipulator locations at all times during the experiment. The “Online Function” of the MotoSim 

EG VRC software allowed for visual indicating of where the robot was during operation (Figure 

3.17) This allowed for validating the accuracy of the imported CAD models versus the physical 

construction. Once the simulated program was written, it was easily transferred from the 
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computer to the FS100 controller via FTP. This allowed for rapid development and deployment 

of programs and programming updates.  

 

Figure 3.17 - MotoSim EG VRC simulation program during runtime 

 

 The machine vision program was written using the In-Sight® Explorer software. The 

“Easy Builder” function allowed for ease of computer vision development. An edge model was 

trained that looked for the HFC gasket notched corner (4 red squares in Figure 3.18). The 

SDA5F would bring the gasket into the top left position and scan for the gasket notch. If that 

notch was not detected, then the SDA5F would bring the gasket to the second position and scan 

for the notch. This process repeated until the notch was found. If the notch was never found, the 
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robot program would end. Once the notch was found, a corresponding action would occur and 

the camera program would restart (Figure 3.19). 

 

Figure 3.18 - In-Sight® Explorer Easy Builder software HFC notch detection 

 Case one from Figure 3.19 would signal for the current manipulator to place the gasket 

onto the alignment pins without rotating around Axis 1 or Axis 2. While the manipulator is 

placing the gasket onto the alignment pins for case one, the opposite manipulator is grabbing a 

part to allow for continuous motion and to decrease the cycle time of the system. Case two would 

only occur if case one failed, and would rotate the gasket around Axis 1 by transferring the 

gasket to the opposite manipulator before insertion. Once the gasket is transferred to the opposite 

manipulator for case two, the initial manipulator would move to grab another gasket to decrease 

cycle time.  Case three would only occur if the previous cases failed, and would rotate the gasket 

around Axis 2 by rotating the “Wrist” joint of the manipulator. While the current manipulator is 

rotating the gasket and inserting in case three, the opposite manipulator is moving to pick a 

gasket in the same method as case one. Case four would only occur if the other three cases failed, 

and would rotate both around Axis 1 and Axis 2 by transferring the gasket to the other 

manipulator then rotating it using the “Wrist” joint. Once the gasket is transferred to the opposite 
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manipulator for case four, the initial manipulator would move to grab another gasket to decrease 

cycle time using the same method as case two.  

 

Figure 3.19 - Action list for notch detection cases 

3.6 Procedure 

 This experiment compared hydrogen fuel cell gasket sortation time and accuracy of both 

a human and dual arm robot. This comparison was done to test the efficacy of using a dual arm 

robot with machine vision versus a human worker for gasket sortation. The dual arm robot was 

utilized to allow for ease of manipulation and reorientation of the flexible HFC gasket. Figure 

3.20 represents the robot workcell of the hydrogen fuel cell gasket sortation experiment which 

utilized a Yaskawa SDA5F dual arm manipulator and Cognex ISM1403C camera system. 
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Figure 3.20 - Experimental Workcell 

 The robot began by first picking one gasket and moving it to be scanned by the camera. 

Depending on the signal from the COGNEX camera program the robot had four cases:  

1. Place the gasket on the alignment pins without rotating the gasket. 

2. Rotate the gasket then place the gasket on the alignment pins. 

3. Transfer the gasket to the other robot arm then place the gasket on the alignment pins. 

4. Transfer the gasket to the other robot arm, rotate the gasket, then place the gasket on the 

alignment pins. 
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 While one arm was placing the current gasket, the other arm was moving to grab the next 

one (Figure 3.21). This allowed for continuous motion and optimized productivity. After the 

gaskets were all sorted, the stack was carefully analyzed manually to check the accuracy of the 

robot system. Manual timing with a stopwatch was used to determine cycle times. 

 

Figure 3.21 - Robot sortation in operation 

 The next step was to gather information about the human worker. A group of five 

randomly selected individuals was chosen to sort the gaskets manually. A box of randomly 

oriented gaskets was placed in front of the students and the goal was set to align and place the 

gaskets as soon as possible while retaining accuracy (Fig 3.22). Manual timing with a stopwatch 

was used to determine cycle times. 

   

Figure 3.22 –Manual placement of gasket onto alignment pins  
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CHAPTER 4. RESULTS 

4.1 Human Gasket Sortation 

 The results from the human sorting experiment are represented in Table 4.1, with the time 

being represented as Minutes:Seconds.Milliseconds. This is the result of ten randomly oriented 

HFC gaskets being sorted three times by five human subjects with one untimed practice run per 

human that occurred before data was collected. The average time for all five subjects to sort the 

HFC gaskets was 1:23.25 with 9.94s standard deviation. 

Human Run 1 Errors 

Run 1 

Run 2 Errors 

Run 2 

Run 3 Errors 

Run 3 

Average 

Time 

Standard 

Deviation 

1 01:46.88 2 01:43.99 0 01:43.76 0 01:44.88 00:01.42 

2 01:24.23 0 01:19.12 0 01:18.62 0 01:20.66 00:02.53 

3 01:39.30 0 01:32.12 0 01:25.63 0 01:32.35 00:05.58 

4 01:34.84 0 01:34.04 0 01:26.84 0 01:31.91 00:03.60 

5 01:10.27 0 01:08.95 0 01:04.96 0 01:08.06 00:02.26 

Table 4.1 - Results of manual gasket sortation 

 During the first run for Human 1 there were two errors observed. Errors are defined as 

gaskets that were not stacked in the proper orientation. The proper orientation was defined with 

the notched corner located to the top right (Figure 3.6). Even though there were only three runs 

for Human 1, there were two errors. This might indicate that repetitive work is subject to error. 

Error is also likely due to the small notched corner of the HFC gasket and the material being 

translucent. An improperly sorted HFC gasket could cause early failure of the HFC, decrease 

efficiency, or prevent its operation entirely due to flow restrictions. “A recent study showed that 

a manual assembly process of a 20-cell PEMFC stack lasted on average 50% longer than the 

robotic assembly process. The delays in the manual operations, as compared to the operations 

performed by the robot, were in part due to periodic breaks necessary for the human operator 

performing a repetitive work cycle. These delays are expected to increase significantly as the 

size of the fuel cell stack increases.” (Gurau, Vladimir, Devin Fowler and Daniel Cox. 2017) 
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 For each human run three was the lowest time, run two was the second lowest time, and 

run one was the longest time. This indicates that there was a learning curve for each human 

(Figure 4.1). More runs would need to be conducted to see the effects of the learning curve and 

to determine the minimum time that the human needed to complete the cycle. The trendline was 

modeled as linear due to performing three runs, but true models of the learning curve may tend to 

be exponential as there is likely a minimum cycle time. 

 

Figure 4.1 - Manual gasket sorting time versus run count 

 A stopwatch was used to determine the cycle times for each human worker. This 

approach can be subject to error, as human reaction time can affect the measurements. Humans 

take 180-200 milliseconds to register visual stimulus and respond (Jain et. al. 2015). Another 

possible way to capture cycle times would be to use a high-speed camera and playback the cycle 

times. 

 Each human subject was asked to share their opinions about the experiment: 

• “The experiment was annoying; it was easy to phase out and just work. I feel like muscle 

memory caused error” 
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• “Interesting and harsh. Caused me to push myself and was mindless like gaming” 

• “Mindless, but alright. It could get old” 

• “Dark surfaces would make it easier for sorting” 

• “Boring and easy” 

4.2 Robot Gasket Sortation 

 The results of the robot sorting experiment are listed in Table 4.2, with the time being 

represented as Minute:Second:Millisecond. This data represents the time required to sort ten 

randomly sorted HFC gaskets onto alignment pins. The time was taken with a stopwatch. Timing 

began when the robot started the program and was stopped after the last gasket was placed. 

Run Time Errors 

1 04:10.15 0 

2 04:13.85 0 

3 04:16.37 0 

4 04:20.40 0 

5 04:16.25 0 

6 04:40.13 0 

Average 04:19.53 0 

Std. Dev. 00:09.71 0 

Table 4.2 - Results of robot gasket sorting experiment 

 No errors were present during the robotic sorting data collection, which should be 

expected due to the implementation of a camera system. This was due to fine tuning the camera 

system by changing the rotational, translational, and scale tolerances for the edge detection 

methods and by iterating programming changes. Some errors were present prior to tuning that 
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had to be addressed. The ambient lighting in the room with the camera would change throughout 

the course of the day due to sunlight. This was corrected by closing all blinds and gathering data 

only at night. Edges that were also improperly cleaned resulted in false positives (Figure 4.2). 

This was corrected by properly cleaning the edges of the gaskets with isopropyl-alcohol and 

testing. Another error would occur when the gripper was seen on camera and would send false 

positives to other detection regions. This was corrected by altering the robot code to only accept 

one signal at a time (Appendix A). 

 

Figure 4.2 - False positive from improperly cleaned gasket edge due to laser cutting debris. 

 Due to the limitation of the vacuum equipment used, the speed of the robot was limited 

during the experiment as high speeds would release the gasket. Optimization of the robot speed 

was not prioritized during the experiment due to the dangers involved. The robot moves were run 

at relatively low speeds, but the traces of the robot were recorded using MotoSim EG VRC’s 

“Online Function”. These traces were used for the calculation of the theoretical max speeds and 

minimum cycle times. Traces are the path of the tooling of the robot manipulator measured as 

length (Figure 4.3). These lengths can help to compare robot moves to see which move is shorter 

for optimization purposes. Traces can also be used to determine the theoretical time that a robot 
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would require to accomplish a move by applying the robot’s maximum linear speed. Since robot 

moves can be either joint interpolated or linear interpolated, the theoretical movement time is an 

approximation. 

 

Figure 4.3 - MotoSim EG VRC Trace Manager (during Online operation) 

 Each of the robot moves were categorized and traces were recorded during the 

experiment (Table 4.3). Since each gasket was randomly oriented, the moves had to be recorded 

separately and for each case to ensure all moves were regarded. During case two and four a 

handoff would occur and the robot would move back to pick a gasket. During case one and three 

the robot would either place or rotate the gasket and return to the home position (Figure 3.15).  

 



59 

 

ID Robot 2 Trace (mm)  ID Robot 1 Trace (mm) 

1 Home to Pick Entry 481.96  11 Home to Pick Entry 518.80 

2 Pick Entry to Camera Scan Case 1 738.79  12 Pick Entry to Camera Scan Case 1 716.03 

3 Move from Scan 1 to Scan 2 205.92  13 Move from Scan 1 to Scan 2 221.74 

4 Move from Scan 2 to Scan 3 148.10  14 Move from Scan 2 to Scan 3 156.04 

5 Move from Scan 3 to Scan 4 233.75  15 Move from Scan 3 to Scan 4 243.36 

6 Case 1 to Home 2440.87  16 Case 1 to Home 1394.31 

7 Case 2 to Pick Entry 3938.44  17 Case 2 to Pick Entry 3845.67 

8 Case 3 to Home 1309.57  18 Case 3 to Home 1264.51 

9 Case 4 to Pick Entry 4232.70  19 Case 4 to Pick Entry 4135.25 

10 Home to Assist Robot 1 then Home 3084.88  20 Home to Assist Robot 2 then Home 3192.37 

Table 4.3 - Gasket sortation categorized trace lengths for each robot. 

 

 Once the trace lengths were determined, the theoretical time of each move ID could be 

determined from the linear maximum speed of 1500 mm/s. Fifteen runs were simulated using 

Excel to determine the average optimized time (Table 4.4). The trace lengths were summated and 

divided by 1500 to determine the cycle time. The trace length in the sixth row per gasket (Lines 

6, 12, 18, etc.) was not counted due to the shortest move during a synchronous move (both robots 

moving at once) slows down to accommodate for the longer move. 

 

Table 4.4 - Simulated runs using traces in Excel 

Line Gasket No. Case No. Change picking manipulator R1 ID R2 ID R1 Length R2 Length

1 1 481.96

2 2 738.79

3 3 205.92

4 4 148.1

5 8 1309.57

6 11 518.8

7 12 716.03

8 13 221.74

9 17 3845.67

10

11

12 10 3084.88

13 12 716.03

14 13 221.74

15 14 156.04

16 18 1264.51

17

18 1 481.96

19 2 738.79

20 6 2440.87

21

22

23

24 11 518.8

25 12 716.03

26 13 221.74

27 14 156.04

28 18 1264.51

29

30 1 481.96

31 2 738.79

32 6 2440.87

33

34

35

36 11 518.8

37 12 716.03

38 13 221.74

39 14 156.04

40 18 1264.51

41

42 1 481.96

43 2 738.79

44 3 205.92

45 4 148.1

46 5 233.75

47 9 4232.7

48 20 3192.37

49 2 738.79

50 3 205.92

51 4 148.1

52 8 1309.57

53

54 11 518.8

9

10 3 Yes

2

3

4

5

6

7

1 Yes

3 Yes

4 No

3 Yes

1 Yes

3 Yes

1 3 Yes

2 No
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 The results of the fifteen runs are displayed in Table 4.5. The average time of the 

simulated runs decreased the time by 90.1%. This indicates that there is a lot of improvements 

that can be made for optimizing cycle times. The actual numerical value of the optimized sorting 

robot should be only considered as a theoretical minimum, as it does not account for acceleration 

and deceleration of the robot, joint interpolation, or equipment limitations such as vacuum 

gripper systems. It is also worth remarking that the robot only needs to move as fast or slightly 

faster than the rest of the manufacturing cell. These results also make the assumption that the 

points that were taught for the moves are in optimum positions, which is not accurate. 

Run Time 

(ss.ms) 

1 20.17 

2 25.77 

3 27.91 

4 24.71 

5 28.69 

6 27.45 

7 27.40 

8 23.99 

9 21.91 

10 26.94 

11 26.38 

12 22.34 

13 30.22 

14 25.31 

15 25.93 

Average 
 

Std. Dev. 2.71 

 Table 4.5 - Simulated robot runs with optimized speed 

4.3 Comparison and Analysis 

 The average cycle time for manual gasket sorting was 1:23.25 and the average cycle time 

for robot gasket sorting was 4:19.52. The robotic sorting method took an average of 2:56.27 

more time to sort the gaskets than the manual method, or about 17.63 extra seconds per gasket. 
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This extra time is caused from a variety of factors such as the design choice of scanning each 

corner of the gasket separately with a one second delay and robot moves between each scan for 

reliability. The robot was also not optimized for speed due to the risks involved and due to 

equipment limitation. If the robot was optimized for speed there could be a significant decrease 

in cycle times.  

 Errors in sorting only occurring during human trials. Robotic sorting was error free for 

the six runs that occurred. This was due to the controlled environment of the sorting cell that 

only sorted gaskets during nighttime, and only used ten of the same cleaned gaskets. As more 

data is collected in future experimentation and iterations, errors may occur such as with 

uncleaned gaskets or ambient light interference. Conversely, as more manual sorting is 

performed there is likely probability that errors will occur especially due to the labor being 

repetitive. 

 Human workers found the experiment to be dull and repetitive even after a few minutes 

of work. Employment of human workers over long shifts can result in other potential problems 

such as arthritis or the development of a twitch. The learning curve that was present in the human 

trials indicated that faster cycle times could be attained after more runs were completed, unlike 

the fixed cycle times of the robot. Learning curves tend to be exponential, so an approximate 

minimum cycle time for human workers can be determined with more data. 

4.4 Criteria for Success 

 Success of the experiment was accepted if the errors during robot sorting were less than 

those during human sorting, which implies that the implementation of a vision integrated dual 

arm robot is feasible.  
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CHAPTER 5. CONCLUSIONS 

5.1 Validation of Hypothesis 

 We demonstrate a novel robotic process of transferring fuel cell components from their 

fabrication workcell to a robotic fuel cell assembly workcell. The process was demonstrated with 

fuel cell gaskets due to increased complexity challenges these components present, but it can be 

readily used for other fuel cell components such as MEAs and bipolar plates. These components 

transferring process includes component pickup from a bin where they have a random 

orientation, handling, orientation inspection, reorientation and insertion in a presenter for a 

subsequent process. The demonstrated process uses a dual arm robot with integrated machine 

vision system. This robotic process enables the integration of automated manufacturing 

processes of fuel cell gaskets with a robotic fuel cell stack assembly process previously 

demonstrated into a fully automated fuel cell manufacturing line. The robot productivity was 

compared to the productivity of five human subjects. For a short task the robot was outperformed 

by the human subjects. It is however expected that the robot productivity will be significantly 

higher than that of the humans over an eight hour shift due to its constant work pace and no 

downtime needed for food and rest. The experiment demonstrates that for such dull, repetitive 

work cycles human error is possible even for short tasks. 

 The results of the experiment satisfy the hypothesis, as errors during robotic sorting 

decreased even though cycle times increased. This implies that the implementation of the vision 

integrated dual arm robot is feasible for long term manufacturing, due to the potential failures 

that could occur if a gasket was not properly stacked. It was also proven during the MotoSim 

simulation that the cycle times for the robot can decrease after motion optimization has been 

performed.  
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5.2 Knowledge Gained from PEMFC Gasket Sorting 

 Using a vision integrated dual arm robot for PEMFC gasket sorting can be beneficial, as 

stacking errors can be eliminated. By picking then scanning the semitransparent gasket material, 

the chance of falsely detecting manufacturing features is greatly reduced versus scanning before 

picking. The utilization of vacuum suction cups helped to grasp the thin flexible gasket material, 

as other forms of grippers would not be viable. The selectively compliant end effectors helped to 

reduce misalignment during stacking, as contact between the holes in the gasket and the 

alignment pins during placement would translate the end effector resulting in better positioning.    

5.3 Suggestions for Future Research and Application 

 Future research of PEMFC gasket sorting is inevitable as demand for PEMFC production 

continues to increase. Researching better methods of gasket sorting before the demand will prove 

vital for manufacturing, and will result in better preparedness for this demand. 

 Understanding the effects of robot optimization on cycle time will be beneficial for mass 

production. The cycle time of the current experiment is unoptimized to prevent the risk of high 

impact collision. Cycle times will need to decrease as demand increases, and experimentation 

may be necessary to determine how to increase the speed of the robot. Advances in speed can 

result from eliminating unnecessary robot moves, increasing the speed of current moves, or 

mechanical changes such as the relocation of gaskets, cameras, and tables. 

 Utilizing a stamp for cutting the gasket profile will eliminate the burn marks left from 

laser cutting. The additional step of cleaning burn marks on the gaskets after the laser cutting 

process will also be removed. By eliminating a process step, less automation will be required 

resulting in cost reduction. Using a stamp will also remove the utilization of a laser cutter, which 

are expensive. Stamps will require maintenance as they wear over time. 
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 The implementation of MotoSight 2D would increase the accuracy of gasket alignment 

onto the stack, as individual gasket positions could be communicated to the robot. MotoSight 2D 

allows for the COGNEX camera to communicate via Ethernet/IP to the Yaskawa programmable 

logic controller (PLC). Data from the COGNEX camera can include the position of the gaskets, 

their rotation, flaws, whether they are present, and their orientation. 

 Implementation of better lighting control would allow for more consistent operation of 

the COGNEX camera. This experiment utilized the camera at night to mitigate uncontrolled light 

sources from permeating into the scan area. Using brighter lights and covers could mitigate these 

uncontrolled light sources and allow for runtime of the scanning operation during a wider range.  

  



65 

 

REFERENCES 

Global Markets Insight, 2016, “Fuel Cell Market Size by Application (Stationary, Portable, 

Transport), by Product (PEMFC, DMFC, SOFC), Industry Analysis Report, Regional Outlook 

(U.S, Canada, Germany, UK, Japan, South Korea, South Africa, Brazil), Application Potential, 

Price Trends, Competitive Market Share &amp; Forecast, 2016 – 2024”, 

https://www.gminsights.com/industry-analysis/fuel-cell-market 

Grand View Research. 2016. “Fuel Cell Market Analysis By Product (PEMFC, PAFC, SOFC, 

MCFC), By Application (Stationary, Transportation, Portable) And Segment Forecast, 2018 - 

2025.” Fuel Cell Market Size, Growth Forecast | Industry Analysis Report, 2025. Accessed 

January 1, 2018. https://www.grandviewresearch.com/industry-analysis/fuel-cell-market. 

Umberto, Lucia. 2014. “Overview on fuel cells.” Renewable and Sustainable Energy Reviews, 

30: 64-169. Accessed January 1, 2018. https://doi.org/10.1016/j.rser.2013.09.025. 

Ho, Jonathan C., Ewe-Chai Saw, Louis Y.Y. Lu, John S. Liu. 2014. “Technological barriers and 

research trends in fuel cell technologies: A citation network analysis.” Technological 

Forecasting and Social Change, 82: 66-79. Accessed January 1, 2018. 

https://doi.org/10.1016/j.techfore.2013.06.004. 

Mekhilef S., R. Saidur, A. Safari. 2012. “Comparative study of different fuel cell technologies.” 

Renewable and Sustainable Energy Reviews, 16 (1): 981-989. Accessed February 1 2018. 

https://doi.org/10.1016/j.rser.2011.09.020. 

Salvendy, Gavriel. 2012. Handbook of Human Factors and Ergonomics. Hoboken: Wiley, 

2012. eBook Academic Collection (EBSCOhost) 

Makris, Sotiris, Panagiota Tsarouchi, Aleksandros-Stereos Matthaiakis, Athanasios Athanasatos, 

Xenofon Chatzigeorgiou, Michael Stefos, Konstantinos Giavridis, Sotiris Aivaliotis,. 2017. 



66 

 

“Dual arm robot in cooperation with humans for flexible assembly.” CIRP Annals, 66 (1): 13-16. 

Accessed April 1 2018. https://doi.org/10.1016/j.cirp.2017.04.097. 

Geismar, Neil, U. V. Manoj, Avanthi Sethi, and Chelliah Sriskandarajah. 2012. “Scheduling 

Robotic Cells Served by a Dual-Arm Robot.” IIE Transactions 44 (3): 230–48. 

doi:10.1080/0740817X.2011.618174. 

Stria, Jan, Daniel Prusa, Vaclav Hlavac, Libor Wagner, Vladimir Petrik, Pavel Krsek, and 

Vladimir Smutny. 2014. "Garment perception and its folding using a dual-arm robot." 2014 

IEEE/RSJ International Conference On Intelligent Robots & Systems 61. Complementary Index, 

EBSCOhost (accessed February 10, 2018). 

Panagiota Tsarouchi, Sotiris Makris, George Michalos, Michael Stefos, Konstantinos Fourtakas, 

Konstantinos Kaltsoukalas, Dimitris Kontrovrakis, George Chryssolouris. 2014 “Robotized 

Assembly Process Using Dual Arm Robot.” Procedia CIRP 23: 47-52. 

https://doi.org/10.1016/j.procir.2014.10.078. 

Zhao, Yuanshen, Liang Gong, Chengliang Liu, Yixiang Huang. 2016. “Dual-arm Robot Design 

and Testing for Harvesting Tomato in Greenhouse.” IFAC-PapersOnLine 49 (16):161-165. 

https://doi.org/10.1016/j.ifacol.2016.10.030. 

Boothroyd G., Dewhurst P., and Knight W.A., 2011, Product Design for Manufacture and 

Assembly, 3rd ed., CRC Press, Boca Raton 

Krüger, J, G. Schreck, D. Surdilovic. 2011. “Dual arm robot for flexible and cooperative 

assembly.” CIRP Annals 60 (1): 5-8. https://doi.org/10.1016/j.cirp.2011.03.017. 

Jiménez Moreno, Robinson, and Oscar Fernando Aviles. 2017. "Humanoid Robot Cooperative 

System by Machine Vision." International Journal Of Online Engineering 13, no. 12: 162-

173. Engineering Source, EBSCOhost(accessed February 11, 2018).  



67 

 

Nowakowski, Jacek, and Dominik Sankowski. 2014. Computer Vision In Robotics And 

Industrial Applications. [Hackensack] New Jersey]: World Scientific, 2014. eBook Academic 

Collection (EBSCOhost), EBSCOhost (accessed February 11, 2018). 

Smith, Christian, Yiannis Karayiannidis, Lazaros Nalpantidis, Xavi Gratal, Peng Qi, Dimos V. 

Dimarogonas, Danica Kragic. 2012. “Dual arm manipulation - A survey” Robotics and 

Autonomous Systems 60 (10): 1340-1353. https://doi.org/10.1016/j.robot.2012.07.005. 

Sharaf, Omar, and Orhan, Mehet. 2014. "An Overview of Fuel Cell Technology: Fundamentals 

and Applications." Renewable and Sustainable Energy Reviews 32: 811-53. Accessed December 

19, 2017. https://doi.org/10.1016/j.rser.2014.01.012  

Grover, Mikell. 2008. Automation, Production Systems, and Computer-Integrated 

Manufacturing. Lehigh University: Pearson Education Inc. 

Kim, Young-Loul, Hee-Chan Song, Jae-Bok Song. 2013. “Force control based jigless assembly 

strategy of a unit box using dual-arm and friction.” IEEE ISR 2013: 1-3. Accessed January 1 

2019. doi: 10.1109/ISR.2013.6695701 

Jain A, Bansal R, Kumar A, Singh K D. 2015. “A comparative study of visual and auditory 

reaction times on the basis of gender and physical activity levels of medical first year students.” 

Int J App Basic Med Res 5:124-127. Accessed January 1 2019. 

http://www.ijabmr.org/text.asp?2015/5/2/124/157168 

Yaskawa Europe GmbH. 2012. “Motoman dual arm robot assembling a chair” YouTube video, 

2:53. Posted March 21, 2012. Accessed January 1 2019. 

https://www.youtube.com/watch?v=r3fUsoLCSrY 

Gurau, Vladimir, Devin Fowler and Daniel Cox. 2017. “Robotic Technologies for Proton 

Exchange Membrane Fuel Cell Assembly.” Proton Exchange Membrane Fuel Cell, Tolga Taner, 



68 

 

IntechOpen, DOI: 10.5772/intechopen.71470. Available from: 

https://www.intechopen.com/books/proton-exchange-membrane-fuel-cell/robotic-technologies-

for-proton-exchange-membrane-fuel-cell-assembly 

U.S. Department of Energy. “Roadmap on Manufacturing R&D for the Hydrogen Economy”, 

https://www.hydrogen.energy.gov/pdfs/roadmap_manufacturing_hydrogen_economy.pdf 

[Accessed: 9/4/2017]  



69 

 

APPENDIX A: YASKAWA PROGRAM 

/JOB 

//NAME DFTHESIS 

//POS 

///NPOS 2,2,0,37,0,0 

///TOOL 1 

///POSTYPE PULSE 

///PULSE 

C00000=36748,73480,-59006,-135983,-5400,55307,135520 

///TOOL 0 

C00001=35303,70861,-71500,31711,9975,73656,139229 

BC00000=0 

BC00001=0 

///POSTYPE ROBOT 

///RECTAN 

///RCONF 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

P00010=174.871,378.359,-381.747,-176.9929,-2.7270,177.4608,64.2257 

P00011=201.993,268.510,-549.719,178.9106,0.2916,-179.7702,79.5182 

P00012=180.120,-2.113,-575.698,-179.5420,-0.2050,-179.7857,79.6096 

P00013=180.441,-1.824,-650.648,-179.4972,-0.9848,-178.5543,79.5087 

///RCONF 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

P00014=267.358,2.728,-363.028,-178.8864,31.0926,-177.6595,81.4110 

///RCONF 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

P00015=465.953,113.329,-148.103,-71.7424,87.4549,-72.3554,95.2066 

P00016=468.126,-106.006,-132.741,-71.7543,87.4493,-72.3651,67.9985 

P00017=468.116,-106.383,18.940,-71.7636,87.4366,-72.3708,68.0036 

P00018=467.324,122.669,3.805,-71.8437,87.4375,-72.4491,68.0028 

P00019=454.036,0.887,-398.293,-179.6439,-0.6160,179.8856,68.0004 

P00020=454.048,1.044,-437.137,-179.6434,-0.6123,179.8832,68.0013 

///RCONF 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

P00021=411.071,386.540,-354.940,-179.3569,-1.0258,-178.8551,68.0006 

///RCONF 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

P00022=459.672,-3.033,-354.878,-179.9352,0.1783,1.3267,78.1309 

P00023=457.038,-3.409,-434.412,-179.9408,0.1786,-0.3230,78.1279 

P00024=293.691,234.891,11.453,83.5042,-88.8072,9.4504,66.8987 

P00025=297.039,21.560,17.216,147.2015,-87.8805,-53.1763,66.8975 

P00026=379.653,489.348,-372.773,165.3738,25.0526,135.0668,78.0885 

P00027=456.150,235.212,-162.706,-164.7138,45.5306,-164.9474,66.7034 

P00028=456.128,235.201,-162.729,175.5213,-47.3212,0.1733,66.7036 

///TOOL 1 

P00049=426.687,-308.820,-273.273,179.4829,-0.1120,2.8885,-80.5597 

P00050=242.104,-414.985,-375.366,179.3255,-0.8318,-1.2651,-69.9702 
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P00051=192.893,-194.317,-499.923,-179.4348,-0.0016,4.2809,-80.5464 

///RCONF 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

P00052=184.950,-7.807,-585.451,-179.6187,1.2456,3.0606,-80.6470 

P00053=185.536,-9.063,-651.082,-179.6183,1.2482,3.0613,-80.6497 

///RCONF 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

P00054=190.780,-18.761,-457.521,178.9727,-0.6651,4.2029,-80.5586 

///RCONF 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

P00055=451.352,98.429,-128.825,117.0647,-89.3530,64.0167,-77.5319 

P00056=463.725,-105.129,-134.000,116.7684,-89.3528,64.3158,-92.6516 

P00057=463.061,-113.336,10.648,94.1126,-89.2645,87.3021,-80.5671 

P00058=441.969,105.781,17.186,94.1205,-89.4344,87.1237,-80.5533 

P00059=463.078,-16.036,-387.849,178.6721,0.5364,1.0834,-80.5575 

P00060=463.222,-11.174,-441.713,178.6723,0.5378,1.0824,-80.5574 

P00061=460.197,-13.441,-352.318,-179.6625,-0.1300,-178.9521,-80.5684 

P00062=457.185,-14.717,-435.591,-179.6658,-0.1316,-178.9609,-80.5676 

P00063=306.794,-232.297,-7.243,21.8454,-88.5514,-108.3287,-80.5546 

///RCONF 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

P00064=291.317,20.210,15.515,21.9513,-88.5534,-108.4352,-80.5549 

///RCONF 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

P00065=260.084,-359.810,-94.257,-146.1283,-30.7801,167.0442,-73.3087 

P00066=276.388,-662.367,-147.056,-133.5678,-4.1946,154.6813,-92.3909 

//INST 

///DATE 2018/09/01 16:43 

///ATTR SC,RW 

///GROUP1 RB2,BS2 

///GROUP2 RB1,BS1 

NOP 

*START 

DOUT OT#(7) ON 

MOVJ P050 VJ=D001 PL=0  +MOVJ P010 VJ=D001 

MOVJ P051 VJ=D001 PL=0  +MOVJ P010 VJ=D001 

MOVJ P052 VJ=D001 PL=0  +MOVJ P010 VJ=D001 

MOVL P053 V=D002 PL=0  +MOVL P010 V=D002 

DOUT OT#(5) ON 

TIMER T=0.250 

MOVL P052 V=D002 PL=0  +MOVL P010 V=D002 

MOVJ P054 VJ=D001 PL=0  +MOVJ P010 VJ=D001 

*R2SCAN 

MOVJ P055 VJ=D001 PL=0  +MOVJ P010 VJ=D001 

TIMER T=1.000 

IFTHEN IN#(10)=ON 

  JUMP *R2ROT 

ENDIF 
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MOVJ P056 VJ=D001 PL=0  +MOVJ P010 VJ=D001 

TIMER T=1.000 

IFTHEN IN#(12)=ON 

  MOVJ P066 VJ=D001 PL=0  +MOVJ P024 VJ=D001 

  JUMP *R2FLROT 

ENDIF 

MOVJ P057 VJ=D001 PL=0  +MOVJ P010 VJ=D001 

TIMER T=1.000 

IFTHEN IN#(14)=ON 

  JUMP *R2PLACE 

ENDIF 

MOVJ P058 VJ=D001 PL=0  +MOVJ P010 VJ=D001 

TIMER T=1.000 

IFTHEN IN#(16)=ON 

  JUMP *R2FLIP 

ENDIF 

JUMP *BREAK 

*R1SCAN 

MOVJ P050 VJ=D001 PL=0  +MOVJ P015 VJ=D001 

TIMER T=1.000 

IFTHEN IN#(10)=ON 

  JUMP *R1ROT 

ENDIF 

MOVJ P050 VJ=D001 PL=0  +MOVJ P016 VJ=D001 

TIMER T=1.000 

IFTHEN IN#(12)=ON 

  JUMP *R1FLROT 

ENDIF 

MOVJ P050 VJ=D001 PL=0  +MOVJ P017 VJ=D001 

TIMER T=1.000 

IFTHEN IN#(14)=ON 

  JUMP *R1PLACE 

ENDIF 

MOVJ P050 VJ=D001 PL=0  +MOVJ P018 VJ=D001 

TIMER T=1.000 

IFTHEN IN#(16)=ON 

  JUMP *R1FLIP 

ENDIF 

JUMP *BREAK 

*R2PLACE 

MOVJ P059 VJ=D001 PL=0  +MOVJ P011 VJ=D001 

MOVL P060 V=D002 PL=0  +MOVJ P012 VJ=D001 

DOUT OT#(5) OFF 
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MOVL P059 V=D002 PL=0  +MOVL P013 V=D003 

DOUT OT#(1) ON 

TIMER T=0.500 

MOVJ P049 VJ=D001 PL=0  +MOVL P012 V=D002 

MOVJ P050 VJ=D001 PL=0  +MOVJ P014 VJ=D001 

JUMP *R1SCAN 

*R1PLACE 

MOVJ P051 VJ=D001 PL=0  +MOVJ P019 VJ=D001 

MOVJ P052 VJ=D001 PL=0  +MOVL P020 V=D002 

DOUT OT#(1) OFF 

MOVL P053 V=D003 PL=0  +MOVL P019 V=D002 

DOUT OT#(5) ON 

TIMER T=0.500 

MOVL P052 V=D002 PL=0  +MOVJ P021 VJ=D001 

MOVJ P054 VJ=D001 PL=0  +MOVJ P010 VJ=D001 

JUMP *R2SCAN 

*R2ROT 

MOVJ P061 VJ=D001 PL=0  +MOVJ P011 VJ=D001 

MOVL P062 V=D002 PL=0  +MOVJ P012 VJ=D001 

DOUT OT#(5) OFF 

MOVL P061 V=D002 PL=0  +MOVL P013 V=D003 

DOUT OT#(1) ON 

TIMER T=0.500 

MOVJ P049 VJ=D001 PL=0  +MOVL P012 V=D002 

MOVJ P050 VJ=D001 PL=0  +MOVJ P014 VJ=D001 

JUMP *R1SCAN 

*R1ROT 

MOVJ P051 VJ=D001 PL=0  +MOVJ P022 VJ=D001 

MOVJ P052 VJ=D001 PL=0  +MOVL P023 V=D002 

DOUT OT#(1) OFF 

MOVL P053 V=D003 PL=0  +MOVL P022 V=D002 

DOUT OT#(5) ON 

TIMER T=0.500 

MOVL P052 V=D002 PL=0  +MOVJ P021 VJ=D001 

MOVJ P054 VJ=D001 PL=0  +MOVJ P010 VJ=D001 

JUMP *R2SCAN 

*R2FLIP 

MOVJ P063 VJ=D001 PL=0  +MOVJ P024 VJ=D001 

MOVL P064 V=D003 PL=0  +MOVL P025 V=D003 

DOUT OT#(1) ON 

DOUT OT#(5) OFF 

MOVL P063 V=D003 PL=0  +MOVL P024 V=D003 

MOVJ P065 VJ=D001 PL=0  +MOVJ P028 VJ=D001 
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JUMP *R1ROT 

*R1FLIP 

MOVJ P063 VJ=D001 PL=0  +MOVJ P024 VJ=D001 

MOVL P064 V=D003 PL=0  +MOVL P025 V=D003 

DOUT OT#(1) OFF 

DOUT OT#(5) ON 

MOVL P063 V=D003 PL=0  +MOVL P024 V=D003 

MOVJ P061 VJ=D001 PL=0  +MOVJ P026 VJ=D001 

JUMP *R2ROT 

*R2FLROT 

MOVJ P063 VJ=D001 PL=0  +MOVJ P024 VJ=D001 

MOVL P064 V=D003 PL=0  +MOVL P025 V=D003 

DOUT OT#(1) ON 

DOUT OT#(5) OFF 

MOVL P063 V=D003 PL=0  +MOVL P024 V=D003 

MOVJ P065 VJ=D001 PL=0  +MOVJ P027 VJ=D001 

JUMP *R1PLACE 

*R1FLROT 

MOVJ P063 VJ=D001 PL=0  +MOVJ P024 VJ=D001 

MOVL P064 V=D003 PL=0  +MOVL P025 V=D003 

DOUT OT#(1) OFF 

DOUT OT#(5) ON 

MOVL P063 V=D003 PL=0  +MOVL P024 V=D003 

MOVJ P059 VJ=D001 PL=0  +MOVJ P026 VJ=D001 

JUMP *R2PLACE 

*BREAK 

MOVJ C00000 BC00000 VJ=D001 PL=0  +MOVJ C00001 BC00001 VJ=D001 

DOUT OT#(1) OFF 

DOUT OT#(5) OFF 

END  
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APPENDIX B: COGNEX PROGRAM 

 

Figure B.1 - Program setup in Cognex EasyBuilder. Trained model (top), Tolerancing (Middle), 

Trigger and exposure (lower left), and wiring (lower right).  
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APPENDIX C: SDA5F DATA SHEET 

 
Figure C.1 - Yaskawa Motoman SDA5F datasheet  
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APPENDIX D: COGNEX ISM1403C DATA SHEET 

 

Figure D.1 - Cognex In-Sight® 1403C data sheet. 
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APPENDIX E: ROBOT MOUNTING CART AND STAGING TABLES ITERATIONS 

 

Figure E.1 - Initial alignment table design 
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Figure E.2 - Fabrication of initial alignment table. 
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Figure E.3 - Initial gasket staging table design. 
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Figure E.4 - Initial gasket staging table design with box placed. 



81 

 

 

Figure E.5 - Fabrication of initial gasket staging table. 
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Figure E.6 - Initial gasket staging table with modified alignment table. 
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APPENDIX F: WORKCELL DESIGN ITERATIONS 

 

Figure F.1 - Initial workcell iteration. 
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Figure F.2 - Second workcell iteration. 
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Figure F.3 - Initial end effector design. 
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APPENDIX G: JOB INSTRUCTION 

Step 1: Open Cognex In-Sight® Explorer 5.4.0.

 

Figure G.1 - In-Sight® Explorer 5.4.0 Starting Screen 

Step 2: Connect to the ISM1403C camera by double clicking the “ism1403C_21ba9c” name. 

 

Figure G.2 - Network sensor list. 

Step 3: Open the job file available online at: 

https://drive.google.com/open?id=1qBZCrd5So2qzWCFQED_FhqbOvtL01u_k 
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Figure G.3 - Load job file (Top), Accept loading (Middle), and screen after loading (Bottom) 

Step 4: Go Online with the camera by selecting “Run Job” on the left side of the screen, then 

pressing “Online”. The camera will then activate. 

 

Figure G.4 - Run job button location. 
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Figure G.5 - Online button. 

 

Figure G.6 - Confirm Go Online popup (press Yes). 

Step 5: Turn on the robot controller. 

 

Figure G.7 - Power switch location for the robot controller 
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Step 6: Enable the teach pendant after robot controller is powered. 

 

Figure G.8 - Controller on screen. 



90 

 

 

Figure G.9 - Grip to enable pendant handshake. 
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Figure G.10 - Release to connect pendant to controller. 
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Figure G.11 - YASKAWA splash screen displayed after connection is successful. 

Step 7: Select the robot job file “DFTHESIS”. 
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Figure G.12 - Main menu after connection completed. 
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Figure G.13 - Screen after touching job on touchscreen controller. 
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Figure G.14 - Job list after touching "Select Job". DFTHEIS job can selected using the "Select" 

button 
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Figure G.15 - Job screen after selecing DFTHESIS job. 

 

Step 8: Turn the key to “Play”. 
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Figure G.16 - After switching the pendant key to play. 

 

Step 9: Turn the servos on and press “Start”. Be aware that the robot will begin moving and 

accomplishing the job. 
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Figure G.17 - Press "SERVO ON READY" to enable robot servos. Wait a couple seconds for the 

servo brakes to disable and the servos to energize before pressing Start. 
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Figure G.18 - Press start on teach pendant to begin the program. 
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