24,099 research outputs found

    “Brilliantreflect”: smart mirror for smart life

    Get PDF
    In this globalization era, smart mirror have been one of the invention to represent futuristic interconnected physical object with several applications. Smart mirror is innovating appliance that incorporates with contextual information which offered the interactive user interface on the surface of a mirror with the use of Raspberry Pi 3. To create this smart mirror the methodology that includes analysis about smart mirror, designing the hardware and software, developing the prototype, implementation and lastly the evaluation phases needs to be take care of. The presentation performed on the mirror will be information such as weather, time and date, holiday calendar, to-do list by mobile synchronization, current traffic of selected area, news feed and compliment as a motivation. Furthermore, our framework also introduces music presentation that use for alarm purpose. In a nutshell, this mirror what we called “Brilliant Reflect” will be convenient to use as it provides various features to the user

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Large Deployable Reflector (LDR) system concept and technology definition study. Volume 2: Technology assessment and technology development plan

    Get PDF
    A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated

    Large Deployable Reflector (LDR) system concept and technology definition study. Analysis of space station requirements for LDR

    Get PDF
    A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated

    FeelFit – Design and Evaluation of a Conversational Agent to Enhance Health Awareness

    Get PDF
    In the course of digitalisation, healthcare systems are undergoing a major transformation. The generation and processing of health-related data are intended to improve health concerns. However, individual health awareness remains inadequate. To counteract this problem, issues in the fields of health awareness, wearable health monitoring systems, conversational agents, and user interface design were identified. Meta-requirements were derived from these issues and then converted into design principles. We developed the FeelFit conversational agent under consideration of those design principles. FeelFit measures vital parameters with various wearable sensors and presents them, enriched with personalised health information, to the user in the form of a conversation via individually configurable input and output devices. The conversational agent was evaluated by two experiments with 90 participants and a workshop. The results confirm a positive usability and task fulfilment of our conversational agent. Compared to known applications, the participants highlighted the more natural interaction and seamless integration of various sensors as strengths of FeelFit

    Modeling and evolving biochemical networks: insights into communication and computation from the biological domain

    Get PDF
    This paper is concerned with the modeling and evolving of Cell Signaling Networks (CSNs) in silico. CSNs are complex biochemical networks responsible for the coordination of cellular activities. We examine the possibility to computationally evolve and simulate Artificial Cell Signaling Networks (ACSNs) by means of Evolutionary Computation techniques. From a practical point of view, realizing and evolving ACSNs may provide novel computational paradigms for a variety of application areas. For example, understanding some inherent properties of CSNs such as crosstalk may be of interest: A potential benefit of engineering crosstalking systems is that it allows the modification of a specific process according to the state of other processes in the system. This is clearly necessary in order to achieve complex control tasks. This work may also contribute to the biological understanding of the origins and evolution of real CSNs. An introduction to CSNs is first provided, in which we describe the potential applications of modeling and evolving these biochemical networks in silico. We then review the different classes of techniques to model CSNs, this is followed by a presentation of two alternative approaches employed to evolve CSNs within the ESIGNET project. Results obtained with these methods are summarized and discussed

    Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation

    Get PDF
    Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al

    Science and Mathematics Student Research Day 1997

    Get PDF

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future
    corecore