1,166 research outputs found

    Actuators and sensors for application in agricultural robots: A review

    Get PDF
    In recent years, with the rapid development of science and technology, agricultural robots have gradually begun to replace humans, to complete various agricultural operations, changing traditional agricultural production methods. Not only is the labor input reduced, but also the production efficiency can be improved, which invariably contributes to the development of smart agriculture. This paper reviews the core technologies used for agricultural robots in non-structural environments. In addition, we review the technological progress of drive systems, control strategies, end-effectors, robotic arms, environmental perception, and other related systems. This research shows that in a non-structured agricultural environment, using cameras and light detection and ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing, transmission, control, and operation, different types of actuators can be innovatively designed and developed to drive the advance of agricultural robots, to meet the delicate and complex requirements of agricultural products as operational objects, such that better productivity and standardization of agriculture can be achieved. In summary, agricultural production is developing toward a data-driven, standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based agricultural robots. This paper concludes with a summary of the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future

    Applications of Emerging Smart Technologies in Farming Systems: A Review

    Get PDF
    The future of farming systems depends mainly on adopting innovative intelligent and smart technologies The agricultural sector s growth and progress are more critical to human survival than any other industry Extensive multidisciplinary research is happening worldwide for adopting intelligent technologies in farming systems Nevertheless when it comes to handling realistic challenges in making autonomous decisions and predictive solutions in farming applications of Information Communications Technologies ICT need to be utilized more Information derived from data worked best on year-to-year outcomes disease risk market patterns prices or customer needs and ultimately facilitated farmers in decision-making to increase crop and livestock production Innovative technologies allow the analysis and correlation of information on seed quality soil types infestation agents weather conditions etc This review analysis highlights the concept methods and applications of various futuristic cognitive innovative technologies along with their critical roles played in different aspects of farming systems like Artificial Intelligence AI IoT Neural Networks utilization of unmanned vehicles UAV Big data analytics Blok chain technology et

    Robotic Technologies for High-Throughput Plant Phenotyping: Contemporary Reviews and Future Perspectives

    Get PDF
    Phenotyping plants is an essential component of any effort to develop new crop varieties. As plant breeders seek to increase crop productivity and produce more food for the future, the amount of phenotype information they require will also increase. Traditional plant phenotyping relying on manual measurement is laborious, time-consuming, error-prone, and costly. Plant phenotyping robots have emerged as a high-throughput technology to measure morphological, chemical and physiological properties of large number of plants. Several robotic systems have been developed to fulfill different phenotyping missions. In particular, robotic phenotyping has the potential to enable efficient monitoring of changes in plant traits over time in both controlled environments and in the field. The operation of these robots can be challenging as a result of the dynamic nature of plants and the agricultural environments. Here we discuss developments in phenotyping robots, and the challenges which have been overcome and others which remain outstanding. In addition, some perspective applications of the phenotyping robots are also presented. We optimistically anticipate that autonomous and robotic systems will make great leaps forward in the next 10 years to advance the plant phenotyping research into a new era

    Cooperative heterogeneous robots for autonomous insects trap monitoring system in a precision agriculture scenario

    Get PDF
    The recent advances in precision agriculture are due to the emergence of modern robotics systems. For instance, unmanned aerial systems (UASs) give new possibilities that advance the solution of existing problems in this area in many different aspects. The reason is due to these platforms’ ability to perform activities at varying levels of complexity. Therefore, this research presents a multiple-cooperative robot solution for UAS and unmanned ground vehicle (UGV) systems for their joint inspection of olive grove inspect traps. This work evaluated the UAS and UGV vision-based navigation based on a yellow fly trap fixed in the trees to provide visual position data using the You Only Look Once (YOLO) algorithms. The experimental setup evaluated the fuzzy control algorithm applied to the UAS to make it reach the trap efficiently. Experimental tests were conducted in a realistic simulation environment using a robot operating system (ROS) and CoppeliaSim platforms to verify the methodology’s performance, and all tests considered specific real-world environmental conditions. A search and landing algorithm based on augmented reality tag (AR-Tag) visual processing was evaluated to allow for the return and landing of the UAS to the UGV base. The outcomes obtained in this work demonstrate the robustness and feasibility of the multiple-cooperative robot architecture for UGVs and UASs applied in the olive inspection scenario.The authors would like to thank the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021). In addition, the authors would like to thank the following Brazilian Agencies CEFET-RJ, CAPES, CNPq, and FAPERJ. In addition, the authors also want to thank the Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Braganca (IPB) - Campus de Santa Apolonia, Portugal, Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Portugal, INESC Technology and Science - Porto, Portugal and Universidade de Trás-os-Montes e Alto Douro - Vila Real, Portugal. This work was carried out under the Project “OleaChain: Competências para a sustentabilidade e inovação da cadeia de valor do olival tradicional no Norte Interior de Portugal” (NORTE-06-3559-FSE-000188), an operation used to hire highly qualified human resources, funded by NORTE 2020 through the European Social Fund (ESF).info:eu-repo/semantics/publishedVersio

    The digitization of agricultural industry – a systematic literature review on agriculture 4.0

    Get PDF
    Agriculture is considered one of the most important sectors that play a strategic role in ensuring food security. However, with the increasing world's population, agri-food demands are growing — posing the need to switch from traditional agricultural methods to smart agriculture practices, also known as agriculture 4.0. To fully benefit from the potential of agriculture 4.0, it is significant to understand and address the problems and challenges associated with it. This study, therefore, aims to contribute to the development of agriculture 4.0 by investigating the emerging trends of digital technologies in the agricultural industry. For this purpose, a systematic literature review based on Protocol of Preferred Reporting Items for Systematic Reviews and Meta-Analyses is conducted to analyse the scientific literature related to crop farming published in the last decade. After applying the protocol, 148 papers were selected and the extent of digital technologies adoption in agriculture was examined in the context of service type, technology readiness level, and farm type. The results have shown that digital technologies such as autonomous robotic systems, internet of things, and machine learning are significantly explored and open-air farms are frequently considered in research studies (69%), contrary to indoor farms (31%). Moreover, it is observed that most use cases are still in the prototypical phase. Finally, potential roadblocks to the digitization of the agriculture sector were identified and classified at technical and socio-economic levels. This comprehensive review results in providing useful information on the current status of digital technologies in agriculture along with prospective future opportunities

    Automation and Control

    Get PDF
    Advances in automation and control today cover many areas of technology where human input is minimized. This book discusses numerous types and applications of automation and control. Chapters address topics such as building information modeling (BIM)–based automated code compliance checking (ACCC), control algorithms useful for military operations and video games, rescue competitions using unmanned aerial-ground robots, and stochastic control systems

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Smart Farming Using Robots in IoT to Increase Agriculture Yields: A Systematic Literature Review

    Get PDF
    Robots are beneficial in everyday life, especially in helping food security in the agricultural industry. Smart farming alone is not enough because smart farming is only automated without mobile hardware. The existence of robots can minimize human involvement in agriculture so that humans can maximize activities outside of farms. This Study aims to review articles regarding robots in smart farming to increase agriclture yields. This article systematically uses the systematic literature review method utilizing the Preferred reporting items for systematic review and meta-analyses (PRISMA) by submitting 3 Research Questions (RQ). According to the authors of the 3 RQs, it is necessary to represent the function and purpose of robots in farms and to be used in the context of the importance of robots in agriculture because of the potential impact of increase agriculture yields. This Research contributes to finding and answering 3 RQ, which are the roots of the use of robots. The results taken, the authors get 116 articles that can be reviewed and answered RQ and achieve goals. RQ 1 was responded to with the article's country of origin, research criteria, and the year of the article. In RQ 2 the author answered that Research often carried out 6 schemes, then the most Research was (Challenge Robots, Ethics, and Opinions in Agriculture) and (Design, Planning, and Robotic Systems in Agriculture). Finally, in RQ 3, the author describes the research scheme based on understanding related Research. The author hopes this basic scheme can be a benchmark or a new direction for future researchers and related agricultural industries to improve agricultural quality
    • …
    corecore