8,965 research outputs found

    Lumbar interspinous process fixation and fusion with stand-alone interlaminar lumbar instrumented fusion implant in patients with degenerative spondylolisthesis undergoing decompression for spinal stenosis

    Get PDF
    Abstract STUDY DESIGN: Prospective cohort study. PURPOSE: To assess the ability of a stand-alone lumbar interspinous implant (interspinous/interlaminar lumbar instrumented fusion, ILIF) associated with bone grafting to promote posterior spine fusion in degenerative spondylolisthesis (DS) with vertebral instability. OVERVIEW OF LITERATURE: A few studies, using bilateral laminotomy (BL) or bilateral decompression by unilateral laminotomy (BDUL), found satisfactory results in stenotic patients with decompression alone, but others reported increased olisthesis, or subsequent need for fusion in DS with or without dynamic instability. METHODS: Twenty-five patients with Grade I DS, leg pain and chronic low back pain underwent BL or BDUL and ILIF implant. Olisthesis was 13% to 21%. Follow-up evaluations were performed at 4 to 12 months up to 25 to 44 months (mean, 34.4). Outcome measures were numerical rating scale (NRS) for back and leg pain, Oswestry disability index (ODI) and short-form 36 health survey (SF-36) of body pain and function. RESULTS: Fusion occurred in 21 patients (84%). None had increased olisthesis or instability postoperatively. Four types of fusion were identified. In Type I, the posterior part of the spinous processes were fused. In Type II, fusion extended to the base of the processes. In Type III, bone was present also around the polyetheretherketone plate of ILIF. In Type IV, even the facet joints were fused. The mean NRS score for back and leg pain decreased by 64% and 80%, respectively. The mean ODI score was decreased by 52%. SF-36 bodily pain and physical function mean scores increased by 53% and 58%, respectively. Computed tomography revealed failed fusion in four patients, all of whom still had vertebral instability postoperatively. CONCLUSIONS: Stand-alone ILIF with interspinous bone grafting promotes vertebral fusion in most patients with lumbar stenosis and unstable Grade I DS undergoing BL or BDUL

    In Vitro Biomechanical Testing and Computational: Modeling in Spine

    Get PDF
    Two separate in vitro biomechanical studies were conducted on human cadaveric spines (Lumbar) to evaluate the stability following the implantation of two different spinal fixation devices interspinous fixation device (ISD) and Hybrid dynamic stabilizers. ISD was evaluated as a stand-alone and in combination with unilateral pedicle rod system. The results were compared against the gold standard, spinal fusion (bilateral pedicle rod system). The second study involving the hybrid dynamic system, evaluated the effect on adjacent levels using a hybrid testing protocol. A robotic spine testing system was used to conduct the biomechanical tests. This system has the ability to apply continuous unconstrained pure moments while dynamically optimizing the motion path to minimize off-axis loads during testing. Thus enabling precise control over the loading and boundary conditions of the test. This ensures test reliability and reproducibility. We found that in flexion-extension, the ISD can provide lumbar stability comparable to spinal fusion. However, it provides minimal rigidity in lateral bending and axial rotation when used as a stand-alone. The ISD with a unilateral pedicle rod system when compared to the spinal fusion construct were shown to provide similar levels of stability in all directions, though the spinal fusion construct showed a trend toward improved stiffness overall. The results for the dynamic stabilization system showed stability characteristics similar to a solid all metal construct. Its addition to the supra adjacent level (L3- L4) to the fusion (L4- L5) indeed protected the adjacent level from excessive motion. However, it essentially transformed a 1 level into a 2 level lumbar fusion with exponential transfer of motion to the fewer remaining discs (excessive adjacent level motion). The computational aspect of the study involved the development of a spine model (single segment). The kinematic data from these biomechanical studies (ISD study) was then used to validate a finite element model

    Biomechanical Tolerance of Whole Lumbar Spines in Straightened Posture Subjected to Axial Acceleration

    Get PDF
    Quantification of biomechanical tolerance is necessary for injury prediction and protection of vehicular occupants. This study experimentally quantified lumbar spine axial tolerance during accelerative environments simulating a variety of military and civilian scenarios. Intact human lumbar spines (T12‐L5) were dynamically loaded using a custom‐built drop tower. Twenty‐three specimens were tested at sub‐failure and failure levels consisting of peak axial forces between 2.6 and 7.9 kN and corresponding peak accelerations between 7 and 57 g. Military aircraft ejection and helicopter crashes fall within these high axial acceleration ranges. Testing was stopped following injury detection. Both peak force and acceleration were significant (p \u3c 0.0001) injury predictors. Injury probability curves using parametric survival analysis were created for peak acceleration and peak force. Fifty‐percent probability of injury (95%CI) for force and acceleration were 4.5 (3.9–5.2 kN), and 16 (13–19 g). A majority of injuries affected the L1 spinal level. Peak axial forces and accelerations were greater for specimens that sustained multiple injuries or injuries at L2–L5 spinal levels. In general, force‐based tolerance was consistent with previous shorter‐segment lumbar spine testing (3–5 vertebrae), although studies incorporating isolated vertebral bodies reported higher tolerance attributable to a different injury mechanism involving structural failure of the cortical shell. This study identified novel outcomes with regard to injury patterns, wherein more violent exposures produced more injuries in the caudal lumbar spine. This caudal migration was likely attributable to increased injury tolerance at lower lumbar spinal levels and a faster inertial mass recruitment process for high rate load application. Published 2017. This article is a U.S. Government work and is in the public domain in the USA

    Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model.

    Get PDF
    Background contextThere is significant variability in the materials commonly used for interbody cages in spine surgery. It is theorized that three-dimensional (3D)-printed interbody cages using porous titanium material can provide more consistent bone ingrowth and biological fixation.PurposeThe purpose of this study was to provide an evidence-based approach to decision-making regarding interbody materials for spinal fusion.Study designA comparative animal study was performed.MethodsA skeletally mature ovine lumbar fusion model was used for this study. Interbody fusions were performed at L2-L3 and L4-L5 in 27 mature sheep using three different interbody cages (ie, polyetheretherketone [PEEK], plasma sprayed porous titanium-coated PEEK [PSP], and 3D-printed porous titanium alloy cage [PTA]). Non-destructive kinematic testing was performed in the three primary directions of motion. The specimens were then analyzed using micro-computed tomography (µ-CT); quantitative measures of the bony fusion were performed. Histomorphometric analyses were also performed in the sagittal plane through the interbody device. Outcome parameters were compared between cage designs and time points.ResultsFlexion-extension range of motion (ROM) was statistically reduced for the PTA group compared with the PEEK cages at 16 weeks (p-value=.02). Only the PTA cages demonstrated a statistically significant decrease in ROM and increase in stiffness across all three loading directions between the 8-week and 16-week sacrifice time points (p-value≤.01). Micro-CT data demonstrated significantly greater total bone volume within the graft window for the PTA cages at both 8 weeks and 16 weeks compared with the PEEK cages (p-value<.01).ConclusionsA direct comparison of interbody implants demonstrates significant and measurable differences in biomechanical, µ-CT, and histologic performance in an ovine model. The 3D-printed porous titanium interbody cage resulted in statistically significant reductions in ROM, increases in the bone ingrowth profile, as well as average construct stiffness compared with PEEK and PSP

    Structure-function relationships at the human spinal disc-vertebra interface.

    Get PDF
    Damage at the intervertebral disc-vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc-vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architectural features, and assess structure-function relationships at this vulnerable location. Vertebra-disc-vertebra specimens from human cadaver thoracic spines were scanned with micro-computed tomography (μCT), surface speckle-coated, and loaded to failure in uniaxial tension. Digital image correlation (DIC) was used to calculate local surface strains. Failure surfaces were scanned using scanning electron microscopy (SEM), and adjacent sagittal slices were analyzed with histology and SEM. Seventy-one percent of specimens failed initially at the cartilage endplate-bone interface of the inner annulus region. Histology and SEM both indicated a lack of structural integration between the cartilage endplate (CEP) and bone. The interface failure strength was increased in samples with higher trabecular bone volume fraction in the vertebral endplates. Furthermore, failure strength decreased with degeneration, and in discs with thicker CEPs. Our findings indicate that poor structural connectivity between the CEP and vertebra may explain the structural weakness at this region, and provide insight into structural features that may contribute to risk for disc-vertebra interface injury. The disc-vertebra interface is the site of failure in the majority of herniation injuries. Here we show new structure-function relationships at this interface that may motivate the development of diagnostics, prevention strategies, and treatments to improve the prognosis for many low back pain patients with disc-vertebra interface injuries. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:192-201, 2018
    corecore