
Understanding Spark System Performance for Image

Processing in a Heterogeneous Commodity Cluster

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Owolabi Adekoya

c©Owolabi Adekoya, July/2018. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

Head of the Department of Computer Science

University of Saskatchewan

176 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

i

Abstract

In recent years, Apache Spark has seen a widespread adoption in industries and institutions due to its

cache mechanism for faster Big Data analytics. However, the speed advantage Spark provides, especially in

a heterogeneous cluster environment, is not obtainable out-of-the-box; it requires the right combination of

configuration parameters from the myriads of parameters provided by Spark developers. Recognizing this

challenge, this thesis undertakes a study to provide insight on Spark performance particularly, regarding

the impact of choice parameter settings. These are parameters that are critical to fast job completion and

effective utilization of resources.

To this end, the study focuses on two specific example applications namely, flowerCounter and imageClus-

tering, for processing still image datasets of Canola plants collected during the Summer of 2016 from selected

plot fields using timelapse cameras in a heterogeneous Spark-clustered environments. These applications

were of initial interest to the Plant Phenotyping and Imaging Research Centre (P2IRC) at the University of

Saskatchewan. The P2IRC is responsible for developing systems that will aid fast analysis of large-scale seed

breeding to ensure global food security. The flowerCounter application estimates the count of flowers from

the images while the imageClustering application clusters images based on physical plant attributes. Two

clusters are used for the experiments: a 12-node and 3-node cluster (including a master node), with Hadoop

Distributed File System (HDFS) as the storage medium for the image datasets.

Experiments with the two case study applications demonstrate that increasing the number of tasks does

not always speed-up job processing due to increased communication overheads. Findings from other experi-

ments show that numerous tasks with one core per executor and small allocated memory limits parallelism

within an executor and result in inefficient use of cluster resources. Executors with large CPU and memory,

on the other hand, do not speed-up analytics due to processing delays and threads concurrency. Further

experimental results indicate that application processing time depends on input data storage in conjunction

with locality levels and executor run time is largely dominated by the disk I/O time especially, the read

time cost. With respect to horizontal node scaling, Spark scales with increasing homogeneous computing

nodes but the speed-up degrades with heterogeneous nodes. Finally, this study shows that the effectiveness

of speculative tasks execution in mitigating the impact of slow nodes varies for the applications.

ii

Acknowledgements

There are lot of persons that were instrumental to the success of this study. First, I would like to thank the

Almighty God for the grace and wisdom given to me to start and complete this program successfully. I would

also like to thank my family for their encouragement and support throughout this program. My profound

gratitude goes to the graduate committee of the Department of Computer Science and the Graduate College

at large for the financial assistantship given to me towards the completion of this work. Thank you for the

privilege of exploring the frontiers of research at the University of Saskatchewan. My sincere appreciation also

goes to my supervisors Dr Dwight Makaroff and Dr Derek Eager for their reception, mentorship, guidance,

support (both professionally and financially), patience and understanding towards the completion of this

study. I will be forever grateful for your kind gesture and assistance towards this research pursuit. I would

also like to acknowledge my advisory committee members Dr Kevin Stanley and Dr Ian Stavness for their

guidance and support towards this ideal. I would not forget to recognize the efforts of my instructors whose

knowledge greatly contributed to my success namely Dr Nathaniel Osgood, Dr Ralph Deters, Dr Michael

Horsch & Dr Kevin Stanley. I am also hugely indebted to some Departmental staff including Gwen Lacaster,

Brittany Melnyk, Greg Oster, Cary Bernath, Raouf Ajami, Merlin Hansen, Seth Shacter & Jeff Long for their

tremendous support all through this study. I also want to appreciate the efforts of Javier Garcia Gonzalez and

Amit Mondal for providing the sequential version of the applications used in this study. I also acknowledge

the support and encouragement of my research colleagues like Tunde Olabenjo, Habib Ado, Philip Dueck,

Winchell Qian, Mohammed Rashid Chowdhury, Fadi Mobayed, Lin Pin & Faheem Abrar. I also appreciate

the support of my Spiritual mentors Pastor & Mrs Titus Adedapo, Mr & Mrs Funso Oderinde, Brother Hugo

Clarke, Mr Jamiu Sanni, Edward & Priscilla Bam, and especially my Spiritual father Pastor Kola Adebari.

Lastly, I would like to thank my covenant brothers Tunde Onafeso and Elijah Ericmoore Jossou for being

there in all ramifications during this research adventure and a lot of persons that I can not possibly remember.

Thank you all for your support and encouragement. I am deeply grateful.

iii

This work is dedicated to the Almighty God, my family, friends and supervisors

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables vii

List of Figures viii

List of Abbreviations ix

1 Introduction 1
1.1 Thesis Motivation . 6
1.2 Thesis Statement . 6
1.3 Thesis Findings . 7
1.4 Thesis Organization . 8

2 Background and Related Work 9
2.1 Big Data Analytics Frameworks . 9
2.2 Spark Overview . 10

2.2.1 Spark Resource Managers . 13
2.2.2 Spark Storage Systems . 13

2.3 Spark Operations and Parameters . 13
2.4 Prior Performance Studies of Spark . 20
2.5 Chapter Summary . 22

3 Experimental Methodology and Design 24
3.1 Experimental Methodology . 24

3.1.1 Applications Benchmark Characteristics . 24
3.1.2 Input Datasets . 27
3.1.3 Cluster Setup . 28
3.1.4 Performance Characteristics of the Cluster Nodes . 31
3.1.5 Measurement Tools and Metrics . 32

3.2 Experimental Design . 36
3.2.1 Experiments to investigate the influence of spark.files.maxPartitionBytes on application

performance . 36
3.2.2 Experiments to understand the influence of spark.executor.cores on application perfor-

mance . 36
3.2.3 Experiments to investigate the influence of spark.executor.memory parameter on ap-

plication performance . 39
3.2.4 Experiments to study the scalability of the Spark system with increasing number of

computing nodes . 39
3.2.5 Experiments to investigate the influence of spark.speculation configuration parameter

on straggling tasks . 40

4 Performance Analysis and Evaluation 42
4.1 Effect of Partition Size . 42

v

4.2 JVM Executor Scaling . 58
4.3 Impact of Caching . 71
4.4 Compute Node Scaling . 76
4.5 Speculative Task Execution . 79
4.6 Chapter Summary . 83

5 Conclusion and Future Work 85
5.1 Summary . 85
5.2 Contributions . 87
5.3 Future Work . 88

References 90

vi

List of Tables

2.1 Spark Configuration Parameters . 19

3.1 Applications Characteristics . 27
3.2 Dataset Description . 28
3.3 Specification of Each Node of the Larger Cluster . 29
3.4 Specification of Each Node of the Smaller Cluster . 30
3.5 Specification of the Benchmark Machine (Onomi) . 30
3.6 Spark Configuration Parameters for Experimental Design . 30
3.7 Performance Characteristics of Nodes . 33
3.8 Configuration Settings for Experiments in §3.2.1 . 37
3.9 Configuration Settings for Experiments in §3.2.2 . 38
3.10 Configuration Settings for Experiments in §3.2.3 . 40
3.11 Configuration Settings for Experiments in §3.2.5 . 41

4.1 flowerCounter : Influence of spark.files.maxPartitionBytes (July, 34.8 GB Dataset) 44
4.2 flowerCounter : Influence of spark.files.maxPartitionBytes (July, 34.8 GB Dataset) 49
4.3 flowerCounter : Influence of spark.executor.cores (August, 19.3 GB Dataset) 59
4.4 Execution Time Summary of 9 JVM Executors for imageClustering (128 MB) 63
4.5 Execution Time Summary of 18 JVM Executors for imageClustering (128 MB) 63
4.6 Average Cluster Resource Usage Metrics for flowerCounter (64 MB) 63
4.7 Average Cluster Resource Usage Metrics for imageClustering (128 MB) 65
4.8 flowerCounter : Influence of spark.executor.cores . 67
4.9 imageClustering : Influence of spark.executor.cores (July, 34.8 GB Dataset) 67
4.10 flowerCounter : Influence of Caching (July, 34.8 GB Dataset) 74
4.11 imageClustering : Influence of Caching (September, 5.7 GB Dataset) 75
4.12 flowerCounter : Locality Level Summary (July, 34.8 GB Dataset) 75
4.13 imageClustering : Locality Level Summary (September, 5.7 GB Dataset) 75
4.14 flowerCounter : Tasks Execution Time Summary on all Nodes (July, 34.8 GB Dataset) 78
4.15 Runtime Comparison between the Sequential & Spark flowerCounter applications 79
4.16 flowerCounter : Tasks Execution Time Summary with Speculation (July, 34.8 GB Dataset) . 82
4.17 imageClustering : Tasks Execution Time Summary without Speculation (July, 34.8 GB Dataset) 82
4.18 imageClustering : Tasks Execution Time Summary with Speculation (July, 34.8 GB Dataset) 83

vii

List of Figures

2.1 The Berkeley Data Analytics Stack (BDAS) [3] . 11
2.2 Components of a Spark Application [49] . 12
2.3 The Spark workflow . 17
2.4 The Shuffle Phase . 18

4.1 Partition Size vs Runtime . 43
4.2 Stage Time Summary . 46
4.3 Task Progress Summary . 47
4.4 Task Progress Summary . 48
4.5 CPU Utilization . 50
4.6 CPU HeatMap . 52
4.7 RAM Usage . 53
4.8 Disk Throughput . 54
4.9 Network Throughput . 55
4.10 HDFS IO . 57
4.11 Tasks Completion Progress Summary . 60
4.12 Tasks Completion Progress Summary . 64
4.13 Task Completion Progress Summary . 65
4.14 Execution Time of Core Scaling . 69
4.15 Speedup of Core Scaling . 70
4.16 Influence of spark.executor.memory Parameter . 71
4.17 Runtime vs Storage Level . 73
4.18 Effect of Node Scaling . 77
4.19 Influence of Slow Nodes . 78
4.20 Speculative and non-Speculative flowerCounter appilcation execution 80

viii

List of Abbreviations

IoT Internet of Things

AMPlab Algorithms, Machines, & People Lab

TPC-DS Transaction Processing Performance Council Decision-Support

P2IRC Plant Phenotyping and Imaging Research Centre

JVM Java Virtual Machine

UI User Interface

HDFS Hadoop Distributed File System

RDD Resilient Distributed Dataset

BDAS Berkeley Data Analytics Stack

API Application Programming Interfaces

DAG Directed Acyclic Graph

YARN Yet Another Resource Negotiator

SSD Solid-State Drive

SciDB Scientific Database

HAT History-Based Auto-tuning

PIL Python Image Processing Library

MLlib Spark Machine Learning Library

SIFT Scale Invariant Feature Transform

KVM Kernel-based Virtual Machines

HT Hyper-Threading

FSB Front-Side Bus

QPI Quick Path Interconnect

DMI Direct Media Interface

TBT Turbo Boost Technology

JSON JavaScript Object Notation

GC Garbage Collection

ix

Chapter 1

Introduction

The MapReduce [17] programming paradigm has been effective for Big Data processing in a fast and

scalable fashion. The execution model in MapReduce works by decomposing Big Data processing jobs into

Map and Reduce sub tasks and then assigning those tasks to cluster computing nodes. Hadoop MapReduce

was developed as an open-sourced alternative of the MapReduce programming paradigm. It is the parallel

processing model of Hadoop [24] for processing and analyzing Big Data workloads. However, owing to the

continued evolution of Big Data due to innovative exploits in computing domains such as mobile and social

computing, Internet of Things (IoT) amongst other new domains, researchers and industry practitioners

have found that MapReduce is no longer effective for some new emerging low latency and data-intensive

applications such as iterative, data mining and graphical applications due to expensive I/O overheads and

data serialization. This has led researchers and other concerned stakeholders to developing variant arrays of

computing frameworks to meet these new emerging application scenarios. Apache Spark [62] is one of the new

emerging in-memory analytics frameworks for Big Data processing designed ground up with the MapReduce

programming paradigm. Spark, developed in 2009 at UC Berkeley AMPLab,1 open-sourced in 2010 became

a top-level Apache project in 2014, is a data analytics engine designed to handle this new set of emerging

applications.

Identifying performance bottlenecks in analytics frameworks such as Spark is difficult due to its in-

memory and end-to-end design paradigm [40]. Substantial efforts have been directed towards understanding

and identifying performance bottlenecks [8, 40, 51] in analytics frameworks as well as improving their per-

formance [2, 4, 45]. However, most of these works involved using transactional and production traces such

as the Transaction Processing Performance Council’s decision-support benchmark (TPC-DS) [15] and not

real applications. Only recently did Zhang et al. [64] investigate Spark’s performance for real scientific data

analysis in comparison with the traditional disk-based SciDB [9] software systems. Nonetheless, there has not

been much work done in understanding Spark’s performance with respect to specific categories of scientifc

applications with binary data such as image processing applications with real image datasets. Therefore,

this work focuses on understanding the performance of Spark system for two image processing applications

(flowerCounter and imageClustering developed using the python APIs of the Spark System - Pyspark2) in a

1https://amplab.cs.berkeley.edu/(Accessed: April 21, 2018)
2http://spark.apache.org/docs/latest/api/python/(Accessed: April 21, 2018)

1

heterogeneous commodity cluster. The larger cluster consists of 12 commodity personal computers with vary-

ing configurations while the other smaller cluster consists of 3 larger servers with more computing resources

respectively.

The two applications (flowerCounter and imageClustering) were selected because of their importance

to the analytics pipeline of the global research project on food security currently being undertaken by the

University of Saskatchewan Plant Phenotyping and Imaging Research Centre (P2IRC).3 The overarching

goal of P2IRC is to developed systems that will provide information about plants traits for transforming

large-scale seed breeding to support global food security.

The flowerCounter application is one of the applications being developed by the Data Analysis for Rapid

Plant Phenotyping4 project group under the Computational Informatics of Crop Phenotype Data research

theme. Its purpose is to analyze the rate at which plant flowers are growing on plot fields using timelapse

images collected from stationary cameras.

On the other hand, the imageClustering application categorizes plant images based on observable physical

attributes such as colour, brightness or size. The different categories can then be further analyzed for more

insights. These applications are particularly selected to meet future scalability demands.

Processing the massive data with the sequential versions of these applications will be computationally

expensive and last for several hours or days. Cluster operation with Spark will permit appropriate parallel

processing. Furthermore, this provides opportunity to understand how Spark can be efficiently tuned in order

to aid the processing of images. Thus, this thesis contributes to the investigation of distributed frameworks

for image analysis applications within the context of P2IRC project, but can also be more generally applicable

to configuration requirements for general Spark jobs.

These two sequential applications are selected not because of their inherent affinity to the Spark processing

model but primarily for the purpose of investigating whether their performance can be improved by the sharing

of cluster resources using the Spark programming model. The applications are not particularly suited to the

Spark programming framework because they are based on the manipulation of large numpy arrays of binary

data. The processing of large binary data by Spark is still an experimental feature and thus may not take

advantage of Spark’s unique features. In particular, the Spark programming model favours applications that

produce intermediate data output which can be persisted in memory for subsequent processing in the pipeline.

This is the cache design paradigm inherent in the Spark processing engine for optimal performance. However,

the flowerCounter application, for example, differs from this memory abstraction design as the application

involves very little in-memory intermediate data results.

Moreover, the applications (flowerCounter and imageClustering) used in this study are particularly im-

portant for subsequent image processing operation analyses as they will help to provide information about

the growth of flowers on respective farm plots. The information obtained from the processing of the image

3http://p2irc.usask.ca/index.php(Accessed: February 5, 2018)
4http://p2irc.usask.ca/themes/computing/project-3-2.php#ProjectGoal(Accessed: February 5, 2018)

2

datasets with these applications can aid further analyses for example, to determine the cause(s) of the pat-

terns observed which could be due to genetics, soil content and structure, environmental factors, weather

conditions or any other cause(s) whatsoever. These applications may be particularly amenable to features of

Spark and thus having a common processing paradigm could be useful for development and deployment.

To this end, this thesis investigates the effect(s) that the configurable engine parameters would have

on the application processing time as well as how the underlying cluster computing resources are being

utilized with the view of identifying performance bottlenecks in these applications. The sequential version of

these applications is used as a baseline for resource consumption and processing time comparisons with the

corresponding Spark versions.

A Spark application is expressed as a series of jobs depending on the inherent logic of the application. A

job consists of a series of stages which are defined by high level distributed operations (Spark transformations

and actions) such as map, flatMap, filter, coalesce, reduceByKey, repartition, collect and saveAsTextFile.

Some of these operations such as coalesce, repartition, and reduceBykey involve the movement of data across

the nodes in the cluster over the network. This transfer of data across the nodes is otherwise referred to

as a shuffling operation. A stage is made up of parallel tasks that are executed by JVM executor processes

running on the physical machines in the cluster. A task is essentially the unit of work corresponding to one

data partition within a stage. The number of data partitions in a stage is determined by the size of the input

data and the specified data block size. The default block size in Spark (a data partition size) is 128 MB.

Data skew has been identified as one of the causes of straggling tasks; its cause is mis-configured data

partition sizes. Mis-configured partition sizes increase CPU computation time especially for shuffle operations

and thus prolong job completion times [40, 51]. Spark calculates the number of tasks based on the data block

size. Hence, if the number of tasks is smaller than the number of available CPU cores, CPU usage will be sub-

optimal. Therefore, knowing the right partition size for Spark jobs (especially shuffle-heavy applications) will

help to achieve optimal parallelism. However, determining the correct partition size for different workloads

is not a trivial task; it involves using heuristic approaches to finding an optimal configurable size for different

application scenarios [51, 64]. As a result, one aspect of this work investigates the effect of data partition

size on the performance of the image processing applications.

Effective tuning of Java Virtual Machine (JVM) parameters is key to Spark application performance as

the engine runs on the JVM. Badly configured Spark applications for JVM parameters such as the heap size

and threads will degrade their performance due to increased garbage collection overhead, thread contention

and context switching among other causes. Thus, the performance of Spark jobs is largely dependent on the

right configuration of the JVM heap size as well as the number of JVM executors.

Chiba and Onodera [12] observed that using a single JVM executor is not an optimal solution. This

might be due to the fact that Hadoop Distributed File System (HDFS) [47] client does not handle concurrent

threads created by an executor with many cores well, thus leading to bad HDFS I/O throughput. This is

because the number of concurrent operations that HDFS can handle is dependent on the number of data

3

blocks stored on the node.

As a result, performance might be improved by increasing the number of executors, as the data being

processed is partitioned across many machines in the cluster, rather than having a single executor with

many cores reading the same fraction of data on a single node [21]. On the other hand, running many

small executors with a single core defeats the advantage of parallelism within an executor and subsequently

degrade performance due to JVMs communication overhead [12, 13]. Also, having many tiny executors with

fewer cores can lead to unnecessary duplication of data [21]. Evidently, this work also considers the effect of

increasing JVM executor while keeping the total heap space constant on job performance.

Owing to the heterogeneous cluster nature, slow tasks are not unusual. Spark mitigates straggler tasks/n-

odes by speculative execution. This works by rescheduling tasks whose run time exceeds the median time of

tasks that has already been completed to the scheduling queue. This might not be effective as tasks might still

be resubmitted to the slow nodes as there is no way of identifying such nodes to prevent the task scheduler

from submitting tasks to them [60]. Also, the effect of slow tasks on application performance could also be

mitigated by increasing the number of cores allocated to a single task [44]. Similarly, this study investigates

the effect of speculative task execution on the application processing time.

Identifying the key configuration settings for fast job execution (particularly for the applications being

considered) as well as for optimal resource utilization is nontrivial because Spark provides a vast number

of configuration settings regarding application properties, execution environments, resource utilization, tasks

scheduling, memory management, compression and serialization, shuffle behaviour and Spark UI. The right

combination of configuration parameters with respect to the different aspects of the programming framework

varies depending on the different applications Spark supports. The operational modes represented in the

flowerCounter and imageClustering applications requre optimal use of cluster resources especially CPU and

memory. This informs the choice of configuration parameters considered in the study.

Motivated by the objectives highlighted above and the work presented by Nguyen et al. [38], the key

configuration settings investigated in this work are as follows:

• spark.files.maxPartitionBytes - This is a type of execution parameter that largely affects CPU

usage. It is used to control the size of data in each partition and thus to increase/decrease the number

of tasks (Equation 1.1) for effective parallelism and optimal CPU usage. The number of tasks is

calculated based on the input data size and the block size provided by this parameter. The default

block size of 128 MB is the same as the block size provided by the distributed data storage. The

distributed file system used in this work is the Hadoop Distributed File System (HDFS).

Number_of_Tasks =
Input_Size

Block_Size
(1.1)

• spark.executor.cores - This is also an execution parameter type that controls the number of cores

allocated to each executor and thus determines the number of executors in each of the cluster nodes.

4

The number of cores per executor (Equation 1.2) provided by this parameter is calculated by dividing

the total number of cores on a cluster node minus one (as it is mandatory to reserve at least one core

for the operating system) by the number of executors desired on the particular node.

Number_of_Cores_Per_Executor =
Total_Number_of_Cores_on_Cluster_Node− 1

Number_of_Executors_on_Cluster_Node
(1.2)

• spark.executor.memory - This is an application specific parameter which is used to control the size

of heap allocated for Spark applications. The size (Equation 1.3) given to each executor is obtained by

subtracting 1 GB (as it is mandatory to reserve at least 1 GB for the operating system) from each node’s

memory and then divide by the number of executors desired on each cluster node. This parameter as

well as the different storage levels (discussed in Chapter 2) helps to investigate the caching mechanism

of the Spark engine.

Size_of_Memory_Per_Executor =
Total_Memory_Size_on_Cluster_Node− 1024

Number_of_Executors_on_Cluster_Node
(1.3)

• spark.speculation - This is a pervasive scheduling parameter type that impacts all cluster resources

(CPU & Memory amongst others) [38]. This helps to mitigate the impact of slow tasks on application

completion especially in a heterogeneous cluster such as the one used in this study.

In summary, this work provides answers to the following questions:

• How does Spark perform in comparison to the sequential versions of these applications?

• What is the effect of partition size on job completion determined by the spark.files.maxPartitionBytes

parameter?

• What is the impact of JVM executor scaling on job performance controlled by the spark.executor.cores

configuration setting?

• Does increasing memory allocated to Spark by adjusting the spark.executor.memory parameter improve

performance or what is the influence of using the different storage levels to cache the input data on

application execution speed?

• How does Spark scale with increasing computing nodes in this context?

• What effect does speculative execution (triggered by the spark.speculation parameter) due to straggling

nodes has on job completion time?

5

1.1 Thesis Motivation

The processing capability of cluster computing resources is an important and critical component for the

processing of large scale data as well as the robustness and effectiveness of the distributed software systems

that run on these cluster resources. The speed and efficiency of data processing computations is largely

dependent on the processing power of the cluster resources both software and hardware alike. The demand

for information and actionable insights from data by practitioners and other stakeholders make having a

fast and robust data analytics framework necessary for continuous business growth, innovation and increased

revenue to meet the escalating low-latency applications. This is the key premise upon which the motivations

for this study solidly rested.

The first motivation for this work was the need to investigate the performance of scale-out analytics

frameworks such as Spark for image processing applications as opposed to the single-node scale-up system

currently being used for processing. In a scale-out systems, upgrades are done by adding more nodes to the

cluster (horizontal scaling) while in a scale-up systems upgrades necessitate increasing computing resources

(CPU, Memory, Disk & Network) in a single-node system (vertical scaling) [31, 18].

Apache Spark is a fast analytic engine designed to address some of the growing application use cases.

However, the need to reduce the impact of computation bottlenecks for better processing time and data

locality has led to a number of Spark improvements because that the CPU has been identified as the major

impediment to faster analytics by the Spark engine compared to other factors [40]. The latest version of Spark5

(the Spark optimizer and the execution engine), has been claimed to have undergone effective performance

improvement techniques for better utilization of the CPU and other resources to reduce computation time

[16].

Evidently, the performance improvement implemented in Spark for fast analytics provided another im-

petus for this work as image processing applications are computationally expensive and time-consuming to

run sequentially. It is believed that this work would provide meaningful justification in terms of computa-

tion cost/time and scalability concerns for processing images in a Spark cluster of commodity computing

machines.

1.2 Thesis Statement

The default configuration settings of Spark do not always yield optimal performance for different workloads

and determining the right combination of configuration parameters for workloads can be very confusing

due to myriads of configuration parameters available [5]. For optimal workload performance, especially in

a heterogeneous cluster environment, knowing the influence of each of the configuration parameters on job

performance metrics is key in selecting the right combination of settings for fast job completion. Therefore,

5http://spark.apache.org/news/spark-2-1-0-released.html (Accessed: April 22, 2018)

6

the goal of this work was to be able to provide answers to the following questions:

• Would the use of a selection of configuration parameters permit the reduction of job execution time in

a predictable manner?

• Would the inspection of low-level performance characteristics and job metrics help guide system ar-

chitects in identifying bottlenecks as well as developing optimization strategies to improve resource

utilization and job execution time?

• Would it be possible to mitigate stragglers effect(s) on job execution time?

In order to address the statements above, this work provides insight into the influence of some Spark config-

uration parameters on the chosen applications.

The first contribution of this study is to determine the influence of data partition size on the completion

speed of Spark jobs. Choosing the right data partition is important for fast execution in ensuring that

tasks are evenly distributed across all the cluster nodes and thus helps to achieve efficient usage of resources

as well as optimal parallelism. Apart from the contribution regarding data partition size, the impact of

running tasks with the Java Virtual Machine (JVM) executor process on application speed was investigated.

This is necessary as the Spark engine itself runs on the JVM and thus having too little or much executor

processes could adversely affect job completion time. The third contribution of this study is to determine

the importance of memory allocated for running Spark applications on job completion. Spark is built around

memory abstraction, that is, the ability to take advantage of distributed memory and persist computation in

it for subsequent processing. This work also studies the scale-out property of Spark with increasing number

of computing nodes and compares performance with the sequential version of the application executed on a

single machine of similar resource specification(s). The last contribution of this work helps to understand

the effectiveness of Spark in mitigating the impact of slow tasks on application performance with speculative

execution.

1.3 Thesis Findings

Based on the experiments conducted, here is a summary of the findings discovered:

• Smaller data partition sizes (thus large number of tasks) less than 64 MB did not result in fast job

completion time due to communication overheads. For all the data partition sizes considered, 64 MB

data size yielded the fastest execution time.

• Numerous tiny tasks limits parallelism within an executor and thus result in inefficient use of cluster

resources. On the other hand, tasks with large CPU and memory do not yield fast completion time due

to processing delays and threads concurrency. Eleven JVM executors with 4 cores each exhibited better

performance than using a single executor with large number of cores for the flowerCounter application.

7

Similarly, for the imageClustering application, two JVM executors with 16 cores each outperformed

other configurations considered. Also, for both applications, using large number of JVM executors with

one core each exhibited the worst performance due to delays caused by communication overhead.

• Spark scales with increasing homogeneous nodes but degrades with heterogeneous nodes for the flow-

erCounter application only on the larger cluster. The scale-out property of spark showed a quasi-linear

behaviour up to 9 cluster nodes with the flowerCounter application but decreased with 11 nodes, due

to the addition of two nodes that have CPU frequency that is half of the other nodes.

• Increasing memory allocated for Spark applications (for example the imageClustering application)

similarly increased job completion time. The impact of caching the input dataset using the different

storage levels shows that the MEMORY_AND_DISK storage level has the fastest execution speed due

to tasks with locality levels that made data and the processing code close enough to facilitate speedy

execution.

• For the sequential vs Spark applications (flowerCounter), the Spark application executed on both the

small & large clusters shows 4x and 3x the speed of the sequential application executed on the single

machine with all datasets considered, despite similar or better processing and storage resources on the

single machine.

• Finally, experiments show that speculative task execution mitigates the impact of slow nodes on job

completion time for the flowerCounter application but slightly increases completion time for the im-

ageClustering application.

1.4 Thesis Organization

The remainder of this thesis begins by describing the background information and related work in Chapter

2. This is followed with details of the experimental methodology used for this work as well as its design in

Chapter 3. Next, the discussion of experimental results and their implications embodies Chapter 4. Finally,

Chapter 5 concludes this thesis with a summary and a few recommendations for future research.

8

Chapter 2

Background and Related Work

This chapter contains a review of some existing works to provide a relatively comprehensive understanding

of the Data Analytics Frameworks. The review begins with a brief discussion of Big Data Analytics Frame-

works as well as an overview of Spark according to the layered Berkeley Data Analytics Stack (BDAS)1

architecture from the AMPLab in UC Berkeley. This is closely followed by a detailed description of Spark

operations and key configuration parameters used in this study. This chapter concludes with a review of

previous performance studies of Spark.

2.1 Big Data Analytics Frameworks

Big Data refers to data sets beyond the processing capacity of usual database software systems.2 Big Data

is increasing in forms (consisting of raw, structured, semi-structured and even unstructured data), size (data

is estimated to increase to Zettabytes (1021) in the nearby future), velocity (speed of the incoming data and

its flows), variability, complexity and value [30]. Today, enterprises and institutions are exploring ways of

discovering facts and actionable insights from the data to enhance critical business decisions for increased

productivity and to provide the needed impetus for birthing innovations. There is a strong need for devel-

oping systems that can handle the storing, processing and analysis of Big Data [28]. This has motivated

domain experts to discover ways by which new and improved analytics frameworks can be developed to

enhance the prevailing demands of deriving value from data. Notable examples of data analytics frameworks

include Apache Spark [62], MapReduce [17], Dryad [27], Apache Flink [10] (an open source platform for

distributed computation over streams of data), Apache Storm [50] (a distributed real-time directed acyclic

graphs computation system), Apache Samza [39] (a stream processing engine that uses Apache Kafka [58]

and Apache Hadoop YARN [53]) and DataFlow [1] among others. These frameworks allow the expression of

parallel computations with a set of high-level operators without expensive data movement in a fault tolerant

manner [63].

1https://amplab.cs.berkeley.edu/software/ (Accessed: April 21, 2018)
2https://en.wikipedia.org/wiki/Big_data (Accessed: April 21, 2018)

9

2.2 Spark Overview

Spark is a general unified analytics engine designed to be fast and easy to use. It leverages distributed

memory abstraction to store intermediate data results for later reuse by employing a data abstraction model

called Resilient Distributed Datasets (RDDs) [62, 63]. These are read-only data objects that are distributed,

scalable and fault-tolerant. They are created through operations (either lazy transformations or actions)

on data in persistent storage or from other RDDs. The ability of the Spark engine to persist intermediate

computational results in memory makes it particularly apt for iterative applications such as machine learning

and graph algorithms. These algorithms work on filtered data sets that can easily be incorporated into the

memory of cluster commodity servers.

Most current data analytics frameworks like Hadoop MapReduce [17] have not performed well with these

new classes of applications. This is because most of the frameworks were built using the acyclic data flow

model and as such cannot handle applications such as iterative and graph processing well. They are designed

specifically for handling applications such as batch processing; for them to be able to handle this new class of

applications, job output has to be written to external systems causing expensive I/O overheads due to data

replication and serialization ([63, 62]).

The Berkeley Data Analytics Stack (BDAS) provides the following characteristics for Big Data applica-

tions:

• Low latency queries: Allows applications to run faster,

• Sophisticated analysis: Handles new classes of applications,

• Generalized analysis: Suited for all kinds of analysis including batch, iterative and interactive analysis,

and

• Interoperability: Allows different analytics workloads to inter-operate.

BDAS is a layered analytics software framework consisting of different components built to seamlessly interact

from the ground up to make sense of the emerging applications and the demanding use cases emanating from

Big Data. The majority of the components within the stack emanated as autonomous projects intertwined by

similar technologies to form a complete general solution stack to allow different frameworks to inter-operate

[20]. The architecture is shown in Figure 2.1. The solution stack adapted for this study includes the in-

built Spark standalone manager (resource manager), HDFS (storage medium), Spark core engine (processing

engine) and the MLib (K-Means algorithm in the Machine Learning Library built on top of the Spark core).

At the core of the BDAS framework is the Spark in-memory data analytics engine for faster data com-

putation analysis and low latency applications. It is an in-memory general-purpose analytic engine that

supports iterative machine learning algorithms, interactive data analysis as well as the conventional batch

processing operations in a scalable and efficient manner. Spark is a fast cluster computing paradigm that

10

Figure 2.1: The Berkeley Data Analytics Stack (BDAS) [3]

exposes rich Scala and Python Application Pragramming Interfaces (APIs) for programming. These APIs

facilitate programming at a much higher level of abstraction compared to traditional approaches. One of

the main motivations for developing Spark was to allow distributed programming of Scala collections or

sequences seamlessly. Spark supports a variety of data sources such as the HDFS [47], HBase [56], Casandra

[32], Amazon S33 and other Hadoop-supported data sources.

A Spark application consists of five major components: a driver program, a cluster manager, workers,

executors and tasks as shown in Figure 2.2. These components are briefly discussed as follows:

• Driver Program - A driver program (Spark application) is an application written using any of the

supported Spark APIs - Scala, Python, Java or R. At a high level, a spark application consists of

SparkContext (the main entry point to a Spark application) and the user code. RDDs are created

by the interactions between the SparkContext and the user code which are then translated into a

Directed Acyclic Graph (DAG). The DAG of actions and transformations represents (the execution

plan) the different RDD operations and the dependencies between them. There are two types of

dependencies: narrow and wide dependencies. In narrow dependencies (for example map, filter and

union transformations) each parent RDD partition is needed by at most one child RDD while in wide

dependencies (for example join and groupByKey transformations) the parent RDD partition is needed

by multiple child partitions. The RDDs translated into DAG are then submitted to the DAGScheduler.

The DAGScheduler splits the DAG into stages of tasks and then submit the tasks to the TaskScheduler.

3https://en.wikipedia.org/wiki/Amazon_S3 (Accessed: April 23, 2018)

11

Figure 2.2: Components of a Spark Application [49]

The DAGScheduler also determines the preferred location for tasks. Pipelined transformations (that

is the transformations that do not require shuffling - narrow dependencies) are grouped into one stage.

The boundary of each stage is a shuffle operation. The TaskScheduler is responsible for sending tasks to

the cluster, retry them if there are failures and also mitigate straggling tasks. The driver program also

contains a scheduler backend mechanism that is an interface for plugging in different implementations

of cluster managers such as Apache Mesos, Hadoop YARN, Spark standalone and Spark local.

• Cluster Manager - A Cluster manager is the resource Spark uses to acquire resources for executing the

driver program jobs. The three cluster managers designed to work with Spark are the Mesos, YARN

and the Spark standalone manager.

• Worker - A worker provides compute resources such as the CPU, memory and storage resources for

executing a Spark application. Each worker node manages one or multiple ExecutorBackend process(es)

and each ExecutorBackend process launches and manages executor instance.

• Executor - An executor is a Java Virtual Machine (JVM) process created by Spark on each worker node

for an application. Each executor maintains a thread pool in which each task runs as a thread.

• Tasks - This is the smallest unit of work sent by the TaskScheduler to an executor which performs

computations and returns results either to a driver program or divides its output for shuffle. Tasks

in Spark include the Shuffle Map Task (Shuffle Write Operation), the Shuffle Reduce Task (Shuffle

Read Operation) and the Result Task. The Shuffle Map Task writes its output in a shuffle file to disk

(SPARK_LOCAL_DIRS). The Shuffle Reduce Task pulls shuffled data over the network and applies

reduce logic. The Result task sends output to the driver.

12

2.2.1 Spark Resource Managers

This is the resource virtualization layer of the BDAS. A cluster resource management system is an important

component in a cluster of computing servers for providing analytics frameworks efficient share of resources

and scheduling their applications in a distributed fashion. Such a system generally consists of a master

process on a node within the cluster that manages slave daemons on the other nodes and frameworks (such

as Spark in this scenario) that run tasks on the slave nodes. A framework that runs on any cluster resource

manager usually contains two key components: a scheduler to be offered resources by the master process and

an executor that runs the framework’s tasks on the slave nodes ([22, 25]).

Spark is designed to work with two resource managers namely Mesos [25] and YARN [53], in addition to

the built-in Standalone resource managers within the core engine. The Standalone resource manager is used

in this study. This is to avoid unnecessary overhead that could be introduced by using resource managers

that were not inherently built in the Spark engine.

2.2.2 Spark Storage Systems

Batch, iterative and interactive operations on Spark requires that data should be accessible to all the nodes

within a cluster to ensure data locality based on the BDAS. The distributed nature of these operations require

that data must be stored using systems that allow data sharing across a cluster of commodity servers without

costly overheads due to data movement. Such systems are referred to as Distributed File Systems. They

are designed to store and provide fast access to large datasets achieving scalability and fault tolerance by

replicating data across cluster nodes to mitigate possible data loss [46].

Spark works with Distributed File Systems such as Hadoop Distributed File System (HDFS) [47], Cas-

sandra [32], and Alluxio (Tachyon) [33]. This study uses only the HDFS as the distributed file storage system

because additional database functionality is not needed.

2.3 Spark Operations and Parameters

To meet the challenges imposed by the new set of emerging applications, a new abstraction data called the

Resilient Distributed Datasets (RDDs) was implemented in Spark to enable data persistence in memory

[62, 63]. An RDD is a collection of immutable and fault-tolerant data objects which can be divided into

multiple partitions for parallel operations on different machines within a cluster. RDDs are fault-tolerant

parallel data structures that allow users persist data in memory. To achieve fault-tolerance, RDDs provide

interface based on coarse-grained transformations which allow them to achieve tolerance by registering RDD

transformations rather than the actual data such that RDD lost can be quickly recovered without data

movement consequences [62, 63]. RDDs operations are of two types: RDD transformations and actions. The

transformations, for example map, filter and flatmap operations, are lazy in that they do not return any value

13

when executed while the actions, such as count and collect operations, return a value to the driver program

when called upon.

RDDs enable the fast processing of workloads by allowing users to persist RDDs for later reuse. RDDs

are persisted in memory by default but can be spilled to disk if the available memory is insufficient. Priority

levels can also be assigned to RDDs for specifying which RDD should be spilled to disk first. Spark provides

different storage levels for persisting or caching RDDs. Storage levels are flags used for controlling how RDDs

should be stored. RDDs can be stored in memory or on disk or in memory in serialized format.

Data locality [7] is crucial to application performance. It specifies the proximity of data to the processing

code. RDDs also help to achieve effective data locality placement strategies by ensuring that data are placed

close enough to where they will be processed with the interface preferredLocations(p) based on the number

of partitions for better performance. Scheduling design in Spark is built on the notion that computations are

usually faster if the data and the operating code are together as it is cheaper to transport serialized code than

data chunks. The locality levels based on data location implemented in Spark are highlighted thus (from

closest to farthest):

• PROCESS_LOCAL - This level places data in the same JVM process running the code. It’s the fastest

locality level.

• NODE_LOCAL - This is the level when data is on the node as the processing code. For example, when

the Spark node is also an HDFS datanode or when data is on another executor in the same node. It is

slightly slower than the PROCESS_LOCAL level as it requires data movement between processes but

faster than the other locality levels.

• NO_PREF - This level ensures that data is accessed equally at the same time without any preference

to where the data is located. This level gives no preference to data location.

• RACK_LOCAL - This is the level for data that resides on a rack hosting several servers. Thus, it

requires data transfer across network via a switch.

• ANY - This means that data is on the network but on a different rack.

Spark usually prefers to schedule tasks with the PROCESS_LOCAL level but when this can not be satisfied,

it waits until a busy CPU is free for scheduling or schedules task at a more remote or distant location that

requires data movement.

RDDs can be partitioned across cluster nodes to ensure working with reduced data set size. Data parti-

tioning in the context of distributed systems is the dividing of large data sets into logical chunks for parallel

processing over a cluster of computing machines. Partitioning is important for distributed data processing

to reduce network I/O overhead of distributed operations as Spark achieves locality by placing data and

serialized codes close enough to the worker nodes for processing.

14

Spark uses RDD partitions to store data read from distributed data storage such as HDFS [47] or Cas-

sandra. The degree of parallelism in a Spark application is based on the RDDs partition number. The

number of partitions is dependent on how the RDD was created. RDDs are created either over files read

from distributed or local storage or through a parallel collection of data objects.

For RDDs created over files stored in HDFS for example, the number of partitions will be equal to the

HDFS blocks (a block is 128 MB by default in HDFS). The number of partitions is equal to the number of

tasks that will be computed by the worker machines. There are two key RDD operations as stated above

- transformations (these create a new dataset from an existing one for example map, filter, mapPartitions,

groupByKey and reduceByKey) and actions (these return the result of computed pipelined transformations

such as collect, count, saveAsTextFile and takeSample). Here are some key terms in the physical execution

model of a Spark application with respect to the RDD.

• Jobs - These are parallel computation of tasks that are materialized by Spark action RDD operations.

For example, assuming a Spark’s application logic contains the following RDD operations:

1. Load a file from HDFS containing words into RDD1 (RDD1 created with partitions automatically

based on the default HDFS block size)

2. Load another file from HDFS with words into RDD2 (RDD2 creation)

3. Join RDD1 and RDD2 to form RDD3 (a transformation operation)

4. Split up RDD3 into distinct words with flatMap to form RDD4

5. Transform each word in RDD4 and count unique occurrence with map and reduceByKey trans-

formations to get each word frequency - RDD5.

6. Save RDD5 to a text file using saveAsTextFile transformation.

7. Split up RDD1 with flatMap to get RDD6

8. Count the number of words in RDD6

9. Split up RDD2 with flatMap to get RDD7

10. Transform RDD7 and count unique word occurrence with map and reduceByKey operations -

RDD8

11. Collect RDD8 and print the result to stdout.

The entire set of steps form the operations represented in a Spark application. Saving the frequency

of occurrence of each word to file in step 5 constitutes a job. The same is true for count and collect

operations in steps 8 and 11 respectively.

• Stages - These are series of work within a job corresponding to one or more pipelined RDDs. As shown

in the example above, steps 1 through 4 are stages containing pipelined RDDs (RDD1, RDD2, RDD3,

RDD4) that must occur before the saveAsTextFile Job can be materialized. Similarly, stages 1 and 7

15

are necessary for the count job in step 8 to be materialized and also stages 2 and 9 are needed for the

collect job in step 11. They are primarily computations that produce intermediate results that can be

persisted.

• Tasks - A task is the piece of data within a stage that corresponds to one RDD partition, computed on

a given executor JVM.

• Worker Nodes - These are the physical machines that run the executors and the tasks.

• Executors - These are JVM processes that run on the worker nodes for the execution of the tasks.

• Shuffle - This is the transfer of data between stages. Join operations such as the join in step 3 of the

example above, ByKey operations such as reduceByKey and groupByKey and repartition operations

such as repartition and coalesce can cause a shuffle and thus disrupt the locality of data resulting in

more than one stages.

In other words, a Spark application defines a Directed Acyclic Graph (DAG) of RDDs which are operated

upon to create new RDDs that refer back to their parents, thereby generating a lineage graph [62, 63]. Action

operations force the translation of the lineage graph starting from the final action RDD and works backwards

into stages which are further broken down to tasks. These tasks are submitted to the TaskScheduler for

onward execution on the cluster machines by fetching input data either from a data storage or using an

existing cached RDD. A typical execution flow of the Spark engine is as shown in Figure 2.3. An efficient

Spark application requires setting an optimal number of partitions to achieve better parallelism and effective

usage of cluster resources. Two key issues might arise when the number of tasks spawned by jobs is smaller

than the number of CPU cores available [21]:

• Reduced benefit from entire cluster computing power, and

• Inconsistent data partition sizes resulting in memory pressure and increased garbage collection due to

frequent pauses in computation, thus slowing down data processing.

Data within a partition would be spilled to disk often if its size exceeds memory capacity to avoid out-

of-memory exceptions. Spilling data to disk results in expensive overheads due to data sorting and disk I/O,

thus stalling job’s progress. Therefore, in order to get optimal benefit from cluster resources, the number of

partitions should be at least equal to the number of CPUs available or greater by a multiple of 2 to 3 [21].

The number of partitions can be increased, for example if files are being read from HDFS, by the use of

the repartition transformation which triggers shuffle, configuring HDFS InputFormat to create more splits

or by writing files to HDFS with a smaller block size [13]. Partitions can also be increased by adjusting the

Spark configuration parameter spark.files.maxPartitionBytes. The upper limit, however, is that tasks should

take at least 100 ms to execute because having too many tasks can increase the overhead of scheduling tasks

[55].

16

Figure 2.3: The Spark workflow

Data files are scattered in partitions across the cluster by the use of partitioners. In Spark, there are

two types of partitioners implemented, namely the HashPartitioner (this is the default in Spark used for

pair RDDs and used in this work) and the RangePartitioner (this partitioned sortable records equally by

range). Data shuffling can be avoided if RDDs are partitioned appropriately [21]. Shuffling [6] of data is very

expensive as it involves data sorting, repartitioning, serialization and deserialization, compression to reduce

I/O bandwidth and disk I/O operations.

In Spark, unlike Hadoop, the reduce phase does not start until all map tasks have finished. Each map

task writes its output in a shuffle file to disk as shown in Figure 2.4. This is the shuffle write operation. As

there might be a lot of map tasks, the number of shuffle files can be substantially large. The effect of the

files on computation can be reduced by enabling the Spark configuration parameter spark.shuffle.compress

for compression. The files written to disk are then read via the network in the reduce phase during the shuffle

read operation [21].

Another importance of RDDs is that they help to mitigate the effect of slow nodes in clusters by running

backup tasks. This benefit is achieved by a technique called speculative execution. The following steps show

how the speculative algorithm works:

• First looks if the amount of finished tasks in a stage is greater than speculation quantile multiplied

by the number of total tasks in the particular stage. If this is true, speculation execution will take

place. Speculation quantile is the percentage of tasks which must be completed before speculation can

be enabled in a particular stage.

• A scan of all successful tasks in the stage will be done to calculate the median time of tasks execution.

• A threshold for relaunching of slow tasks is then calculated by multiplying the speculation multiplier

with the median time previously calculated. Speculation multiplier defines how many times slower a

17

Figure 2.4: The Shuffle Phase

task is, with respect to time, than the median time to be considered for speculation.

• Then relaunch tasks whose running times are greater than the threshold.

Spark speculative execution, rather than helping to reduce the effects of straggling tasks, might sometimes

increase job execution time. This is because the speculative execution is based on the median time without

taking into consideration that slow tasks might be resubmitted to the straggling worker nodes [60].

Spark provides a number of configuration parameters regarding application properties, execution envi-

ronments and resource utilization among other parameters as exemplified in Chapter 1. These parameters

are used in controlling application behaviours for optimal performance. The configuration parameters used

in this study are shown in Table 2.1 together with a short explanation of each parameter alongside the cor-

responding default values. The detailed description of the key parameters (including spark.executor.cores,

spark.executor.memory, spark.files.maxPartitionBytes & spark.speculation) investigated is discussed in Chap-

ter 3.

18

Table 2.1: Spark Configuration Parameters

Parameter Name Description Default

spark.driver.cores Number of cores to use for the driver pro-
cess; cluster mode only

1

spark.driver.memory Amount of memory for the driver process 1 GB

spark.executor.memory Amount of memory per executor process 1 GB

spark.executor.cores Number of cores to use on each executor;
allows an application to run multiple ex-
ecutors provided there are enough cores
on that worker

1 in YARN mode and all
available cores in stan-
dalone and Mesos

spark.local.dir Directory on disk for storing map output
files and RDDs

/tmp

spark.default.parallelism Default number of partitions to use for
shuffle operations such as reduceByKey
when not set by user

The value depends on the
cluster manager

spark.rdd.compress Whether to compress serialized RDD par-
titions

false

spark.shuffle.compress Whether to compress map output files true

spark.shuffle.file.buffer Size of the in-memory buffer for each shuf-
fle output stream; reduces the number of
disk seeks and system calls

32 KB

spark.io.compression.codec Codec used to compress internal data such
as RDD partitions, broadcast variables
and shuffle outputs

lz4

spark.broadcast.compress Whether to compress broadcast variables
before sending them

true

spark.files.maxPartitionBytes The maximum number of bytes to pack
into a single partition when reading files

134217728 (128 MB)

spark.eventLog.enabled Whether to log Spark events, useful for re-
constructing Web UI after the application
has finished

false

spark.eventLog.dir Directory for logging Spark events file:///tmp/spark-events

spark.speculation Specifies whether tasks should be re-
launched if they are running slow

false

19

2.4 Prior Performance Studies of Spark

A number of performance evaluation studies of iterative operations and other operations on data analytics

frameworks have been done. Among these studies, Nguyen et al. [38] investigated the influence of con-

figuration settings on application performance using different application workloads and thus developed a

framework capable of identifying key configuration parameters that affect job performance.

Ousterhout et al. [42] argued that the architecture of existing analytics frameworks (such as Spark)

makes reasoning about performance very challenging. This is due to the fine-grained pipelining paradigm

inherent in such analytics frameworks. Pipelining ensures better performance by utilizing cluster resources

for task execution but still requires efficient tuning for concurrent use of cluster resources and thus results in

problems such as non-uniform resource usage by tasks, resource contention by concurrent tasks among others.

To address these problems, the authors proposed a new architecture for analytics frameworks that makes

performance bottlenecks easier to understand and identify and the resulting implications of the frameworks’

behaviours. The new architecture requires that jobs are partitioned into executable units called monotasks

with dedicated resource scheduler that ensures that each monotask uses a single cluster resource fully and

thus helps to avoid contention by queuing monotasks.

Due to the fast adoption and rapidly growing community of Spark enthusiasts, researchers and developers,

big data analytics benchmarks have been developed to provide guidance and deployment strategies on how

best to take advantage of the frameworks such as Spark. Notably among the benchmarks, specifically designed

with the Spark programming paradigm, is SparkBench [34]. SparkBench is a suite of comprehensive workloads

capable of evaluating (by providing configuration settings for optimal performance across different workload

types as well as resource usage patterns) all the access and interfaces components built upon the Spark engine

raging from iterative workloads to graphical applications as well as interactive and streaming workloads.

Veiga et al. [54] compared the performance of Hadoop, Spark and Flink using workload benchmarks

including PageRank [19] and K-Means clustering among others and revealed that Spark outperformed Hadoop

and Flink with respect to scalability in general across all the benchmarks considered especially for K-Means.

The work also showed that HDFS block size (partition size) most suited for Spark workloads is 64 MB. The

authors again revealed that one big executor/worker with 8 cores is the best configuration for Spark workloads

except for PageRank. This might not be absolute because the maximum number of cores in the machine used

for the study was 8. Therefore, more study is required to fully understand the influence of cores per executor

on Spark applications. This finding that one big executor per node is the optimal configuration for Spark

applications is also in resonance with the study done by Li et al. [34]. However, this finding contradicts

Chiba et al. [12] as that suggests that workloads with two or four executors per node achieve the better

performance.

Container technologies, such as Docker [37], are gaining traction nowadays, largely due to the adoption

in large scale cloud computing. This increasing use in cloud computing is as a result of fast boot/start up

20

time and very low memory requirement that Docker containers provide. However, their performance vis-a-

vis big data applications such as Spark still remains unclear. Ye and Ji [61] made effort to understand the

performance of Spark applications in Docker containers and identified that the non-linearity performance

behaviour exhibited by the applications is due two key problems: configuration parameters and resource

contention between multiple containers. The authors thus created a performance prediction model for Spark

applications in Docker containers with predictability of over 90%. A similar work provided a proof-of-

concept architecture for scaled-up (the addition of more compute resources to a single-node system) Spark-

based servers by dynamic partitioning of Docker-based containers into logical volumes to improve scalability

performance of Spark applications [31].

Ousterhout et al. [40] investigated the veracity of the belief that the major bottlenecks in data analytics

frameworks are the network, the disk and stragglers (stragglers are slow nodes that substantially prolong job

execution time) were the three notions investigated. The study was done using the Spark core analytics engine

with a developed Blocked Time Analysis methodology that measures how long jobs spent blocked on cluster

resources, with two benchmarks and industry workloads. Results obtained contradict the aforementioned

claims about bottlenecks in data analytics frameworks. The results revealed that network improvements and

disk I/O do not substantially impact performance in analytics frameworks but, rather most jobs are blocked

in the CPU. According to the researchers, the study is relatively inconclusive as the work does not cover a

wide range of workloads; the work showed that the widely held belief about performance in data analytics

frameworks is absolutely untrue and thus requires that much work to be done before the global information

community can claim to understand performance in data analytics frameworks holistically.

Hadoop and Spark were assessed using PageRank iterative workloads for memory utilization and speed

using both real and synthetic datasets [23]. Experimental results show that for time-sensitive applications,

Spark usually outperforms Hadoop as long as there is enough memory for the computation. This is because

Spark is memory-intensive and as the number of iterations increases, intermediate results can quickly fill up

the entire memory space which would eventually thwart the secure speed advantage of the Spark engine.

This is challenging because it is difficult to ascertain the amount of memory that would be required for a

particular iterative operation. The amount of memory that would be required is dependent on the particular

iterative algorithm and the size of the input dataset. On the other hand, Hadoop is the preferred choice for

less-memory-sensitive applications or when there is insufficient amount of memory for storing intermediate

data results, provided there is enough disk space to take in the original dataset and the intermediate results

[23].

A performance prediction model [59] was developed recently to evaluate Spark workloads with respect to

the execution time, the memory utilization and the I/O cost using both iterative and non-iterative applications

including the WordCount, Logistic Regression, K-Means clustering and the PageRank on a cluster of 13 nodes.

The prediction accuracy from the model was found to be relatively high for the job execution time and the

memory utilization but varied depending on the different applications for the I/O cost. According to the

21

paper, this might be due to the fact that the prediction performance model was simulated on a small scale.

Work-load driven performance measurement [8] of the Spark engine implemented on a modern-scale up

commodity cluster of servers showed that the work time inflation (extra time plus CPU time spent by job

threads) and threads load imbalance (when one or few threads require more CPU time than other threads)

are the major factors inhibiting workload scalability. At the micro-architecture level, the DRAM latency

(memory bound latency) was the main cause of work time inflation. In particular, scalability analysis was

done with increasing number of executor pool threads.

The effect of data partition size and executor core scaling to job completion time in data analytics

frameworks have been investigated [51]. However, the characteristics of the applications considered in those

works are different from the applications studied here. The impact of memory, caching, serialization, local

file systems and SSDs forms the core of the study done in Zhang et al. [60] to understand the Spark’s

system in comparison with SciDB for in-memory scientific data analysis. Generational garbage collection,

multi-threading and executor scaling influence on TPC-H queries using the Spark engine have also been

studied for their effects on job performance [12]. Straggler tasks effect in a heterogeneous environment has

also been studied using improved version of the Spark’s speculative execution algorithm [60]. Speculative

execution of Spark tasks was shown to be ineffective as it does not accurately determine straggling tasks due

to slow nodes. HAT [11] is an optimized MapReduce Scheduler that mitigates the impact of slow tasks in

heterogeneous environments by using historical information of already concluded tasks to detect slow tasks

and then scheduled them accordingly on respective map and reduce slow nodes.

2.5 Chapter Summary

It is evident from the related works reviewed that more study is required for a comprehensive understanding

of the influence of configuration parameters on Spark workloads. This is because most of these works provided

conflicting results that are insufficient to be generally applicable for all Spark related workloads. It therefore

implies that performance results from the applications considered in this study might not yield similar results

as in the related studies reviewed.

However, these works are quite representative in that they provided insights on the influence of Spark

configuration parameters as well as their effects on different application workloads. These studies provided

guidance on the critical configuration parameters to investigate for their influence on applications process-

ing and helped to reduce the time spent on designing experimental methodologies. The findings garnered

from these studies also revealed the key performance metrics to monitor as well as their calculations for

comprehensive understanding of Spark’s performance regarding the applications considered in this study.

Prior performance studies of Spark are crucial to this study because they provided useful insights about

the performance of analytics jobs in frameworks such as Spark. The studies revealed insights on performance

studies of processing different applications on analytics frameworks including Spark by identifying perfor-

22

mance bottlenecks and optimization strategies for mitigating their effects. The studies also offered ideas on

areas where future works can be concentrated.

23

Chapter 3

Experimental Methodology and Design

3.1 Experimental Methodology

This section outlines the characteristics of the applications considered for this study with brief discussion on

how each of the applications works. It then further describes the nature of the datasets used. A description of

the experimental set up and the performance characteristics of the cluster nodes follow. Finally, the section

discusses the metrics of interest together with the tools and techniques that were used for collecting them.

3.1.1 Applications Benchmark Characteristics

The two applications selected are flowerCounter and imageClustering. These applications are written with

the Python APIs (Pyspark) implemented in Spark. They also use other external libraries including OpenCV

[43], numpy [57], scikit-image [52], and Python Image Processing (PIL) [35] library. The flowerCounter

application, which estimates the number of flowers on images collected from plot fields, was selected to explore

how it can be adapted to run faster in a scale-out Spark server cluster and then compare its performance

with the sequential version of the application run on a single machine. Another reason for choosing the

application is to study how it scales with increasing computing machines of varying capacity and datasets

for future analyses. At a high level description, the imageClustering application clusters images using the

k-Means clustering algorithm implemented in MLlib [36] library built on top of the Spark core engine based

on features in the images with varying brightness or colour. Again, the choice of this application is to

investigate the speed and scalability properties of the Spark engine for the clustering of the images relative

to the performance of the sequential version of the same application processed on a single machine.

The imageClustering application is more amenable to the Spark programming framework than the flow-

erCounter application. This is because the application is iterative in nature and uses the k-Means Machine

Learning Library (MLlib) clustering algorithm of Spark as opposed to the external libraries used in the flower-

Counter application. Also, the imageClustering application uses Spark’s read-only broadcast variables which

help prevent transferring data objects multiple times to the executors for processing. This is particularly

computationally efficient for applications whose tasks require large values to prevent unnecessary network

overhead due to data transfer.

Apart from the application properties described above, the applications are also relatively representative in

24

that they cover a diverse set of Spark lazy transformations and actions with both narrow - where each parent

RDD partition is needed by at most one child RDD (for example map and filter transformations) and wide

- where the parent RDD is needed by multiple child partitions (for example reduceByKey transformation)

lineage dependencies. Table 3.1 shows the applications together with the inherent transformations, actions

and the dependencies. The meaning of the transformation and action operations contained in the applications

is explained briefly as follows:

• map - Returns a new image RDD by passing each source image through a function such as the com-

puteHistogram, and the computeHistogramShifts. These functions are described in below.

• coalesce - Used for reducing the number of partitions before writing output to file.

• collect - Returns all the elements in an array for use in subsequent stages in the application pipeline.

• first - Returns the first element in an array for use as a parameter in the computeHistogram function.

• saveAsTextFile - Writes the computed flower estimate for each image to a HDFS path.

• flatMap - Used for extracting features from each of the images and returns the extracted features for

each image mapped to the corresponding image name as in the input image source.

• filter - Used to select only extracted features of interest and then returns new image features RDD that

satisfies the specified condition.

• mapPartitions - Returns new image RDD partition by passing each source image partition through a

function.

• reduceByKey - Returns new key-value pairs for each image RDD with the value aggregated using the

given reduce function.

• collectAsMap - Returns new key-value pairs for each image RDD to the master as a dictionary

• takeSample - Returns an array with a random sample of the number of images in the source images

RDD.

Also, here is a brief description of the details of each of the applications considered:

• flowerCounter - This application basically contains four main parallelizable stages defined with the

functions namely computeHistogram, computeHistogramShifts, computeFlowerPixelPercent-

age and computeFlowerCount . The computeHistogram stage computes the histograms for all

images within a defined plot mask using the Lab Colour Space (b-channel component) and the his-

tograms of the Grayscale1 images. The function returns the computed histograms representing the plot

1https://en.wikipedia.org/wiki/Grayscale (Accessed: April 23, 2018)

25

pixels for both the grayscale image and the b-channel component of the images. The computeHis-

togramShifts uses the average histogram of the images b-channel pixel histograms calculated from

the computeHistogram function. The shifts are calculated by correlating the b-channel histograms

with the corresponding average histogram values. The returned value is a dictionary containing the

key (representing the image filename) and the corresponding histogram shift value of all the images.

The computeFlowerPixelPercentage takes into consideration the histograms and histogram shifts

obtained from the previous steps and determines how many pixels contain flower colours. The com-

puteFlowerCount then computes the estimate of the number of flowers in each of the images by first

highlighting the flowers in each respective image with a logistic transformation on each image using the

already computed shift pixel value. Finally, the estimate of the number of flowers is obtained by using

the scikit-image Determinant of Hessian2 (DoH) blob detection algorithm. The computed flower count

estimate on each image obtained with the map transformation is then saved to disk as a key(image

name)-value dictionary object with the coalesce and saveAsTextFile transformations respectively.

• imageClustering - This application clusters the images by first extracting features (these are key

points in the images with varying degrees of physical attributes such as colour and brightness) with a

map function that uses the OpenCV Scale Invariant Feature Transform (SIFT)3 algorithm to compute

descriptors from the images in a partition sequentially. The extracted image feature descriptors are then

filtered and mapped to their corresponding image filename as a key-value dictionary object. The features

obtained are then used to build a clustering model by applying the K-Means clustering algorithm

implemented in the Machine Learning Library component (MLlib) built on top of Spark. For the

results shown in Chapter 4, the key API functions inherent in the K-Means model built represented as

stages are the collectAsMap stages specified in §4.2, particularly in Tables 4.4 and 4.5 on page 63.

The takeSample stages randomly select images from the input RDD and returns an array of images for

use in the subsequent collectAsMap stages. Cluster centres are then selected from each partition using

the model built and initial position of each feature predicted relative to the cluster centres. Iteratively

features were assigned to clusters based on the difference between the actual and predicted position of

each feature. The final cluster was then selected based on the most common cluster to which features

were matched/assigned. And later the coalesce and the saveAsTextFile stages (two stages in one) then

combined all the results from all the partitions for writing as output to HDFS. For each image, the

filename and its corresponding assigned cluster value are then saved to disk.

The execution time of the sequential versions is compared with the Spark version run on a single machine

(onomi). For the sequential flowerCounter execution, only the functions necessary for estimating the number

of flowers in the images from the plot field, which are represented in the parallel Spark version, were considered.

2https://en.wikipedia.org/wiki/Blob_detection (Accessed: April 28, 2018)
3http://docs.opencv.org/trunk/da/df5/tutorial_py_sift_intro.html (Accessed: April 23, 2018)

26

Table 3.1: Applications Characteristics

Application Name Transformations Dependencies Actions

flowerCounter map
coalesce

narrow
wide

collect
first
saveAsTextFile

imageClustering coalesce
filter
map
flatMap
mapPartitions
reduceByKey

wide
narrow
narrow
narrow
narrow
wide

collect
collectAsMap
takeSample
saveAsTextFile

On the other hand, for the sequential imageClustering execution, all the functions inherent are represented

in the Spark version.

3.1.2 Input Datasets

The input datasets are still images of canola plants collected with timelapse cameras from prepared field

throughout the Summer of 2016. The field is divided into a number of plots. The cameras are named

based on respective plot numbers namely camera1108, camera1109, camera1122, camera1207, camera1225,

camera1237, camera2103 and camera3102. The total images collected throughout the season was about 275

GB. This study however, focused only on the images collected for specific time periods in the months of July,

August and September 2016 with detailed analysis done on the July images especially as these contain the

highest number of flowers. The July dataset is about 35 GB. These are images collected from July 1 to July

15 of 2016. In August, there were three sets of datasets collected. The first dataset, which is about 50 GB,

was collected from July 15 to August 2. The second dataset of about 60 GB was collected from August 2

to August 15 and the last dataset of about 20 GB was collected from August 26 to August 31. This study

used the last dataset of August. The September dataset used is about 6 GB. These are images collected from

August 31 to September 12. The detailed description of the images is shown in Table 3.2. All images are in

the JPEG format.

It is important to emphasize that the datasets are not large enough in terms of size to be considered

as Big Data. The datasets were considered as an initial step towards understanding the influence of Spark

configuration parameters on the applications. It is expected that the datasets will grow as the deployment

of the project continues and such the applications can be scaled accordingly. The described datasets used in

this study are enumerated below:

• The July datasets were used to investigate the effect of partition size using the

spark.files.maxPartitionBytes configuration parameter on job completion time for the flowerCounter

application as described in §3.2.1.

27

Table 3.2: Dataset Description

Month Time Period Images Size Number of Images AverageSize/Image

September Aug 31 - Sep 12 5.7 GB 12686 449 KB

August Aug 26 - Aug 31 19.3 GB 39770 485 KB

July July 1 - July 15 34.8 GB 93708 371 KB

• For the executor JVM scaling experiments using the spark.executor.cores configuration setting described

in §3.2.2, all the datasets (July, August & September images) were used for both application workloads.

There were two sets of experiments: an initial set of experiments done with the September images and

a detailed set of experiments conducted using all the datasets.

• The experiments described in §3.2.3 to investigate the effect of the spark.executor.memory configuration

parameter used all the datasets for both applications but only the results for the imageClustering

application are reported.

• The scale-out experiments in §3.2.4 were also conducted with all the datasets and likewise for the

sequential experiments. The sequential experiments were done for only the flowerCounter application.

• The speculative execution experiments to investigate the effect of the spark.speculation parameter de-

scribed in §3.2.5 used all the datasets as well for both applications.

3.1.3 Cluster Setup

There were two clusters environment set up. The larger one was made up of twelve physical nodes hosted

using the Kernel-based Virtual Machines4 (KVM); one node served as the master node and the remaining

eleven nodes served as the slaves/workers. The nodes were hosted and connected together in a private network

of 1 Gbit/s to ensure undisturbed traffic flows. The specification of each cluster node is as shown in Table

3.3. It is a heterogeneous cluster in that nine of the nodes have CPU speeds that’s almost twice that of the

other two nodes (luigi & mario). It is important to state that there is a difference between the specification

of the physical hardware and the virtual hardware. The processors of the machines in the cluster are of the

type i7-2600, but the VMs see different processors of the type E312xx. On the other hand, the smaller cluster

was made up of three physical machines hosted using KVM; one node served as the master node and the

remaining two nodes served as the slaves/workers. The smaller cluster is also a heterogeneous one in that two

of the nodes have the same processor type and clock speed as opposed to the third node. The specification

of each node of the smaller cluster is as shown in Table 3.4.

4https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine (Accessed: April 23, 2018)

28

Table 3.3: Specification of Each Node of the Larger Cluster

Nodes Role CPU Type Cores Memory Disk

192.168.1.211 (mario) Spark Slave
Hadoop Slave

Intel(R) Core(R)
CPU i7-2600
@ 1.80 GHz

8 34.53 GB 7.79 T

192.168.1.212 (luigi) Spark Slave
Hadoop Slave

Intel(R) Core(R)
CPU i7-2600
@ 1.80 GHz

8 34.53 GB 7.72 T

192.168.1.200 (Master) Spark Master
Hadoop Master

Intel(R) Core(R)
CPU i7-2600
@ 3.40 GHz

8 11.46 GB 0.4 T

192.168.1.201 (Worker1)
192.168.1.202 (Worker2)
192.168.1.203 (Worker3)
192.168.1.204 (Worker4)
192.168.1.205 (Worker5)
192.168.1.206 (Worker6)
192.168.1.207 (Worker7)
192.168.1.208 (Worker8)
192.168.1.209 (Worker9)

Spark Slaves and
Hadoop Slaves

Intel(R) Core(R)
CPU i7-2600
@ 3.40 GHz

8 14.34 GB 7.44 T

The rationale for choosing the nodes in the large cluster was to investigate whether cluster operation with

large number of small commodity computers would permit the reduction of the applications processing time.

On the other hand, the small cluster was considered specifically to understand the influence of large executor

size (in terms of allocated cores and memory) on the applications processing time.

For the sequential setup, the specification of the single machine, onomi, is as shown in Table 3.5. The

operating system used on the master node (the larger cluster) is Ubuntu 16.04.2 LTS (GNU/Linux 4.7.1-

040701-generic x86_64) while on the remaining eleven nodes of the larger cluster and the three nodes of the

smaller cluster is Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-71-generic x86_64). The Hadoop version used is

Hadoop 2.7.2. The Spark version is Spark 2.1.0. The Scala interpreter version is Scala 2.11.8. The Java

version used is 1.8.0_121 Java HotSpot(TM) 64-bit Server VM (build 25.121-b13, mixed mode).

As mentioned in the introduction section of Chapter 1, the specific list of Spark parameters investigated

in this study is shown in Table 3.6, other parameters are set to the base value. The critical parameters for

each of the experiments in §3.2 are itemized thus:

• spark.files.maxPartitionBytes - This is the key parameter that underlies the experiments in §3.2.1.

• spark.executor.cores - This parameter is investigated in §3.2.2.

• spark.executor.memory - This parameter is the focus of the experiments in §3.2.3.

• spark.speculation - The effect of speculative execution on slow tasks is studied in §3.2.4.

29

Table 3.4: Specification of Each Node of the Smaller Cluster

Nodes Role CPU Type Cores Memory Disk

louie Spark Slave
Hadoop Slave

Intel Core Processor
Broadwell CPU
@ 2.40 GHz

48 377 GB /dev/vdb 460 GB
/hadoop 500 GB

dewey Spark Slave
Hadoop Slave

Intel Core Processor
Haswell CPU
@ 2.60 GHz

48 377 GB /dev/vdb 460 GB
/hadoop 500 GB

huey Spark Master
Hadoop Master

Intel(R) Core Processor
Broadwell CPU
@ 2.40 GHz

48 247 GB /dev/vdb 460 GB
/hadoop 500 GB

Table 3.5: Specification of the Benchmark Machine (Onomi)

Node Role CPU Type Cores Memory Disk

128.233.174.7 Benchmark Machine Intel(R) Xeon(R)
CPU E5-2690 v4
@ 2.60 GHz

56 131.92 GB 24.3 T

Table 3.6: Spark Configuration Parameters for Experimental Design

Parameters Usage

spark.files.maxPartitionBytes Used to control RDD partition size

spark.executor.memory Used for controlling executor heap size

spark.executor.cores Used to vary the number of cores allocated to each executor and also con-
trols the number of executor instances.

spark.speculation For specifying whether the speculative task algorithm should be applied for
slow tasks

30

3.1.4 Performance Characteristics of the Cluster Nodes

The performance characteristics of the cluster nodes used in this study are discussed here with respect to the

following properties:

• Host-bus Speed,

• Cache Size,

• Hyper Threading (HT) Support,

• Turbo Boost Technology (TBT).

The characteristics of each node are as shown in Table 3.7.

Host-bus Speed

There are different types of bus: the Front-Side Bus (FSB), the Direct Media Interface (DMI) bus and the

Quick Path Interconnect (QPI). The DMI is a point-to-point interconnection between an integrated memory

controller and an I/O controller hub on the motherboard. QPI is also a point-to-point link between the

processor and the chipset. All the processors have the same bus speed of 5 GT/s (gigatransfers/second)

except for the processor on onomi which has a bus speed of 9 GT/s with 2 QPI bus links. Hashwell and

Broadwell processors on the small cluster has the same bus link as the processors on the large cluster but

with improved DMI bus links [26].

Cache Size

Caching improves performance by persisting frequently accessed data transfers between the processor and

the main memory, reducing access latency. Thus, the size of the cache as well as how fast the processor can

access the data stored in the cache (the hit rate) is an important factor of processor performance. The size

of the L1 (layer 1 - 64 KB) cache is the same for all the processors used in this study. This is because the L1

cache is an intrinsic feature of processor architectural design that cannot be altered. However, the L2 cache

can come in different sizes as it is external to the processor. As shown in Table 3.7, all the processors in the

small and large clusters have the same L2 cache size of 4 MB. The L2 cache size of the processor in onomi, on

the other hand, is smaller with a size of 256 KB. Larger caches (for example L2 caches on the small and large

clusters and L3 cache on onomi) are slower (the speed of the cache reduces down the chain and expensive due

to large amount of on-die resources and high power consumption, but can still provide performance benefits

especially when there is high cache-miss at the layer 1 (L1) cache level. Larger L2 cache increases processor’s

performance for applications that operate on small datasets, but only yield marginal benefits for applications

involving large datasets [26].

31

Hyper-Threading Support

Hyper-Threading (HT) is a feature implemented in processors for performing multiple tasks at once. This

implementation is advantageous to applications that operate on independent data in parallel as is the case with

the applications considered in this study, otherwise it should be disabled. For processors with HT support, one

physical core appears as two logical cores to the operating system and thus allowing simultaneous scheduling

of two processes per core. All the processors used in this study have HT support including the processor

on onomi. The processor has two sockets each with 14 cores (28 cores in total). With HT enabled, the 28

physical cores appears as 56 logical cores to the operating system for simultaneous operations in parallel.

However, HT (among other factors such as large and slow L3 cache) did not yield much performance benefit.

In particular, the flowerCounter application, probably, was not written ground-up to take advantage of multi-

core processors; it had to be rewritten to allow for multiprocessing. This after-effect application optimization

might not have been an effective performance improvement strategy, as many of the processing resources are

not heavily utilized. The other machines only have one physical CPU and HT helped to achieve 8 logical

cores on respective machines.

Turbo Boost Technology

Intel Turbo Boost Technology (TBT)5 is an advanced processor’s feature that dynamically adjust its operating

frequency based on intrinsic demand required by application processes/tasks for optimal performance. This

is also another performance determinant factor that might affect application outcome. All the processors

(on the physical machines) considered in this study have the TBT capability except for the Haswell micro

architecture processor in dewey.

3.1.5 Measurement Tools and Metrics

The main tool for measuring metrics in this study is the log files as well as through the REST API provided

by Spark. The metrics can be accessed either via the Web UI or as JSON for both running applications and

applications stored in the History Server. History Server, which extends Spark’s Web UI, is the Web UI for

completed and running applications. It is used to maintain and visualize event logs of completed and running

applications. The Web UI also helps for performance debugging purposes by providing specific information

for the applications (statistical information about the execution time of the jobs, stages and tasks) as well

as the task progress view for identifying straggler tasks and other purposes. It also provides the amount of

input data processed and the amount of output data produced for understanding data distribution on the

nodes [48]. However, these tools provided by Spark are not in themselves sufficient for performance study.

As a result, an instrumented version of Spark called Sparkoscope6 as well as some scripts for trace analysis

5https://en.wikipedia.org/wiki/Intel_Turbo_Boost (Accessed: March 18, 2018)
6https://github.com/ibm-research-ireland/sparkoscope (Accessed: April 23, 2018)

32

Table 3.7: Performance Characteristics of Nodes

Nodes Clock
Speed

Bus Speed Cache Size No of
QPI
Links

Thread(s)/
Core

Core(s)/
Socket

TBT
Support

mario
& luigi

1.80 5 GT/s DMI L1: 64 KB
L2: 4 MB

None 1 1 Yes (2.0)

master
Worker1
Worker2
Worker3
Worker4
Worker5
Worker6
Worker7
Worker8
Worker9

3.40 5 GT/s DMI L1:64 KB
L2: 4 MB

None 1 1 Yes (2.0)

dewey 2.60 5 GT/s DMI2 L1: 64 KB
L2: 4 MB

None 1 1 No

louie
& huey

2.4 5 GT/s DMI2 L1: 64 KB
L2: 4 MB

None 1 1 Yes (2.0)

onomi 3.5 9.6 GT/s QPI L1: 64 KB
L2: 256 KB
L3: 35.8
MB

2 2 14 Yes (2.0)

33

of Spark jobs were used for collecting CPU, network, memory and disk utilization information in the cluster

([41], [64]).

For all the experiment scenarios, the average metric values are reported from three experimental run

instances respectively except for the experiments (with the exception of the partition size vs runtime scenario)

discussed in Sections §4.1 and §4.2. Experiments in these sections also involved three run instances but results

are reported only for the instance with the least runtime. The three experimental run scenarios considered is

to allow Spark’s driver to stabilize as the variation between the job completion time remains nearly constant

and negligible for the second and third run instances. The large time variation between the first and the last

two run instances is due to the start up overhead of the driver process on the master node.

Also, for the experiments in Sections §4.3, §4.4 and §4.5 (with the exception of influence of

spark.executor.parameter and the comparison between the Sequential and Spark applications), three run

scenarios were considered but results presented only for the instance with the lowest job runtime. Thus, the

performance metrics of interest across all experiments are as follows:

• Execution Time at the stage and task levels,

• Runtime or job completion time,

• Number Tasks per node,

• Percentage of Average CPU Utilization,

• Percentage of Average RAM Usage,

• Network throughput,

• Disk throughput,

• HDFS I/O.

The execution time (especially the median and the maximum execution time of tasks) is important for

identifying slow tasks that might be due to data skew or slow nodes. This behaviour can be further verified

by looking at the visual chart that shows the task execution progress for each executor on the Web UI. Apart

from the execution time, the percentage of resource utilization (CPU and RAM), the disk and network I/O

are metrics that also affect the performance of Spark jobs and thus will be important to understand the

impact of these metrics on job completion time.

Furthermore, the time-related metrics (execution and job completion time) highlighted above in addi-

tion to other important ones (not stated above) regarding the applications are particularly important for

performance evaluation. These other metrics include the runTime, duration (sum of individual tasks time),

schedulerDelay, executorRunTime, executorCpuTime, executorDeserializeTime, resultSerializationTime, get-

tingResultTime, and jvmGCTime. The idea on how to collect these metrics came later in the study and,

34

therefore are collected only for the experiments (last sets of experiment implemented) investigating storage

levels discussed in section §4.3. These metrics are defined as follows to aid their understanding:

• runTime (Equation 3.1) - This is obtained as the minimum launch time subtracted from the maximum

finish time for all the tasks in all the stages of execution across all cluster nodes given that each task

has a start time and a finish time. The runTime is given thus:

runT ime(elapsedT ime) = maximumFinishT ime−minimumLaunchT ime. (3.1)

• duration (Equation 3.3) - This is the sum total of the schedulerDelay, executorDeserializeTime, execu-

torRunTime, resultSerializationTime and gettingResultTime for all the tasks in all the stages on all

cluster nodes. For a given task t in all the stages of execution on a worker node n, the duration or

taskExecutionTime7 is calculated thus (Here N is the total number of nodes in the cluster (9 in this

scenario) and T is the total number of tasks - 1118 for flowerCounter and 7001 for imageClustering):

duration(taskExecutionT ime) = schedulerDelayn,t + executorDeserializeT imen,t

+ executorRunTimen,t + resultSerializationT imen,t + gettingResultT imen,t. (3.2)

duration(taskExecutionT ime) =

n=N∑
n=1

(

t=T∑
t=1

schedulerDelay +

t=T∑
t=1

executorDeserializeT ime

+

t=T∑
t=1

executorRunTime+

t=T∑
t=1

resultSerializationT ime+

t=T∑
t=1

gettingResultT ime). (3.3)

• executorRunTime (Equation 3.4) - This is the summation of data read/write time from the filesystem

(HDFS), CPU execution time and the JVM garbage collection time. The executorRunTime8 across all

the nodes is calculated thus:

executorRunTime =

n=N∑
n=1

(

t=T∑
t=1

taskIOReadT ime+

t=T∑
t=1

taskIOWriteT ime+

t=T∑
t=1

executorCpuT ime

+

t=T∑
t=1

jvmGCTime). (3.4)

7https://www.ibm.com/support/knowledgecenter/en/SSZU2E_2.2.1/performance_tuning/application_spark_parameters.html
- (Accessed: March 31, 2018)

8https://www.ibm.com/support/knowledgecenter/en/SSZU2E_2.2.1/performance_tuning/application_spark_parameters.html
- (Accessed: March 31, 2018)

35

3.2 Experimental Design

This section highlights the experimental studies that are carried out to meet the objectives of this thesis work.

To understand Spark’s performance for the image applications, the following experiments were executed:

• Experiments to investigate the influence of spark.files.maxPartitionBytes on application performance,

• Experiments to understand the influence of spark.executor.cores on application performance,

• Experiments to investigate the influence of spark.executor.memory parameter (whether increasing the

memory allocated to Spark while the system’s physical memory remains constant) on application per-

formance,

• Experiments to study the scalability of Spark system with increasing numbers of computing nodes, that

is, to investigate the scale-out property of Spark, and

• Experiments to investigate the influence of spark.speculation configuration parameters on straggling

tasks and on the overall job performance.

3.2.1 Experiments to investigate the influence of spark.files.maxPartitionBytes

on application performance

The spark.files.maxPartitionBytes configuration parameter is used to control RDD partition size and ulti-

mately for controlling the level of parallelism (the number of tasks). As the right partition size to ensure

fair share of data to all the executor is important to avoid data skew and to reduce job completion time,

experiments were carried out on the large cluster using the July dataset on the flowerCounter application

with spark.files.maxPartitionBytes parameter varied from the default value (128 MB) up till 2 MB respec-

tively but analysis focused on the 128 MB and 64 MB experimental runs respectively ([51], [64]). The

spark.files.maxPartitionBytes parameter was varied in multiples of 2 based on previous works to increase the

number of tasks (the level of parallelism) and also to reduce tasks size. This was necessary to investigate

whether increase in the number of tasks by the parameter would improve resource utilization and reduce

application processing time. The spark.executor.cores value of 6 was used from the 8 available cores on each

node of the large cluster to share evenly for the executors (even number of cores). One core was reserved for

the operating system. The configuration settings used for this experiment are as shown in Table 3.8.

3.2.2 Experiments to understand the influence of spark.executor.cores on ap-

plication performance

In addition to Spark being an in-memory computation engine, it is also based on the JVM. Therefore,

the effective configuration of the JVM parameters for reduced garbage collection overhead is essential for

36

Table 3.8: Configuration Settings for Experiments in §3.2.1

Configuration Setting Base Value Parameter Type

spark.driver.memory 10 GB Application

spark.broadcast.compress true Compression

spark.rdd.compress true Compression

spark.io.compression.codec lz4 Compression

spark.shuffle.compress true Compression

spark.files.maxPartitionBytes 128 MB 64 MB 32 MB 16 MB 8 MB 4 MB 2 MB Execution

spark.executor.memory 12 GB Memory Management

spark.executor.cores 6 Execution

optimizing job performance. The recommendation according to Chiba and Onodera is to use either two or

four executor JVMs for better job performance as using a single large executor with more than five cores

concurrently or many tiny executors could lead to bad HDFS I/O. This is because HDFS does not perform

well with many concurrent threads as the number of simultaneous operations it can support is dependent on

the number of HDFS blocks stored on the data nodes. Having many concurrent threads could result in cores

reading same small fraction of data on a single node and therefore, reduce parallelism due to communication

overheads [13, 21].

As a result, experiments were conducted with all the datasets on the small cluster by increasing the

number of cores allocated to each Spark’s executor JVMs. Thus, varying the number of executors by the

spark.executor.cores parameter per each run scenario while keeping the heap size constant based on the

total memory allocated to the worker machine as shown in Table 3.9. The spark.executor.cores parameter,

varied in multiples of 2 based on the number of cores available on each node in the cluster, investigated the

effect of multiprocessing within an executor on application performance. The spark.executor.cores value of

47 (one core left for the operating system) evaluated the influence of executor with many cores on application

performance. The spark.executor.memory parameter was kept at 7 GB relative to the total memory on each

of the nodes in the cluster (377 GB) to prevent halting the applications’ execution due to insufficient amount

of memory. This is because as the number of executors per node increases by reducing the number of cores per

executor, the amount of memory required to execute the applications increases. The configuration settings

for these experiments are shown in Table 3.9 with the respective varied values of the spark.executor.cores

parameter.

For the partition size used for the experiments dictated by the spark.files.maxPartitionBytes, the flower-

Counter application executed on the small cluster used the default 128 MB partition size for all the datasets.

However, the imageClustering application on the same small cluster used partition size of 8 MB because the

execution failed with partition size greater than 8 MB. The failure was due to recurrent HDFS client errors

such as hdfs.DFSClient: Exception in createBlockOutputStream that IOException: Failed to replace a bad

datanode on the existing pipeline due to no better datanodes being available to try. This is because HDFS

37

Table 3.9: Configuration Settings for Experiments in §3.2.2

Configuration Setting Base Value Parameter Type

spark.driver.memory 10 GB Application

spark.broadcast.compress true Compression

spark.rdd.compress true Compression

spark.io.compression.codec lz4 Compression

spark.shuffle.compress true Compression

spark.files.maxPartitionBytes 128 MB - flowerCounter 8 MB - imageClustering Execution

spark.executor.memory 7 GB Memory Management

spark.executor.cores 1 2 4 8 12 16 47 Execution

cluster with small number of data nodes (3 in this case) may experience failure due to large datasets [14].

The small cluster was only available for a limited amount of time and debugging the failures encountered

with the imageClustering application was not possible. The same experimental design and explanation re-

garding partition size hold for the experiments involving spark.executor.memory parameter in §3.2.3 with the

imageClustering application.

Apart from the experiments conducted on the small cluster, preliminary experiments were also performed

on the large cluster with the August dataset for the flowerCounter application and the September dataset

for the imageClustering application. September dataset with the default partition size of 128 MB was used

for the imageClustering application because experiments with the other datasets (July and August) with

the same default partition failed due to out-of-memory exceptions. Two sets of experiments were performed

for the applications. One set of experiments for the flowerCounter application used 3 cores with 6 GB of

memory per executor on the large cluster with 9 nodes (18 executors, 2 per node). The other experiments

used 2 cores with 4 GB of memory per executor on the same large cluster (27 executors, 3 per node). On the

other hand, the imageClustering application used 6 cores with 12 GB of memory (9 executors, 1 per node)

for one set of experiments while the other set of experiments used 3 cores with 6 GB of memory.

For all the experiments conducted here and in other subsections of §3.2, few configuration parame-

ters regarding driver application and data compression were fixed while the other parameters depend-

ing on the experiment type were varied accordingly. The fixed parameters include spark.driver.memory,

spark.broadcast.variable, spark.io.compression.codec, spark.rdd.compress and spark.shuffle.compress. The

spark.driver.memory value of 10 GB was selected for the driver process on the master node where the

main entry point, the SparkContext, to the Spark engine was instantiated. This is important for initiating

and stopping Spark applications and also for coordinating the interactions between all the processes running

on the worker nodes. The spark.driver.memory was fixed at 10 GB because large amount of memory is

not required by the driver process (the driver process does not participate in the applications processing

execution).

38

The other compression parameters are turned on by default except the spark.rdd.compress parame-

ter. Generally, compressing data objects in Spark is important for effective application performance. The

spark.broadcast.compress helps to compress serialized data objects before they are sent over the network and

therefore reduces overhead especially for large data objects. This is particularly important for applications

that require broadcast variables such as the imageClustering application. Another parameter turned on by

default is the spark.shuffle.compress, used for compressing intermediate shuffled data objects. This is a key

performance parameter for iterative applications (such as the imageClustering application) and other ap-

plications that make several passes over intermediate data outputs. The RDD partitions were compressed

with the spark.rdd.compress parameter. This is to reduce the overhead of transferring large numpy arrays of

images encapsulated as RDDs. The spark.io.compression.codec parameter is the algorithm used for compress-

ing the rdd, broadcast variable and the shuffled data. This parameter is required by the other compression

parameters for them to function.

3.2.3 Experiments to investigate the influence of spark.executor.memory pa-

rameter on application performance

Here, the cache mechanism paradigm of Spark was investigated using the configuration parameter setting

spark.executor.memory ; particularly exploring the impact of increasing executor’s memory on the execu-

tion speed of the applications. The experiments were performed using the July datasets for both ap-

plication workloads on the small cluster environment. The execution time with spark.executor.memory

of 10 GB memory was used as the baseline while the number of cores allocated to each executor kept

at 16 (spark.executor.cores=16). In order to be able to experiment with different memory sizes for the

spark.executor.memory parameter, the number of executors per node was fixed at 2 with 16 cores each.

Therefore, the maximum memory capacity used by the executors on each node is 320 GB (total memory

capacity was 377 GB). The detailed configuration settings used is as shown in Table 3.10.

To further investigate the impact of caching on application execution speed, the different storage levels

implemented in Spark were studied for both applications on the large cluster (with 9 cluster nodes excluding

mario and luigi) using only the July dataset for the flowerCounter application, while only the September

dataset was employed for the imageClustering application.

3.2.4 Experiments to study the scalability of the Spark system with increasing

number of computing nodes

Spark is a scale-out analytics system, that is, more nodes can be added to meet scalability demands. This is

the focus of the experiments performed here. The scale-out inherent design was put to test by increasing the

compute nodes from 1 to 11 (odd number increment) on the larger cluster for the flowerCounter application

using the July dataset. The configurations used are the same as those used in §3.2.1 with the default

39

Table 3.10: Configuration Settings for Experiments in §3.2.3

Configuration Setting Base Value Parameter Type

spark.driver.memory 10 GB Application

spark.broadcast.compress true Compression

spark.rdd.compress true Compression

spark.io.compression.codec lz4 Compression

spark.shuffle.compress true Compression

spark.files.maxPartitionBytes 128 MB - flowerCounter 8 MB - imageClustering Execution

spark.executor.memory 10 GB 20 GB 40 GB 80 GB 120 GB 160 GB MemoryManagement

spark.executor.cores 16 Execution

partition size of 128 MB. The execution time taken on a single node was used as a basis for calculating the

execution speedup. The completion time of the sequential version of the flowerCounter application executed

on onomi was also compared with the corresponding parallel versions. The configuration on onomi (56 cores)

is equivalent to 9 (6 cores per node were used) compute nodes on the larger cluster. Also, the execution

time of a similar configuration (64 cores - 32 cores per node) on the smaller cluster was compared with the

sequential runtime as well as the larger cluster run scenario.

3.2.5 Experiments to investigate the influence of spark.speculation configuration

parameter on straggling tasks

Speculative execution in Spark is used to reduce the effect straggling nodes on job completion time. It is

controlled by the spark.speculation parameter to reschedule slower tasks on the nodes to other worker nodes.

In order to investigate the influence of this parameter on job completion time, experiments were performed

with the parameter turned on (spark.speculation=true) using all the nodes in the larger cluster. There were

two experimental scenarios: one with all the 11 nodes, but with speculation disabled and the other with

the same number of nodes and speculation enabled. The idea was to investigate how the task scheduler

would handle slower tasks on the straggling nodes to mitigate their effects on the job completion time.

Speculative execution will not kill the slower tasks, but run the corresponding speculated tasks in parallel.

If the speculated tasks finished before the slower tasks, the slower tasks would be killed and vice versa.

The experiments used all the datasets for the flowerCounter application with partition size of 128 MB. The

imageClustering application, on the other hand, used only the July dataset on the large cluster with a partition

size of 8 MB determined by the spark.files.maxPartitionBytes parameter. This is because the experiments

failed with partition size greater than 8 MB for the July dataset due to out-of-memory exceptions. The

complete configuration parameter settings are shown in Table 3.11.

Apart from the key spark.speculation parameter, there are other configuration parameters that are used in

conjunction with the speculation parameter by default. These parameters include spark.speculation.interval,

40

spark.speculation.multiplier and spark.speculation.quantile. The spark.speculation.interval determines the

frequency at which Spark will speculate tasks with the default value of 100 milliseconds. The

spark.speculation.multiplier default value of 1.5 is the factor by which a task is slower than the median

time of already completed tasks in a particular stage of execution. The spark.speculation.quantile used the

default value of 0.75 to determine the segment of tasks that should be completed before speculation can take

effect.

The other fixed configuration parameters, including spark.driver.memory, spark.broadcast.compress,

spark.rdd.compress, spark.io.compression.codec and spark.shuffle.compress, apart from the spark.speculation

parameter, shown in the table were chosen for similar performance reasons given in §3.2.2. In addition

to these parameters, the spark.executor.cores and spark.executor.memory were also fixed at the set values

determined by the systems’ characteristics of the cluster nodes. Optimal values were set for these parameters

with consideration for the operating system.

Table 3.11: Configuration Settings for Experiments in §3.2.5

Configuration Setting Base Value Parameter Type

spark.driver.memory 10 GB Application

spark.broadcast.compress true Compression

spark.rdd.compress true Compression

spark.io.compression.codec lz4 Compression

spark.shuffle.compress true Compression

spark.files.maxPartitionBytes 128 MB - flowerCounter 8 MB - imageClustering Execution

spark.executor.memory 12 GB Memory Management

spark.executor.cores 6 Execution

spark.speculation false true Scheduling

41

Chapter 4

Performance Analysis and Evaluation

This chapter outlines the results from the experiments conducted in this study. It begins with an evalu-

ation of the effect of data partition sizes on job completion time with detailed analysis of those stages whose

execution time is substantially affected by partition size. The impact of executor JVMs on application per-

formance with different configuration parameter settings on both the small and the large clusters is evaluated

next. Execution times of the different configuration settings executed on both clusters and the sequential

execution on onomi are reported. This chapter also shows the results for the influence of increasing Spark’s

execution memory on application performance. The results from the scale-out (horizontal node scaling) prop-

erty experiment of Spark are presented next. The analysis and evaluation of the results obtained from the

speculative execution experiments concludes this chapter.

4.1 Effect of Partition Size

The results of the experiments described in §3.2.1 are discussed here. In order to determine the right partition

size for the applications, experiments with different data partition sizes were conducted for the flowerCounter

application. The influence of partition size on the total processing time of the flowerCounter application is

plotted in Figure 4.1. Experiments were conducted starting with the default partition size of 128 MB and up

till 2 MB data size. Partition size of 64 MB reduces processing time from the default data size. Processing

time remained almost the same for further reduction in the partition size until the smallest partition size of

2 MB considered. In order to aid adequate understanding of the cause of the patterns observed, for example

the processing time reduction from 128 MB to 64 MB partition size, further studies were carried out as

discussed in the succeeding discussions. These results indicate that reduction of the partition size from the

default partition size of 128 MB to 64 MB reduces processing time and further reductions in the partition size

do not provide speed advantage for the processing. This limitation of the Spark engine to scale with smaller

partition sizes is due to the bottleneck caused by large number of tasks and thus results in the inefficient

utilization of the cluster CPU/IO resources [51]. This finding is further corroborated by the analyses that

follow here.

As stated above, detailed analyses were conducted for the 64 MB and 128 MB partition sizes to bet-

ter understand the underlying cause of the patterns observed. Table 4.1 shows the task summary results

42

128 64 32 16 8 4 2
Partition Size (MB)

0

1000

2000

3000

4000

Ti
m

e
(s

)

flowerCounter (July, 34.8GB)

Figure 4.1: Partition Size vs Runtime

from those experiments. The table shows the execution time summary for concurrently running tasks for

each stage across all the cluster nodes. As highlighted in the table, the stages whose execution times (with

respect to the total elapsed) are substantially affected by the partition size are the computeHistogram and

computeHistogramShifts respectively. Consequently, analysis focuses only on the computeHistogram and com-

puteHistogramShifts stages because the completion time of these stages substantially impacted the total job

completion time. The execution times of the other two stages (computeFlowerPixelPercentage and compute-

FlowerCount) are reduced as well but the difference in the total execution times is not as substantial as the

other two.

The computeFlowerCount stage accounted for about 76% and 68% of the total completion in both run

scenarios respectively. Despite this substantial contribution and the large variance in the median and maxi-

mum time, the difference in the execution times for the computeFlowerCount stage is very similar in the run

scenarios. This is because the slow tasks in the 128MB partition size scenario completed almost at the same

time as the large number of tasks in the 64 MB partition size scenario.

The results are further exemplified in Figure 4.2. These results indicate that the partition size of 64 MB

reduced the median execution time by 66%, 58%, 51% & 50% per task in each of the stages respectively and

reduced the total job completion time by about 13% compared to the 128 MB partition size scenario. These

results represented also reveal that the variation (the difference between the median and the maximum time)

in the tasks’ completion time is higher for the computeHistogram and computeHistogramShifts stages of the

128 MB partition size scenario explained by the large number of outliers in those two stages. This variation

(and large number of outliers) is due to straggler tasks that have prolonged execution time in comparison to

other concurrent tasks.

In order to understand what might be responsible for the increased completion time (caused by the

variation in the tasks’ completion time) of the 128 MB partition size scenario, the tasks’ completion progress

43

Table 4.1: flowerCounter : Influence of spark.files.maxPartitionBytes (July, 34.8 GB Dataset)

64 MB Partition Size

Stages (Function Name) Minimum
Time(s)

Median
Time(s)

Maximum
Time(s)

Total Time(s)

collect
(computeHistogram)

5 27 55 302

collect
(computeHistogramShifts)

5 25 75 280

collect
(computeFlowerPixelPercentage)

9 29 124 333

saveAsTextFile
(computeFlowerCount)

64 275 440 2947

Total Elapsed Time 3862

128 MB Partition Size

Stages (Function Name) Minimum
Time(s)

Median
Time(s)

Maximum
Time(s)

Total Time(s)

collect
computeHistogram

14 80 414 624

collect
computeHistogramShifts

7 59 220 415

collect
computeFlowerPixelPercentage

9 59 144 368

saveAsTextFile
computeFlowerCount

91 554 862 3042

Total Elapsed Time 4449

views are shown in Figures 4.3a and 4.3b for the computeHistogram stage and similarly in Figures 4.4a and

4.4b for the computeHistogramShifts stage. These views show that slow tasks are the cause of the slow

completion time for the 128 MB partition size scenario; the time for the 128 MB partition size is almost twice

of the 64 MB partition size.

In the computeHistogram stage, for example, the task progression is almost linear with the 64 MB partition

size scenario unlike the 128 MB partition size scenario. At the completion time of about 300 seconds for

the 64 MB (with 556 total tasks) partition size scenario, there are still about 39 tasks that are yet to be

completed in the 128 MB (with 279 tasks in total) partition size scenario and thus prolonged the completion

time. This is due to the large task sizes of the 128 MB partition size scenario in comparison to the 64 MB

partition size scenario.

Also, Table 4.2 shows the execution time summary for each distinct task (these times are the summation of

tasks times with each task time added distinctly and not times for concurrent running tasks) added together.

These results again show that the average task execution time for the 128 MB partition size scenario is about

twice as that of the 64 MB partition size scenario (over 3 minutes for 128 MB as against about 1.5 minutes

for 64 MB) across all cluster nodes. This also corroborates findings in the preceding section that the high

44

completion time of the 128 MB partition size is due to large variation in the tasks’ completion time dictated

by large task sizes.

Furthermore, it is important to state that the task progress views in Figures 4.3 and 4.4 reflect the tasks

time due to computation only. This is because majority of the tasks’ elapsed times were spent in compute

(other task time metrics are negligible and as such are not represented). The results shown in Figure 4.3

for the computeHistogram stage show that tasks scheduling follows an almost linear fashion with only a few

prolonged tasks in the 64 MB partition size scenario. The scheduling of tasks suffers no substantial delays

because concurrent tasks completed almost at the same time. The maximum number of concurrent tasks,

dictated by the number of cores allocated for the tasks, is 54 (6 cores on each of the 9 nodes in the cluster).

The total number of tasks is 556. This means that each node would execute at least 60 tasks in this stage

(assuming about 10 tasks per core).

On the other hand, for the 128 MB partition size scenario, the scheduling of tasks is largely affected by

straggler tasks throughout the entire tasks’ execution flow. The tasks are substantially delayed especially

in the latter part of the execution. The total number of tasks in the 128 MB partition size scenario is 279,

yielding at least 30 tasks on each node for about 5 tasks per core. It thus appears that the prolonged stage

execution time of the 128 MB partition size scenario is due to same large task sizes that were slow to complete

and reduced number of tasks in comparison to the 64 MB partition size scenario. The same explanation holds

for the computeHistogramShifts results depicted in Figure 4.4.

To further investigate the influence of the spark.files.maxPartitionBytes parameter on cluster resources,

metrics were collected with respect to CPU utilization, memory usage, network and disk throughput as well

as HDFS I/O as shown in Figures 4.5, 4.7, 4.6, 4.8, 4.9 and 4.10 respectively. For all the metrics reported,

the average values sampled at every 30 seconds are plotted in these figures. In general, these metrics show

that the rate at which resource usage changes is more frequent with the 128 MB partition size scenario

in comparison to the 64 MB partition size scenario. A detailed discussion of these figures follows in the

succeeding paragraphs.

For the CPU usage illustrated in Figure 4.5, the downward spikes represent the interchange from one

stage to the next in the application processing pipeline. It can be seen from the result represented that

the interchange between the stages happens almost immediately for the 64 MB partition size scenario while

in the 128 MB partition size scenario the interchange is prolonged and stretched. The delay in the first

interchange (that is, the end of the computeHistogram stage in the 128 MB partition size scenario) is more

pronounced than all the other stages. This is because some tasks took longer time to complete and thus

resulted in the pattern observed. Similarly, the second interchange which represents the completion of the

computeHistogramShifts stage finishes longer in the 128 MB partition size scenario in comparison to the 64

MB partition size scenario. In general, CPU utilization is similar in both partition size scenarios but with

more pronounced volatility in the 128 MB partition size scenario especially in the last computeFlowerCount

stage.

45

flowerCounter (July, 34.8 GB)

FlowerCount Histogram Pixel Shifts
Stages

0

100

200

300

400

500
Ti

m
e

(s
)

(a) Stage Summary for flowerCounter 64 MB

FlowerCount Histogram Pixel Shifts
Stages

0

100

200

300

400

500

600

700

800

900

Ti
m

e
(s

)

(b) Stage Summary for flowerCounter 128 MB

Figure 4.2: Stage Time Summary

46

flowerCounter (July, 34.8 GB)

100

200

300

400

500

600

0 100 200 300

Ta
sk

s
in

 S
ta

rt
-t

im
e
 O

rd
e
r

Time (s)

(a) computeHistogram (64 MB)

100

200

300

0 100 200 300 400 500 600

Ta
sk

s
in

 S
ta

rt
-t

im
e
 O

rd
e
r

Time (s)

(b) computeHistogram (128 MB)

Figure 4.3: Task Progress Summary

47

flowerCounter (July, 34.8 GB)

100

200

300

400

500

600

0 50 100 150 200 250

Ta
sk

s
in

 S
ta

rt
-t

im
e
 O

rd
e
r

Time (s)

(a) computeHistogramShifts (64 MB)

100

200

300

0 50 100 150 200 250 300 350 400

Ta
sk

s
in

 S
ta

rt
-t

im
e
 O

rd
e
r

Time (s)

(b) computeHistogramShifts (128 MB)

Figure 4.4: Task Progress Summary

48

Table 4.2: flowerCounter : Influence of spark.files.maxPartitionBytes (July, 34.8 GB Dataset)

64 MB Partition Size

Host Minimum
Duration(s)

Average
Duration(s)

Maximum
Duration(s)

Total
Duration(s)

No of Tasks

discus-p2irc-worker1 13 89 400 22000 246

discus-p2irc-worker2 5 89 416 21900 246

discus-p2irc-worker3 13 94 409 22000 234

discus-p2irc-worker4 14 91 424 22000 242

discus-p2irc-worker5 5 85 418 22000 259

discus-p2irc-worker6 14 89 428 21900 245

discus-p2irc-worker7 16 88 440 22100 253

discus-p2irc-worker8 14 89 415 21900 247

discus-p2irc-worker9 2 87 402 22100 254

128 MB Partition Size

Host Minimum
Duration(s)

Average
Duration(s)

Maximum
Duration(s)

Total
Duration(s)

No of Tasks

discus-p2irc-worker1 22 181 821 23900 132

discus-p2irc-worker2 14 190 823 22300 117

discus-p2irc-worker3 9 176 809 23200 132

discus-p2irc-worker4 28 185 854 23000 124

discus-p2irc-worker5 7 202 858 23500 116

discus-p2irc-worker6 28 188 862 24700 131

discus-p2irc-worker7 29 191 860 23100 121

discus-p2irc-worker8 7 196 844 22700 116

discus-p2irc-worker9 30 182 806 23500 129

49

0 500 1000 1500 2500 3000 35002000
Time (s)

0

20

40

60

80
Av

g
C

PU
 U

til
iz

at
io

n
(%

)

CPU Utilization vs. Time (July, 34.8GB, flowerCounter - 64MB)

cpuUtilization

(a) Average CPU Utilization (64 MB)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)

0

20

40

60

80

Av
g

C
PU

 U
til

iz
at

io
n
(%

)

CPU Utilization vs. Time (July, 34.8GB, flowerCounter - 128MB)

cpuUtilization

(b) Average CPU Utilization (128 MB)

Figure 4.5: CPU Utilization

50

To further study CPU utilization, CPU heat maps are shown in Figure 4.6. The stage interchange

regions are those with the least CPU usage shown in the figure. The regions are wider in the 128 MB

partition size scenario than in the 64 MB partition size scenario. At these regions, CPU utilization drops

well below 20% for a prolonged time period in the 128 MB partition size scenario in comparison to the

64MB run. This again shows that the prolonged application processing time of the 128 MB partition size

scenario is largely contributed by the slower tasks in the computeHistogram and computeHistogramShifts

stages of the application pipeline. These slower tasks delay the task scheduler in scheduling tasks in the

computeHistogramShifts stage as tasks in this stage cannot be initiated without the completion of the tasks

in the previous computeHistogram stage.

RAM usage for both run scenarios of 64 MB and 128 MB partition sizes is shown in Figure 4.7. RAM

usage is higher in the first computeHistogram stage for the 128 MB partition size scenario in comparison to

the 64 MB partition size scenario but usage is higher and less variable in the last three stages for the 64 MB

partition size scenario. There is high volatility in the last computeFlowerCount stage of the 128 MB partition

size scenario in that usage variation is more frequent than in the 64 MB partition size scenario.

In general, the high CPU and RAM usage by the application in both run scenarios across all the stages of

execution in the pipeline is due to large numpy array transformations. These stages involve expensive numpy

matrix computation and deep array dictionaries copying for operations such as histogram computation,

image correlation for histogram shifts calculation and the clip function for obtaining flower highlight. These

operations require expensive use of internal memory and therefore are memory intensive. The high CPU

volatility especially in the 128 MB partition size scenario requires further study.

Next, the disk and network throughput due to the operating system’s filesystem for the two run scenarios

were measured and the result is represented in Figures 4.8 and 4.9. With respect to disk throughput, both

run scenarios are low on write throughput except for a few spikes at the interchange between the stages.

These spikes are due to the output from each of the stages.

The read and network throughput on the other hand depicts a different usage pattern with higher read

throughput in the first three stages than in last stage for the 64 MB partition size scenario. This explains why

the execution time is faster in the first three stages of the pipeline for the 64 MB partition size scenario. The

first two stages, especially the computeHistogram stage, shows elongated near-zero read throughput due to

fewer tasks with delayed completion time. Disk throughput is largely dominated by the HDFS I/O activity

(particularly the read operations) and are thus discussed in later paragraphs. In both scenarios, network

thoroughput is low and negligible.

Also, the network throughput for the 128 MB partition size scenario reflects similar pattern as in the disk

bytes read throughput with bytes transferred and received over the network following nearly identical trend

in the first three stages. The network usage in these stages, especially in the computeHistogram stage, is also

synonymous to the disk bytes read throughput with elongated near-zero network usage pattern due to slow

tasks.

51

flowerCounter (July, 34.8 GB)

0.0 970.0 1950.0 2940.0 3870.0
Time (s)

worker_1

worker_2

worker_3

worker_4

worker_5

worker_6

worker_7

worker_8

worker_9

H
os

t N
am

e

0

20

40

60

80

C
PU

 U
til

iz
at

io
n

(%
)

(a) CPU HeatMap (64 MB)

0.0 979.0 1976.0 2976.0 3976.0
Time (s)

worker_1

worker_2

worker_3

worker_4

worker_5

worker_6

worker_7

worker_8

worker_9

H
os

t N
am

e

0

20

40

60

80

C
PU

 U
til

iz
at

io
n

(%
)

(b) CPU HeatMap (128 MB)

Figure 4.6: CPU HeatMap

52

0 500 1000 1500 2500 3000 35002000
Time (s)

20

30

40

50

60

70

80
Av

g
R

AM
 U

sa
ge

 (%
)

RAM Usage vs. Time (July, 34.8GB, flowerCounter - 64MB)

ramUsage

(a) RAM Usage (64 MB)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)

30

40

50

60

70

Av
g

R
AM

 U
sa

ge
 (%

)

RAM Usage vs. Time (July, 34.8GB, flowerCounter - 128MB)

ramUsage

(b) RAM Usage (128 MB)

Figure 4.7: RAM Usage

53

flowerCounter (July, 34.8 GB)

0 1000 2000 3000 4000
Time (s)

0

5

10

15

20

25
B

yt
es

 R
ea

d/
W

rit
te

n
P

er
 S

ec
on

d
(M

B
/s

)
Bytes Read

Bytes Written

(a) Disk Throughput (64 MB)

0 1000 2000 3000 4000
Time (s)

0

5

10

15

20

25

B
yt

es
 R

ea
d/

W
rit

te
n

P
er

 S
ec

on
d

(M
B

/s
)

Bytes Read

Bytes Written

(b) Disk Throughput (128 MB)

Figure 4.8: Disk Throughput

54

flowerCounter (July, 34.8 GB)

0 1000 2000 3000 4000
Time (s)

0

5

10

15

20

25

30

35

40
B

yt
es

 R
ec

ei
ve

d/
Tr

an
sf

er
re

d
P

er
 S

ec
on

d
(M

B
/s

)
Bytes Receievd

Bytes Transferred

(a) Network Throughput (64 MB)

0 1000 2000 3000 4000
Time (s)

0

10

20

30

40

B
yt

es
 R

ec
ei

ve
d/

Tr
an

sf
er

re
d

P
er

 S
ec

on
d

(M
B

/s
) Bytes Receievd

Bytes Transferred

(b) Network Throughput (128 MB)

Figure 4.9: Network Throughput

55

The disk I/O cost of processing the application with different partition sizes includes the I/O cost of

reading and writing data to HDFS and as such the HDFS I/O metrics were measured as represented in

Figure 4.10. The HDFS write operation, however, is very negligible. The HDFS disk read cost rises steadily

in the first three stages of the application in both experimental run scenarios except that in the 64 MB

partition size scenario the rate is fast with almost negligible delays between the stages. There is a steady

read rate until about 900 seconds in the 64 MB partition size scenario. The read rate then became smaller

until the end.

In the 128 MB experimental run however, the increase in the HDFS disk read operation in the first three

stages (with a stair-case pattern) is affected by prolonged delays towards the end of the stages especially

in the computeHistogram and computeHistogramShifts stages. The number of bytes written by HDFS is

inconsistent in the 128 MB partition size scenario due to smaller number of tasks in comparison to the 64

MB partition size scenario. The read rate is similar as in the 64 MB partition size scenario except that at

some points in the early stages of the run, the read rate became very small and bursty.

In summary, these results indicate that reduction in partition size reduces the application processing time

till 64 MB but subsequent reduction do not yield faster processing time due to the overhead caused by large

amount tasks [51]. This finding agrees with the work done by Veiga et al. [54] that across a number of

benchmarks investigated for Hadoop and Spark, 64 MB partition size is most suitable for Spark workloads.

Running the application with the default partition size of 128 MB increases application processing time due

slow tasks especially in the computeHistogram and computeHistogramShifts stages.

Default partition size of 128 MB also causes more frequent variation in the use of cluster resources

especially in the last computeFlowerCount stage in comparison to using 64 MB partition size. The repeated

successive variation in the use of cluster resources might be due to contention from concurrent tasks and

because resource usage is outside the control of the Spark’s engine but rather depends on the operating

system [42]. Generally, I/O is quite small in comparison to CPU usage and the disk reads rate are staggered

because cores are waiting for stragglers which confirms earlier analysis.

56

flowerCounter (July, 34.8 GB)

0 1000 2000 3000 4000
Time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

B
yt

es
 R

ea
d

(G
by

te
s)

Bytes Receievd

(a) HDFS IO (64 MB)

0 1000 2000 3000 4000
Time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

B
yt

es
 R

ea
d

(G
by

te
s)

Bytes Receievd

(b) HDFS IO (128 MB)

Figure 4.10: HDFS IO

57

4.2 JVM Executor Scaling

Here, the impact of increasing the number of JVM executors vis-a-vis executor cores on application perfor-

mance is investigated. In this scenario (in the preliminary experiments), for the flowerCounter application,

two executor JVMs were used with 64 MB and 128 MB data partitions respectively using the August dataset

on the larger cluster. Each JVM executor has 3 cores and 6 GB of memory on all the 9 nodes, making 18

executors in total. The number of executors was then later increased to 27; each node has 3 executors with 2

cores and 4 GB of memory each accordingly. The preliminary experiment with 27 JVM executors was done

for the 64 MB data partition size only. The summarized execution time results for the 18 executors and 27

executors are shown in Table 4.3 for each experimental run scenario.

The 27 JVM executors scenario with 64 MB data size performed better in comparison with the 18 JVM

executors scenario. The variance in execution times is larger in the computeHistogramShifts and compute-

FlowerPixelPercentage stages than in the other stages. The task completion progress views for the 18 and 27

JVM executors scenarios are shown in Figures 4.11a, 4.11b, 4.11c and 4.11d to further make obvious the

tasks’ execution dynamics for the two notable stages (computeHistogramShifts and computeFlowerPixelPer-

centage).

For both stages, the results represented show that tasks took a longer time to complete in the 18 JVM

executors scenario than in the corresponding 27 JVM executors scenario, especially in the computeHis-

togramShifts stage. In the computeHistogramShifts stage, for example, the tasks run time in the 27 JVM

executors scenario is about twice that of the 18 JVM executors scenario.

Furthermore, the task progress views shown in Figure 4.11 for the computeHistogramShifts and the com-

puteFlowerPixelPercentage stages reflect the tasks’ completion rate over the execution period of the applica-

tion processing. The total number of tasks in both run scenarios for the two stages is 308.

For the computeHistogramShifts stage, the tasks’ completion rates for the 18 JVM executors scenario is

greatly dominated by straggler tasks throughout the entire tasks’ execution period in comparison to the 27

JVM executors scenario. Each phase in the task execution progress contains tasks that delayed the starting

of tasks by the task scheduler in the next phase of the execution. The 27 JVM executors scenario still has a

few tasks that executed slowly but their effects are not substantial in comparison to the 18 JVM executors

scenario. This finding is corroborated by the time summary statistics shown in Table 4.3 respectively. The

minimum and median times are the same in both experimental scenarios, but the maximum time in the 18

JVM executors’ scenario is over twice the 27 JVM executors’ scenario maximum time. The resultant effect

of these time statistics in the 18 JVM executors scenario is increased stage execution time that is over twice

the stage execution time of the 27 JVM executors scenario.

Also, for the computeFlowerPixelPercentage stage executed with both 18 and 27 JVM executors, the

tasks’ completion rate is also shown in Figure 4.11. These views again show that the tasks’ completion

progress for the 18 JVM executors scenario has more tasks that were prolonged in comparison to the 27 JVM

58

Table 4.3: flowerCounter : Influence of spark.executor.cores (August, 19.3 GB Dataset)

18 JVM Executors (64 MB)

Stages (Function Name) Minimum
Time(s)

Median Time(s) Maximum
Time(s)

Total Time(s)

collect
(computeHistogram)

7 18 35 132

collect
(computeHistogramShift)

3 7 36 114

collect
(computeFlowerPixelPercentage)

2 13 72 138

saveAsTextFile
(computeFlowerCount)

96 228 408 1440

Total Elapsed Time 1824

18 JVM Executors (128 MB)

Stages (Function Name) Minimum
Time(s)

Median Time(s) Maximum
Time(s)

Total Time(s)

collect
(computeHistogram)

23 38 72 138

collect
(computeHistogramShift)

6 27 210 210

collect
(computeFlowerPixelPercentage)

13 35 168 186

svaeAsTextFile
(computeFlowerCount)

56 456 720 1500

Total Elapsed Time 2034

27 JVM Executors (64 MB)

Stages (Function Name) Minimum
Time(s)

Median Time(s) Maximum
Time(s)

Total Time(s)

collect
(computeHistogram)

8 17 31 108

collect
(computeHistogramShift)

3 7 14 54

collect
(computeFlowerPixelPercentage)

3 10 21 90

saveAsTextFile
(computeFlowerCount)

108 222 420 1440

Total Elapsed Time 1692

59

flowerCounter (August, 19.3 GB)

100

200

300

0 20 40 60 80 100

Ta
sk

s
in

 S
ta

rt
-t

im
e
 O

rd
e
r

Time (s)

(a) 18 JVM Executors for Shifts (64 MB)

100

200

300

0 20 40 60

Ta
sk

s
in

 S
ta

rt
-t

im
e
 O

rd
e
r

Time (s)

(b) 27 JVM Executors for Shifts (64 MB)

100

200

300

0 20 40 60 80 100 120

Ta
sk

s
in

 S
ta

rt
-t

im
e
 O

rd
e
r

Time (s)

(c) 18 JVM Executors for Pixel (64 MB)

100

200

300

0 20 40 60 80

Ta
sk

s
in

 S
ta

rt
-t

im
e
 O

rd
e
r

Time (s)

(d) 27 JVM Executors for Pixel (64 MB)

Figure 4.11: Tasks Completion Progress Summary

60

executors scenario. The difference in the tasks’ completion rates is not very substantial when compared with

the computeHistogramShifts stage. For both scenarios, the minimum and median times are similar but with

large maximum time variance which resulted in execution time that is about 1.5 times the 27 JVM executors

scenario for the 18 JVM executors scenario.

In the preliminary experiments, for the imageClustering application, the effect of the JVM executor

scaling was studied for five iteration steps. Two different experimental scenarios were considered on the

larger cluster with 128 MB partition size: the first used 9 executors, one executor per node with 6 cores and

12 GB of memory and the other used 18 executors - two executors per node with 3 cores each and 6 GB of

memory. The September dataset was used for both run scenarios. There were 46 tasks in each of the stages

in the execution pipeline.

For the five iteration steps considered, there are eight key stages involved in the application processing

whose execution times are substantial for the purpose of analysis. The summarized execution time results

for the 9 and 18 JVM executors scenarios are as shown in Tables 4.4 and 4.5. The results show that

the median execution time for the collectAsMap stages is reduced by about 30% for the 18 JVM executors

scenario than for the 9 JVM executors scenario. This is because the number of executors is halved while the

number tasks remains the same and thus, the execution time is slower in the 9 JVM executors scenario. Also,

the collectAsMap stages are more stable in the 18 JVM executors scenario. The time execution summary

also shows that the 9 JVM executors scenario is dominated by slower tasks as reflected in the large variation

of the time summary statistics especially in the collectAsMap stages and the second takeSample stage.

To further corroborate these results, the tasks progress charts for both scenarios are as shown in Figures

4.12 and 4.13 taking into consideration the first three stages. These charts show that data is well distributed

across the nodes in the 18 JVM executors scenario which resulted in few slow tasks, better utilization and

reduced execution times as against the 9 JVM executors scenario.

For the first takeSample stage, the task completion distribution is depicted in Figure 4.12 for both scenarios

considered. It is quite obvious that the prolonged tasks’ completion time in the 9 JVM executors scenario is

due to a few straggling tasks as opposed to the 18 JVM executors scenario. The results represented also show

that the run time of the straggler tasks is dominated by the time spent in garbage collection (GC) towards

the end of the processing in both instances. The garbage collection time is higher in the 9 JVM executors

scenario, but the difference is small. Therefore, the garbage collection time is not represented in the figure

as evaluation focused only on the execution times for each of the tasks. The task times correspond to the

length of the line for each task respectively.

Also, the tasks’ completion distribution for the second takeSample stage is shown in Figure 4.12 for both

scenarios. For both executors scenarios, the tasks’ completion rate is better in the 18 JVM executors scenario

(though with a few slow tasks) than in the 9 JVM executors scenario. In the 9 JVM executors scenario, some

tasks completed very fast while a few others took longer time to complete as reflected also in the execution

time metrics shown in Table 4.4.

61

In the third stage (collectAsMap) shown in Figure 4.13, tasks’ completion progress is faster in the 18 JVM

executors scenario than in the 9 JVM executors scenario though with a few stragglers in both scenarios. It is

also apparent from the result represented, as with other results discussed in the previous sections, that tasks

completion is prolonged due to garbage collection activity. Actually, in order for the collectAsMap stage to

be realized, a mapPartitions stage has to be completed. This explains why the result represented in the

Figure is segmented into two parts; the first part is the mapPartitions stage while the second part shows the

collectAsMap stage. The collectAsMap stage collects the results from the mapPartitions stage for subsequent

processing in the stages that follow.

To further understand performance bottlenecks in these applications, metrics such as the CPU utilization,

memory utilization, disk and network I/O as well as the HDFS I/O were collected for the different run

scenarios highlighted above. These metrics, averaged over a time series, are shown in Tables 4.6 and 4.7

for the different applications run scenarios. Both applications are memory intensive with over 80% for the

flowerCounter and about 90% for the imageClustering in all run scenarios considered.

Another observation from the results is that CPU utilization is similar in both run scenarios considered

for the flowerCounter application. For the imageClustering application on the other hand, CPU utilization

is about 12% higher in the 18 JVM executors scenario in comparison to the 9 JVM executors scenario.

With respect to HDFS I/O metrics, the number of bytes read and written is lowest for the 27 JVM

executors scenario in flowerCounter and also for the 18 JVM executors scenario in imageClustering. In

the case of the flowerCounter application, about 2.5 GB was read from HDFS for the 27 JVM executors

scenario, 3.66 GB and 7.25 GB were read from HDFS for the 18 and 9 JVM executors scenarios respectively.

Similarly, for the imageClustering application, about 0.76 GB and 0.40 GB was read from HDFS for the 9

and 18 JVM executors scenarios respectively. It appears that the higher the number of JVM executors (and

the lower amount of cores per executor - at least two cores per executor), the lower the size of data read

by HDFS. The number of bytes written to HDFS is negligible. In conclusion, the 27 JVM executors for

the flowerCounter application and the 18 JVM executors for the imageClustering application have reduced

execution time accompanied by relatively high CPU utilization and better HDFS I/O characteristics.

To investigate the influence of the spark.executor.cores configuration parameter on the small cluster

further, more experiments were conducted to understand the effect of this parameter using all the datasets

for both applications. As stated in §3.2.2, the configuration parameter spark.executor.memory was kept at

7 GB for the applications while the key parameter spark.executor.cores were investigated for 1, 2, 4, 8, 12,

16 & 47 cores (1, 2, 4, 8, 12, 16, 47 for flowerCounter & 1, 4, 8, 12, 16, 47 for imageClustering) respectively.

Measurements such as execution time, average CPU & Memory utilization, Disk & Network throughput

as well as HDFS IO (disk IOs include the read and write operations by HDFS similarly) obtained for the

flowerCounter application are shown in Table 4.8 for the July, August and September datasets respectively

and that for the imageClustering application are shown in Table 4.9. For the imageClustering application,

metric results are only shown for the July datasets in the table. However, the execution time (and speedup

62

Table 4.4: Execution Time Summary of 9 JVM Executors for imageClustering (128 MB)

Stages Minimum Time(s) Median Time(s) Maximum Time(s) Total Time(s)

takeSample 498 660 1200 1200

takeSample 1 96 162 162

collectAsMap 9 102 192 198

collectAsMap 3 108 174 180

collectAsMap 5 114 174 174

collectAsMap 4 102 168 174

collectAsMap 3 90 210 210

saveAsTextFile 660 780 960 1020

Total Elapsed Time 3318

Table 4.5: Execution Time Summary of 18 JVM Executors for imageClustering (128 MB)

Stages Minimum Time(s) Median Time(s) Maximum Time(s) Total Time(s)

takeSample 504 720 780 780

takeSample 47 84 138 138

collectAsMap 48 84 150 150

collectAsMap 52 72 102 102

collectAsMap 50 72 102 102

collectAsMap 50 78 102 102

collectAsMap 50 78 96 102

saveAsTextFile 720 840 1020 1080

Total Elapsed Time 2556

Table 4.6: Average Cluster Resource Usage Metrics for flowerCounter (64 MB)

Metrics Measured 9 JVMs (1/node) 18 JVMs (2/Node) 27 JVMs (3/Node)

KbytesWritten/s (Disk) 1132 1106 1141

KbytesRead/s (Disk) 6383 4809 3660

KbytesRx/s 11407 11256 11952

KbytesTx/s 11362 11253 11935

CPU Utilization in % 69 69 73

RAM Utilization in % 88 81 81

HDFS Read Bytes 7247381020 3658918740 2495400050

HDFS Write Bytes 71546 72018 65553

63

imageClustering (September, 5.7 GB)

10

20

30

40

0 200 400 600 800 1000 1200

Ta
sk

s
in

 S
ta

rt
-t

im
e
 O

rd
e
r

Time (s)

(a) 9 JVM Executors for takeSample-1 (128 MB)

10

20

30

40

0 200 400 600 800

Ta
sk

s
in

 S
ta

rt
-t

im
e
 O

rd
e
r

Time (s)

(b) 18 JVM Executors for takeSample-1 (128 MB)

10

20

30

40

0 20 40 60 80 100 120 140 160

Ta
sk

s
in

 S
ta

rt
-t

im
e
 O

rd
e
r

Time (s)

(c) 9 JVM Executors for takeSample-2 (128 MB)

10

20

30

40

0 20 40 60 80 100 120 140

Ta
sk

s
in

 S
ta

rt
-t

im
e
 O

rd
e
r

Time (s)

(d) 18 JVM Executors for takeSample-2 (128 MB)

Figure 4.12: Tasks Completion Progress Summary

64

46

92

0 20 40 60 80 100 120 140 160 180

Ta
sk

s
in

 S
ta

rt
-t

im
e
 O

rd
e
r

Time (s)

(a) 9 JVM Executors for collectAsMap-1 (128 MB)

46

92

0 20 40 60 80 100 120 140

Ta
sk

s
in

 S
ta

rt
-t

im
e
 O

rd
e
r

Time (s)

(b) 18 JVM Executors for collectAsMap-1 (128 MB)

Figure 4.13: Task Completion Progress Summary

Table 4.7: Average Cluster Resource Usage Metrics for imageClustering (128 MB)

Metrics Measured 9 JVMs (1/node) 18 JVMs (2/Node)

KbytesWritten/s (Disk) 2990 3936

KbytesRead/s (Disk) 28408 31189

KbytesRx/s 8294 10720

KbytesTx/s 9469 10718

CPU Utilization in % 45 57

RAM Utilization in % 90 89

HDFS Read Bytes 763473945 398618414

HDFS Write Bytes 126925 98547

65

results) for all the datasets is shown in the Figures 4.14 and 4.15. It is important to state here that the

experiment for the imageClustering was done with partition size of 8 MB. This is because the application

stalled with partition size greater than 8 MB due to recurrent HDFS client errors as explained in §3.2.5.

From the results showed in the table, as the number of executors decreases, and the number of cores

per executor increases, memory usage reduces for both applications, except for the instance with 47 cores

per executor on the smaller cluster (two executors - one per machine) for the flowerCounter application.

Similarly, CPU usage in both scenarios reduces as the number of executors decreases except for the runs with

two cores per executor using the July dataset.

Data read by HDFS increases as the number of executors decreases especially for the July dataset. This

might be due to the limitation of the HDFS in handling concurrent threads (executors with large number of

cores) well [13]. This is because Spark launched multiple threads within an executor to read the same data

partition simultaneously rather than linearly thus, leading to increased HDFS I/O cost.

For the flowerCounter application experimental runs with all the datasets shown in the Table 4.8, the

number of bytes transferred and received are similar, but the number of bytes read and written to disk are

different. In particular, the number of bytes read from the disk is small, especially in the flowerCounter run

scenario.

Also, the results indicate that increasing the number of cores with respect to allocated executors reduces

application processing time for flowerCounter application with all the datasets. It appears that for all the

datasets, increasing the number of allocated cores per executor speeds up application processing time up

until 4 cores per executor. Subsequent increases in the number of cores per executor did not yield substantial

speed advantage. This is because Spark works best for long-running jobs horizontally scaled up on hundreds

of nodes and not by increasing the number of threads vertically on just two nodes.

With respect to CPU utilization and memory usage for flowerCounter application runs, CPU utilization

seems to be negligibly impacted by vertical scaling of cores for the July dataset. Utilization averages are

very close in each of the run instances. For the August and September datasets on the other hand, CPU

utilization stabilized with 4 cores per executor and greater. Similarly, memory usage averages were almost

identical from 4 cores per executor and above. For all the datasets in both applications experimental runs,

the average bytes read by HDFS increases with core scaling but with negligible bytes written.

Also, for the imageClustering experimental runs, vertical scaling of cores speeds up application processing

up untill 16 cores per executor (two executors per node). Runs with one executor per node, each with 47 cores

yielded processing time similar to the 16 cores per executor runs. CPU utilization remained almost identical

from 8 cores per executor upwards and likewise memory usage averages were comparable after 8 cores per

executor. The number of bytes transferred and received stayed equivalent for all the runs considered but the

number of bytes read and written to disk were different. The number of bytes read from disk were smaller

in comparison to the bytes written to disk especially in the runs with 12, 16 and 47 executors respectively.

66

Table 4.8: flowerCounter : Influence of spark.executor.cores

July, 34.8 GB Dataset

No of
Cores Per
Executor

No of
Executors

Execution
Time(s)

Avg CPU
%

Avg Mem-
ory %

KbTx/S KbRx/S KbRead/S KbWritten
/S

hdfsGb
Read

hdfsGb
Written

1 94 4532 70.68 54.02 45400 45500 0.02 11600 1.10 0.0002

2 46 3605 78.49 37.41 50300 50400 0.01 7550 2.20 0.0001

4 22 3389 75.78 28.10 44800 44900 19.00 4720 4.70 0.0001

8 10 3163 70.10 22.45 46900 46900 0.01 2320 10.40 0.0001

12 6 3055 64.40 19.57 49500 49700 0.01 1970 18.00 0.0001

16 4 3289 57.39 16.64 47700 47800 0.01 1090 26.90 0.0001

47 2 3519 69.19 20.90 45500 45600 269.00 500 52.40 0.0002

August, 19.3 GB Dataset

1 94 2131 43.76 30.11 37400 37600 0.02 7300 0.20 0.00003

2 46 1581 93.16 32.41 42800 42800 1080.00 210 0.03 0.00003

4 22 1384 57.47 19.38 108000 108000 0.58 38100 0.20 0.00004

8 10 1355 68.22 18.71 56200 56400 0.10 2900 9.90 0.00009

12 6 1328 62.50 14.77 67400 67500 0.00 1760 10.30 0.00009

16 4 1334 56.18 14.17 58700 58800 0.04 1370 23.90 0.00001

47 2 1594 64.55 11.15 55100 55200 47.00 485 28.50 0.00007

September, 5.7 GB Dataset

1 94 855 95.00 14.96 37300 37300 11.00 200 0.01 0.00001

2 46 832 90.87 22.44 109800 109800 1490.00 240 0.02 0.00006

4 22 513 44.56 16.04 50000 50400 0.02 4720 0.90 0.00002

8 10 475 44.97 10.35 49400 49600 0.02 4380 1.90 0.00002

12 6 468 41.50 9.29 50900 51100 0.02 2320 3.10 0.00002

16 4 493 43.66 6.70 56000 56100 0.00 1280 4.70 0.00003

47 2 519 38.26 5.05 53300 53400 0.01 560 9.20 0.00004

Table 4.9: imageClustering : Influence of spark.executor.cores (July, 34.8 GB Dataset)

No of
Cores Per
Executor

No of
Executors

Execution
Time(s)

Avg CPU
%

Avg Mem-
ory %

KbTx/S KbRx/S KbRead/S KbWritten
/S

hdfsGb
Read

hdfsGb
Written

1 94 99569 82.89 91.75 41100 42600 17700 13400 0.30 0.0006

4 22 78282 90.32 61.69 84600 84700 11400 26800 1.00 0.0003

8 10 15799 64.35 33.49 41600 41700 16000 12100 3.60 0.0009

12 6 13944 67.22 21.39 56900 57200 1200 18800 5.90 0.0005

16 4 12826 60.72 15.35 58000 58300 800 19300 8.90 0.0005

47 2 13258 61.69 10.24 52100 54900 3700 21200 18.80 0.0007

67

For the subsequent results, speedup is calculated as

Speedup(S) = T1/Tn,

where T1 is the execution time for one core per executor scenario and Tn is the execution time using n cores

per executor accordingly [8].

The scaling and speedup results for the execution time are further elaborated in Figures 4.14 and 4.15

respectively. These figures make the results more visible to understand the influence of spark.executor.cores

parameter on applications processing. As stated above, for flowerCounter experimental runs, the processing

time is indistinguishable with 4 cores per executor and beyond. This observation becomes clearer with the

measured speedup shown in Figure 4.15. The speedup lingers slightly above 1.25 and 1.50 for the July dataset

and both the August and September datasets, respectively at 4 cores per executor and greater.

On the other hand, for imageClustering experimental runs, the processing time stabilized with 8 or more

cores per executor. The influence of spark.executor.cores parameter is substantial for the clustering done

with the July and August datasets. This could be because of the size of these datasets in comparison to the

September dataset (the smallest dataset). The speedup calculated in Figure 4.15 makes the difference more

apparent. The speedup is well above 6 and 5 for the July and August datasets, while its just around 2 for

the September dataset.

For both applications, a single large (with large number of cores, 47 cores in this scenario) executor

resulted in the slowest processing time. This finding agrees with the work done by Chiba and Onodera [12]

but contradicts others ([34], [54]). This might be due to the fact that the applications considered in this

study are different from those used in the related works. The applications used in those studies are generic

benchmarks. The applications used in this study are real-world applications that have varying uses of Spark

primitives and RDDs. This makes this study of particular interest, compared to previous work.

A large number of executors (94 executors each with one core) degrades performance for both applications

as they result in slow completion time and cause jobs to be CPU and/or memory bound (especially with the

July dataset for both applications). This is due to excessive communication overheads caused by the large

number of executors [12].

Another interesting observation to note is that as the number of cores per executors increases (and executor

number reduces), the jobs become more I/O bound as seen especially by the HDFS read operation. This I/O

effect would be different with a cluster with more nodes than that used for these experiments (two nodes)

however. For the workloads considered, the imageClustering seems to benefit most from the configuration

parameter. This is because the parameter favours applications with many tasks (36001 tasks as opposed to

1118 tasks for the flowerCounter application) [38].

68

1 2 4 8 16
Number of Cores/Executor

0

1000

2000

3000

4000
Ti

m
e

(s
)

4531

3604

3389

3163
3289

2130

1581
1383 1355 1334

855 832

513 475 492

JUL
AUG
SEP

(a) flowerCounter

1 4 8 12 16
Number of Cores/Executor

0

20000

40000

60000

80000

100000

Ti
m

e
(s

)

99569

78282

15799
13939 12825

42633 42827

7461 6777 6540
3696 2864 1830 1689 1712

JUL
AUG
SEP

(b) imageClustering

Figure 4.14: Execution Time of Core Scaling

69

2 4 8 16
Number of Cores/Executor

0

1

2

Sp
ee

du
p

1.26
1.34

1.43
1.381.35

1.54 1.57 1.60

1.03

1.67

1.80
1.74

JUL
AUG
SEP

(a) flowerCounter

4 8 12 16
Number of Cores/Executor

0

1

2

3

4

5

6

7

8

Sp
ee

du
p

1.27

6.30

7.14

7.76

1.00

5.71

6.29
6.52

1.29

2.02 2.19 2.16

JUL
AUG
SEP

(b) imageClustering

Figure 4.15: Speedup of Core Scaling

70

In summary, the influence of spark.executor.cores parameter showed that applications processing speedup

steadied at 4 cores per executor for flowerCounter application and 16 cores per executor for imageClustering

application yielded the fastest processing time for all the datasets processed. CPU and memory utilization

averages also stabilized at these threshold values. The speedup is more substantial for imageClustering

application in comparison to flowerCounter application. This is due to the differences in the applications

especially in the number of tasks and probably because the imageClustering application used libraries that

are inherently in the Spark engine.

Regarding the influence of the number of executors with respect to allocated cores, findings suggested

that for all the datasets processed with the flowerCounter application, the threshold settled at about 11

executors per node (2 worker nodes) while for the imageClustering application 2 executors per node favoured

data processing.

4.3 Impact of Caching

As Spark’s engine data abstraction depends heavily on memory, the result here is an attempt to understand

the influence of the configuration parameter spark.executor.memory on job performance based on the in-

formation presented in §3.2.3. Using different configuration memory settings and spark.executor.cores fixed

at 16, experiments were conducted with the July dataset for both applications but results shown only for

the imageClustering application on the small cluster. Contrary to expectation, increasing the amount

of memory allocated for Spark’s job execution does not speedup job performance as shown in Figure 4.16.

However, some previous studies have shown that allocating more memory for caching RDDs does not always

improve job performance as workloads sometimes require dynamically distinguishing job stages that are cache

friendly and tune jobs accordingly [34]. The influence of the spark.executor.memory configuration parameter

on application performance is inconclusive and still requires more detailed analysis.

10 20 40 80 120 160
Memory Size/Executor (GB)

0

200

400

600

800

Ti
m

e
(s

)

Figure 4.16: Influence of spark.executor.memory Parameter

71

Therefore, the effect of caching the input RDD (input data) using the different storage levels on the applica-

tions’ execution speed were studied. For the flowerCounter application, the input RDD was cached using stor-

age levels including MEMORY_ONLY, DISK_ONLY, MEMORY_AND_DISK, MEMORY_ONLY_SER

and MEMORY_AND_DISK_SER while the imageClustering application used DISK_ONLY, MEM-

ORY_AND_DISK and MEMORY_AND_DISK_SER storage levels to cache the input RDD. The MEM-

ORY_ONLY storage level instance failed due to out-of-memory exception for the imageClustering applica-

tion. The results from the experiments conducted are shown in Figure 4.17 for only the imageClustering

application with the September dataset. Results show that MEMORY_AND_DISK storage level yielded

the least runtime in comparison with the other storage levels considered. The processing time obtained using

flowerCounter application on the July dataset is almost identical for all the storage levels considered as shown

in Table 4.10.

In order to understand these results, detailed application metrics were collected including the runTime,

duration (sum of individual tasks time), schedulerDelay, executorRunTime, executorCpuTime, executorDese-

rializeTime, resultSerializationTime, gettingResultTime, jvmGCTime, disk I/O and shuffle I/O (shuffle read

cost is network I/O) metrics as shown in Table 4.10.

The results in Table 4.10 show that storage levels do not have any effect on disk and network I/O metrics

as these remained constant across all levels. In the flowerCounter experimental runs with the July dataset

on the larger cluster, 7.90 GB of data were read from 375245 records and 18.09 MB output data were written

to disk from 93707 records or images in all the storage levels investigated. Likewise, the number of bytes sent

and received via the network remained constant at about 967 KB across all the storage levels studied. Also,

the data processing time is unaffected by the different storage levels for the same flowerCounter application.

For all the storage levels, the executorRunTime contributed substantially to the total duration or task-

Time. These results also show that the executorCpuTime is less than 1% (approximately 0.5%) of the execu-

torRunTime for all the storage levels and similarly the jvmGCTime is less than 10% of the executorRunTime

for all levels considered.

This clearly indicates that the executor is not heavy on CPU utilization but the usage reported by the

operating system shows that the application is high on both CPU and memory. The obvious explanation

for this dynamics could be unravelled by the executorRunTime definition in Equation 3.4. This shows

that the executorRunTime is high largely due to the time the tasks spent in reading data from the disk

- taskIOReadTime (the taskIOWriteTime is substantially low as the data written to disk is very small in

comparison to the data read). Evidently, over 90% of the executorRunTime is dominated by disk I/O time

cost across all the storage levels considered.

On the other hand, the result from the imageClustering experimental runs is shown in Table 4.11. For all

the experiments conducted, MEMORY_AND_DISK storage level yielded the least runTime in comparison

to the other two storage levels considered. Again, the storage levels did not have substantial influence on the

disk and network I/O metrics; similar results were obtained with all the storage levels. The number of bytes

72

imageClustering (September, 5.7 GB) - Small Cluster

DISK_ONLY MEMORY_AND_DISK MEMORY_AND_DISK_SER
Storage Level

0

1000

2000

3000

4000

5000

Ti
m

e
(s

)

Figure 4.17: Runtime vs Storage Level

read and written from disk was approximately 2 T and 2 MB respectively while also about 12 MB of data

were read via the network for the storage levels studied. Similarly, as in the flowerCounter runs, the disk I/O

(mostly the read cost) contributed over 80% of the executorRunTime in comparison to the executorCpuTime

and the jvmGCTime for all the storage levels.

As cached RDDs help to ensure that data is close to the processing node by using different data lo-

cality placement algorithms as discussed in §2.21, data locality scheduling for the different storage levels

was studied to understand what might be responsible for the differences in the runTime reported. The

locality level summary observed for both applications is shown in Tables 4.12 and 4.13 respectively. For

flowerCounter application, all the storage levels considered showed very similar runTime except with the

MEMORY_AND_DISK_SER storage level whose runTime was slightly higher than the other storage lev-

els. The processing time obtained for all the storage levels are very similar because of identical task locality

levels.

With the imageClustering application on the other hand, MEMORY_AND_DISK storage level exhibited

the least runTime because of differences in the task locality levels. The locality level results show that

tasks with the PROCESS_LOCAL (which is the fastest) task level are the highest in the imageClustering

application runs for the MEMORY_AND_DISK storage level and similarly that tasks with the ANY (which

is the farthest and slowest) task level are the least for the same MEMORY_AND_DISK storage level. This

behaviour explains why the execution speed is fastest with the MEMORY_AND_DISK storage level.

73

Table 4.10: flowerCounter : Influence of Caching (July, 34.8 GB Dataset)

Metric Type (s) MEMORY
ONLY

DISK
ONLY

MEMORY &
DISK

MEMORY
ONLY_SER

MEMORY &
DISK_SER

runTime 4700 4700 4700 4800 5300

duration 243100 236100 235100 236500 251200

schedulerDelay 240 170 230 150 220

executorRunTime 242600 235700 234600 236200 250700

executorCpuTime 1080 1120 1110 1110 1130

executorDeserialize
Time

240 210 290 150 190

resultSerialization
Time

4 6 13 6 27

gettingResultTime 9 8 9 9 8

jvmGCTime 17600 19800 19400 19900 22200

In summary, the effect of using the spark.executor.memory parameter to control the amount of memory

allocated to Spark jobs do not favour application completion speed. Completion time increases as the amount

of memory allocated to Spark jobs increases. This is in contrary to expectation as the Spark engine relies

substantially on memory for fast job completion and thus increase in memory allocation should sped up job

processing. This behaviour might be due to resource contention as its control is handled by the operating

system and not by the Spark engine. However, vertical scaling of physical memory as well as the memory

size allocated to Spark jobs on the cluster nodes might have speed up application processing substantially.

The influence of the parameter on application processing still requires more detailed analysis to understand

its influence on application performance.

For the influence of storage levels on application performance, MEMORY_AND_DISK storage level

exhibited the fastest runtime for the imageClustering application due to tasks with the highest num-

ber of the fastest locality level of PROCESS_LOCAL. For flowerCounter application, the MEM-

ORY_AND_DISK_SER has the slowest runtime due to tasks with the highest number of ANY task locality

level while for the imageClustering application, the DISK_ONLY storage level has the slowest runtime due

to the same reason as in the flowerCounter scenario.

74

Table 4.11: imageClustering : Influence of Caching (September, 5.7 GB Dataset)

Metric Type (s) DISK
ONLY

MEMORY &
DISK

MEMORY &
DISK_SER

runTime 5400 3600 4000

duration 219400 158400 158900

schedulerDelay 990 390 340

executorRunTime 217900 157400 158100

executorCpuTime 13770 12830 13190

executorDeserializeTime 550 570 460

resultSerializationTime 6 4 4

gettingResultTime 0 0 0

jvmGCTime 17760 17610 12820

Table 4.12: flowerCounter : Locality Level Summary (July, 34.8 GB Dataset)

Task Locality Level Count Summary

Locality Level MEM
ONLY

DISK
ONLY

MEM &
DISK

MEM
ONLY_SER

MEM &
DISK_SER

NODE_LOCAL 225 224 225 225 224

ANY 115 109 104 121 124

PROCESS_LOCAL 778 785 789 772 770

Table 4.13: imageClustering : Locality Level Summary (September, 5.7 GB Dataset)

Task Locality Level Count Summary

Locality Level DISK
ONLY

MEMORY &
DISK

MEMORY &
DISK_SER

NODE_LOCAL 547 568 487

ANY 285 145 240

PROCESS_LOCAL 6169 6288 6274

75

4.4 Compute Node Scaling

Spark is a scale-out analytics engine, that is, it is designed to scale well with increasing number of cluster

nodes. This section contains results from the experiments conducted to validate the scale-out design paradigm

of Spark for only the flowerCounter application. The experiments were executed on the larger cluster with

11 nodes using all the datasets. As seen in Figure 4.18, the jobs do not exhibit absolute linear scalability

but show a quasi-linear trend up to 9 nodes.

As the number of nodes utilized for the flowerCounter application increases, the processing speed increases

at nearly a constant rate for all datasets, especially with the July and August datasets until 9 worker nodes.

The speedup obtained with the September dataset is not as consistent as with the other July and August

datasets. This could be because the September dataset is smaller and does not contain images with flowers.

Spark was actually designed to perform well with huge datasets.

Also, it is important to state that the preliminary version of the flowerCounter application was used for

this study. The application actually requires that a job should be equivalent to the processing of a day’s

worth of images from one camera. A day’s worth of images from a single camera is just about 400 MB.

This is not big enough for Spark if a cluster is devoted to only this application. Therefore, the images were

coalesced to make them representative in terms of datasize. Coalescing these images could be the reason why

the algorithm is not working well in terms of accuracy. This is because processing might be done on images

that do to need to be compared with one another.

Another deployment scenario would be to investigate large number of parallel jobs of each type sharing

a cluster or have higher resolution images as the input dataset. Furthermore, images could be coalesced for

a particular day from multiple cameras or orders of combination of images.

The execution time for 11 nodes increased more than that of the 9 nodes scenario. This behaviour is due

to the fact that 9 of the compute nodes have twice the CPU frequency of the remaining two nodes (mario

and luigi). This observation, for example with the July dataset, is corroborated by the task execution time

summary across all the nodes in Table 4.14 as well as in Figure 4.19. These results show that mario and luigi

executed the least number of tasks but exhibited the slowest job completion time. All other nodes except

mario and luigi showed similar processing time.

The sharp decline in speedup from 9 nodes to 11 nodes, especially with the July and September datasets

is exemplified in Figure 4.19. The figure shows that the decline is due to slow tasks on mario and luigi. This

behaviour of prolonged jobs is typical of heterogeneous environments and inherent tasks schedulers fail to

handle this dynamically without affecting the overall job performance [11]. Thus, this makes obvious the

need to investigate the speculative scheduler implemented in Spark. Speculative execution forms the basis of

the experiments in the next section.

One of the major motivations behind this study was to investigate the performance of the Spark applica-

tions with the original sequential applications. To this end, sequential experiments were conducted for only

76

flowerCounter Large Cluster

1 3 5 7 9 11
Number of Nodes

0

5000

10000

15000

20000

25000

30000

35000

Ti
m

e
(s

)
34593

11641

8499

5608
4106

5187

16735

5177

3156
2305 1711 1795

4556

1748 1212 887 677

3517

JUL
AUG
SEP

(a) Execution Time

3 5 7 9 11
Number of Nodes

0

2

4

6

8

10

Sp
ee

du
p

2.97

4.07

6.17

8.42

6.67

3.23

5.30

7.26

9.78
9.32

2.61

3.76

5.14

6.73

1.30

JUL
AUG
SEP

(b) Speedup

Figure 4.18: Effect of Node Scaling

77

Table 4.14: flowerCounter : Tasks Execution Time Summary on all Nodes (July, 34.8 GB Dataset)

Host Minimum
Duration(s)

Average
Duration(s)

Maximum
Duration(s)

Total
Duration(s)

No of Tasks

mario 244 1142 2564 38851 34

luigi 194 796 1284 32600 41

worker1 22 178 723 21900 123

worker2 5 185 850 22800 123

worker3 8 195 798 20900 107

worker4 25 183 885 21200 116

worker5 29 186 929 22000 118

worker6 20 187 972 21500 115

worker7 28 191 1074 20800 109

worker8 3 188 826 20900 111

worker9 19 182 898 22100 121

flowerCounter (July, 34.8 GB) - Large Cluster

lu
ig

i

m
ar

io

w
or

ke
r_

1

w
or

ke
r_

2

w
or

ke
r_

3

w
or

ke
r_

4

w
or

ke
r_

5

w
or

ke
r_

6

w
or

ke
r_

7

w
or

ke
r_

8

w
or

ke
r_

9

Hostname

0

500

1000

1500

2000

2500

Ti
m

e
(s

)

Influence of Slow Nodes

avg_duration
max_duration

Figure 4.19: Influence of Slow Nodes

78

the flowerCounter application using all the datasets and results obtained in comparison with the parallel

Spark execution on both the small (2-node workers) and the large clusters (9-node workers) is shown in Table

4.15. The results show that the Spark application executed in a cluster of computing nodes outperformed

the sequential version implemented on the single server machine called onomi. The speedup obtained on the

9-node cluster is approximately 3 times the sequential execution for all the datasets with a similar number of

compute cores devoted to the work. Additional cores were dedicated to the operating system for managing

the Spark environment. Similarly, the speedup on the smaller cluster is approximately 4 times the sequential

setup for all the datasets with about 8 compute cores more than the sequential setup used for the experiment

(2 executors per node each with 16 cores giving a total of 64 cores on the two nodes).

Table 4.15: Runtime Comparison between the Sequential & Spark flowerCounter applicationsa

Month Onomi (s) 9-Node (s) 9-Node Speedup 2-Node (s) 2-Node Speedup

September 2144 677 3.2 493 4.4

August 6206 1712 3.6 1334 4.7

July 13894 4107 3.4 3290 4.2

aThe single node Onomi has 56 cores, the 9-Node Cluster has 54 cores and the 2-Node Cluster has 64 cores. The speedup
is calculated with respect to the runtime on Onomi, that is, the runtime on Onomi divided by the runtime on the 9-Node and
the 2-Node setups respectively

In summary, Spark exhibited a near-linear scalability with all the datasets using flowerCounter application

up untill 9 nodes. The speedup obtained dwindled with the addition of two nodes (mario and luigi) whose

performance characteristics differ from the other 9 nodes. The slow speedup obtained with the 11 nodes is

because mario and luigi executed the least number of tasks but with large variance in tasks completion time.

Findings also showed that the Spark version of flowerCounter outperformed the original sequential version

with approximate speedups of 4 and 3 on the 2-node and 9-node Spark workers respectively.

4.5 Speculative Task Execution

Slow tasks are expected in a heterogeneous cluster environment due to varying system capacity and traditional

schedulers are not designed to mitigate their effects on workload performance effectively. The results obtained

from the node scaling experiments clearly validate this premise. Speculative engine is implemented in Spark

to detect slow tasks and then mitigates their effect by adding them back to the tasks queue for rescheduling.

If the original slow task finished before the rescheduled back-up task, the back-up task would be killed and

vice-versa. Speculation, however, does not automatically make all workloads process faster, especially real-

time streaming workloads due to processing delay caused by tasks rescheduling (and increased number of

tasks) [38].

Speculation experiments (implemented by setting the configuration parameter spark.speculation=true)

were carried out on both application workloads using all the datasets to study its effects on straggler tasks

79

on some cluster nodes, notably mario & luigi. Results from the experiments (3 run instances for each dataset

in both scenarios) conducted for the flowerCounter application are shown in Figure 4.20. It is important to

note that the speculation experiment was conducted only for the 11 nodes scenario and not for the other node

setup instances. These results show that speculation slightly favours the flowerCounter application with all

the datasets. Speculation is substantial for the July and September datasets, but has almost no effect with

the August dataset. Speculative did not substantially reduce the execution time of the application with the

August dataset probably because most of the tasks finished on time and there was no need for tasks to be

speculated. On the other hand, for the imageClustering application using the July dataset only, speculation

yielded an execution time of about 624 minutes as against 612 minutes obtained without speculation. Here,

though the processing time is slightly reduced with speculation enabled, the difference is not very substantial.

July Aug Sep
Months

0

1000

2000

3000

4000

5000

Ti
m

e
(s

)

3679

1648

1213

5187

1795

3517

Speculation
NoSpeculation

Figure 4.20: Speculative and non-Speculative flowerCounter appilcation execution

Another reason could be because of incorrect median time calculation, as potential tasks to execute are

identified when their time is more than the median time of the already completed tasks. This could be because

the threshold value that must be exceeded before a task can be marked for relaunching was inappropriate for

the applications. The threshold value is calculated as the product of the spark.speculation.multiplier and the

median of the already completed tasks. The spark.speculation.multiplier value used for the experiments was

the default value of 1.5. Also, this could be misleading because the median calculation does not take into

account the computing power of the cluster nodes especially in a heterogeneous environment. Speculative

80

execution does not work effectively in all scenarios because tasks added to the queue could still be launched

on the slow nodes whose tasks have been previously identified as slow tasks [60].

In order to understand the influence of the speculation parameter, the tasks’ execution time was analyzed

and the summary for the flowerCounter application is shown in Table 4.16. Comparing these results to that

obtained without speculation in Table 4.19, the same machines (luigi & mario) still remained the slowest

machines as is the case without speculation apart from discus-p2irc-worker8. However, speculative execution

helps to reduce the average time per task substantially by about 33% and 81% on luigi & mario respectively.

To buttress the findings made by Yang et al. [60] that speculative execution in Spark has no way of identifying

slow nodes so as not to reassign slow tasks to them, the slow nodes (mario & discus-p2irc-worker8) still have

tasks assigned to them. The column indicating the number of speculated tasks represents the tasks that

were placed on the nodes after the original tasks processing time exceeded the median time of the already

completed tasks.

On the other hand, for the imageClustering application, the execution time for both the non-speculation

and the speculation scenarios is shown in Tables 4.17 and 4.18 respectively. The non-speculative scenario

shows that luigi, worker6 & worker8 are the slowest machines with average execution time per task of 148

seconds, 77 seconds and 68 seconds respectively. For the speculative scenario, the slowest nodes are worker4

& worker5 with average execution time per task of 1.50 minutes & 1.45 minutes respectively. Both mario and

luigi have over 2x the number of tasks associated with every other node, except worker2. worker5 has the

lowest maximum, but almost the highest average. It is unclear the reason for the difference in the behaviour

of the individual nodes. It requires more replication and investigation.

Again, the slow nodes still got speculated tasks as was the case with the flowerCounter execution scenario.

However, the speculative execution took 12 minutes longer to execute than the non-speculative scenario.

This unexpected behaviour might be due to increase in the number of tasks due to speculation and probably

because the task partition size (8 MB partition size) was too small which could lead to unfavourable task

communication overheads. This can be clearly seen in the minimum execution time in the tables as some

tasks finished less than 20 milliseconds (minimum task times represented as 0.0 second actually finished much

less than 20 milliseconds) as against the recommended least minimum task time of 100 milliseconds [55]

In summary, speculative task execution helps to mitigate the effect of straggling nodes (luigi and mario)

in the cluster by reducing the average execution time per task by about 33% and 81% respectively in the

flowerCounter experimental runs using all the datasets. The effect of the speculative algorithm was more

substantial with the July and September datasets; processing time was unaffected by speculative execution

with the August dataset. However, in the imageClustering experimental setup, speculative execution slightly

increased processing time by 2% in comparison to the non-speculative scenario with only the July dataset.

This could be because of the increase in the number of tasks due to speculation and the small data partition

size used. In both applications runs, speculative execution in Spark still placed slow tasks on the straggling

nodes. The speculation policy failed to identify and isolate slow nodes.

81

Table 4.16: flowerCounter : Tasks Execution Time Summary with Speculation (July, 34.8 GB
Dataset)

Host Minimum
Duration(s)

Average
Duration(s)

Maximum
Duration(s)

Total
Duration(s)

No of
Tasks

No of
Speculated
Tasks

mario 25 216.0 1410 21150 98 3

luigi 39 532 1120 17550 33 0

worker1 22 185 840 20310 110 5

worker2 8 155 870 19270 124 1

worker3 13 159 750 20680 130 3

worker4 25 205 830 20480 100 1

worker5 31 189 920 20010 106 1

worker6 25 173 1020 19930 115 2

worker7 4 206 890 20570 100 4

worker8 38 266 820 19410 73 1

worker9 7 157 1100 20270 129 2

Table 4.17: imageClustering : Tasks Execution Time Summary without Speculation (July, 34.8 GB
Dataset)

Host Minimum
Duration(s)

Average
Duration(s)

Maximum
Duration(s)

Total
Duration(s)

No of
Tasks

mario 0.0 37 1740 177920 4758

luigi 0.0 148 3250 177480 1200

worker1 0.3 59 1330 184910 3121

worker2 0.6 49 1443 185260 3782

worker3 0.0 49 1260 190260 3892

worker4 0.0 47 2800 193000 4108

worker5 0.1 62 2420 184750 2977

worker6 0.0 77 2880 168260 2166

worker7 0.2 53 1680 195620 3657

worker8 0.0 67 1480 177790 2660

worker9 0.2 52 1930 192080 3680

82

Table 4.18: imageClustering : Tasks Execution Time Summary with Speculation (July, 34.8 GB
Dataset)

Host Minimum
Duration(s)

Average
Duration(s)

Maximum
Duration(s)

Total
Duration(s)

No of
Tasks

No of
Speculated
Tasks

mario 0.0 36 2210 200980 5598 47

luigi 0.0 35 1260 204740 5874 70

worker1 1.6 70 3480 191030 2701 3

worker2 0.4 47 2280 210150 4515 68

worker3 0.0 62 2510 194680 3127 52

worker4 0.0 90 2960 192960 2137 43

worker5 0.2 87 1690 164800 1898 21

worker6 0.0 80 3580 195830 2441 12

worker7 0.0 68 3200 200880 2926 33

worker8 0.0 75 4266 189030 2523 40

worker9 0.0 77 2450 176470 2280 29

4.6 Chapter Summary

In summary, these experiments proved that selecting the right combination of configuration parameters

is critical to the performance of Spark applications. For example, using the spark.files.maxPartitionBytes

paramater to control the data partition size and the level parallelism showed that 64 MB data size speed

up flowerCounter application processing more than 128 MB partition size. This is because there are few

stragglers and reduced CPU wait time with the 64 MB partition size especially in the computeHistogram and

computeHistogramShifts stages of the flowerCounter application.

With the spark.executor.cores configuration parameter for controlling the amount of thread allocated for

tasks within an executor, the processing speed of both example applications improved until about 4 cores per

executor (or 12 cores per executor for imageClustering application) for all the datasets used in this study.

Subsequent increase in the number of cores per executor did not speed up job completion time because Spark

does not perform well with small number of nodes and short running jobs. Also, vertical scaling of cores per

executors on a single node did not speed up applications processing because many threads initiated by Spark

have the tendency of reading the same data partition size simultaneously, thus causing bad HDFS I/O.

Experiments with the spark.executor.memory to investigate the memory abstraction of Spark was incon-

clusive. This is because increase in the amount of memory allocated for the Spark applications did not speed

up job completion time. However, experiments showed that using the right storage level policy for caching

input dataset might improve performance. The storage level policy ensured that data are placed close to the

processing code using appropriate locality preference especially for the imageClustering application.

83

Findings also demonstrated that using a cluster of commodity personal computers for processing Spark

applications is faster in comparison to using a single machine with similar performance characteristics as

all the nodes in the cluster combined. This scalability result agrees with the scale-out design paradigm

implemented in Spark.

In a heterogeneous cluster environment, the effect of stragglers must be mitigated for better job completion

time by speculative execution with the spark.speculation configuration parameter. Speculative execution

reduced job completion time by rescheduling tasks to other available nodes. This speculative policy setting

works better for the flowerCounter application processing than the imageClustering processing. This is

because speculative execution was able to reduce the number tasks allocated to the slow nodes and thus,

speed up the job completion time.

Finally, the flowerCounter application was developed with the notion that a job is the daily processing of

images and not several days images coalesced together. Coalescing these images, as was done in this study,

could have affected the accuracy of the flowerCounter application algorithm. It is therefore important that

experimental methodologies in subsequent studies are designed to reflect this algorithm consideration.

84

Chapter 5

Conclusion and Future Work

5.1 Summary

The goal of this thesis was to evaluate how Apache Spark system performs processing two real image pro-

cessing applications namely flowerCounter and imageClustering using images collected in July, August and

September of Summer 2016 from selected canola plants growing plot fields in 2 heterogeneous cluster envi-

ronments. The experiments in this thesis particularly explore the influence of Spark’s configuration param-

eters on job completion time. The particular parameters investigated include spark.files.maxPartitionBytes,

spark.executor.cores, spark.executor.memory (including the impact of the different storage levels on execution

speed) and spark.speculation, respectively.

Firstly, the influence of partition size (studied with the spark.files.maxPartitionBytes parameter) on task

execution time shows that the partition size of 64 MB performed better in terms of execution speed than other

partition sizes considered. This is due to increase in the number of tasks (increased level of parallelism) which

resulted in reduced slow tasks and better utilization of cluster resources such as CPU, memory, network and

disk throughput. Further experiments also indicate that further reduction in partition size smaller than 64 MB

(which led to increase in the number of tasks) did not reduce execution time. This is due to communication

delays caused by the task scheduler as a result of the large amount of tasks. These findings confirm the

related works reviewed.

Next, the impact of the number of JVM executors with respect to allocated CPU cores was studied

using the spark.executor.cores configuration parameter. For the flowerCounter application using the smaller

cluster, the processing time stabilized at 11 JVM executors with 4 cores each for all the datasets. Two

JVM executors with 16 cores each outperformed the other configuration settings considered in the case of

the imageClustering application. For both applications, large number of executors each with one core (94

executors each with one core) yielded the worst performance and one big executor with 47 executors did

not give the best execution speed contrary to finding in some related works. Previous studies showed that

having many small executors limits the maximum number of simultaneous tasks within an executor to one

and thus jeopardizes some benefits Spark provides. Many executors also result to inefficient use of cluster

resources due to communication overheads between executors. On the other hand, running jobs with large

executors (executors with large amount of resources) do not yield optimal performance due to delays caused

85

by garbage collection and limitations of the HDFS in handling concurrent threads effectively. Executors with

large number of cluster resources is a wasteful job configuration. Determining the right size and number of

executors on cluster nodes is essentially a bin-packing issue similar to the Np-complete knapsack problem

[29] and thus heuristic approaches are required for determining optimal executor configuration parameters

for the different applications Spark supports.

Furthermore, the influence of the cache mechanism implemented in Spark was studied by increasing the

amount of Spark memory using the spark.executor.memory configuration parameter. Results obtained showed

that increasing memory allocated to Spark negatively (execution speed increases with increasing memory

allocation) impacts job completion time for the imageClustering application using the July dataset. This

might be due to contention from the operating system. This requires a detailed study to really understand

the effect of the parameter on job completion. However, further studies conducted to understand influence of

the different storage levels (for caching RDDs) show that the MEMORY_AND_DISK storage level yielded

the fastest execution time among the levels considered, due to better task locality level placement with

the highest number of the fastest level (PROCESS_LOCAL) and least number of the slowest level (ANY).

Results also show that the high executorRunTime was substantially dominated by the tasks’ disk I/O time

cost and not the CPU time cost of running the tasks (the high CPU usage observed was due to the disk I/O

cost and not the CPU cost of performing the tasks by the executor - executorCpuTime is less than 10% of

the total executorRunTime for both applications).

In addition to the cache mechanism experiments, the scale-out design paradigm of Spark was examined

for the flowerCounter application using all the datasets. Spark exhibited a quasi-linear scale ratio up to 9

nodes with all the datasets but the scale plunged deeply for 11 nodes from the 9 nodes scenario. The reason

for this behaviour is that two of the nodes have CPU frequency that is half of the other 9 nodes and thus

resulted in straggling tasks that prolonged job completion time. The performance of the sequential and Spark

versions of the flowerCounter application was considered using the large and small cluster and the one big

machine (onomi) for all the datasets. The Spark version of the flowerCounter application showed speedup of

about 3 and 4 on the large and small clusters respectively more than the sequential version of the application

executed on the single machine, onomi.

Finally, the speculation task scheduling of Spark was turned on with the spark.speculation parameter

to mitigate the effect of the slow nodes on job performance for both applications using all the datasets for

the flowerCounter application and only the July dataset for the imageClustering application. Speculation

execution slightly favoured the flowerCounter application with a reduction in execution time by 29%, 8%,

66% respectively for all the datasets. For the July dataset, for example, speculative execution reduced average

time per task by 33% and 81% on the slow nodes (mario and luigi) in comparison to the execution time

obtained for the non-speculation scenario. On the other hand, for the imageClustering scenario, speculation

increased execution time by about 2% more than the non-speculation instance. This might be due to the

increase in the number of tasks caused by the speculative execution and large number of small tasks (thereby

86

leading to delays due to communication overheads) whose completion time was far less than the minimum

recommended rule of thumb time of 100 milliseconds.

5.2 Contributions

The contributions and recommendations from this study represent some insights and knowledge discovered in

the course of this thesis study. The insights cover a wide range of different aspects involved in the thesis work

including cluster administration, resource management, monitoring, telemetry and application execution.

• This study investigates cluster operation with Spark in the context of two image processing applications.

• This study quantifies the effect of key Spark configuration parameters on cluster resource utilization

and application processing time.

• For effective cluster administration and workloads execution, automate running of the different work-

loads and cluster setup tasks with actionable scripts in any chosen language of choice such as Python,

Ansible,1 or Shell scripting. This would help in quickly bootstrapping the cluster and scheduling jobs

automatically.

• Depending on the nature of workloads, decide upfront the key resources that are necessary for the

particular workload and automate the setting up of such resources. For example, decide what cluster

management system to use, whether Mesos [25], YARN [53] or the standalone cluster manager and

automate the setting up of such resource along with the other tasks that are necessary for workload

execution.

• Continuously monitor the Spark UI for tasks progress, to determine slow nodes and thus tasks that

might be running slow. The Spark UI also provides other useful statistical information that could help

to identify bottlenecks in the workload execution in order to mitigate or remove the impacts of such

bottlenecks and thus speedup application processing.

• Actively observe resource usage metrics while executing workloads to understand utilization, identifying

bottlenecks and optimize workloads for optimal resource usage with different operating system tools

such as htop,2 top, netstat, and iostat. Also, monitor cluster resources with management systems such

as ganglia.3

• Ensure that Spark History server is included in the automated bootstrapped tasks and running while

executing workloads. The History server ensures that completed workloads can be viewed to under-

1https://www.ansible.com/ (Accessed: April 24, 2018)
2https://hisham.hm/htop/ Accessed: April 24, 2018
3http://ganglia.sourceforge.net/ (Accessed: April 24, 2018)

87

stand their execution. For the History server to work as expected, the Spark UI property directory.

spark.eventLog.dir4 must be specified and the event log property spark.eventLog.enabled enabled.

• To reduce the verbosity of logs generated or written to file, configure Spark with the desired logging

level such as WARN, ERROR, INFO, FATAL, and DEBUG.

• Use the right partition size for working dataset. This might require a heuristic approach until the

best partition size is obtained. The recommended rule of thumb is that tasks should have a minimum

completion time of 100 milliseconds as having large number of tasks would overwhelm the task scheduler

[55].

• Explore different executors, cores and memory configuration settings until an optimal result is achieved.

It is safe to start with two executors per node with tasks equal to 2 or 3 times the number of cores in

the cluster and then scale accordingly until a good performance execution speed is achieved.

• Use storage levels based in the input data size and cluster resources. Sometimes depending on the

nature of the workloads, different caching policies might be employed especially if there are inherent

intermediate RDDs in the pipeline to determine the right policy with respect to workload performance.

For example, it might be more performance efficient to use a particular storage level (whether MEMORY

or a combination of MEMORY_AND_DISK with replication factors as necessary) for intermediate

RDDs rather than caching the input working set.

5.3 Future Work

As this study is a first attempt to understand the influence of Spark configuration settings on image processing

related applications, especially in a heterogeneous cluster environment, it could therefore serve as a basis for

future researchers to be able to grasp the workings of the Spark engine fast in order to know the key

parameters from the myriads of configuration parameters that Spark engineers provide and how best to

optimize applications/jobs. Here are a few thoughts on areas where research work could be concentrated on

the near future:

• Focus should be given to developing interesting applications that are quite representative in that they

cover a wide range of Spark’s high level transformations and actions (applications that contains different

communication patterns such as collect, aggregate and shuffle patterns). Research based on these kinds

of applications could help provide meaningful insights regarding what constitutes bottlenecks in the

Spark’s system.

4https://spark.apache.org/docs/latest/configuration.html#sparkui (Accessed: April 24, 2018)

88

• Studies should investigate the influence of more configuration parameters in a GPU-enabled Spark

cluster as well as using container technologies with automation deployment frameworks such as Kuber-

netes5 in a cluster of commodity machines. This is because these frameworks have low overhead and

small memory consumption as opposed to the virtual machine implementation used for this study

• Works related to investigation of how Spark performs with shuffle-heavy tasks and how the engine could

be optimized to reduce the effect of shuffle I/O on job completion time can also be considered.

• Studies should also consider investigating the reason for the high variability in the use of cluster resources

especially CPU and memory in all the stages of the flowerCounter appilcation pipeline.

• Future works should be done with large number of cluster nodes to further investigate the horizontal

scaling power of Spark with long-running jobs.

• Further, studies regarding the flowerCounter application should be designed to process daily images as

series of independent Spark jobs to reflect the inherent logic of the application.

• Another interesting focus could be exploring the influence of different JVM configuration settings (with

respect to garbage collection) on Spark workloads as the engine runs on JVM. This could also provide

some insights into which JVM configuration settings is most suitable for different Spark workloads.

• Finally, apart from the variables investigated in this study, the effect of speculative execution in hetero-

geneous cluster environment still requires more investigation as there are other tuning parameters apart

from the spark.speculation parameter studied here. These other parameters can be further investigated

to fully understand their workings and how best to use them for optimal Spark jobs performance. There

is a knowledge gap in this domain.

5https://kubernetes.io/ (Accessed: April 18, 2018)

89

References

[1] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernández-Moctezuma,
Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, and Sam Whittle. The dataflow
model: A practical approach to balancing correctness, latency, and cost in massive-scale, unbounded,
out-of-order data processing. Proceedings. VLDB Endow., 8(12):1792–1803, August 2015.

[2] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and Amin Vahdat.
Hedera: Dynamic flow scheduling for data center networks. In Proceedings of the 7th USENIX Conference
on Networked Systems Design and Implementation, pages 281–296, San Jose, CA, April 2010.

[3] UC Berkeley AMPLab. The berkeley data analytics stack (bdas) software. https://amplab.cs.
berkeley.edu/software/, April 2018.

[4] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Effective straggler mitigation:
Attack of the clones. In Proceedings of the 10th USENIX Symposium on Networked Systems Design and
Implementation, pages 185–198, Lombard, IL, August 2013.

[5] Databricks Apache Software Foundation, UC Berkeley AMPLab. Configuration - spark 2.2.0 documen-
tation. https://spark.apache.org/docs/latest/configuration.html, December 2016.

[6] Databricks Apache Software Foundation, UC Berkeley AMPLab. Spark programming guide -
spark 2.2.0 documentation. https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#
shuffle-operations, December 2016.

[7] Databricks Apache Software Foundation, UC Berkeley AMPLab. Tuning - spark 2.2.0 documentation.
https://spark.apache.org/docs/latest/tuning.html#data-locality, December 2017.

[8] Ahsan Javed Awan, Mats Brorsson, Vladimir Vlassov, and Eduard Ayguade. Performance characteri-
zation of in-memory data analytics on a modern cloud server. In Proceedings of the 2015 IEEE Fifth
International Conference on Big Data and Cloud Computing (BDCloud), pages 1–8, Dalian, China, June
2015.

[9] Paul G. Brown. Overview of SciDb: Large scale array storage, processing and analysis. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management of Data, pages 963–968, Indianapolis,
IN, June 2010.

[10] Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos, Volker Markl, and Kostas Tzoumas.
Apache flink: Stream and batch processing in a single engine. IEEE Data Eng. Bull., 38(4):28–38, 2015.

[11] Quan Chen, Minyi Guo, Qianni Deng, Long Zheng, Song Guo, and Yao Shen. HAT: history-based auto-
tuning mapreduce in heterogeneous environments. The Journal of Supercomputing, 64(3):1038–1054,
June 2013.

[12] Tatsuhiro Chiba and Tamiya Onodera. Workload characterization and optimization of tpc-h queries on
apache spark. In Proceedings of the 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 112–121, Uppsala, Sweden, April 2016.

[13] Cloudera. How-to: Tune your apache spark jobs (part 2). http://blog.cloudera.com/blog/2015/03/
how-to-tune-your-apache-spark-jobs-part-2/, 2015.

90

https://amplab.cs.berkeley.edu/software/
https://amplab.cs.berkeley.edu/software/
https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#shuffle-operations
https://spark.apache.org/docs/2.2.0/rdd-programming-guide.html#shuffle-operations
https://spark.apache.org/docs/latest/tuning.html#data-locality
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/

[14] Hortonworks Community Concentration. Write or append failures in very small clusters, under heavy
load or crash testing. https://community.hortonworks.com/articles/16144/write-or-append-failures-in-
very-small-clusters-un.html, 2016.

[15] Transaction Processing Performance Council. TPC Benchmark D (Decision Support) Standard Specifi-
cation, 1995.

[16] Databricks. Voice from CERN: Apache Spark 2.0 Performance Improvements
Investigated with Flame Graphs. https://databricks.com/blog/2016/10/03/
voice-from-cern-apache-spark-2-0-performance-improvements-investigated-with-flame-graphs.
html, 2016.

[17] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. Communications
of the ACM, 51(1):107–113, 2008.

[18] Mark E. DeYoung, Mohammed Salman, Himanshu Bedi, David Raymond, and Joseph G. Tront. Spark on
the ARC: Big data analytics frameworks on HPC clusters. In Proceedings of the Practice and Experience
in Advanced Research Computing 2017 on Sustainability, Success and Impact, pages 34:1–34:6, New
Orleans, LA, July 2017.

[19] Massimo Franceschet. Pagerank: Standing on the shoulders of giants. Commun. ACM, 54(6):92–101,
June 2011.

[20] Michael Franklin. Making sense of big data with the berkeley data analytics stack. In Proceedings of
the 8th ACM International Conference on Web Search and Data Mining, pages 1–2, Shanghai, China,
February 2015.

[21] Ilya Ganelin, Ema Orhian, Kai Sasaki, and Brennon York. Spark: Big Data Cluster Computing in
Production. John Wiley & Sons, 2016.

[22] Gergő Gombos, Attila Kiss, and Zoltán Zvara. Performance analysis of a cluster management system
with stress cases. Acta Polytechnica Hungarica, 13(2):77–95, 2016.

[23] Lei Gu and Huan Li. Memory or Time: Performance Evaluation for Iterative Operation on Hadoop and
Spark. In Proceedings of the 2013 IEEE 10th International Conference on High Performance Computing
and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing,
pages 721–727, Zhangjiajie Shi, China, November 2013.

[24] Apache Hadoop. Hadoop, 2009.

[25] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A Platform for Fine-grained Resource Sharing in the Data Center. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation, pages 295–308, Boston, MA,
March 2011.

[26] IFIXIT. Computer processor characteristics - ifixit. https://www.ifixit.com/Wiki/Computer_
Processor_Characteristics, December 2017.

[27] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: Distributed data-
parallel programs from sequential building blocks. SIGOPS Oper. Syst. Rev., 41(3):59–72, March 2007.

[28] S. Kamburugamuve. Survey of Apache Big Data Stack. PhD thesis, Ph. D. Qualifying Exam, Dept. Inf.
Comput., Indiana Univ., Bloomington, IN, 2013.

[29] H. Karau and R. Warren. High Performance Spark: Best Practices for Scaling and Optimizing Apache
Spark. O’Reilly Media, 2017. ISBN 9781491943175. URL https://books.google.ca/books?id=
90glDwAAQBAJ.

[30] A. Katal, M. Wazid, and R.H. Goudar. Big Data: Issues, challenges, tools and good practices. In
Proceedings of the 2013 6th International Conference on Contemporary Computing (IC3), pages 404–
409, Noida, India, August 2013.

91

https://databricks.com/blog/2016/10/03/voice-from-cern-apache-spark-2-0-performance-improvements-investigated-with-flame-graphs.html
https://databricks.com/blog/2016/10/03/voice-from-cern-apache-spark-2-0-performance-improvements-investigated-with-flame-graphs.html
https://databricks.com/blog/2016/10/03/voice-from-cern-apache-spark-2-0-performance-improvements-investigated-with-flame-graphs.html
https://www.ifixit.com/Wiki/Computer_Processor_Characteristics
https://www.ifixit.com/Wiki/Computer_Processor_Characteristics
https://books.google.ca/books?id=90glDwAAQBAJ
https://books.google.ca/books?id=90glDwAAQBAJ

[31] Joohyun Kyong, Jinwoo Jeon, and Sung-Soo Lim. Improving scalability of apache spark-based scale-up
server through docker container-based partitioning. In Proceedings of the 6th International Conference
on Software and Computer Applications, pages 176–180, Bangkok, Thailand, February 2017.

[32] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44(2):35–40, April 2010.

[33] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Tachyon: Reliable, memory speed
storage for cluster computing frameworks. In Proceedings of the ACM Symposium on Cloud Computing,
pages 6:1–6:15, Seattle, WA, November 2014.

[34] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura. Sparkbench: a spark bench-
marking suite characterizing large-scale in-memory data analytics. Cluster Computing, 20(3):2575–2589,
September 2017.

[35] Fredrik Lundh. Python Imaging library (pil), 2012. URL http://www.pythonware.com/products/pil/.

[36] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu,
Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin,
Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. Mllib: Machine learning in apache spark. J. Mach.
Learn. Res., 17(1):1235–1241, January 2016.

[37] Dirk Merkel. Docker: Lightweight linux containers for consistent development and deployment. Linux
J., 2014(239), March 2014.

[38] N. Nguyen, M. M. H. Khan, Y. Albayram, and K. Wang. Understanding the influence of configuration
settings: An execution model-driven framework for apache spark platform. In Proceedings of the 2017
IEEE 10th International Conference on Cloud Computing (CLOUD), pages 802–807, Honolulu, CA,
June 2017.

[39] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst, Indranil Gupta, and
Roy H. Campbell. Samza: Stateful scalable stream processing at linkedin. Proceedings. VLDB Endow.,
10(12):1634–1645, August 2017.

[40] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun. Making sense of performance
in data analytics frameworks. In Proceedings of the 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), pages 293–307, Oakland, CA, May 2015.

[41] Kay Ousterhout. Scripts to analyze spark’s performance. https://github.com/kayousterhout/
trace-analysis, June 2014.

[42] Kay Ousterhout, Christopher Canel, Max Wolffe, Sylvia Ratnasamy, and Scott Shenker. Performance
Clarity As a First-class Design Principle. In Proceedings of the 16th Workshop on Hot Topics in Operating
Systems, pages 1–6, Whistler, Canada, May 2017.

[43] Kari Pulli, Anatoly Baksheev, Kirill Kornyakov, and Victor Eruhimov. Real-time Computer Vision with
OpenCV. Communications of the ACM, 55(6):61–69, June 2012.

[44] Qubole. How to: Spark tuning. https://qubole.zendesk.com/hc/en-us/articles/
208693126-How-To-Spark-Tuning, March 2017.

[45] Alexander Rasmussen, Michael Conley, George Porter, Rishi Kapoor, Amin Vahdat, et al. Themis:
An I/O-efficient MapReduce. In Proceedings of the 3rd ACM Symposium on Cloud Computing, pages
13:1–13:14, San Jose, CA, October 2012.

[46] S. Salehian and Y. Yan. Comparison of spark resource managers and distributed file systems. In Proceed-
ings of the 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social
Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)
(BDCloud-SocialCom-SustainCom), pages 567–572, Atlanta, GA, October 2016.

92

http://www.pythonware.com/products/pil/
https://github.com/kayousterhout/trace-analysis
https://github.com/kayousterhout/trace-analysis
https://qubole.zendesk.com/hc/en-us/articles/208693126-How-To-Spark-Tuning
https://qubole.zendesk.com/hc/en-us/articles/208693126-How-To-Spark-Tuning

[47] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop Distributed File
System. In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–10, Washington, DC, May 2010.

[48] James Sofra. Balancing spark - bin packing to solve data skew. http://silverpond.com.au/2016/10/
06/balancing-spark.html, October 2016.

[49] Apache Spark. Components of a Spark Application. https://spark.apache.org/docs/latest/
cluster-overview.html#components, 2018.

[50] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel, Sanjeev Kulka-
rni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and
Dmitriy Ryaboy. Storm@twitter. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data, pages 147–156, Snowbird, Utah, June 2014.

[51] Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Radu Stoica, Bernard Metzler, Ioannis Koltsidas, and
Nikolas Ioannou. On the [ir] relevance of network performance for data processing. In Proceedings of the
8th USENIX Conference on Hot Topics in Cloud Computing, pages 126–131, Denver, CO, June 2016.

[52] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D
Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu. SciKit-image: image processing in Python.
PeerJ, 2:e453, 2014.

[53] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar, Robert
Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen
O’Malley, Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. Apache Hadoop YARN: Yet another
resource negotiator. In Proceedings of the 4th Annual Symposium on Cloud Computing, pages 5:1–5:16,
Santa Clara, CA, October 2013.

[54] J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada, and J. Tourifio. Performance evaluation of big
data frameworks for large-scale data analytics. In Proceedings of the 2016 IEEE International Conference
on Big Data (Big Data), pages 424–431, Washington, DC, December 2016.

[55] Roberto Agostino Vitillo. Spark best practices. https://robertovitillo.com/2015/06/30/
spark-best-practices/, 2015-06.

[56] Mehul Nalin Vora. Hadoop-hbase for large-scale data. In Proceedings of the 2011 International Confer-
ence on Computer Science and Network Technology, volume 1, pages 601–605, Harbin, China, December
2011.

[57] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The numpy array: A structure for efficient
numerical computation. Computing in Science and Engg., 13(2):22–30, March 2011.

[58] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mammad Zadeh, Neha
Narkhede, Jun Rao, Jay Kreps, and Joe Stein. Building a replicated logging system with Apache
Kafka. Proceedings. VLDB Endow., 8(12):1654–1655, August 2015.

[59] K. Wang and M.M.H. Khan. Performance Prediction for Apache Spark Platform. In Proceedings of
the 2015 IEEE 17th International Conference on High Performance Computing and Communications,
2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th In-
ternational Conference on Embedded Software and Systems, pages 166–173, Washington, DC, August
2015.

[60] Hongbin Yang, Xianyang Liu, Shenbo Chen, Zhou Lei, Hongguang Du, and Caixin Zhu. Improving
spark performance with MPTE in heterogeneous environments. In Proceedings of the 2016 International
Conference on Audio, Language and Image Processing (ICALIP), pages 28–33, Dubai, UAE, July 2016.

[61] K. Ye and Y. Ji. Performance tuning and modeling for big data applications in docker containers.
In Proceedings of the 2017 International Conference on Networking, Architecture, and Storage (NAS),
pages 1–6, Shenzhen, China, August 2017.

93

http://silverpond.com.au/2016/10/06/balancing-spark.html
http://silverpond.com.au/2016/10/06/balancing-spark.html
https://spark.apache.org/docs/latest/cluster-overview.html#components
https://spark.apache.org/docs/latest/cluster-overview.html#components
https://robertovitillo.com/2015/06/30/spark-best-practices/
https://robertovitillo.com/2015/06/30/spark-best-practices/

[62] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster computing with
working sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, pages
10–10, Boston, MA, June 2010.

[63] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,
Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient Distributed Datasets: A Fault-tolerant
Abstraction for In-memory Cluster Computing. In Proceedings of the 9th USENIX Conference on Net-
worked Systems Design and Implementation (NSDI 12), pages 15–28, San Jose, CA, 2012.

[64] Xuechen Zhang, Ujjwal Khanal, Xinghui Zhao, and Stephen Ficklin. Understanding software platforms
for in-memory scientific data analysis: A case study of the spark system. In Proceedings of the 2016
IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS), pages 1135–1144,
Wuhan, China, December 2016.

94

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Thesis Motivation
	Thesis Statement
	Thesis Findings
	Thesis Organization

	Background and Related Work
	Big Data Analytics Frameworks
	Spark Overview
	Spark Resource Managers
	Spark Storage Systems

	Spark Operations and Parameters
	Prior Performance Studies of Spark
	Chapter Summary

	Experimental Methodology and Design
	Experimental Methodology
	Applications Benchmark Characteristics
	Input Datasets
	Cluster Setup
	Performance Characteristics of the Cluster Nodes
	Measurement Tools and Metrics

	Experimental Design
	Experiments to investigate the influence of spark.files.maxPartitionBytes on application performance
	Experiments to understand the influence of spark.executor.cores on application performance
	Experiments to investigate the influence of spark.executor.memory parameter on application performance
	Experiments to study the scalability of the Spark system with increasing number of computing nodes
	Experiments to investigate the influence of spark.speculation configuration parameter on straggling tasks

	Performance Analysis and Evaluation
	Effect of Partition Size
	JVM Executor Scaling
	Impact of Caching
	Compute Node Scaling
	Speculative Task Execution
	Chapter Summary

	Conclusion and Future Work
	Summary
	Contributions
	Future Work

	References

