600 research outputs found

    Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    Get PDF
    Fetal electrocardiogram (FECG) signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system

    Proposal of the CAD System for Melanoma Detection Using Reconfigurable Computing

    Get PDF
    This work proposes dedicated hardware to real-time cancer detection using Field-Programmable Gate Arrays (FPGA). The presented hardware combines a Multilayer Perceptron (MLP) Artificial Neural Networks (ANN) with Digital Image Processing (DIP) techniques. The DIP techniques are used to extract the features from the analyzed skin, and the MLP classifies the lesion into melanoma or non-melanoma. The classification results are validated with an open-access database. Finally, analysis regarding execution time, hardware resources usage, and power consumption are performed. The results obtained through this analysis are then compared to an equivalent software implementation embedded in an ARM A9 microprocessor

    Implementasi Fuzzy Neural Network Pada Sistem Cerdas Untuk Pendeteksian dan Penanganan Dini Penyakit Sapi

    Get PDF
    Daging sapi sebagai sumber protein hewani, merupakan salah satu agent of development yang dapat menentukan daya saing sumber daya manusia suatu negara. Namun, konsumsi daging masyarakat Indonesia masih jauh lebih rendah         jika dibandingkan dengan masyarakat dari negara-negara lain di ASEAN. Sementara itu, kesenjangan antara kebutuhan konsumsi dengan produksi daging sapi lokal terjadi tiap tahunnya, peternakan sapi potong nasional masih belum mampu memenuhi kebutuhan masyarakat akan daging yang terus meningkat, bahkan sapi lokal hanya dapat mensuplai kebutuhan daging nasional sebesar 49%. Program Swasembada Daging Sapi (PSDS) tahun 2014 yang dicanangkan Pemerintah pada tahun 2010 guna meningkatkan lonjakan populasi sapi dalam negeri pun menghadapi beberapa tantangan antara lain penyakit dan terbatasnya jumlah dokter hewan di daerah pedesaan. Sehubungan dengan permasalahan tersebut dan sejalan dengan visi serta salah satu sasaran dari Direktorat Kesehatan Hewan, maka diperlukan adanya sistem cerdas yang mampu mendeteksi  penyakit sapi berdasarkan gejala-gejalanya yang bervariasi sehingga dapat dilakukan penanganan dini terhadap sapi  tersebut yang dapat mencegah penyebaran penyakit. Pada penelitian sebelumnya [1], masih terdapat kelemahan pada input datanya karena hanya dapat memproses keseluruhan gejala penyakit dengan instance berupa “Ya” dan “Tidak”

    Heart failure patients monitoring using IoT-based remote monitoring system

    Get PDF
    Intelligent health monitoring systems are becoming more important and popular as technology advances. Nowadays, online services are replacing physical infrastructure in several domains including medical services as well. The COVID-19 pandemic has also changed the way medical services are delivered. Intelligent appliances, smart homes, and smart medical systems are some of the emerging concepts. The Internet of Things (IoT) has changed the way communication occurs alongside data collection sources aided by smart sensors. It also has deployed artificial intelligence (AI) methods for better decision-making provided by efficient data collection, storage, retrieval, and data management. This research employs health monitoring systems for heart patients using IoT and AI-based solutions. Activities of heart patients are monitored and reported using the IoT system. For heart disease prediction, an ensemble model ET-CNN is presented which provides an accuracy score of 0.9524. The investigative data related to this system is very encouraging in real-time reporting and classifying heart patients with great accuracy

    Intelligent maintenance management in a reconfigurable manufacturing environment using multi-agent systems

    Get PDF
    Thesis (M. Tech.) -- Central University of Technology, Free State, 2010Traditional corrective maintenance is both costly and ineffective. In some situations it is more cost effective to replace a device than to maintain it; however it is far more likely that the cost of the device far outweighs the cost of performing routine maintenance. These device related costs coupled with the profit loss due to reduced production levels, makes this reactive maintenance approach unacceptably inefficient in many situations. Blind predictive maintenance without considering the actual physical state of the hardware is an improvement, but is still far from ideal. Simply maintaining devices on a schedule without taking into account the operational hours and workload can be a costly mistake. The inefficiencies associated with these approaches have contributed to the development of proactive maintenance strategies. These approaches take the device health state into account. For this reason, proactive maintenance strategies are inherently more efficient compared to the aforementioned traditional approaches. Predicting the health degradation of devices allows for easier anticipation of the required maintenance resources and costs. Maintenance can also be scheduled to accommodate production needs. This work represents the design and simulation of an intelligent maintenance management system that incorporates device health prognosis with maintenance schedule generation. The simulation scenario provided prognostic data to be used to schedule devices for maintenance. A production rule engine was provided with a feasible starting schedule. This schedule was then improved and the process was determined by adhering to a set of criteria. Benchmarks were conducted to show the benefit of optimising the starting schedule and the results were presented as proof. Improving on existing maintenance approaches will result in several benefits for an organisation. Eliminating the need to address unexpected failures or perform maintenance prematurely will ensure that the relevant resources are available when they are required. This will in turn reduce the expenditure related to wasted maintenance resources without compromising the health of devices or systems in the organisation

    Failure analysis informing intelligent asset management

    Get PDF
    With increasing demands on the UK’s power grid it has become increasingly important to reform the methods of asset management used to maintain it. The science of Prognostics and Health Management (PHM) presents interesting possibilities by allowing the online diagnosis of faults in a component and the dynamic trending of its remaining useful life (RUL). Before a PHM system can be developed an extensive failure analysis must be conducted on the asset in question to determine the mechanisms of failure and their associated data precursors that precede them. In order to gain experience in the development of prognostic systems we have conducted a study of commercial power relays, using a data capture regime that revealed precursors to relay failure. We were able to determine important failure precursors for both stuck open failures caused by contact erosion and stuck closed failures caused by material transfer and are in a position to develop a more detailed prognostic system from this base. This research when expanded and applied to a system such as the power grid, presents an opportunity for more efficient asset management when compared to maintenance based upon time to replacement or purely on condition

    High Performance Reconfigurable Fuzzy Logic Device for Medical Risk Evaluation

    Get PDF
    To date cardiovascular diseases (CVD) account for approximately 35% of all deaths worldwide. Many of these deaths are preventable if the risk of developing them can be accurately assessed early. Medical devices in use today cannot determine a patient's risk of developing a CVD condition. If accurate risk assessment was readily available to doctors, they can track rising trends in risk levels and recommend preventative measures for their patients. If patients had this risk assessment information before symptoms developed or life-threatening conditions occurred, they can contact their doctors to inquire about recommendations or seek help in emergency situations.This thesis research proposes the idea of using evolutionary programmed and tuned fuzzy logic controllers to diagnose a patient's risk of developing a CVD condition. The specific aim of this research seeks to advance the flexibility and functionality of fuzzy logic systems without sacrificing high speed and low resource utilization. The proposed system can be broken down into two layers. The bottom layer contains the controller that implements the fuzzy logic model and calculates the patient's risk of developing a CVD. The controller is designed in a context switchable hardware architecture the can be reconfigured to assess the risk of different CVD diseases. The top layer implements the evolutionary genetic algorithm in software, which configures the fuzzy parameters that optimize the behavior of the controller. The current implementation inputs patient's personal data such as electrocardiogram (ECG) wave features, age and body mass index (BMI) and outputs a risk percentage for Sinus Bradycardia (SB), a common cardiac arrhythmia. We validated this system via Matlab and Modelsim simulations and built the first prototype on a Xilinx Virtex-5 FPGA platform. Experimental results show that this 3-input-1-output fuzzy controller with 5 fuzzy sets per variable and 125 rule propositions produces results within an interval of approximately 1us while reducing hardware resource utilization by at least 25% when compared with existing designs

    Open electronics for medical devices: State-of-art and unique advantages

    Get PDF
    A wide range of medical devices have significant electronic components. Compared to open-source medical software, open (and open-source) electronic hardware has been less published in peer-reviewed literature. In this review, we explore the developments, significance, and advantages of using open platform electronic hardware for medical devices. Open hardware electronics platforms offer not just shorter development times, reduced costs, and customization; they also offer a key potential advantage which current commercial medical devices lack—seamless data sharing for machine learning and artificial intelligence. We explore how various electronic platforms such as microcontrollers, single board computers, field programmable gate arrays, development boards, and integrated circuits have been used by researchers to design medical devices. Researchers interested in designing low cost, customizable, and innovative medical devices can find references to various easily available electronic components as well as design methodologies to integrate those components for a successful design
    corecore