75,964 research outputs found

    Sensor enclosures: example application and implications for data coherence

    Get PDF
    Sensors deployed in natural environments, such as rivers, beaches and glaciers, experience large forces and damaging environmental conditions. Sensors need to be robust, securely operate for extended time periods and be readily relocated and serviced. The sensors must be housed in materials that mimic natural conditions of size, density, shape and roughness. We have developed an encasement system for sensors required to measure large forces experienced by mobile river sediment grains. Sensors are housed within two discrete cases that are rigidly conjoined. The inner case exactly fits the sensor, radio components and power source. This case can be mounted within outer cases of any larger size and can be precisely moulded to match the shapes of natural sediment. Total grain mass can be controlled by packing the outer case with dense material. Case design uses Solid-WorksTM software, and shape-matching involved 3D laser scanning of natural pebbles. The cases were printed using a HP DesignjetTM 3D printer that generates high precision parts that lock rigidly in place. The casings are watertight and robust. Laboratory testing produces accurate results over a wider range of accelerations than previously reported

    Hardware acceleration of reaction-diffusion systems:a guide to optimisation of pattern formation algorithms using OpenACC

    Get PDF
    Reaction Diffusion Systems (RDS) have widespread applications in computational ecology, biology, computer graphics and the visual arts. For the former applications a major barrier to the development of effective simulation models is their computational complexity - it takes a great deal of processing power to simulate enough replicates such that reliable conclusions can be drawn. Optimizing the computation is thus highly desirable in order to obtain more results with less resources. Existing optimizations of RDS tend to be low-level and GPGPU based. Here we apply the higher-level OpenACC framework to two case studies: a simple RDS to learn the ‘workings’ of OpenACC and a more realistic and complex example. Our results show that simple parallelization directives and minimal data transfer can produce a useful performance improvement. The relative simplicity of porting OpenACC code between heterogeneous hardware is a key benefit to the scientific computing community in terms of speed-up and portability

    Towards a real-time microscopic emissions model

    Get PDF
    This article presents a new approach to microscopic road traffic exhaust emission modelling. The model described uses data from the SCOOT demand-responsive traffic control system implemented in over 170 cities across the world. Estimates of vehicle speed and classification are made using data from inductive detector loops located on every SCOOT link. This data feeds into a microscopic traffic model to enable enhanced modelling of the driving modes of vehicles (acceleration, deceleration, idling and cruising). Estimates of carbon monoxide emissions are made by applying emission factors from an extensive literature review. A critical appraisal of the development and validation of the model is given before the model is applied to a study of the impact of high emitting vehicles. The article concludes with a discussion of the requirements for the future development and benefits of the application of such a model

    The upper-atmosphere extension of the ICON general circulation model (version: Ua-icon-1.0)

    Get PDF
    How the upper-atmosphere branch of the circulation contributes to and interacts with the circulation of the middle and lower atmosphere is a research area with many open questions. Inertia-gravity waves, for instance, have moved in the focus of research as they are suspected to be key features in driving and shaping the circulation. Numerical atmospheric models are an important pillar for this research. We use the ICOsahedral Non-hydrostatic (ICON) general circulation model, which is a joint development of the Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD), and provides, e.g., local mass conservation, a flexible grid nesting option, and a non-hydrostatic dynamical core formulated on an icosahedral-triangular grid. We extended ICON to the upper atmosphere and present here the two main components of this new configuration named UA-ICON: an extension of the dynamical core from shallow- to deep-atmosphere dynamics and the implementation of an upper-atmosphere physics package. A series of idealized test cases and climatological simulations is performed in order to evaluate the upper-atmosphere extension of ICON. © Author(s) 2019

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    Solar-Terrestrial Science Strategy Workshop

    Get PDF
    The conclusions and recommendations reached at the Solar Terrestrial Science Strategy Workshop are summarized. The charter given to this diverse group was: (1) to establish the level of scientific understanding to be accomplished with the completion of the current and near term worldwide programs; (2) identify the significant scientific questions to be answered by future solar terrestrial programs, and the programs required to answer these questions; and (3) map out a program strategy, taking into consideration currently perceived space capabilities and constraints, to accomplish the identified program
    • 

    corecore