10 research outputs found

    Synthesizing SMOS Zero-Baselines with Aquarius Brightness Temperature Simulator

    Get PDF
    SMOS [1] and Aquarius [2] are ESA and NASA missions, respectively, to make L-band measurements from the Low Earth Orbit. SMOS makes passive measurements whereas Aquarius measures both passive and active. SMOS was launched in November 2009 and Aquarius in June 2011.The scientific objectives of the missions are overlapping: both missions aim at mapping the global Sea Surface Salinity (SSS). Additionally, SMOS mission produces soil moisture product (however, Aquarius data will eventually be used for retrieving soil moisture too). The consistency of the brightness temperature observations made by the two instruments is essential for long-term studies of SSS and soil moisture. For resolving the consistency, the calibration of the instruments is the key. The basis of the SMOS brightness temperature level is the measurements performed with the so-called zero-baselines [3]; SMOS employs an interferometric measurement technique which forms a brightness temperature image from several baselines constructed by combination of multiple receivers in an array; zero-length baseline defines the overall brightness temperature level. The basis of the Aquarius brightness temperature level is resolved from the brightness temperature simulator combined with ancillary data such as antenna patterns and environmental models [4]. Consistency between the SMOS zero-baseline measurements and the simulator output would provide a robust basis for establishing the overall comparability of the missions

    Millimeter-Wave Amplifier-Based Noise Sources in SiGe BiCMOS Technology

    Get PDF

    Calibration of the MIRAS Radiometers

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The microwave imaging radiometer with aperture synthesis (MIRAS) is formed by 69 total power radiometers, of which three are the noise-injection type. Their calibration is reviewed on the basis of the data gathered during more than eight years of operation. Internally calibrated gain and offset corrections with improved temporal stability are presented. New front-end loss characterization with lower seasonal dependence originated from external temperature swings is also proposed. Finally, a methodology to validate the external calibrations, with the instrument pointing to the cold sky, is developed. It seems to indicate that the change of orientation of the instrument, with associated thermal variations, may induce small changes in the radiometer front-end losses, thus introducing calibration errors.Peer ReviewedPostprint (author's final draft

    SMOS instrument performance and calibration after six years in orbit

    Get PDF
    ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched 2-Nov-2009, has been in orbit for over 6 years, and its Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) in two dimensions keeps working well. The calibration strategy remains overall as established after the commissioning phase, with a few improvements. The data for this whole period has been reprocessed with a new fully polarimetric version of the Level-1 processor which includes a refined calibration schema for the antenna losses. This reprocessing has allowed the assessment of an improved performance benchmark. An overview of the results and the progress achieved in both calibration and image reconstruction is presented in this contribution.Peer ReviewedPostprint (author's final draft

    Calculation of Faraday Rotation Angle from SMOS Radiometric Data

    Get PDF
    The Faraday Rotation (FR) consists of a rotation in the components of the electromagnetic field emitted by the Earth as it propagates through the ionosphere. It depends on the frequency, the geomagnetic field, and the Vertical Total Electron Content (VTEC) of the ionosphere. For the Soil Moisture and Ocean Salinity (SMOS) mission, which operates in the L-band, this effect is not negligible and must be compensated. This project is born from a methodology that consists of the estimation of the ionosphere VTEC of every SMOS overpass through an inversion procedure based on the measured FRA. However, there are some zones where the FRA and VTEC cannot be retrieved due to the presence of Radio Frequency Interferences (RFI) or in zones of dense forest or ice. In order to improve the maps of the recovered VTEC and FRA, these zones where they cannot be recovered have been analyzed. First, the brightness temperature (TB) maps have been reproduced and the FRA formula has been analyzed to observe in detail where the FRA cannot be recovered, focusing on Canada. It will be found that this happens because of an indetermination of the formula. Then, three approaches will be proposed, each one with a different methodology with the aim of improving the recovered VTEC maps. The VTEC cannot have negative values, but in the core methodology, some negative values appear which are then rejected when plotting them on the map, since they correspond to VTEC values that have not been correctly recovered. Therefore, the VTEC recovery maps will be improved by applying one of these approaches, although the statistic will worsen a bit. Finally, more suitable and optimal thresholds are going to be looked for in order to improve the statistics of the maps.La Rotación de Faraday (RF) consiste en una rotación en los componentes del campo electromagnético emitido por la Tierra al propagarse por la ionosfera. Depende de la frecuencia, del campo geomagnético y del contendido total vertical de electrones (VTEC) de la ionosfera. Para la misión Soil Moisture and Ocean Salinity (SMOS), que opera en la banda L, este efecto no es despreciable y debe ser compensado. Este proyecto nace de una metodología que consiste en la estimación del VTEC de la ionosfera de cada pasada del satélite SMOS mediante un procedimiento inverso basado en el FRA medido. Sin embargo, hay algunas zonas en las que el FRA y el VTEC no se pueden recuperar debido a la presencia de interferencias de radiofrecuencia (RFI) o en zonas de bosque o hielo. Para poder mejorar la recuperación de la FRA y el VTEC, se han analizado estas zonas donde no se pueden recuperar. Primero, se han reproducido los mapas de temperatura de brillo (TB) y se ha analizado la fórmula del FRA para poder observar con detalle dónde y porqué no se puede recuperar el FRA, centrándonos en Canadá. Se verá que esto ocurre debido a una indeterminación de la fórmula. Después, se presentarán tres enfoques, cada uno con una metodología diferente con el fin de mejorar los mapas de la recuperación de VTEC. El VTEC no puede tener valores negativos, sin embargo, en la metodología base aparecen algunos valores negativos que luego son rechazados al momento de hacer las gráficas, ya que corresponden a valores de VTEC que no han sido recuperados correctamente. Por lo que, al aplicar uno de estos tres enfoques, los mapas de la recuperación de VTEC mejorarán, aunque a veces empeorando un poco las estadísticas. Por ultimo, se van a buscar umbrales más adecuados y óptimos para mejorar las estadísticas de los mapas.La Rotació de Faraday (RF) consisteix en una rotació en els components del camp electromagnètic emès per la Terra en propagar-se per la ionosfera. Depèn de la freqüència, del camp geomagnètic i del contingut total vertical d'electrons (VTEC) de la ionosfera. Per a la missió Soil Moisture and Ocean Salinity (SMOS), que opera en la banda L, aquest efecte no és menyspreable i ha de ser compensat. Aquest projecte neix d'una metodologia que consisteix en l'estimació del VTEC de la ionosfera de cada passada del SMOS mitjançant un procediment invers basat en el FRA mesurat. No obstant això, hi ha algunes zones en les quals el FRA i el VTEC no es poden recuperar a causa de la presència d'interferències de radiofreqüència (RFI) o en zones de bosc o gel. Per a poder millorar la recuperació de la FRA i el VTEC, s'han analitzat aquestes zones on no es poden recuperar. Primer, s'han reproduït els mapes de temperatura de lluentor (TB) i s'ha analitzat la fórmula del FRA per a poder observar amb detall on i perquè no es pot recuperar el FRA, centrant-nos en el Canadà. Es veurà que això es produeix a causa d'una indeterminació de la fórmula. Després, es presentaran tres enfocaments, cadascun amb una metodologia diferent amb la finalitat de millorar els mapes de la recuperació de VTEC. El VTEC no pot tenir valors negatius, no obstant això, en la metodologia apareixen alguns valors negatius que després són rebutjats al moment de fer les gràfiques, ja que corresponen a valors de VTEC que no han estat recuperats correctament. Pel que, en aplicar un d'aquests tres enfocaments, els mapes de la recuperació de VTEC milloraran però empitjorant una mica les estadístiques. Per últim, es buscaran llindars més adequats i òptims per a millorar les estadístiques dels mapes

    Deriving vertical total electron content maps from SMOS full polarimetric data to compensate the Faraday rotation effect

    Get PDF
    The Faraday rotation is a geophysical effect that causes a rotation of the electromagnetic field components emitted by the Earth when it propagates through the ionosphere. It depends on the vertical total electron content (VTEC) of the ionosphere, the geomagnetic field, and the frequency. For satellite measurements at the L band, this effect is not negligible and must be compensated for. This is the case of the Soil Moisture and Ocean Salinity (SMOS) mission, where the measured polarimetric brightness temperature must be corrected from the Faraday rotation effect before the retrieval of the geophysical parameters. The Faraday rotation angle (FRA) can be estimated using a theoretical formulation that makes use of external sources for the VTEC and the geomagnetic field. Alternatively, it can be continuously retrieved from the SMOS full-polarimetric data. However, this is not straightforward due to the relatively poor radiometric sensitivity (thermal noise) and accuracy (spatial bias) of its payload MIRAS (Microwave Interferometer Radiometer by Aperture Synthesis). In this thesis, a methodology for estimating the total electron content of the ionosphere by using an inversion procedure from the measured rotation angle has been developed. These SMOS VTEC maps are derived from SMOS measurements in the Extended Alias-Free Field of View (EAF-FoV) by applying spatio-temporal filtering techniques to mitigate the radiometric errors present in the full-polarimetric measured brightness temperatures. Systematic error patterns found in the Faraday rotation angle retrieval have been characterized along the mission and corrected. The methodology is independent, not only of external databases and forward models, but also of the target that is being measured. Eventually, these SMOS-derived VTEC maps can then be used in the SMOS level 2 processors to improve the geophysical retrievals. The impact of using these SMOS VTEC maps to correct the FRA in the SMOS mission instead of the commonly used VTEC data from GPS has also been assessed, particularly over ocean, where the ionospheric effect is stronger. This assessment has demonstrated improvements in the spatial biases, in the stability of the brightness temperatures (especially in the third Stokes parameter), and in the reduction of the latitudinal gradient present in the third Stokes parameters. All these quality indicators point to a better quality of the geophysical retrievals.La rotación de Faraday es un efecto geofísico que causa un giro en las componentes del campo electromagnético emitido por la Tierra cuando éste se propaga a través de la ionosfera. Ésta depende del contenido vertical total de electrones (VTEC) en la ionosfera, el campo geomagnético y la frecuencia. En las medidas de los satélites que operan en banda L, este efecto no es despreciable y se debe compensar. Este es el caso de la misión SMOS (Soil Moisture and Ocean Salinity), por lo que el efecto de Faraday se tiene que corregir en las medidas polarimétricas captadas por el instrumento antes de obtener parámetros geofísicos. El ángulo de rotación de Faraday (FRA) se puede estimar con una fórmula teórica que usa bases de datos externas para el VTEC y el campo geomagnético. Alternativamente, se puede obtener de una manera continua a partir de los datos polarimétricos de SMOS. Sin embargo, esto no se logra con un cálculo directo debido a la pobre sensibilidad radiométrica (ruido térmico) y a la baja precisión (sesgos espaciales) que presenta el instrumento MIRAS (Microwave Interferometer Radiometer by apertura Synthesis), que se encuentra a bordo del satélite. En esta tesis, se desarrolla una metodología para estimar el VTEC de la ionosfera usando un proceso inverso a partir del ángulo de rotación medido. Estos mapas de VTEC se derivan de medidas en todo el campo de visión extendido en donde no hay aliasing. Para mitigar los errores radiométricos en las temperaturas de brillo polarimétricas, se aplican técnicas de filtrados temporales y espaciales. En el ángulo de rotación de Faraday recuperado se detectaron errores sistemáticos. Estos se caracterizaron a lo largo de la misión y se corrigieron. La metodología es independiente, no solo de bases de datos externas y modelos de océano, sino también de la superficie medida. Estos mapas de VTEC derivados de los datos SMOS se pueden usar en el procesador de nivel 2 para mejorar las recuperaciones geofísicas. Se ha evaluado el impacto de usar estos mapas para corregir el FRA en la misión, en vez de los datos de VTEC que comúnmente se emplean (mapas provenientes de datos de GPS), particularmente sobre océano, en donde los efectos de la ionosfera son más críticos. Esta verificación ha demostrado mejoras en el sesgo espacial, en la estabilidad de las temperaturas de brillo (especialmente en el tercer parámetro de Stokes) y en la reducción del gradiente latitudinal presente en el tercer parámetro de Stokes. Todos estos indicadores de calidad apuntan a la obtención de parámetros geofísicos de mejor calidad.Postprint (published version

    Contribution to advanced sensor development for passive imaging of the Earth

    Get PDF
    This work has been formally undertaken within the frame of the scholarship number BES-2012-053917 of 1 December 2012, by the "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad" related to the program "Formación de Personal Investigador (FPI)". The scholarship is related to the research project at the Universitat Politècnica de Catalunya (UPC) number TEC2011-25865. In a more general scope, this thesis is related to the Remote Sensing Laboratory (Signal Theory & Communication Department, UPC) on-going activities, within the SMOS (Soil Moisture and Ocean Salinity) mission by the European Space Agency (ESA). These activities have been organized to provide original advances in the following four main topics: 1) SMOS calibration and performance. Since the launch of the instrument in 2009, SMOS imaging has been performing exclusively in co-polar mode. However, SMOS measurements are fully polarimetric. This feature was not operationally exploited due to the large errors yielded by full-pol images. In this context my work was addressed to support better characterization of the antenna. Based on the idea that SMOS polarization mode was recently implemented using Full-pol measurements, the so-called relative phases have been recomputed by using co-polar and cross-polar measurements. SMOS moderate Side Lobe Level (SLL) is caused by the limited coverage of the measured visibility samples in the frequency domain, so another objective of this work has been devoted to assess the impact of calibration errors into SMOS side lobes level (SLL). The main objective on this topic has been to reproduce by simulation SMOS measured side-lobe levels (SLL) by adding errors to a point source response, in order to identify the dominant source of error. During commissioning phase it was detected that SMOS heater system were introducing small and random sporadic PMS offset steps (jumps) in several units. Another work during this thesis has been devoted to mitigate those PMS jumps by trimming calibration date from single LICEF averaged TA jumps over the ocean. 2) SMOS spatial bias assessment. SMOS measurements still have mathematical image reconstruction errors that must be properly assessed. The aim of this work is to focus on the so-called "floor error", defined in an error free end-to-end image reconstruction simulation. In order to reduce this error, different inversion approaches have been implemented and tested, as the so-called Gibbs 2 approach 3) SMOS improved imaging. One of the problems of most concern within the SMOS mission is related to the so-called "land-sea contamination" (LSC), an artificial increase of ocean brightness temperature close to land masses. Therefore, a systematic assessment has been performed in this thesis in order to understand and mitigate this artifact. This subject is related to one of the main original outcomes of the thesis, since it has a relevant impact on the quality of SMOS imaging. The LSC mitigation technique developed during the work of the thesis has been presented and validated by different methods. 4) SMOS follow-on missions advanced configurations. This work is devoted to assess the impact of instrumental errors on the radiometric accuracy (pixel bias) of one of the selected array configurations of the so-called Super-MIRAS instrument. The aim of this work has been focused on the assessment of different array geometries and instrument architectures of future L-band synthetic aperture radiometers to improve spatial resolution while maintaining radiometric sensitivity.Esta tesis se ha llevado a cabo en el marco de la beca FPI BES-2012-053917 del 1 de diciembre de 2012, por el "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad", asociada al proyecto TEC2011-25865 (Universidad Politècnica de Catalunya). En un sentido más amplio, el trabajo se engloba dentro de las actividades del Grupo de Teledetección (RSLab) del Departamento de Teoría de la Señal y Comunicaciones, UPC, en el marco de la misión SMOS (Soil Moisture and Ocean Salinity) de la Agencia Espacial Europea del Espacio (ESA). El trabajo se divide en: 1) Calibración y prestaciones del sensor SMOS Desde el lanzamiento del instrumento en 2009, la imagen de SMOS se ha obtenido utilizando medidas en modo co-polar. Sin embargo, las medidas en SMOS se realizan en full-pol. Esto no se había llevado a cabo debido a los grandes errores que se obtenían con imágenes en full-pol. En este contexto mi trabajo se ha enfocado en la realización de una mejor caracterización de la antena. Basado en la idea de que el modo full-pol ha sido recientemente implementado en SMOS, las fases relativas entre antenas han sido recalculadas utilizando medidas co-polares y cross-polares. Los lóbulos secundarios de SMOS (SLL) son causados por la cobertura limitada de las visibilidades medidas en el dominio frecuencial, así que otro de los objetivos de este trabajo ha sido analizar el impacto de errores de calibración en los lóbulos secundarios de SMOS. Básicamente se han reproducido los lóbulos secundarios de SMOS mediantes simulaciones añadiendo errores a una fuente puntual, identificando las principales fuentes de error. Durante la fase de comisionado se detectó que el sistema de calentamiento de SMOS introducía pequeños saltos aleatorios del offset del PMS en diferentes unidades. Para hacer un seguimiento y corregir estos saltos se realizaron calibraciones de offset semanales justo después de la fase de comisionado, así que otro de los trabajos realizados en esta tesis ha sido dirigido a mitigar estos saltos introduciendo calibraciones adicionales antes de los mismos a partir de medir la temperatura de antena media calculada en el océano. 2) Técnicas de reducción de los errores espaciales SMOS tiene un error matemático de reconstrucción en la imagen que ha sido investigado en este trabajo. Así que este trabajo se ha focalizado en el "floor error" definido como el error de reconstrucción en un instrumento ideal libre de errores. Para reducir este error se han utilizado diferentes aproximaciones como Gibbs 2. 3) Mejoras en la inversión de imagen Uno de los mayores problemas durante los primeros cinco años de misión SMOS ha sido la llamada "land-sea contamination" (contaminación tierra-mar). Así pues, se ha realizado un estudio sistemático para comprender y mitigar este artefacto. Este tema está relacionado con uno de los descubrimientos más importantes de esta tesis ya que este tiene un gran impacto en la calidad de la imagen de SMOS. La técnica encontrada para mitigar este error es presentada y validada mediante diferentes métodos. 4) Misiones futuras Este trabajo está enfocado en la investigación del impacto de errores instrumentales en la precisión radiométrica de errores espaciales de una de las posibles nuevas configuraciones de array propuestas para construir un nuevo instrumento llamado Super-MIRAS. El propósito principal de este trabajo está orientado en el desarrollo de diferentes geometrías de arrays y arquitecturas de instrumentos para una futura misión en banda L, en la que se diseñaría un nuevo radiómetro de apertura sintética para mejorar la resolución espacial manteniendo la sensibilidad radiométrica.Postprint (published version

    Contribution to advanced sensor development for passive imaging of the Earth

    Get PDF
    This work has been formally undertaken within the frame of the scholarship number BES-2012-053917 of 1 December 2012, by the "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad" related to the program "Formación de Personal Investigador (FPI)". The scholarship is related to the research project at the Universitat Politècnica de Catalunya (UPC) number TEC2011-25865. In a more general scope, this thesis is related to the Remote Sensing Laboratory (Signal Theory & Communication Department, UPC) on-going activities, within the SMOS (Soil Moisture and Ocean Salinity) mission by the European Space Agency (ESA). These activities have been organized to provide original advances in the following four main topics: 1) SMOS calibration and performance. Since the launch of the instrument in 2009, SMOS imaging has been performing exclusively in co-polar mode. However, SMOS measurements are fully polarimetric. This feature was not operationally exploited due to the large errors yielded by full-pol images. In this context my work was addressed to support better characterization of the antenna. Based on the idea that SMOS polarization mode was recently implemented using Full-pol measurements, the so-called relative phases have been recomputed by using co-polar and cross-polar measurements. SMOS moderate Side Lobe Level (SLL) is caused by the limited coverage of the measured visibility samples in the frequency domain, so another objective of this work has been devoted to assess the impact of calibration errors into SMOS side lobes level (SLL). The main objective on this topic has been to reproduce by simulation SMOS measured side-lobe levels (SLL) by adding errors to a point source response, in order to identify the dominant source of error. During commissioning phase it was detected that SMOS heater system were introducing small and random sporadic PMS offset steps (jumps) in several units. Another work during this thesis has been devoted to mitigate those PMS jumps by trimming calibration date from single LICEF averaged TA jumps over the ocean. 2) SMOS spatial bias assessment. SMOS measurements still have mathematical image reconstruction errors that must be properly assessed. The aim of this work is to focus on the so-called "floor error", defined in an error free end-to-end image reconstruction simulation. In order to reduce this error, different inversion approaches have been implemented and tested, as the so-called Gibbs 2 approach 3) SMOS improved imaging. One of the problems of most concern within the SMOS mission is related to the so-called "land-sea contamination" (LSC), an artificial increase of ocean brightness temperature close to land masses. Therefore, a systematic assessment has been performed in this thesis in order to understand and mitigate this artifact. This subject is related to one of the main original outcomes of the thesis, since it has a relevant impact on the quality of SMOS imaging. The LSC mitigation technique developed during the work of the thesis has been presented and validated by different methods. 4) SMOS follow-on missions advanced configurations. This work is devoted to assess the impact of instrumental errors on the radiometric accuracy (pixel bias) of one of the selected array configurations of the so-called Super-MIRAS instrument. The aim of this work has been focused on the assessment of different array geometries and instrument architectures of future L-band synthetic aperture radiometers to improve spatial resolution while maintaining radiometric sensitivity.Esta tesis se ha llevado a cabo en el marco de la beca FPI BES-2012-053917 del 1 de diciembre de 2012, por el "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad", asociada al proyecto TEC2011-25865 (Universidad Politècnica de Catalunya). En un sentido más amplio, el trabajo se engloba dentro de las actividades del Grupo de Teledetección (RSLab) del Departamento de Teoría de la Señal y Comunicaciones, UPC, en el marco de la misión SMOS (Soil Moisture and Ocean Salinity) de la Agencia Espacial Europea del Espacio (ESA). El trabajo se divide en: 1) Calibración y prestaciones del sensor SMOS Desde el lanzamiento del instrumento en 2009, la imagen de SMOS se ha obtenido utilizando medidas en modo co-polar. Sin embargo, las medidas en SMOS se realizan en full-pol. Esto no se había llevado a cabo debido a los grandes errores que se obtenían con imágenes en full-pol. En este contexto mi trabajo se ha enfocado en la realización de una mejor caracterización de la antena. Basado en la idea de que el modo full-pol ha sido recientemente implementado en SMOS, las fases relativas entre antenas han sido recalculadas utilizando medidas co-polares y cross-polares. Los lóbulos secundarios de SMOS (SLL) son causados por la cobertura limitada de las visibilidades medidas en el dominio frecuencial, así que otro de los objetivos de este trabajo ha sido analizar el impacto de errores de calibración en los lóbulos secundarios de SMOS. Básicamente se han reproducido los lóbulos secundarios de SMOS mediantes simulaciones añadiendo errores a una fuente puntual, identificando las principales fuentes de error. Durante la fase de comisionado se detectó que el sistema de calentamiento de SMOS introducía pequeños saltos aleatorios del offset del PMS en diferentes unidades. Para hacer un seguimiento y corregir estos saltos se realizaron calibraciones de offset semanales justo después de la fase de comisionado, así que otro de los trabajos realizados en esta tesis ha sido dirigido a mitigar estos saltos introduciendo calibraciones adicionales antes de los mismos a partir de medir la temperatura de antena media calculada en el océano. 2) Técnicas de reducción de los errores espaciales SMOS tiene un error matemático de reconstrucción en la imagen que ha sido investigado en este trabajo. Así que este trabajo se ha focalizado en el "floor error" definido como el error de reconstrucción en un instrumento ideal libre de errores. Para reducir este error se han utilizado diferentes aproximaciones como Gibbs 2. 3) Mejoras en la inversión de imagen Uno de los mayores problemas durante los primeros cinco años de misión SMOS ha sido la llamada "land-sea contamination" (contaminación tierra-mar). Así pues, se ha realizado un estudio sistemático para comprender y mitigar este artefacto. Este tema está relacionado con uno de los descubrimientos más importantes de esta tesis ya que este tiene un gran impacto en la calidad de la imagen de SMOS. La técnica encontrada para mitigar este error es presentada y validada mediante diferentes métodos. 4) Misiones futuras Este trabajo está enfocado en la investigación del impacto de errores instrumentales en la precisión radiométrica de errores espaciales de una de las posibles nuevas configuraciones de array propuestas para construir un nuevo instrumento llamado Super-MIRAS. El propósito principal de este trabajo está orientado en el desarrollo de diferentes geometrías de arrays y arquitecturas de instrumentos para una futura misión en banda L, en la que se diseñaría un nuevo radiómetro de apertura sintética para mejorar la resolución espacial manteniendo la sensibilidad radiométrica

    SMOS Flight external calibration and monitoring

    Get PDF
    This project has been devoted to develop several tools to assess in-flight performance of the MIRAS SMOS amplitude calibration. It has been mainly focused to analyze the performance of current internal calibration by means of the so-called one-point calibration. This allowed to develop External CAS and Antenna efficiency correction parameters to improve overall MIRAS amplitude calibration accuracy
    corecore