2,870 research outputs found

    Authentication of Students and Students’ Work in E-Learning : Report for the Development Bid of Academic Year 2010/11

    Get PDF
    Global e-learning market is projected to reach $107.3 billion by 2015 according to a new report by The Global Industry Analyst (Analyst 2010). The popularity and growth of the online programmes within the School of Computer Science obviously is in line with this projection. However, also on the rise are students’ dishonesty and cheating in the open and virtual environment of e-learning courses (Shepherd 2008). Institutions offering e-learning programmes are facing the challenges of deterring and detecting these misbehaviours by introducing security mechanisms to the current e-learning platforms. In particular, authenticating that a registered student indeed takes an online assessment, e.g., an exam or a coursework, is essential for the institutions to give the credit to the correct candidate. Authenticating a student is to ensure that a student is indeed who he says he is. Authenticating a student’s work goes one step further to ensure that an authenticated student indeed does the submitted work himself. This report is to investigate and compare current possible techniques and solutions for authenticating distance learning student and/or their work remotely for the elearning programmes. The report also aims to recommend some solutions that fit with UH StudyNet platform.Submitted Versio

    Integration of speech-processing technologies into Activobank's client interaction process

    Get PDF
    This dissertation analyzes the possibilities of utilizing speech-processing technologies to transform the user experience of ActivoBank’s customers while using remote banking solutions. The technologies are examined through different criteria to determine if they support the bank’s goals and strategy and whether they should be incorporated in the bank’s offering. These criteria include the alignment with ActivoBank’s values, the suitability of the technology providers, the benefits these technologies entail, potential risks, appeal to the customers and impact on customer satisfaction. The analysis suggests that ActivoBank might not be in a position to adopt these technologies at this point in time

    A Review of the Fingerprint, Speaker Recognition, Face Recognition and Iris Recognition Based Biometric Identification Technologies

    Get PDF
    This paper reviews four biometric identification technologies (fingerprint, speaker recognition, face recognition and iris recognition). It discusses the mode of operation of each of the technologies and highlights their advantages and disadvantages

    Genetic Programming for Multibiometrics

    Full text link
    Biometric systems suffer from some drawbacks: a biometric system can provide in general good performances except with some individuals as its performance depends highly on the quality of the capture. One solution to solve some of these problems is to use multibiometrics where different biometric systems are combined together (multiple captures of the same biometric modality, multiple feature extraction algorithms, multiple biometric modalities...). In this paper, we are interested in score level fusion functions application (i.e., we use a multibiometric authentication scheme which accept or deny the claimant for using an application). In the state of the art, the weighted sum of scores (which is a linear classifier) and the use of an SVM (which is a non linear classifier) provided by different biometric systems provide one of the best performances. We present a new method based on the use of genetic programming giving similar or better performances (depending on the complexity of the database). We derive a score fusion function by assembling some classical primitives functions (+, *, -, ...). We have validated the proposed method on three significant biometric benchmark datasets from the state of the art

    Effective Identity Management on Mobile Devices Using Multi-Sensor Measurements

    Get PDF
    Due to the dramatic increase in popularity of mobile devices in the past decade, sensitive user information is stored and accessed on these devices every day. Securing sensitive data stored and accessed from mobile devices, makes user-identity management a problem of paramount importance. The tension between security and usability renders the task of user-identity verification on mobile devices challenging. Meanwhile, an appropriate identity management approach is missing since most existing technologies for user-identity verification are either one-shot user verification or only work in restricted controlled environments. To solve the aforementioned problems, we investigated and sought approaches from the sensor data generated by human-mobile interactions. The data are collected from the on-board sensors, including voice data from microphone, acceleration data from accelerometer, angular acceleration data from gyroscope, magnetic force data from magnetometer, and multi-touch gesture input data from touchscreen. We studied the feasibility of extracting biometric and behaviour features from the on-board sensor data and how to efficiently employ the features extracted to perform user-identity verification on the smartphone device. Based on the experimental results of the single-sensor modalities, we further investigated how to integrate them with hardware such as fingerprint and Trust Zone to practically fulfill a usable identity management system for both local application and remote services control. User studies and on-device testing sessions were held for privacy and usability evaluation.Computer Science, Department o

    Mobile security and smart systems

    Get PDF

    Automatic Identity Recognition Using Speech Biometric

    Get PDF
    Biometric technology refers to the automatic identification of a person using physical or behavioral traits associated with him/her. This technology can be an excellent candidate for developing intelligent systems such as speaker identification, facial recognition, signature verification...etc. Biometric technology can be used to design and develop automatic identity recognition systems, which are highly demanded and can be used in banking systems, employee identification, immigration, e-commerce…etc. The first phase of this research emphasizes on the development of automatic identity recognizer using speech biometric technology based on Artificial Intelligence (AI) techniques provided in MATLAB. For our phase one, speech data is collected from 20 (10 male and 10 female) participants in order to develop the recognizer. The speech data include utterances recorded for the English language digits (0 to 9), where each participant recorded each digit 3 times, which resulted in a total of 600 utterances for all participants. For our phase two, speech data is collected from 100 (50 male and 50 female) participants in order to develop the recognizer. The speech data is divided into text-dependent and text-independent data, whereby each participant selected his/her full name and recorded it 30 times, which makes up the text-independent data. On the other hand, the text-dependent data is represented by a short Arabic language story that contains 16 sentences, whereby every sentence was recorded by every participant 5 times. As a result, this new corpus contains 3000 (30 utterances * 100 speakers) sound files that represent the text-independent data using their full names and 8000 (16 sentences * 5 utterances * 100 speakers) sound files that represent the text-dependent data using the short story. For the purpose of our phase one of developing the automatic identity recognizer using speech, the 600 utterances have undergone the feature extraction and feature classification phases. The speech-based automatic identity recognition system is based on the most dominating feature extraction technique, which is known as the Mel-Frequency Cepstral Coefficient (MFCC). For feature classification phase, the system is based on the Vector Quantization (VQ) algorithm. Based on our experimental results, the highest accuracy achieved is 76%. The experimental results have shown acceptable performance, but can be improved further in our phase two using larger speech data size and better performance classification techniques such as the Hidden Markov Model (HMM)
    • …
    corecore