582 research outputs found

    Machine learning model for clinical named entity recognition

    Get PDF
    To extract important concepts (named entities) from clinical notes, most widely used NLP task is named entity recognition (NER). It is found from the literature that several researchers have extensively used machine learning models for clinical NER.The most fundamental tasks among the medical data mining tasks are medical named entity recognition and normalization. Medical named entity recognition is different from general NER in various ways. Huge number of alternate spellings and synonyms create explosion of word vocabulary sizes. This reduces the medicine dictionary efficiency. Entities often consist of long sequences of tokens, making harder to detect boundaries exactly. The notes written by clinicians written notes are less structured and are in minimal grammatical form with cryptic short hand. Because of this, it poses challenges in named entity recognition. Generally, NER systems are either rule based or pattern based. The rules and patterns are not generalizable because of the diverse writing style of clinicians. The systems that use machine learning based approach to resolve these issues focus on choosing effective features for classifier building. In this work, machine learning based approach has been used to extract the clinical data in a required manne

    Developing an Arabic Infectious Disease Ontology to Include Non-Standard Terminology

    Get PDF
    Building ontologies is a crucial part of the semantic web endeavour. In recent years, research interest has grown rapidly in supporting languages such as Arabic in NLP in general but there has been very little research on medical ontologies for Arabic. We present a new Arabic ontology in the infectious disease domain to support various important applications including the monitoring of infectious disease spread via social media. This ontology meaningfully integrates the scientific vocabularies of infectious diseases with their informal equivalents. We use ontology learning strategies with manual checking to build the ontology. We applied three statistical methods for term extraction from selected Arabic infectious diseases articles: TF-IDF, C-value, and YAKE. We also conducted a study, by consulting around 100 individuals, to discover the informal terms related to infectious diseases in Arabic. In future work, we will automatically extract the relations for infectious disease concepts but for now these are manually created. We report two complementary experiments to evaluate the ontology. First, a quantitative evaluation of the term extraction results and an additional qualitative evaluation by a domain expert

    Automatic de-identification of textual documents in the electronic health record: a review of recent research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the United States, the Health Insurance Portability and Accountability Act (HIPAA) protects the confidentiality of patient data and requires the informed consent of the patient and approval of the Internal Review Board to use data for research purposes, but these requirements can be waived if data is de-identified. For clinical data to be considered de-identified, the HIPAA "Safe Harbor" technique requires 18 data elements (called PHI: Protected Health Information) to be removed. The de-identification of narrative text documents is often realized manually, and requires significant resources. Well aware of these issues, several authors have investigated automated de-identification of narrative text documents from the electronic health record, and a review of recent research in this domain is presented here.</p> <p>Methods</p> <p>This review focuses on recently published research (after 1995), and includes relevant publications from bibliographic queries in PubMed, conference proceedings, the ACM Digital Library, and interesting publications referenced in already included papers.</p> <p>Results</p> <p>The literature search returned more than 200 publications. The majority focused only on structured data de-identification instead of narrative text, on image de-identification, or described manual de-identification, and were therefore excluded. Finally, 18 publications describing automated text de-identification were selected for detailed analysis of the architecture and methods used, the types of PHI detected and removed, the external resources used, and the types of clinical documents targeted. All text de-identification systems aimed to identify and remove person names, and many included other types of PHI. Most systems used only one or two specific clinical document types, and were mostly based on two different groups of methodologies: pattern matching and machine learning. Many systems combined both approaches for different types of PHI, but the majority relied only on pattern matching, rules, and dictionaries.</p> <p>Conclusions</p> <p>In general, methods based on dictionaries performed better with PHI that is rarely mentioned in clinical text, but are more difficult to generalize. Methods based on machine learning tend to perform better, especially with PHI that is not mentioned in the dictionaries used. Finally, the issues of anonymization, sufficient performance, and "over-scrubbing" are discussed in this publication.</p

    Mapping of electronic health records in Spanish to the unified medical language system metathesaurus

    Get PDF
    [EN] This work presents a preliminary approach to annotate Spanish electronic health records with concepts of the Unified Medical Language System Metathesaurus. The prototype uses Apache Lucene R to index the Metathesaurus and generate mapping candidates from input text. In addition, it relies on UKB to resolve ambiguities. The tool has been evaluated by measuring its agreement with MetaMap in two English-Spanish parallel corpora, one consisting of titles and abstracts of papers in the clinical domain, and the other of real electronic health record excerpts.[EU] Lan honetan, espainieraz idatzitako mediku-txosten elektronikoak Unified Medical Languge System Metathesaurus deituriko terminologia biomedikoarekin etiketatzeko lehen urratsak eman dira. Prototipoak Apache Lucene R erabiltzen du Metathesaurus-a indexatu eta mapatze hautagaiak sortzeko. Horrez gain, anbiguotasunak UKB bidez ebazten ditu. Ebaluazioari dagokionez, prototipoaren eta MetaMap-en arteko adostasuna neurtu da bi ingelera-gaztelania corpus paralelotan. Corpusetako bat artikulu zientifikoetako izenburu eta laburpenez osatutako dago. Beste corpusa mediku-txosten pasarte batzuez dago osatuta

    Automated recognition of malignancy mentions in biomedical literature

    Get PDF
    BACKGROUND: The rapid proliferation of biomedical text makes it increasingly difficult for researchers to identify, synthesize, and utilize developed knowledge in their fields of interest. Automated information extraction procedures can assist in the acquisition and management of this knowledge. Previous efforts in biomedical text mining have focused primarily upon named entity recognition of well-defined molecular objects such as genes, but less work has been performed to identify disease-related objects and concepts. Furthermore, promise has been tempered by an inability to efficiently scale approaches in ways that minimize manual efforts and still perform with high accuracy. Here, we have applied a machine-learning approach previously successful for identifying molecular entities to a disease concept to determine if the underlying probabilistic model effectively generalizes to unrelated concepts with minimal manual intervention for model retraining. RESULTS: We developed a named entity recognizer (MTag), an entity tagger for recognizing clinical descriptions of malignancy presented in text. The application uses the machine-learning technique Conditional Random Fields with additional domain-specific features. MTag was tested with 1,010 training and 432 evaluation documents pertaining to cancer genomics. Overall, our experiments resulted in 0.85 precision, 0.83 recall, and 0.84 F-measure on the evaluation set. Compared with a baseline system using string matching of text with a neoplasm term list, MTag performed with a much higher recall rate (92.1% vs. 42.1% recall) and demonstrated the ability to learn new patterns. Application of MTag to all MEDLINE abstracts yielded the identification of 580,002 unique and 9,153,340 overall mentions of malignancy. Significantly, addition of an extensive lexicon of malignancy mentions as a feature set for extraction had minimal impact in performance. CONCLUSION: Together, these results suggest that the identification of disparate biomedical entity classes in free text may be achievable with high accuracy and only moderate additional effort for each new application domain

    The 2022 n2c2/UW Shared Task on Extracting Social Determinants of Health

    Full text link
    Objective: The n2c2/UW SDOH Challenge explores the extraction of social determinant of health (SDOH) information from clinical notes. The objectives include the advancement of natural language processing (NLP) information extraction techniques for SDOH and clinical information more broadly. This paper presents the shared task, data, participating teams, performance results, and considerations for future work. Materials and Methods: The task used the Social History Annotated Corpus (SHAC), which consists of clinical text with detailed event-based annotations for SDOH events such as alcohol, drug, tobacco, employment, and living situation. Each SDOH event is characterized through attributes related to status, extent, and temporality. The task includes three subtasks related to information extraction (Subtask A), generalizability (Subtask B), and learning transfer (Subtask C). In addressing this task, participants utilized a range of techniques, including rules, knowledge bases, n-grams, word embeddings, and pretrained language models (LM). Results: A total of 15 teams participated, and the top teams utilized pretrained deep learning LM. The top team across all subtasks used a sequence-to-sequence approach achieving 0.901 F1 for Subtask A, 0.774 F1 Subtask B, and 0.889 F1 for Subtask C. Conclusions: Similar to many NLP tasks and domains, pretrained LM yielded the best performance, including generalizability and learning transfer. An error analysis indicates extraction performance varies by SDOH, with lower performance achieved for conditions, like substance use and homelessness, that increase health risks (risk factors) and higher performance achieved for conditions, like substance abstinence and living with family, that reduce health risks (protective factors)

    Croatian Corpus of Non‐Professional Written Language – Typical speakers and speakers with language disorders

    Get PDF
    Corpora, as annotated archives of human communication, are objective, reliable resources for language analysis. Here we present the corpus of non-professional written Croatian, based on 1-year sampling of writings by typical speakers and speakers with language disorders. This corpus provides a unique resource because it samples language used by non-professionals, in contrast to corpora based on texts by professional writers (such as journalists, scholars or novelists) sampled over more than a century. In addition, our corpus contains written language from typical and impaired speakers sampled under identical conditions, allowing detailed analyses of language use. This paper describes the language tasks (essay, story generation, non-formal and formal letter and dictation) used to elicit text production, and procedures for sampling and annotation used to generate the corpus. Its usefulness is illustrated through language productivity analyses of transcripts of different genres produced by writers of different age and language status. This corpus may prove useful for the analysis of writing skills in typical and language-impaired speakers of Croatian
    corecore