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Abstract: This work proposes dedicated hardware to real-time cancer detection using Field-Programmable
Gate Arrays (FPGA). The presented hardware combines a Multilayer Perceptron (MLP) Artificial
Neural Networks (ANN) with Digital Image Processing (DIP) techniques. The DIP techniques
are used to extract the features from the analyzed skin, and the MLP classifies the lesion into
melanoma or non-melanoma. The classification results are validated with an open-access database.
Finally, analysis regarding execution time, hardware resources usage, and power consumption are
performed. The results obtained through this analysis are then compared to an equivalent software
implementation embedded in an ARM A9 microprocessor.

Keywords: artificial neural networks; digital image processing; melanoma detection

1. Introduction

In recent years, there has been a notable increase in the development of technologies applied
to the health area, bringing several benefits to professionals responsible for giving diagnosis. One
such technology is Computer-Aided Diagnosis (CAD) which is applied on detecting and diagnosing
various kinds of clinical conditions by using different varieties of medical imaging. These systems aim
to assist with medical decisions about treatment and prognosis and improve the patient’s quality of
life [1].

CAD systems often present a high computational cost, since many of these are based on the
use of machine learning algorithms and digital image processing that can be computationally costly.
An alternative to provide better performance in terms of execution time and power consumption is the
implementation of these algorithms in a Field Programmable Gate Array (FPGA), a reconfigurable
hardware consisting of several configurable logic blocks and programmable interconnects, which can
be designed to implement a desired circuit.
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According to [2], the use of FPGAs provides the system with fast execution and low power
consumption, allowing the development of real-time embedded systems. The use of FPGAs in the
development of CAD systems is the object of several works in the literature [3–8].

The work of [9] proposes an embedded system for recording real-time multimodal images applied
to non-invasive tracking of skin cancer. The work presents the development of a hybrid architecture
of hardware and software, implemented in a Xilinx Z-7010 SoC device. The hardware implements
the detection and extraction of image characteristics in the visible and infrared spectrum, while the
software estimates the geometric transformation that maps one image in the other and then applies
the transformation to the frames of the infrared images.

The work proposed by [10] presents the implementation of an on-chip Multilayer Perceptron
(MLP) to ensure the safety of electronic devices used in the treatment of diabetes. These devices are
usually insulin pumps, which can have its system invaded and send false insulin dosing commands.
The implemented MLP architecture has two hidden layers, the first with seven neurons and the second
with four and an output layer with only one output neuron. In the neurons of the hidden layers,
the hyperbolic tangent activation function was used, while the sigmoid function was used in the
neurons of the output layer.

Only one research group has been found in the literature that proposes a melanoma detection
system using FPGA. This group has several works in the literature reporting the advances of this
research of melanomas. In all works, the target FPGA was the Xilinx XC7Z020CLG484-1 from the
Zynq-7000 ZC702 Evaluation Board. The implementations proposed by this research group were
developed in C/C ++ using the UltraFast High-Level Synthesis (HLS) tool available in the Xilinx Vivado
Design Suite, and a Support Vector Machine (SVM) is designed as an HLS Intellectual Property (IP).

The first paper presented by this group in the literature, in [11], proposed the implementation
of a hardware/software co-design, implementing in hardware only the scalar product present in the
SVM classifier function and all other necessary calculations were performed in software. In this work,
the test data are transmitted using a streamming interface with an Direct Memory Access (DMA)
IP. Then, the hardware design was extended to implement the full function of the SVM classifier,
as presented in [12]. Another similar project was proposed in [13], which used embedded block
RAM (BRAM) interfaces to pass required data instead of using the stream interface with the DMA IP.
The work presented in [14] sought to simplify previously designed IPs to reduce hardware area, power
and cost for project extension, as well as to improve rating performance. It proposed a reconfigurable
hardware system for the implementation of an adaptive, flexible, and a scalable embedded cascade
SVM classifier system.

The most recent article from this group is presented in [15]. It proposes three SVM models
generated from the available feature set training, using 356 instances with 27 features each. The first
model was generated using the complete original data set, employing in this model 346 Support Vectors
(SVs). Next, scaling and normalization techniques were applied to the original dataset, which generated
a second model with 248 SVs and achieved higher classification accuracy. The third, smaller-scale
model was implemented to be used as a case study for performance validation by running on a Zynq
SoC, while the other two models were validated using only simulation results. This model consists
of 61 SVs, generated using only part of the data set (144 instances) normalized in the training phase.
Several versions of these models were implemented using different optimization techniques through
the available optimization directives of the Vivado HLS tool. This article presents several results which
are later presented for comparison with the architecture proposed here.

In this scenario, the objective of this work is the hardware implementation of a skin cancer
detection system, using digital image processing techniques and a multilayer perceptron artificial
neural network. The hardware developed for the DIP techniques is responsible for extracting the
desired descriptors from the skin nevus image, while the hardware developed for the feedforward
phase (inference step) of the MLP is in charge of performing the classification of the skin signal
as melanoma or non-melanoma based on the descriptors extracted by the DIP, using the weights
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previously obtained by training the network in a software implementation. In addition, it is intended to
achieve high speed performance and low energy consumption. Results regarding hardware resources
occupation, runtime and power consumption are detailed and presented for an Intel Cyclone V FPGA
SE 5CSEBA6U23I7. Intel Cyclone V FPGA SE 5CSEBA6U23I7 has 41,910 ALMs, 166,036 registers,
5570 M10K memory blocks, and 224 DSP blocks.

The paper is structured as follows: Section 2 presents a skin cancer detection technique developed
based on existing methods and its software implementation used to define the parameters of the
neural network through the training phase. Section 3 presents the details of the hardware architecture,
describing the various modules and submodules used to implement the system. In Section 4, the results
of the proposed hardware validation and the implementation synthesis are presented. Finally, Section 5
presents the final considerations about the manuscript.

2. Skin Cancer Detection Technique

With digital image processing, nine descriptors are extracted from a nevus image.
These descriptors are then forwarded to the MLP, which is trained to classify the images into two
distinct classes: melanoma and non-melanoma. After the network training, its validation is performed
using a public database of skin cancer images that was previously diagnosed by specialists.

2.1. Technical Overview

Figure 1 represents the proposed detection structure, in which the classification of skin nevi is
performed using a database of dermatoscopic images.

Vk, Pk

CEM MLP

Database

dk uk

Figure 1. General structure of the proposed detection scheme.

The N ×M pixels image from the database Vk is expressed as
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where vk
ij corresponds to a pixel of b-bit pixel of the k-th image from the database. A binary image, Pk,

is used as a mask to extract the region of interest from the original image. The Pk image is defined as

Pk =



pk
0,0 · · · pk

0,j · · · pk
0,M−1

...
...

...
...

...
pk

i,0 · · · pk
i,j · · · pk

i,M−1
...

...
...

. . .
...

pk
N−1,0 · · · pk

N−1,j · · · pk
N−1,M−1


(2)

where pk
ij corresponds to a pixel of the k-th binary image from the database.



Sensors 2020, 20, 3168 4 of 23

With the mask Pk, the original image Vk passes through a block referred as Character Extractor
Module (CEM), which extracts from the image nine descriptors expressed as dk =

[
dk

0, . . . , dk
8

]
. This set

of descriptors is then processed by an MLP-BP artificial neural network that contains nine inputs,
three layers of neurons with two hidden layers, and the output layer with two outputs which are
expressed as uk =

[
uk

0 uk
1

]
.

A database containing 200 dermatoscopic images provided by the ADDI Project [16] was used.
The images have a resolution of 768 × 560 pixels and magnification of 20×. In this work, the resolution
was halved. Masks for each image containing the delimitation of the Nevus region are also available.
The images were diagnosed by specialists and were divided into 160 non-melanoma and 40 melanomas.
Figure 2b shows the binary image Pk correspondent to the sample shown in Figure 2a.

(a) (b)

Figure 2. Database sample. (a) Original image; (b) Binary image.

2.2. Character Extractor Module (CEM)

In the literature, there are several attempts to simplify the dermoscopic approach to diagnose
benign melanocytic lesions and melanomas, as presented in [17], such as the ABCD rule, the Menzies
method, and the 7-point checklist.

The three approaches presented are for the recognition of melanoma based on dermatoscopic
images, but there is also a rule for detection with the naked eye, which is called ABCDE. This rule is
very similar to the ABCD rule and in it each letter indicates a characteristic of the signal to be analyzed,
with A referring to asymmetry, B to edge, C to color, D to diameter and E to evolution [18–20].

Thus, based on these approaches, the work presented here defined a set of nine descriptors with
mathematical representation: symmetry in x, symmetry in y, diameter, variance and mean in the
R channel, variance and mean in the channel G and variance and mean in the channel B. These
descriptors were represented by the variables, d0, . . . , d8, respectively. Thus, for a given image Vk,
there is a vector dk =

[
dk

0, . . . , dk
8

]
of descriptors.

2.2.1. Symmetry Calculation

The symmetry in x and y are represented by the descriptors dk
0 and dk

1. The calculation of these
descriptors for a given image k are expressed as

dk
0 =

∣∣∣∣∣∣∣∣
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and

dk
1 =

∣∣∣∣∣∣∣∣∣
N−1

∑
i=0

M−1

∑
j=0
j<ck

y

pk
ij −

N−1

∑
i=0

M−1

∑
j=0
j≥ck

y

pk
ij

∣∣∣∣∣∣∣∣∣ (4)

where ck
x and ck

y are the center of mass values from the binary image, Pk. The center of mass is
calculated by initially extracting the boundary points of the binary image, Pk, using an OpenCV library
function, findContours() and later, using the result of this function as input to another OpenCV function,
moments(), which returns the center of mass. Figure 3 shows the image divided in four quadrants with
intersection of the axes in the center of mass.

(a) (b)

Figure 3. (a) Original image with the signal contour and center of mass represented by the blue dot;
(b) Image divided in four quadrants with intersection of the axes in the center of mass.

2.2.2. Diameter Calculation

The second descriptor is the diameter, represented by dk
2. For the calculation of this descriptor,

an OpenCV library function minEnclosingCircle() was used, which locates a circle of minimum area
from the set of 2D points provided, which in this case are the points that form the contour of the
binarized image. This function outputs the radius of the circle. Figure 4 shows the result of obtaining
the diameter in the binarized image shown in Figure 2b.

Figure 4. Circumference around the nevus.
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2.2.3. Calculation of Mean and Variance

The last descriptors are related to the color variation associated with the nevus and can be found
through the mean and the variance in the RGB channels of the original image. The mean and variance
of the R channel are represented by the descriptors dk

3 and dk
4, for channel G, the descriptors are dk

5 and
dk

6 and for channel B the descriptors are dk
7 e dk

8. The calculation of each descriptor can be expressed as

dk
3 =

1
L

N−1

∑
i=0

M−1

∑
j=0

R
(

vk
ij

)
× pk

ij (5)

and

dk
4 =

1
L

N−1

∑
i=0

M−1

∑
j=0

(
R
(

vk
ij

)
− dk

3

)2
× pk

ij (6)

in which L is the number of pixels equal to 1 in the binarized matrix, Pk, and R(vk
ij) is the pixel value

vk
ij in channel R. Following the same idea, the value of the descriptors for the other channels can be

expressed as

dk
5 =

1
L

N−1

∑
i=0

M−1

∑
j=0

G
(

vk
ij

)
× pk

ij, (7)

dk
6 =
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L
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∑
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ij

)
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5

)2
× pk

ij, (8)

dk
7 =

1
L
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∑
j=0

B
(

vk
ij

)
× pk

ij, (9)

and

dk
8 =

1
L

N−1

∑
i=0

M−1

∑
j=0

(
B
(

vk
ij

)
− dk

7

)2
× pk

ij. (10)

2.3. MLP

In order to solve the melanoma classification, the work proposed here uses an MLP-BP with nine
inputs (the descriptors), two hidden layers, and two outputs. The proposed network architecture
contains 10 neurons in the first hidden layer, represented by c1

1..10, and 24 neurons in the second,
represented by c2

1..24. The activation function used in all the neurons of the network was the sigmoid
function. Figure 5 shows the described network structure.

dk
0

dk
1

dk
8

uk
0

uk
1

c1
1

c1
2

c1
3

c1
10

c2
1

c2
2

c2
3

c2
4

c2
24

c3
1

c3
2

Figure 5. General structure of the proposed MLP.
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The outputs of the network, uk = [uk
0 uk

1], classify the image as melanoma or non-melanoma,
being uk

0 for melanoma and uk
1 a non-melanoma. When uk = [0 1], the classified signal is

non-melanoma and when uk = [1 0] indicates that the nevus is melanoma.
All of the image descriptors dk are normalized between 0 and 1 in order to to improve the

convergence of the network. The normalization of each descriptor was performed by dividing
all elements of it by the highest value within each descriptor, taking into account 200 images of
the database.

For the training and validation of the network, all the images made available by the database
PH2 Database were used. During the network training phase, 170 randomly selected images from the
bank were used, divided into 138 non-melanomas and 32 melanomas. The MLP converged into a
10−6 error, as shown in Figure 6, which illustrates the network mean squared error by the number of
epochs. During training, the neural network weights are adjusted. The final network model employs
the weights wherewith they obtained the lowest error.

x104Epoch
0.5 1 1.5 2 3 53.5 4 4.52.5

0.6

0.5

0.4

0.3

0.2

0.1

0

M
SE

Figure 6. MLP Learning Curve.

After defining the final model weights in the training phase, the model validation is performed
using 30 images, which were divided into 22 non-melanomas and 8 melanomas. According to the
result of the validation data, only three errors were obtained, one false negative, and two false positives.
Figure 7 illustrates the validation results in the confusion matrix. The actual classes are arranged in
rows while the predicted classes are arranged in columns. The correct classified nevis are represented
on the main diagonal of the matrix and the incorrect on the antidiagonal. The classes are represented
by the acronyms M and NM, which respectively indicate melanoma and non-melanoma.

M NM

Predicted Class

M 

NM

T
ru

e
 C

la
s
s

7

2

1

20

Figure 7. Confusion matrix of validation results.

In order to evaluate the performance of the proposed technique, the work proposed here presents
three measures of common use in several works with similar classification problems [21–24], which are:
accuracy, specificity, and sensitivity [25]. Accuracy is the model’s ability to correctly classify cases of
melanoma and non-melanoma, being the number of correct classifications divided by the number
of all data classified. Occurring 27 correct diagnosis in 30 cases, the technique obtained an accuracy
of 90%. Specificity is the proportion of non-melanoma correctly identified by classifier, so with 20
non-melanomas correctly recognized in 22 non-melanoma cases, a specificity of 90.9% was obtained.
Finally, the sensitivity is the proportion of melanomas that are correctly identified by classifier,
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with seven melanomas correctly recognized in eight cases of melanoma, the sensitivity was 87.5%.
Table 1 shows results obtained by the technique proposed here together with the ones found in
the literature.

Table 1. Comparison between the proposed method and works from literature.

Method Accuracy Specificity Sensitivity

[21] 82.6% 89.8% 53.3%
[22] 81% 80% 81%
[23] 87.8% 97.9% 78.4%
[24] 85.5% 93.1% 54.7%
This work 90% 90.9% 87.5%

The equivalent hardware implementation of the proposed project to be described in the next
section targeted designing an embedded system with the same classification results previously obtained
but optimizing the performance and energy consumption.

3. Design Description

The hardware architecture was developed using fixed point number representation, with the
values in the integer part ranging from 0 to 35 bits and in the fractional part ranging from 0 to 15 bits.
The system’s inputs are represented in fixed point by 8 bits in the integer part and 0 in the fractional
part, since the value of the RGB channels are unsigned integers ranging from 0 to 255. The image
descriptors and the system outputs are represented with 0 bits in the integer part and 10 bits in the
fractional part because they are unsigned values between 0 and 1.

Figure 8 presents a general hardware architecture. This figure shows the two main modules of
the system, the module of Digital Image Processing techniques and the Artificial Neural Network.
The inputs of this architecture are the pixels of the image, V , to be classified and the image mask, P,
which is provided by the database used.

Digital	Image
Processing
(DIP)

Artificial	Neural
Networks
(ANN)

d0

d1

d2

d3

d4

d5

d6

d7

d8

R(vij)

G(vij)

B(vij)

u0

u1

pij

Figure 8. General hardware architecture.

The input R(vij) refers to the intensity of the pixel in the channel R of the image V in the i-th
line and j-th column, the inputs G(vij) and B(vij) follow the same idea, referring respectively to the
intensity of the pixel in channel G and B. The input pij is the pixel value of the binarized image P in
the i-th row and j-th column, in which the pixels of the region of interest of the nevus are represented
by 1 and the pixels of the background by 0. The output of the DIP module are the nine descriptors
extracted from the nevus image, represented by d0, d1, ..., d8. These descriptors are the inputs of the
ANN module, responsible for performing the image classification. The outputs of this module indicate
the result of the classification, u0 and u1.
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3.1. Digital Image Processing Module (DPIM)

The Digital Image Processing Module (DPIM) aims to perform the necessary operations on the
pixels of the input image, V , to obtain the descriptors, d0, d1, ..., d8. In this module, the technique
of Stream Processing was used, requiring two image scans for the extraction of all the descriptors,
since there are calculations that require values obtained only at the end of the first complete scan
of the image. The image input was performed pixel by pixel, starting with the first line from left to
right. This module has five main submodules, which are intended for: the application of the mask,
calculation of symmetry, calculation of the diameter, calculation of the mean, and calculation of the
variance.

Figure 9 shows the general architecture of DPIM, with all its submodules. In this figure, nt

represents a constant with a value equal to the total number of pixels of the analyzed image of the
nevus. Some submodules have as input the variables represented in the figure as nr, f1 and f2.
The variable nr represents the number of pixels in the region of interest, this value is obtained through
a counter, Counter2, which is enabled by the pixels of the binary image equal to 1. The value of this
counter is stored in a register after the first scan of the image. The boolean variable f1 indicates the end
of the first scan of the image and the boolean variable f2 indicates the end of the second scan of the
image, when they assume a value of 1. The counter block, Counter1, has a maximum value equal to
2× nt, and the counter block, Counter2, has a maximum value equal to nt.

en en

2 ∗ nt
=

Counter1

nt

Counter2 R

=

f2

f1

nr

pij

Rij

Gij

Bij

pij

Mask

RM

GM

BM

Symmetry

Diameter

Mean

Variance

pij

pij

d0

d1

d2

d3

d5

d7

d4

d6

d8

pij

Figure 9. Digital image processing module architecture.

3.1.1. Mask Application Submodule

The Mask Application Submodule is responsible for applying the binary mask, P, on each channel
of the original image V . The mask used is provided by the database.

Figure 10 shows the architecture of the Mask Application Submodule. The application of the mask
on each channel is performed using an AND logic gate with eight bits in the integer part. The pixels of
the binarized image with a value of 1 are converted to 255 by a multiplexer (MUX). Thus, after the
MUX, the binarized image inputs equal to zero are represented by the binary value 000000002 and
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equal to one by 111111112. Thereby, after the AND operation, the pixels of the image within the region
of interest have their value equal to the value of the original image, while the others representing the
background have their value equal to zero. The RM, GM, and BM outputs are the value of the pixel
intensity in each channel after the mask is applied.

0

1

sel

R(vij)

G(vij)

B(vij)

RM

GM

BM

pij

0

255

MUX
AND

AND

AND

Figure 10. Architecture of the Mask Application Submodule.

3.1.2. Symmetry Calculation Submodule

The Symmetry Calculation Submodule is responsible for calculating the values of the descriptors
d0 and d1. For this, it is necessary to first determine the position of the center of mass of the nevus,
cx and cy. The calculation of the center of mass in software was performed using functions of the
OpenCV library. In the hardware implementation, this calculation was performed using the mask
image, P, being expressed as

cx =
∑N−1

i=0 ∑M−1
j=0 pij · i

∑N−1
i=0 ∑M−1

j=0 pij
(11)

and

cy =
∑N−1

i=0 ∑M−1
j=0 pij · j

∑N−1
i=0 ∑M−1

j=0 pij
(12)

where cx indicates the x coordinate of the center of mass and cy the y coordinate.
Based on this mathematical representation, the calculation of the center of mass was implemented

as shown in Figure 11. In this figure, li represents a constant with a value equal to the width of the
image. The counter indicates the number of pixels of the already read image. Dividing its value by
the width of the image produces the value of the position of the input pixel. The variable lin indicates
the line and the variable col the column where the pixel is positioned. Thereafter, there are two
multipliers that perform the multiplication operations present in Equations (11) and (12), followed by
the implementation of an accumulator with an adder block and a delayed feedback, which performs
the operation of the double summation present in the equations. After the image is completely read,
the value of each accumulator is divided by the number of pixels of the region of interest, the results
obtained are cx and cy. These values are stored in registers at the end.

Counter

li

pij

pij

lin

col
a

b

q

r

a

b

q

a

b

q

en

en

cx

cy

f1

f1

nr

nr

z−1

z−1

R

R

Figure 11. Architecture of the Symmetry Calculation Submodule responsible for calculating the center
of mass.
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After determining the center of mass, it is possible to calculate the symmetry. The proposed
implementation for this calculation was based on Equations (3) and (4), and the designed architecture
is shown in Figure 12.

pij

f2

lin
cx

f1

pij

lin
cy

f1

Counter

G0
d0

Conditional Block 1

Conditional Block 2

en

en
R

a
b
c
d

|a|
a
b
c
d

Counteren

IF((a=1)&(d=1)&(b< c))

IF((a=1)&(d=1)&(b>= c))

pij

f2

col
cx

f1

pij

col
cy

f1

Counter

G1
d1

Conditional Block 3

Conditional Block 4

en

en
R

a
b
c
d

|a|
a
b
c
d

Counteren

IF((a=1)&(d=1)&(b< c))

IF((a=1)&(d=1)&(b>= c))

Figure 12. Architecture of the Symmetry Calculation Submodule to determine the symmetry.

Initially, there are four conditional blocks, each block equivalent to a double summation.
Conditional Blocks 1 and 2 implement the first and second double summation of Equation (3),
respectively, with the i of the equation represented by lin. Conditional Blocks 3 and 4 implement the
first and second double summation of Equation (4), respectively, with the j of the equation represented
by col. With the pixel of the binarized image equal to 1 and the logical expression of the conditional
block being true, there is the increment of 1 to the counter, counter, presented after each conditional
block. At the end of the second reading of the image, the difference between the values of the first and
second counter in module is the result of Equation (3) and the modulus of the difference between the
values of the third and fourth counter is the result of Equation (4). These values are further multiplied
by specific gains, G0 and G1, which normalize the value of the descriptors between 0 and 1. The result
obtained after this are the descriptors d0 and d1, which are stored in a register.

3.1.3. Diameter Calculation Submodule

The Diameter Calculation Submodule has the function of calculating the value of the descriptor
d2. Initially, it is necessary find the most extreme points, z1, z2, z3, and z4, of the region of interest,
based on the binarized image. After that, the distance, Dx and Dy, between these pixels should be
obtained. The largest distance is considered the diameter of the nevus. Figure 13 illustrates the dots
and the distance between ends of Figure 2a.

z1

z3

z4

z2

Dx

Dy

Figure 13. The four extremity pixels and the distances between them.
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In Figure 14, the hardware architecture used to locate the extremity pixels in the region of interest
is presented. Initially, there is a divisor block that receives its input from a counter and the constant
li in order to calculate the row and column of the input pixel. The first output of the architecture, z1,
indicates the line of the first pixel of the detected nevus which is the line in which pij first assumes the
value of 1. The second output, z2, indicates the last line containing a pixel from the nevus previously
detected. The value of z2 is the last value stored in the register which is enabled by pij. The third
output, z3, indicates the first column to display a pixel from the nevus area, and this value is found by
using a conditional block and a multiplexer.

The Conditional Block 5 (CB5) is responsible for comparing the column value of each pixel in
the region of interest, input b, to select the lowest column value. During the image scan, the lowest
value found is saved and applied to input c of CB5, for comparison with the other column values to be
analyzed. The output of CB5 is true when the column value of the current pixel, input b, is less than
the last found value, input c. The output of this block feeds the input selection of a multiplexer which
for an input of 0 the value z3 stored in the register continues the same and for an input of 1 this same
value is updated to the value of the column of the current pixel pij. On top of that, another multiplexer
is used so that, in the beginning of the calculation of z3, the value of the c input is not equal to zero,
but equal to the largest column value of the image.

Finally, the last output, z4, indicates the last column in the region of interest. A conditional block
and a multiplexer are also used to determine this pixel. Its operation is similar to the one previously
presented for output z3; however, it is unnecessary to use a second multiplexer since there is no
problem if the initial value c is equal to zero. At the end of the first image scan, the selected values
z1–z4 are stored in a register to, then, be forwarded to the diameter calculation architecture.

Ren

Ren

R
en

Ren

z−1

z−1

0

1

sel

0

1

sel

0

1

sel

z1

z2

z3

z4
f1

f1

pij

pij

pij

pij

IF(a=1)&(b< c)

IF(a=1)&(b> c)

Counteren
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0

1
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Counter lin
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a

b

q

r

a
b
c

a
b
c

Conditional Block 6

Conditional Block 5 MUX

MUX

MUX

Figure 14. Architecture of the Diameter Calculation Submodule responsible for calculating the
extremity pixels.

Having found the extremity points of the nevus, it is then possible to calculate the diameter
by the greatest distance among these points. The architecture implemented for this calculation is
displayed in Figure 15. This module starts by calculating the difference between z1 and z2, which gives
a distance on the y-axis and the difference between z3 and z4, which gives a distance on the x-axis.
The result of these differences is compared and through a MUX the distance with greater value is
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selected, which is the approximate diameter of the nevus. At the end, the value found is multiplied by
a gain, G2, which normalizes the value of the descriptor between 0 and 1. The result obtained after this
is the descriptor d2, which is stored in a register.

G2

f1
R

en

d2
<

z1

z2

z3

z4

a

b 0

1

sel

MUX

Figure 15. Architecture of the Diameter Calculation Submodule to determine the diameter.

3.1.4. Mean Calculation Submodule

The Mean Calculation Submodule is responsible for calculating the value of the descriptors d3,
d5, and d7. This submodule calculates the average of the intensities of the pixels in the region of
interest, using the image obtained after applying the mask. This implementation is based on the
Equations (5), (7) and (9).

Figure 16 presents the proposed implementation of this submodule, which applies the same
processing in all of the channels of the image. This architecture uses as inputs the outputs from the
Mask Application Submodule, RM, GM, and BM, represented in the figure by CH. Initially, there is
an accumulator implemented by an addition block and a delay, equivalent to the double summation
of Equations (5), (7) and (9). This accumulator sums for each channel all the values of the pixels in
the region of interest and the final value of this accumulator is divided by the number of pixels from
the nevus region. The result of each division, MedR, MedG, and MedB, represented in the figure by
MedCH , is multiplied by a specific gain Gi, where i = [3, 5, 7]. The result obtained after this operation is
the descriptor di, where i = [3, 5, 7], which are then stored into its respective registers.

a

b

q

en
R

z−1

nr
f1

MedCH

Gi

CH

di

Figure 16. Architecture of the Mean Calculation Submodule.

3.1.5. Variance Calculation Submodule

The Variance Calculation Submodule calculates the value of the descriptors d4, d6, and d8, during
the second image scan. This submodule calculates the variance of the pixels values from the region of
interest using the outputs of the Mask Application Submodule and the Average Calculation Submodule.
This implementation is based on the Equations (6), (8) and (10).

In Figure 17, the architecture of the Variance Calculation Submodule is presented, which is also
applied to each channel of the image. Initially, there is a block that calculates the difference between
the channel average value and the pixel value from the Mask Application Submodule. This subtraction
block is enabled when the pixel value in the binarized image pij is equal to 1. In the following, there is
a multiplier block with its two inputs fed by the output of the previous block; this is equivalent to a
squared power operation as presented in Equations (6), (8) and (10). The output of this multiplier block
is the input of an adder block with feedback, i.e., an accumulator. After the second image reading,
the accumulator value is then divided by the number of pixels of the nevus. The result of each division
is multiplied by a specific gain, Gi, where i = [4, 6, 8]. The results from this operation are the descriptors
di, where i = [4, 6, 8], which are, finally, stored into its respective registers.
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Figure 17. Architecture of variance.

3.2. Artificial Neural Network Module (ANNM)

The Artificial Neural Network Module (ANNM) aims to perform the image classification as
melanoma or non-melanoma through an MLP neural network. This module was implemented with
a full-parallel architecture. The general architecture of the ANNM is presented in Figure 5 and its
entries are the nine descriptors extracted in the DPIM. All the neurons in the network have the same
architecture, which is shown in Figure 18. The hardware was developed only for the feedforward
phase of MLP, adopting the weights defined in the training phase of the model in the software
implementation, as described in Subsection 2.3.

This architecture has two submodules: the transfer function and the activation function.
The neuron inputs are represented by x1, x2, ..., xm, where m is the number of inputs of the neuron
specified. The x0 represents the bias and it is set as a constant with a fixed value equal to−1. The output
from the transfer function to the activation function is represented by Sk and the neuron output is
named yk.

...

x0 = −1

x1

x2

xm

sk ykTransfer
Function

Activation
Function

Figure 18. General architecture of the neuron.

3.2.1. Transfer Function Submodule

The Transfer Function Submodule is responsible for weighing the input of the neuron by their
respective weights and summing these results, providing the output Sk at the end.

The architecture of this submodule is presented in Figure 19. The weighting of each neuron input
is performed through a gain block configured with the value of the respective weight associated with
the neuron input. The weights are represented by Wk0, Wk1, Wk2, ..., Wkm, where the first subscript
term, k, indicates the neuron index and the second term indentifies the input to which the weight is
associated. All the weights are fixed values represented as signed fractional numbers with 5 bits in
the integer part and 10 bits in the fractional part. After the weighting of the inputs by their respective
weights, all values obtained are summed, resulting in output sk.
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...

...

...
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x1
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Gk1

Gk2
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sk

Figure 19. Architecture of the Transfer Function Submodule.

3.2.2. Activation Function Submodule

Finally, the Activation Function Submodule is responsible for calculating the neuron output, yk,
based on the value provided by the Transfer Function Submodule.

The architecture of this submodule is presented in Figure 20. The approximation of the Sigmoid
function was performed using the PLAN [26] approximation method, which has the mathematical
representation presented in Equation (13). Hence, the combinational blocks present in this architecture
represent the conditions observed in this equation. Apart from the first conditional block from the
architecture, the output of all other four conditional blocks are forwarded to the bus builder block,
whose output selects in the MUX which equation is used to approximate the sigmoid value.

Some intervals of the approximated sigmoid are implemented by an adder which sums the value
of a signal gain multiplied by the input of the sigmoid function to a constant from the equation
expressed as

f (x) =



Y = 1, se |x| ≥ 5

Y = 0, 03125 · |x|+ 0, 84375, se 2.375 ≤ |x| < 5

Y = 0, 125 · |x|+ 0, 625, se 1 ≤ |x| < 2, 375

Y = 0, 25 · |x|+ 0, 5, se 0 ≤ |x| < 1

Y = 1−Y, se x < 0

(13)

The first conditional block which refers to the last condition of Equation (13) analyzes whether the
input value is less than zero. Its output is connected to the selective input of the last MUX block,
which outputs b− 1 if the sk is less than zero or b if it is greater than zero.
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Figure 20. Sigmoide.
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4. Results

This section presents the hardware validation results of the proposed implementation.
The synthesis results present data associated with the use of hardware resources, execution
time, and energy consumption. The implementation was synthesized on an Intel Cyclone V SE
5CSEBA6U23I7 FPGA, present in the DE10-Nano development kit. An ARM Cortex A-9 Dual-core
800MHz processor is also available in this kit. A video demonstration of the implementation is
presented in [27].

4.1. Results from the Hardware Validation of the Implementation

The validation of the technique implemented in hardware was performed using the same
validation images of the technique developed in software. The result obtained was identical to
the equivalent software implementation, with the same correctness and errors in the classification
of the images. As a consequence, the hardware technique obtained the same values of precision,
specificity, and sensitivity presented in Table 1.

Thus, the system was validated showing that, although the proposed implementation in FPGA
adopted fixed-point representation, the accuracy of the result was not compromised.

4.2. Synthesis Results

The results of the architecture synthesis enable the analysis of three different pieces of data:
execution time, FPGA resource utilization, and energy consumption. Each of these analyses will be
presented individually.

4.2.1. Runtime

Initially, an implementation performance analysis related to execution time was conducted.
For this, a comparison between the execution time of the implementation in the target FPGA, with
a clock of 8.77 MHz, and the software equivalent implementation in the ARM Cortex A-9 Dual-core
processor was performed. The execution time in the target FPGA was reached by multiplying the
number of clock pulses required obtaining the results by the duration of a single clock. For the CPU,
time was measured seven different times by a system function and the median value was used as the
execution time.

First, the performance of the DPIM and ANNM modules were analyzed separately and, later, it
was done for the complete architecture. The results presented in Table 2 were obtained by performing
the execution time analysis of the DPIM in the FPGA and in the ARM processor. The obtained
results point out that the DPIM FPGA implementation achieved better performance compared to the
implementation in the ARM processor. This demonstrates the effectiveness of the implementation of
DIP techniques in FPGA.

Table 2. DPIM runtime comparison.

Data Dual-Core ARM FPGA

Runtime (s) 0.6227 0.0245
Images p/second 1.6059 40.8163
Speedup 1 25.4165

The results presented in Table 3 were obtained from the ANNM runtime analysis. A sample
is the set of nine descriptors, which takes 0.6840µs to be processed by the ANN implemented in
FPGA, it achieved a throughput of approximately 1,461,988 samples per second. Thus, by comparing
FPGA runtime with the processor, an increase in the processing speed of approximately 141.8167×
was obtained.
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Table 3. ANNM runtime.

Data Dual-Core ARM FPGA

Runtime (µs) 97 0.6840
Samples p/second 10,309 1,461,988
Speedup 1 141.8167

According to the results collected after finishing the runtime analysis, the FPGA implementation
was able to analyze 40 images per second, performing the analysis of 2414 images per minute. On the
other hand, the ARM processor implementation is only capable of analyzing one image per second,
resulting in 96 images per minute.

Given all the presented results, it is possible to affirm that the FPGA implementation generated a
significant acceleration in the execution of the skin cancer detection technique.

The final analysis of the execution time is performed considering the complete system and the
results presented in Table 4. According to the results collected after finishing the runtime analysis,
the FPGA implementation was able to analyze 40 images per second, performing the analysis of
2414 images per minute. On the other hand, the ARM processor implementation is only capable of
analyzing one image per second, resulting in 96 images per minute.

Given all the presented results, it is possible to affirm that the FPGA implementation generated a
significant acceleration in the execution of the skin cancer detection technique.

Table 4. Runtime of the complete system.

Data Dual-Core ARM FPGA

Runtime (s) 0.6228 0.0245
Samples p/second 1.6057 40.8163
Speedup 1 25.4165

4.2.2. Hardware Resource Utilization

On top of the runtime analysis, another important performance parameter is the number of FPGA
resources used. Here, again, a separate analysis for the DPIM and ANNM modules were conducted as
well as an investigation for the hardware resources used by the complete implementation.

The use of hardware resources presented in Table 5 refers to the DPIM module. As can be seen
from this table, the DPIM architecture used a low percentage of the hardware available in the FPGA.

Table 5. Hardware resources used by the DPIM Module.

Resources Total

ALMs 3207 (8%)
Pins 133 (42%)
Bits of Memory Blocks 256 (<1%)
DSP blocks 4 (4%)
Registers 459 (<1%)

The following Table 6 presents the hardware resources used by the ANNM module. Through the
analysis of these results, it is possible to observe that, although the neural network implemented is
relatively large, there are still enough free resources to implement it alongside the DPIM.
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Table 6. Hardware resources used by the ANNM Module.

Resources Total

ALMs 6684 (16%)
Pins 123 (39%)
Bits of Memory Blocks 0 (0%)
DSP blocks 112 (100%)
Registers 1482 (<1%)

Finally, the resources used by the complete system architecture are presented in Table 7. Through it,
it is possible to observe that the amount of resources used was low enough to allow the implementation
of the architecture in the targeted FPGA. Based on these data, it is also possible to notice that the
proposed implementation left more than 70% of the Adaptive Logic Modules (ALMs) available,
which allows the implementation of additional logic.

Table 7. Hardware Resourcers used by the entire implementation.

Resources Total

ALMs 9645 (23%)
Pins 56 (18%)
Bits of Memory Blocks 256 (<1%)
DSP blocks 112 (100%)
Registers 2067 (<1%)

4.2.3. Power Consumption

The last performance parameter to be analyzed is energy consumption. This inspection was
conducted using the Quartus Power Analyzer Tool for all inspected modules.

Following the same order as the previous analysis, here, the first module to be examined is the
DPIM and the resulting power consumption is shown in Table 8.

Firstly, only the power consumption of the DPIM was analyzed. The results of the analysis are
presented in Table 8.

Table 8. Power consumption for the DPIM module.

Power Consumption Total (mW)

Dynamic 43.85
Static 412.69
I/O 14.23

Total 470.77

Secondly, the same power consumption analysis was conducted for the ANNM module and the
obtained results are shown in Table 9.

Table 9. Power consumption for the ANNM module.

Power Consumption Total (mW)

Dynamic 104.32
Static 413.36
I/O 42.56

Total 560.24

Finally, the result of the power consumption for the complete system is presented in Table 10.
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Table 10. Power consumption for the entire implementation.

Power Consumption Total (mW)

Dynamic 159.06
Static 413.89
I/O 41.39

Total 614.34

The dynamic power consumption of the 800 MHz ARM processor is about 1392 mW while the
FPGA implementation at a clock frequency of 8.77 MHz consumes about 159.06 mW. Hence, the FPGA
saves 8.75× more power than the processor. It is also possible to reduce energy consumption even
further by configuring the implementation to run with lower clock speeds.

4.3. State-of-the-Art Comparison

The implementation proposed in this work and presented in the previous sections will be
compared to two other skin cancer detection systems from the literature: [14,15]. The comparison
will be mainly focused on the ANNM model (Section 3.2), the module responsible for classification,
which will be compared to the equivalent classifiers developed by the two mentioned references.

For comparison purposes, the models that obtained the best results in the studies of [14,15] were
selected. Both developed classifiers based on SVM which were trained using a new 356 × 27 dataset
(356 instances and 27 features) extracted from images collected from available web resources. In [14],
this dataset was manipulated in order to generate two different datasets so that two modules could be
produced: a melanoma-sensitive model called model M and non-melanoma-sensitive (benign) model
called model N. These two models are then integrated into a cascade SVM system which is analyzed
with and without the use of dynamic hardware technology. The dynamic partially reconfiguration
(DPR) technique is exploited to allow dynamic reconfiguration of selected areas on FPGA on-the-fly.
In [14], three models were created, but this comparison will only use the main two: Model 1, which used
the original full dataset, and Model S, a smaller-scale implementation used as a case study.

The two models M and N proposed in [14] used 61 and 139 SVs respectively when implemented
separately. The classifier implementation without dynamic hardware technology (Model 1 from [14])
used 200 SVs; in this, models M and N are simultaneously implemented on the hardware. Meanwhile,
the dynamic hardware implementation (Model 2 from [14]) used 61 or 139 SVs, depending on the model,
M or N, to be dynamically implemented in the hardware. In [15], their Model 1 was implemented
with 248 SVs and the Model S was implemented with 61 SVs. For comparison, Design 1 of these two
models proposed by [15] was used, which employed the optimization directive “Pipeline inner loops”
of Vivado HLS.

4.3.1. Runtime Comparison

Works [14,15] performed runtime measurement in two distinct ways. Due to the size limitation
of the embedded DDR3 memory, the small-scale models [15] was used for evaluating the processing
speed and time by using the XTimer IP measurements from running the application on Zynq Soc,
while all other models were evaluated based on simulation and synthesis results.

Table 11 shows a comparison between the processing time results obtained by [14,15] and those
obtained by the proposed work.

Table 11. Runtime Comparison with related works.

Related Works Model 1 [14] Model 2 [14] Model 1 [15] Model S [15] Proposed ANNM

Frequency (MHz) 100 100 100 250 8.77
Runtime (µs) 3 3 141.38 14.77 0.68
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From this comparison, it can be seen that the classifier proposed in this work achieved an execution
time of 0.68 µs faster than the shortest time of 3 µs reported by [14,15]. This difference represents a
speedup of approximately 4.41×.

On the other hand, comparing the achieved results to the highest reported time of 141.38 µs,
a speedup of 208×was achieved.

4.3.2. Hardware Resource Utilization

The target FPGA from [14,15] have LUTs that can be configured as either one 6-input LUT with one
output or as two 5-input LUTs with separate outputs but common addresses or logic inputs. The FPGA
used in the implementation proposed by the present work has the Adaptive Logic Module (ALM) as
its basic element, composed of an 8-input fracturable look-up table (LUT) with four dedicated registers.
For comparison, it is going to be assumed that 1 ALM is equivalent to 1 LUT from the target [14,15].
The same frequencies from Table 11 were used for the hardware synthesis perfmored in order to
generate the presented results regarding resources usage.

Table 12 shows a comparison between the results obtained by [14,15] and those obtained by the
proposed work.

Table 12. Comparison of Hardware Resources usage with related works.

Related Works Model 1 [14] Model 2 [14] Model 1 [15] Model S [15] Proposed ANNM

ALMs/LUTs 1762 1457 2579 2870 6684
DSP 10 5 5 5 112
Registers N/A N/A 2898 3332 1482

From the above results, it can be seen that the ANNM classifier presented a higher usage of ALMs
and DSPs in relation to the equivalent usage from the other models. The opposite occurred for the
number of registers. This happens because in this case there is the implementation of two distinct
classifiers, the SVM and the MLP. The MLP performs a greater number of operations, each neuron
has a multiplication for each of its inputs, a cascade sum of these results and an approximation of
the activation function through sums, multiplications, and other logical components. While the SVM
requires a smaller number of operations to obtain its classification, there is basically one multiplication
by SV and cascade sum.

4.3.3. Power Consumption Comparison

Ref. [14,15] used the Vivado tool for power consumption analysis of all implementations. Table 13
shows a comparison between the power consumption results obtained by [14,15] and those obtained
by the proposed ANNM.

Table 13. Comparison of power consumption with related works.

Related Works Model 1 [14] Model 2 [14] Model 1 [15] Model S [15] Proposed ANNM

Dynamic (W) 1.4040 1.3950 1.5980 1.5343 0.1043
Static (W) 0.1560 0.1550 0.1580 0.1517 0.4134

Total (W) 1.5600 1.5500 1.7560 1.6860 0.5177

From the above results, it can be noticed that the proposed ANNM hardware implementation
achieved the lowest dynamic power consumption and the highest static power consumption among
all the compared implementations. Overall, the proposed ANNM achieved the lowest total energy
consumption of 0.5177 W which represents a reduction of approximately 3× if compared to the lowest
power consumption, 1.550 W [14], and a reduction of approximately 3.4× if compared to the highest
power consumption observed, 1.756 W [15].
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4.3.4. Accuracy Comparison

Finally, the accuracy results obtained in this work are compared with the models [14,15], as shown
in Table 14.

Table 14. Comparison of classification accuracy with related works.

Related Works Model 1 [14] Model 2 [14] Model 1 [15] Model S [15] Proposed ANNM

Accuracy 97.9% and 72.5% 97.9% and 72.5% 80.85% 97.92% 90%

The models proposed in [14,15] were trained using cross-validation, and the accuracy result
presented for each model is the the cross-validation accuracy. This accuracy is obtained with the
same set of data that is used in training at a given moment, generally providing greater accuracy than
that obtained with validation data not used in training, while, in this work, the dataset was divided
into training and validation data, to obtain accuracy using only validation data not used in training.
Sensitivity and specificity results are not compared as these data are not presented by [14,15].

The FPGA implementation of cascade SVMs [14] used a melanoma-sensitive model and a
non-melanoma-sensitive model, with accuracies of 97.92% and 72, 51%, respectively; therefore,
both accuracies are reported in Table 14. From Table 14, the model here presented obtained a accuracy
of 90% in the validation data, this result is better than the Model 1 [15] and the non-melanoma-sensitive
model presented in the cascade SVMs from [14]. The proposed model shows inferior results to the
model S [15] and the melanoma-sensitive model in the cascade SVMs from [14]. Although our result is
lower than these, there is a problem with the different methods of determining accuracy. The models
proposed in [14,15] can present better results than what would be obtained by adopting the same
method of determining accuracy used in this work. Moreover, this work uses a different database than
the one used in the comparative works, which can also influence the accuracy obtained.

5. Conclusions

This work implemented a detection system of skin cancer based on reconfigurable hardware using
FPGA based on artificial neural networks and digital image processing techniques. The Hardware
architecture was developed using fixed-point representation. When comparing the hardware
implementation to a software implementation using float-point precision, the same values of accuracy,
sensitivity, and specificity were obtained. This means that, even with a reduced numerical precision,
it was possible to maintain the same statistical result while saving enough hardware resources for
additional logic to be implemented if needed in the Intel Cyclone V SE 5CSEBA6U23I7 FPGA.

The implementation of the DPI and MLP neural network techniques in FPGA showed better
results than the respective implementations in the ARM processor, achieving better runtime and lower
power consumption. The execution time of the complete hardware system was approximately 25×
faster than the equivalent software implementation. The FPGA implementation required about 5×
less power than the processor. Compared to other similar works in the literature, the implementation
proposed here presented achieved a runtime up to 208× faster, low hardware resource utilization,
power consumption up to 3.4× lower, and an accuracy value better than a few models and in the same
range of precision of other models.

For future work, the authors from the presented implementation plan to keep working in the
classification phase in order to improve the overall classification accuracy of the system and perform
new tests with larger datasets. In addition to that, it is possible to design a sub-module in the Digital
Image Processing Module to automatically generate the mask, which would significantly increase
parallelism in the implementation.
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