366 research outputs found

    Exploiting Locality and Parallelism with Hierarchically Tiled Arrays

    Get PDF
    The importance of tiles or blocks in mathematics and thus computer science cannot be overstated. From a high level point of view, they are the natural way to express many algorithms, both in iterative and recursive forms. Tiles or sub-tiles are used as basic units in the algorithm description. From a low level point of view, tiling, either as the unit maintained by the algorithm, or as a class of data layouts, is one of the most effective ways to exploit locality, which is a must to achieve good performance in current computers given the growing gap between memory and processor speed. Finally, tiles and operations on them are also basic to express data distribution and parallelism. Despite the importance of this concept, which makes inevitable its widespread usage, most languages do not support it directly. Programmers have to understand and manage the low-level details along with the introduction of tiling. This gives place to bloated potentially error-prone programs in which opportunities for performance are lost. On the other hand, the disparity between the algorithm and the actual implementation enlarges. This thesis illustrates the power of Hierarchically Tiled Arrays (HTAs), a data type which enables the easy manipulation of tiles in object-oriented languages. The objective is to evolve this data type in order to make the representation of all classes for algorithms with a high degree of parallelism and/or locality as natural as possible. We show in the thesis a set of tile operations which leads to a natural and easy implementation of different algorithms in parallel and in sequential with higher clarity and smaller size. In particular, two new language constructs dynamic partitioning and overlapped tiling are discussed in detail. They are extensions of the HTA data type to improve its capabilities to express algorithms with a high abstraction and free programmers from programming tedious low-level tasks. To prove the claims, two popular languages, C++ and MATLAB are extended with our HTA data type. In addition, several important dense linear algebra kernels, stencil computation kernels, as well as some benchmarks in NAS benchmark suite were implemented. We show that the HTA codes needs less programming effort with a negligible effect on performance

    Crowd simulation and visualization

    Get PDF
    Large-scale simulation and visualization are essential topics in areas as different as sociology, physics, urbanism, training, entertainment among others. This kind of systems requires a vast computational power and memory resources commonly available in High Performance Computing HPC platforms. Currently, the most potent clusters have heterogeneous architectures with hundreds of thousands and even millions of cores. The industry trends inferred that exascale clusters would have thousands of millions. The technical challenges for simulation and visualization process in the exascale era are intertwined with difficulties in other areas of research, including storage, communication, programming models and hardware. For this reason, it is necessary prototyping, testing, and deployment a variety of approaches to address the technical challenges identified and evaluate the advantages and disadvantages of each proposed solution. The focus of this research is interactive large-scale crowd simulation and visualization. To exploit to the maximum the capacity of the current HPC infrastructure and be prepared to take advantage of the next generation. The project develops a new approach to scale crowd simulation and visualization on heterogeneous computing cluster using a task-based technique. Its main characteristic is hardware agnostic. It abstracts the difficulties that imply the use of heterogeneous architectures like memory management, scheduling, communications, and synchronization — facilitating development, maintenance, and scalability. With the goal of flexibility and take advantage of computing resources as best as possible, the project explores different configurations to connect the simulation with the visualization engine. This kind of system has an essential use in emergencies. Therefore, urban scenes were implemented as realistic as possible; in this way, users will be ready to face real events. Path planning for large-scale crowds is a challenge to solve, due to the inherent dynamism in the scenes and vast search space. A new path-finding algorithm was developed. It has a hierarchical approach which offers different advantages: it divides the search space reducing the problem complexity, it can obtain a partial path instead of wait for the complete one, which allows a character to start moving and compute the rest asynchronously. It can reprocess only a part if necessary with different levels of abstraction. A case study is presented for a crowd simulation in urban scenarios. Geolocated data are used, they were produced by mobile devices to predict individual and crowd behavior and detect abnormal situations in the presence of specific events. It was also address the challenge of combining all these individual’s location with a 3D rendering of the urban environment. The data processing and simulation approach are computationally expensive and time-critical, it relies thus on a hybrid Cloud-HPC architecture to produce an efficient solution. Within the project, new models of behavior based on data analytics were developed. It was developed the infrastructure to be able to consult various data sources such as social networks, government agencies or transport companies such as Uber. Every time there is more geolocation data available and better computation resources which allow performing analysis of greater depth, this lays the foundations to improve the simulation models of current crowds. The use of simulations and their visualization allows to observe and organize the crowds in real time. The analysis before, during and after daily mass events can reduce the risks and associated logistics costs.La simulación y visualización a gran escala son temas esenciales en áreas tan diferentes como la sociología, la física, el urbanismo, la capacitación, el entretenimiento, entre otros. Este tipo de sistemas requiere una gran capacidad de cómputo y recursos de memoria comúnmente disponibles en las plataformas de computo de alto rendimiento. Actualmente, los equipos más potentes tienen arquitecturas heterogéneas con cientos de miles e incluso millones de núcleos. Las tendencias de la industria infieren que los equipos en la era exascale tendran miles de millones. Los desafíos técnicos en el proceso de simulación y visualización en la era exascale se entrelazan con dificultades en otras áreas de investigación, incluidos almacenamiento, comunicación, modelos de programación y hardware. Por esta razón, es necesario crear prototipos, probar y desplegar una variedad de enfoques para abordar los desafíos técnicos identificados y evaluar las ventajas y desventajas de cada solución propuesta. El foco de esta investigación es la visualización y simulación interactiva de multitudes a gran escala. Aprovechar al máximo la capacidad de la infraestructura actual y estar preparado para aprovechar la próxima generación. El proyecto desarrolla un nuevo enfoque para escalar la simulación y visualización de multitudes en un clúster de computo heterogéneo utilizando una técnica basada en tareas. Su principal característica es que es hardware agnóstico. Abstrae las dificultades que implican el uso de arquitecturas heterogéneas como la administración de memoria, las comunicaciones y la sincronización, lo que facilita el desarrollo, el mantenimiento y la escalabilidad. Con el objetivo de flexibilizar y aprovechar los recursos informáticos lo mejor posible, el proyecto explora diferentes configuraciones para conectar la simulación con el motor de visualización. Este tipo de sistemas tienen un uso esencial en emergencias. Por lo tanto, se implementaron escenas urbanas lo más realistas posible, de esta manera los usuarios estarán listos para enfrentar eventos reales. La planificación de caminos para multitudes a gran escala es un desafío a resolver, debido al dinamismo inherente en las escenas y el vasto espacio de búsqueda. Se desarrolló un nuevo algoritmo de búsqueda de caminos. Tiene un enfoque jerárquico que ofrece diferentes ventajas: divide el espacio de búsqueda reduciendo la complejidad del problema, puede obtener una ruta parcial en lugar de esperar a la completa, lo que permite que un personaje comience a moverse y calcule el resto de forma asíncrona, puede reprocesar solo una parte si es necesario con diferentes niveles de abstracción. Se presenta un caso de estudio para una simulación de multitud en escenarios urbanos. Se utilizan datos geolocalizados producidos por dispositivos móviles para predecir el comportamiento individual y público y detectar situaciones anormales en presencia de eventos específicos. También se aborda el desafío de combinar la ubicación de todos estos individuos con una representación 3D del entorno urbano. Dentro del proyecto, se desarrollaron nuevos modelos de comportamiento basados ¿¿en el análisis de datos. Se creo la infraestructura para poder consultar varias fuentes de datos como redes sociales, agencias gubernamentales o empresas de transporte como Uber. Cada vez hay más datos de geolocalización disponibles y mejores recursos de cómputo que permiten realizar un análisis de mayor profundidad, esto sienta las bases para mejorar los modelos de simulación de las multitudes actuales. El uso de simulaciones y su visualización permite observar y organizar las multitudes en tiempo real. El análisis antes, durante y después de eventos multitudinarios diarios puede reducir los riesgos y los costos logísticos asociadosPostprint (published version

    Arquitectura, técnicas y modelos para posibilitar la Ciencia de Datos en el Archivo de la Misión Gaia

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 26/05/2017.The massive amounts of data that the world produces every day pose new challenges to modern societies in terms of how to leverage their inherent value. Social networks, instant messaging, video, smart devices and scientific missions are just mere examples of the vast number of sources generating data every second. As the world becomes more and more digitalized, new needs arise for organizing, archiving, sharing, analyzing, visualizing and protecting the ever-increasing data sets, so that we can truly develop into a data-driven economy that reduces inefficiencies and increases sustainability, creating new business opportunities on the way. Traditional approaches for harnessing data are not suitable any more as they lack the means for scaling to the larger volumes in a timely and cost efficient manner. This has somehow changed with the advent of Internet companies like Google and Facebook, which have devised new ways of tackling this issue. However, the variety and complexity of the value chains in the private sector as well as the increasing demands and constraints in which the public one operates, needs an ongoing research that can yield newer strategies for dealing with data, facilitate the integration of providers and consumers of information, and guarantee a smooth and prompt transition when adopting these cutting-edge technological advances. This thesis aims at providing novel architectures and techniques that will help perform this transition towards Big Data in massive scientific archives. It highlights the common pitfalls that must be faced when embracing it and how to overcome them, especially when the data sets, their transformation pipelines and the tools used for the analysis are already present in the organizations. Furthermore, a new perspective for facilitating a smoother transition is laid out. It involves the usage of higher-level and use case specific frameworks and models, which will naturally bridge the gap between the technological and scientific domains. This alternative will effectively widen the possibilities of scientific archives and therefore will contribute to the reduction of the time to science. The research will be applied to the European Space Agency cornerstone mission Gaia, whose final data archive will represent a tremendous discovery potential. It will create the largest and most precise three dimensional chart of our galaxy (the Milky Way), providing unprecedented position, parallax and proper motion measurements for about one billion stars. The successful exploitation of this data archive will depend to a large degree on the ability to offer the proper architecture, i.e. infrastructure and middleware, upon which scientists will be able to do exploration and modeling with this huge data set. In consequence, the approach taken needs to enable data fusion with other scientific archives, as this will produce the synergies leading to an increment in scientific outcome, both in volume and in quality. The set of novel techniques and frameworks presented in this work addresses these issues by contextualizing them with the data products that will be generated in the Gaia mission. All these considerations have led to the foundations of the architecture that will be leveraged by the Science Enabling Applications Work Package. Last but not least, the effectiveness of the proposed solution will be demonstrated through the implementation of some ambitious statistical problems that will require significant computational capabilities, and which will use Gaia-like simulated data (the first Gaia data release has recently taken place on September 14th, 2016). These ambitious problems will be referred to as the Grand Challenge, a somewhat grandiloquent name that consists in inferring a set of parameters from a probabilistic point of view for the Initial Mass Function (IMF) and Star Formation Rate (SFR) of a given set of stars (with a huge sample size), from noisy estimates of their masses and ages respectively. This will be achieved by using Hierarchical Bayesian Modeling (HBM). In principle, the HBM can incorporate stellar evolution models to infer the IMF and SFR directly, but in this first step presented in this thesis, we will start with a somewhat less ambitious goal: inferring the PDMF and PDAD. Moreover, the performance and scalability analyses carried out will also prove the suitability of the models for the large amounts of data that will be available in the Gaia data archive.Las grandes cantidades de datos que se producen en el mundo diariamente plantean nuevos retos a la sociedad en términos de cómo extraer su valor inherente. Las redes sociales, mensajería instantánea, los dispositivos inteligentes y las misiones científicas son meros ejemplos del gran número de fuentes generando datos en cada momento. Al mismo tiempo que el mundo se digitaliza cada vez más, aparecen nuevas necesidades para organizar, archivar, compartir, analizar, visualizar y proteger la creciente cantidad de datos, para que podamos desarrollar economías basadas en datos e información que sean capaces de reducir las ineficiencias e incrementar la sostenibilidad, creando nuevas oportunidades de negocio por el camino. La forma en la que se han manejado los datos tradicionalmente no es la adecuada hoy en día, ya que carece de los medios para escalar a los volúmenes más grandes de datos de una forma oportuna y eficiente. Esto ha cambiado de alguna manera con la llegada de compañías que operan en Internet como Google o Facebook, ya que han concebido nuevas aproximaciones para abordar el problema. Sin embargo, la variedad y complejidad de las cadenas de valor en el sector privado y las crecientes demandas y limitaciones en las que el sector público opera, necesitan una investigación continua en la materia que pueda proporcionar nuevas estrategias para procesar las enormes cantidades de datos, facilitar la integración de productores y consumidores de información, y garantizar una transición rápida y fluida a la hora de adoptar estos avances tecnológicos innovadores. Esta tesis tiene como objetivo proporcionar nuevas arquitecturas y técnicas que ayudarán a realizar esta transición hacia Big Data en archivos científicos masivos. La investigación destaca los escollos principales a encarar cuando se adoptan estas nuevas tecnologías y cómo afrontarlos, principalmente cuando los datos y las herramientas de transformación utilizadas en el análisis existen en la organización. Además, se exponen nuevas medidas para facilitar una transición más fluida. Éstas incluyen la utilización de software de alto nivel y específico al caso de uso en cuestión, que haga de puente entre el dominio científico y tecnológico. Esta alternativa ampliará de una forma efectiva las posibilidades de los archivos científicos y por tanto contribuirá a la reducción del tiempo necesario para generar resultados científicos a partir de los datos recogidos en las misiones de astronomía espacial y planetaria. La investigación se aplicará a la misión de la Agencia Espacial Europea (ESA) Gaia, cuyo archivo final de datos presentará un gran potencial para el descubrimiento y hallazgo desde el punto de vista científico. La misión creará el catálogo en tres dimensiones más grande y preciso de nuestra galaxia (la Vía Láctea), proporcionando medidas sin precedente acerca del posicionamiento, paralaje y movimiento propio de alrededor de mil millones de estrellas. Las oportunidades para la explotación exitosa de este archivo de datos dependerán en gran medida de la capacidad de ofrecer la arquitectura adecuada, es decir infraestructura y servicios, sobre la cual los científicos puedan realizar la exploración y modelado con esta inmensa cantidad de datos. Por tanto, la estrategia a realizar debe ser capaz de combinar los datos con otros archivos científicos, ya que esto producirá sinergias que contribuirán a un incremento en la ciencia producida, tanto en volumen como en calidad de la misma. El conjunto de técnicas e infraestructuras innovadoras presentadas en este trabajo aborda estos problemas, contextualizándolos con los productos de datos que se generarán en la misión Gaia. Todas estas consideraciones han conducido a los fundamentos de la arquitectura que se utilizará en el paquete de trabajo de aplicaciones que posibilitarán la ciencia en el archivo de la misión Gaia (Science Enabling Applications). Por último, la eficacia de la solución propuesta se demostrará a través de la implementación de dos problemas estadísticos que requerirán cantidades significativas de cómputo, y que usarán datos simulados en el mismo formato en el que se producirán en el archivo de la misión Gaia (la primera versión de datos recogidos por la misión está disponible desde el día 14 de Septiembre de 2016). Estos ambiciosos problemas representan el Gran Reto (Grand Challenge), un nombre grandilocuente que consiste en inferir una serie de parámetros desde un punto de vista probabilístico para la función de masa inicial (Initial Mass Function) y la tasa de formación estelar (Star Formation Rate) dado un conjunto de estrellas (con una muestra grande), desde estimaciones con ruido de sus masas y edades respectivamente. Esto se abordará utilizando modelos jerárquicos bayesianos (Hierarchical Bayesian Modeling). Enprincipio,losmodelospropuestos pueden incorporar otros modelos de evolución estelar para inferir directamente la función de masa inicial y la tasa de formación estelar, pero en este primer paso presentado en esta tesis, empezaremos con un objetivo algo menos ambicioso: la inferencia de la función de masa y distribución de edades actual (Present-Day Mass Function y Present-Day Age Distribution respectivamente). Además, se llevará a cabo el análisis de rendimiento y escalabilidad para probar la idoneidad de la implementación de dichos modelos dadas las enormes cantidades de datos que estarán disponibles en el archivo de la misión Gaia...Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu

    Understanding Spark System Performance for Image Processing in a Heterogeneous Commodity Cluster

    Get PDF
    In recent years, Apache Spark has seen a widespread adoption in industries and institutions due to its cache mechanism for faster Big Data analytics. However, the speed advantage Spark provides, especially in a heterogeneous cluster environment, is not obtainable out-of-the-box; it requires the right combination of configuration parameters from the myriads of parameters provided by Spark developers. Recognizing this challenge, this thesis undertakes a study to provide insight on Spark performance particularly, regarding the impact of choice parameter settings. These are parameters that are critical to fast job completion and effective utilization of resources. To this end, the study focuses on two specific example applications namely, flowerCounter and imageClustering, for processing still image datasets of Canola plants collected during the Summer of 2016 from selected plot fields using timelapse cameras in a heterogeneous Spark-clustered environments. These applications were of initial interest to the Plant Phenotyping and Imaging Research Centre (P2IRC) at the University of Saskatchewan. The P2IRC is responsible for developing systems that will aid fast analysis of large-scale seed breeding to ensure global food security. The flowerCounter application estimates the count of flowers from the images while the imageClustering application clusters images based on physical plant attributes. Two clusters are used for the experiments: a 12-node and 3-node cluster (including a master node), with Hadoop Distributed File System (HDFS) as the storage medium for the image datasets. Experiments with the two case study applications demonstrate that increasing the number of tasks does not always speed-up job processing due to increased communication overheads. Findings from other experiments show that numerous tasks with one core per executor and small allocated memory limits parallelism within an executor and result in inefficient use of cluster resources. Executors with large CPU and memory, on the other hand, do not speed-up analytics due to processing delays and threads concurrency. Further experimental results indicate that application processing time depends on input data storage in conjunction with locality levels and executor run time is largely dominated by the disk I/O time especially, the read time cost. With respect to horizontal node scaling, Spark scales with increasing homogeneous computing nodes but the speed-up degrades with heterogeneous nodes. Finally, this study shows that the effectiveness of speculative tasks execution in mitigating the impact of slow nodes varies for the applications

    Evaluation and optimization of Big Data Processing on High Performance Computing Systems

    Get PDF
    Programa Oficial de Doutoramento en Investigación en Tecnoloxías da Información. 524V01[Resumo] Hoxe en día, moitas organizacións empregan tecnoloxías Big Data para extraer información de grandes volumes de datos. A medida que o tamaño destes volumes crece, satisfacer as demandas de rendemento das aplicacións de procesamento de datos masivos faise máis difícil. Esta Tese céntrase en avaliar e optimizar estas aplicacións, presentando dúas novas ferramentas chamadas BDEv e Flame-MR. Por unha banda, BDEv analiza o comportamento de frameworks de procesamento Big Data como Hadoop, Spark e Flink, moi populares na actualidade. BDEv xestiona a súa configuración e despregamento, xerando os conxuntos de datos de entrada e executando cargas de traballo previamente elixidas polo usuario. Durante cada execución, BDEv extrae diversas métricas de avaliación que inclúen rendemento, uso de recursos, eficiencia enerxética e comportamento a nivel de microarquitectura. Doutra banda, Flame-MR permite optimizar o rendemento de aplicacións Hadoop MapReduce. En xeral, o seu deseño baséase nunha arquitectura dirixida por eventos capaz de mellorar a eficiencia dos recursos do sistema mediante o solapamento da computación coas comunicacións. Ademais de reducir o número de copias en memoria que presenta Hadoop, emprega algoritmos eficientes para ordenar e mesturar os datos. Flame-MR substitúe o motor de procesamento de datos MapReduce de xeito totalmente transparente, polo que non é necesario modificar o código de aplicacións xa existentes. A mellora de rendemento de Flame-MR foi avaliada de maneira exhaustiva en sistemas clúster e cloud, executando tanto benchmarks estándar coma aplicacións pertencentes a casos de uso reais. Os resultados amosan unha redución de entre un 40% e un 90% do tempo de execución das aplicacións. Esta Tese proporciona aos usuarios e desenvolvedores de Big Data dúas potentes ferramentas para analizar e comprender o comportamento de frameworks de procesamento de datos e reducir o tempo de execución das aplicacións sen necesidade de contar con coñecemento experto para elo.[Resumen] Hoy en día, muchas organizaciones utilizan tecnologías Big Data para extraer información de grandes volúmenes de datos. A medida que el tamaño de estos volúmenes crece, satisfacer las demandas de rendimiento de las aplicaciones de procesamiento de datos masivos se vuelve más difícil. Esta Tesis se centra en evaluar y optimizar estas aplicaciones, presentando dos nuevas herramientas llamadas BDEv y Flame-MR. Por un lado, BDEv analiza el comportamiento de frameworks de procesamiento Big Data como Hadoop, Spark y Flink, muy populares en la actualidad. BDEv gestiona su configuración y despliegue, generando los conjuntos de datos de entrada y ejecutando cargas de trabajo previamente elegidas por el usuario. Durante cada ejecución, BDEv extrae diversas métricas de evaluación que incluyen rendimiento, uso de recursos, eficiencia energética y comportamiento a nivel de microarquitectura. Por otro lado, Flame-MR permite optimizar el rendimiento de aplicaciones Hadoop MapReduce. En general, su diseño se basa en una arquitectura dirigida por eventos capaz de mejorar la eficiencia de los recursos del sistema mediante el solapamiento de la computación con las comunicaciones. Además de reducir el número de copias en memoria que presenta Hadoop, utiliza algoritmos eficientes para ordenar y mezclar los datos. Flame-MR reemplaza el motor de procesamiento de datos MapReduce de manera totalmente transparente, por lo que no se necesita modificar el código de aplicaciones ya existentes. La mejora de rendimiento de Flame-MR ha sido evaluada de manera exhaustiva en sistemas clúster y cloud, ejecutando tanto benchmarks estándar como aplicaciones pertenecientes a casos de uso reales. Los resultados muestran una reducción de entre un 40% y un 90% del tiempo de ejecución de las aplicaciones. Esta Tesis proporciona a los usuarios y desarrolladores de Big Data dos potentes herramientas para analizar y comprender el comportamiento de frameworks de procesamiento de datos y reducir el tiempo de ejecución de las aplicaciones sin necesidad de contar con conocimiento experto para ello.[Abstract] Nowadays, Big Data technologies are used by many organizations to extract valuable information from large-scale datasets. As the size of these datasets increases, meeting the huge performance requirements of data processing applications becomes more challenging. This Thesis focuses on evaluating and optimizing these applications by proposing two new tools, namely BDEv and Flame-MR. On the one hand, BDEv allows to thoroughly assess the behavior of widespread Big Data processing frameworks such as Hadoop, Spark and Flink. It manages the configuration and deployment of the frameworks, generating the input datasets and launching the workloads specified by the user. During each workload, it automatically extracts several evaluation metrics that include performance, resource utilization, energy efficiency and microarchitectural behavior. On the other hand, Flame-MR optimizes the performance of existing Hadoop MapReduce applications. Its overall design is based on an event-driven architecture that improves the efficiency of the system resources by pipelining data movements and computation. Moreover, it avoids redundant memory copies present in Hadoop, while also using efficient sort and merge algorithms for data processing. Flame-MR replaces the underlying MapReduce data processing engine in a transparent way and thus the source code of existing applications does not require to be modified. The performance benefits provided by Flame- MR have been thoroughly evaluated on cluster and cloud systems by using both standard benchmarks and real-world applications, showing reductions in execution time that range from 40% to 90%. This Thesis provides Big Data users with powerful tools to analyze and understand the behavior of data processing frameworks and reduce the execution time of the applications without requiring expert knowledge

    Design and Evaluation of Distributed Algorithms for Placement of Network Services

    Get PDF
    Network services play an important role in the Internet today. They serve as data caches for websites, servers for multiplayer games and relay nodes for Voice over IP: VoIP) conversations. While much research has focused on the design of such services, little attention has been focused on their actual placement. This placement can impact the quality of the service, especially if low latency is a requirement. These services can be located on nodes in the network itself, making these nodes supernodes. Typically supernodes are selected in either a proprietary or ad hoc fashion, where a study of this placement is either unavailable or unnecessary. Previous research dealt with the only pieces of the problem, such as finding the location of caches for a static topology, or selecting better routes for relays in VoIP. However, a comprehensive solution is needed for dynamic applications such as multiplayer games or P2P VoIP services. These applications adapt quickly and need solutions based on the immediate demands of the network. In this thesis we develop distributed algorithms to assign nodes the role of a supernode. This research first builds off of prior work by modifying an existing assignment algorithm and implementing it in a distributed system called Supernode Placement in Overlay Topologies: SPOT). New algorithms are developed to assign nodes the supernode role. These algorithms are then evaluated in SPOT to demonstrate improved SN assignment and scalability. Through a series of simulation, emulation, and experimentation insight is gained into the critical issues associated with allocating resources to perform the role of supernodes. Our contributions include distributed algorithms to assign nodes as supernodes, an open source fully functional distributed supernode allocation system, an evaluation of the system in diverse networking environments, and a simulator called SPOTsim which demonstrates the scalability of the system to thousands of nodes. An example of an application deploying such a system is also presented along with the empirical results

    A profile of differential DNA methylation in sporadic human prion disease blood: precedent, implications and clinical promise

    Get PDF
    Sporadic Creutzfeldt-Jakob Disease (sCJD) is a rare but devastating neurodegenerative disorder characterised by misfolding, propagation and deposition of the prion protein in the brain, leading to neuronal death and rapid cognitive and functional decline. As there is no obvious genetic cause of sCJD, the epigenetic status of sCJD patients may clarify spontaneous prion disease aetiology or reveal biomarkers of the disease. Blood from patients was profiled to document genome-wide differential DNA methylation. // 38 loci were identified as being differentially methylated in sCJD blood, including two which associated with disease severity as measured by the MRC Scale score. Of 7 loci considered for replication, 5 showed similar effects in a second cohort of patients, but not in patients of Alzheimer’s disease, iatrogenic CJD, or inherited prion disease, suggesting these effects are specific to the sporadic form of CJD. Notably hypomethylation at a site in the promoter of AIM2, an inflammasome component, retained its association with disease severity. // Hypomethylation of FKBP5, a gene known to regulate the cellular response to cortisol, prompted further investigation which revealed that circulating cortisol is indeed elevated in sCJD patients. Profiling of frontal cortex-derived DNA showed that differential methylation observed in blood is absent from the brain methylome. // Machine learning classification of sCJD based on genome-wide methylation data was able to classify sCJD and healthy control status with an accuracy of 87.04%. This is an appreciable level of accuracy but importantly sets precedence for further classification of prion patients in more complex clinical and research settings, as well as assisting differential diagnosis of less conventional rapid dementias

    System-on-chip architecture for secure sub-microsecond synchronization systems

    Get PDF
    213 p.En esta tesis, se pretende abordar los problemas que conlleva la protección cibernética del Precision Time Protocol (PTP). Éste es uno de los protocolos de comunicación más sensibles de entre los considerados por los organismos de estandarización para su aplicación en las futuras Smart Grids o redes eléctricas inteligentes. PTP tiene como misión distribuir una referencia de tiempo desde un dispositivo maestro al resto de dispositivos esclavos, situados dentro de una misma red, de forma muy precisa. El protocolo es altamente vulnerable, ya que introduciendo tan sólo un error de tiempo de un microsegundo, pueden causarse graves problemas en las funciones de protección del equipamiento eléctrico, o incluso detener su funcionamiento. Para ello, se propone una nueva arquitectura System-on-Chip basada en dispositivos reconfigurables, con el objetivo de integrar el protocolo PTP y el conocido estándar de seguridad MACsec para redes Ethernet. La flexibilidad que los modernos dispositivos reconfigurables proporcionan, ha sido aprovechada para el diseño de una arquitectura en la que coexisten procesamiento hardware y software. Los resultados experimentales avalan la viabilidad de utilizar MACsec para proteger la sincronización en entornos industriales, sin degradar la precisión del protocolo
    • …
    corecore