1,441 research outputs found

    Developing energy-aware workload offloading frameworks in mobile cloud computing

    Get PDF
    Mobile cloud computing is an emerging field of research that aims to provide a platform on which intelligent and feature-rich applications are delivered to the user at any time and at anywhere. Computation offload between mobile and cloud plays a key role in this vision and ensures that the integration between mobile and cloud is both seamless and energy-efficient. In this thesis, we develop a suite of energy-aware workload offloading frameworks to accommodate the efficient execution of mobile workflows on a mobile cloud platform. We start by looking at two energy objectives of a mobile cloud platform. While the first objective aims at minimising the overall energy cost of the platform, the second objective aims at the longevity of the platform taking into account the residual battery power of each device. We construct optimisation models for both objectives and develop two efficient algorithms to approximate the optimal solution. According to simulation results, our greedy autonomous offload (GAO) algorithm is able to efficiently produce allocation schemes that are close to optimal. Next, we look at the task allocation problem from a workflow's perspective and develop energy-aware offloading strategies for time-constrained mobile workflows. We demonstrate the effect of software and hardware characteristics have over the offload-efficiency of mobile workflows with a workflow-oriented greedy autonomous offload (WGAO) algorithm, an extension to the GAO algorithm. Thirdly, we propose a novel network I-O model to describe the bandwidth dependencies and allocation problem in mobile networks. This model lays the foundation for further objective developments such as the cost-based and adaptive bandwidth allocation schemes which we also present in this thesis. Lastly, we apply a game theoretical approach to model the non-cooperative behaviour of mobile cloud applications that reside on the same device. Mixed-strategy Nash equilibrium is derived for the offload game which further quantifies the price of anarchy of the system

    Resource allocation in mobile edge cloud computing for data-intensive applications

    Get PDF
    Rapid advancement in the mobile telecommunications industry has motivated the development of mobile applications in a wide range of social and scientific domains. However, mobile computing (MC) platforms still have several constraints, such as limited computation resources, short battery life and high sensitivity to network capabilities. In order to overcome the limitations of mobile computing and benefit from the huge advancement in mobile telecommunications and the rapid revolution of distributed resources, mobile-aware computing models, such as mobile cloud computing (MCC) and mobile edge computing (MEC) have been proposed. The main problem is to decide on an application execution plan while satisfying quality of service (QoS) requirements and the current status of system networking and device energy. However, the role of application data in offloading optimisation has not been studied thoroughly, particularly with respect to how data size and distribution impact application offloading. This problem can be referred to as data-intensive mobile application offloading optimisation. To address this problem, this thesis presents novel optimisation frameworks, techniques and algorithms for mobile application resource allocation in mobile-aware computing environments. These frameworks and techniques are proposed to provide optimised solutions to schedule data intensive mobile applications. Experimental results show the ability of the proposed tools in optimising the scheduling and the execution of data intensive applications on various computing environments to meet application QoS requirements. Furthermore, the results clearly stated the significant contribution of the data size parameter on scheduling the execution of mobile applications. In addition, the thesis provides an analytical investigation of mobile-aware computing environments for a certain mobile application type. The investigation provides performance analysis to help users decide on target computation resources based on application structure, input data, and mobile network status

    Enhancement of Metaheuristic Algorithm for Scheduling Workflows in Multi-fog Environments

    Get PDF
    Whether in computer science, engineering, or economics, optimization lies at the heart of any challenge involving decision-making. Choosing between several options is part of the decision- making process. Our desire to make the "better" decision drives our decision. An objective function or performance index describes the assessment of the alternative's goodness. The theory and methods of optimization are concerned with picking the best option. There are two types of optimization methods: deterministic and stochastic. The first is a traditional approach, which works well for small and linear problems. However, they struggle to address most of the real-world problems, which have a highly dimensional, nonlinear, and complex nature. As an alternative, stochastic optimization algorithms are specifically designed to tackle these types of challenges and are more common nowadays. This study proposed two stochastic, robust swarm-based metaheuristic optimization methods. They are both hybrid algorithms, which are formulated by combining Particle Swarm Optimization and Salp Swarm Optimization algorithms. Further, these algorithms are then applied to an important and thought-provoking problem. The problem is scientific workflow scheduling in multiple fog environments. Many computer environments, such as fog computing, are plagued by security attacks that must be handled. DDoS attacks are effectively harmful to fog computing environments as they occupy the fog's resources and make them busy. Thus, the fog environments would generally have fewer resources available during these types of attacks, and then the scheduling of submitted Internet of Things (IoT) workflows would be affected. Nevertheless, the current systems disregard the impact of DDoS attacks occurring in their scheduling process, causing the amount of workflows that miss deadlines as well as increasing the amount of tasks that are offloaded to the cloud. Hence, this study proposed a hybrid optimization algorithm as a solution for dealing with the workflow scheduling issue in various fog computing locations. The proposed algorithm comprises Salp Swarm Algorithm (SSA) and Particle Swarm Optimization (PSO). In dealing with the effects of DDoS attacks on fog computing locations, two Markov-chain schemes of discrete time types were used, whereby one calculates the average network bandwidth existing in each fog while the other determines the number of virtual machines existing in every fog on average. DDoS attacks are addressed at various levels. The approach predicts the DDoS attack’s influences on fog environments. Based on the simulation results, the proposed method can significantly lessen the amount of offloaded tasks that are transferred to the cloud data centers. It could also decrease the amount of workflows with missed deadlines. Moreover, the significance of green fog computing is growing in fog computing environments, in which the consumption of energy plays an essential role in determining maintenance expenses and carbon dioxide emissions. The implementation of efficient scheduling methods has the potential to mitigate the usage of energy by allocating tasks to the most appropriate resources, considering the energy efficiency of each individual resource. In order to mitigate these challenges, the proposed algorithm integrates the Dynamic Voltage and Frequency Scaling (DVFS) technique, which is commonly employed to enhance the energy efficiency of processors. The experimental findings demonstrate that the utilization of the proposed method, combined with the Dynamic Voltage and Frequency Scaling (DVFS) technique, yields improved outcomes. These benefits encompass a minimization in energy consumption. Consequently, this approach emerges as a more environmentally friendly and sustainable solution for fog computing environments

    Resource Allocation in Networking and Computing Systems: A Security and Dependability Perspective

    Get PDF
    In recent years, there has been a trend to integrate networking and computing systems, whose management is getting increasingly complex. Resource allocation is one of the crucial aspects of managing such systems and is affected by this increased complexity. Resource allocation strategies aim to effectively maximize performance, system utilization, and profit by considering virtualization technologies, heterogeneous resources, context awareness, and other features. In such complex scenario, security and dependability are vital concerns that need to be considered in future computing and networking systems in order to provide the future advanced services, such as mission-critical applications. This paper provides a comprehensive survey of existing literature that considers security and dependability for resource allocation in computing and networking systems. The current research works are categorized by considering the allocated type of resources for different technologies, scenarios, issues, attributes, and solutions. The paper presents the research works on resource allocation that includes security and dependability, both singularly and jointly. The future research directions on resource allocation are also discussed. The paper shows how there are only a few works that, even singularly, consider security and dependability in resource allocation in the future computing and networking systems and highlights the importance of jointly considering security and dependability and the need for intelligent, adaptive and robust solutions. This paper aims to help the researchers effectively consider security and dependability in future networking and computing systems.publishedVersio
    • …
    corecore