2,434 research outputs found

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing

    Residual Stress in Wheels: Comparison of Neutron Diffraction and Ultrasonic Methods, with Trends in RCF

    Get PDF
    The critical damage mechanism on many GB passenger train wheels is Rolling Contact Fatigue (RCF) cracking in the rim. Evidence from field observations suggests that RCF damage occurs much more quickly as the wheelsets near the end of their life. Wheel manufacturing processes induce a compressive hoop stress in the wheel rim; variations in residual stress through the life of a wheel may influence the observed RCF damage rates. This paper describes experiments to measure residual stresses in new and used wheel rims to identify whether this could be a significant factor, and compares the findings from neutron diffraction and ultrasonic birefringence methods. The scope goes beyond previous applications of neutron diffraction to railway wheels and identifies key considerations for future testing. Assuming that the as-manufactured stress distribution was similar for all three wheels tested, it is found that the stresses are redistributed within the wheel rim during its life as material is removed and plastic flow occurs. However, the hoop stress near the running surface remains compressive and may not have a large influence on the RCF damage rates

    Manufacture of astroloy turbine disk shapes by hot isostatic pressing, volume 1

    Get PDF
    The Materials in Advanced Turbine Engines project was conducted to demonstrate container technology and establish manufacturing procedures for fabricating direct Hot Isostatic Pressing (HIP) of low carbon Astroloy to ultrasonic disk shapes. The HIP processing procedures including powder manufacture and handling, container design and fabrication, and HIP consolidation techniques were established by manufacturing five HIP disks. Based upon dimensional analysis of the first three disks, container technology was refined by modifying container tooling which resulted in closer conformity of the HIP surfaces to the sonic shape. The microstructure, chemistry and mechanical properties of two HIP low carbon Astroloy disks were characterized. One disk was subjected to a ground base experimental engine test, and the results of HIP low carbon Astroloy were analyzed and compared to conventionally forged Waspaloy. The mechanical properties of direct HIP low carbon Astroloy exceeded all property goals and the objectives of reduction in material input weight and reduction in cost were achieved

    Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials

    Get PDF
    Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for self–cleaning, anti–icing, non–wetting surface and low flow resistance in industrial applications. Herein, we report a roll–to–roll strategy to create durable and robust superhydrophobic surfaces with designed micro–/nano– scale hierarchical structures on many conventional engineering materials by combining electrical discharge machining, coating of carbon nanoparticles, and followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with static water contact angle of 170±2o and slide angle of 3±1o. The treated surface also exhibits good resilience and maintains the performance after tested in various harsh conditions including water flushing for several days, sand abrasion, scratching with sandpapers and corrosive solution. Significantly, the superhydrophobic surfaces also shows a high efficiency of self–cleaning properties even after oil–contamination during applications

    Learning participation as systems practice

    Get PDF
    We describe an evolving praxeology for Systems Practice for managing complexity built on 30 years of developing supported open learning opportunities in the area of Systems within the curriculum of The Open University (UK). We ground this description in two specific examples of how notions of participation are incorporated conceptually and practically into a learners programme of study by considering: (i) the postgraduate course 'Environmental Decision Making. A Systems Approach' (T860) and (ii) the undergraduate course 'Managing complexity. A systems approach' (T306)

    Product design-Process selection-Process planning Integration based on Modelling and Simulation

    Get PDF
    As a solution for traditional design process having many drawbacks in the manufacturing process, the integration of Product design-Process selection-Process planning is carried out in the early design phase. The technological, economic, and logistic parameters are taken into account simultaneously as well as manufacturing constraints being integrated into the product design. As a consequence, the most feasible alternative with regard to the product’s detailed design is extracted satisfying the product’s functional requirements. Subsequently, a couple of conceptual process plans are proposed relied on manufacturing processes being preliminarily selected in the conceptual design phase. Virtual manufacturing is employed under CAM software to simulate fabrication process of the potential process plans. Ultimately, the most suitable process plan for fabricating the part is recommended based upon a multi-criteria analysis as a resolution for decision making

    University of Malaya Research Bulletin, Volume 16, Number 1, 2016

    Get PDF
    Previously known as IPPP UM Research Bulleti

    Engineering data management: a tool for technical coordination

    Get PDF
    This paper studies the basic motivations behind Engineering Data Management (EDM) in a decade long Large Hadron Collider (LHC) project with at least another decades operational period at CERN. The main argument is that without strict managerial principles to control engineering work the exploitation of EDM becomes impossible. Structured and organized configuration management is the absolute prerequisite for an effective integration of design, manufacturing and installation work. EDM is seen to provide all collaborating parties of the project with a coherent and up-to-date view of the product specifications together with other relevant information, such as products change log, responsibilities and status indicators during the products whole life-cycle. It is argued that by combining simple and commonly accepted managerial principles with an advanced EDM system the outcome supports the main phases of products evolution, i.e. design, assembly, operation and maintenance. The paper outlines the main tasks of the configuration management and the fundamental requirements of EDM in order to meet LHC-projects complexity, stringent budget, high quality and tight schedule constraints set by the CERN Council. Keywords: configuration management, new product development, project management, concurrent engineering, engineering data managemen

    The fabrication of beryllium. Volume III - Metal removal techniques

    Get PDF
    Metal removal techniques for beryllium in spacecraft structure applicatio
    • 

    corecore