

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/78802

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/
mailto:wrap@warwick.ac.uk

M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS WARWICENSIS

Developing Energy-Aware Workload Offloading

Frameworks in Mobile Cloud Computing

by

Bo Gao

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

The University of Warwick

June 2015

Abstract

Mobile cloud computing is an emerging field of research that aims to provide a platform on which

intelligent and feature-rich applications are delivered to the user at any time and at anywhere.

Computation offload between mobile and cloud plays a key role in this vision and ensures that

the integration between mobile and cloud is both seamless and energy-efficient. In this thesis,

we develop a suite of energy-aware workload offloading frameworks to accommodate the efficient

execution of mobile workflows on a mobile cloud platform. We start by looking at two energy

objectives of a mobile cloud platform. While the first objective aims at minimising the overall

energy cost of the platform, the second objective aims at the longevity of the platform taking into

account the residual battery power of each device. We construct optimisation models for both

objectives and develop two efficient algorithms to approximate the optimal solution. According to

simulation results, our greedy autonomous offload (GAO) algorithm is able to efficiently produce

allocation schemes that are close to optimal. Next, we look at the task allocation problem from

a workflow’s perspective and develop energy-aware offloading strategies for time-constrained

mobile workflows. We demonstrate the effect of software and hardware characteristics have over

the offload-efficiency of mobile workflows with a workflow-oriented greedy autonomous offload

(WGAO) algorithm, an extension to the GAO algorithm. Thirdly, we propose a novel network

I-O model to describe the bandwidth dependencies and allocation problem in mobile networks.

This model lays the foundation for further objective developments such as the cost-based and

adaptive bandwidth allocation schemes which we also present in this thesis. Lastly, we apply a

game theoretical approach to model the non-cooperative behaviour of mobile cloud applications

that reside on the same device. Mixed-strategy Nash equilibrium is derived for the offload game

which further quantifies the price of anarchy of the system.

ii

To my wife, daughter and parents

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor Dr. Ligang He, whose guid-

ance, encouragement and support have been invaluable to me during my time at the Department

of Computer Science at the University of Warwick. I benefited greatly from his insightful ad-

vices and comments in finding and solving research problems. I look forward to maintaining our

collaboration in the future.

I would like to thank my wife Wenting whose patience, encouragement and unwavering love

has been the magical special ingredient in my life for the past four years. I also need to thank

her for bringing the little bundle of joy and many other things that is our new born daughter

Alex to the world. May I wish here that she is as lucky as her daddy is in finding that special

person of her life.

I thank my parents, auntie and uncle for their continuous and unreserved support in my

pursuit of an academic career.

I thank Dr. Roger Packwood for his support in solving technical issues and his positive

attitude which influenced me greatly.

Last but not the least, I want to thank my fellow lab-mates, particularly Xin Lu, Chao Chen,

Huanzhou Zhu, Zhuoer Gu, Peng Jiang, Shenyuan Ren, Xufeng Lin, Phil Taylor and Wilson

Tan, for their stimulating discussions in current trends in technology and for creating all the

happy memories that we share.

iv

Declarations

This thesis is submitted to the University of Warwick in support of the author’s application

for the degree of Doctor of Philosophy. It has been composed by the author and has not been

submitted in any previous application for any degree. The work presented was carried out by

the author except where acknowledged.

Parts of this thesis have been previously published by the author in the following publications:

[1] B. Gao, L. He, and S. A. Jarvis, “Offload Decision Models and the Price of Anarchy in

Mobile Cloud Application Ecosystems,” IEEE Access, Special Section on Emerging Cloud-

Based Wireless Communications and Networks, vol. 3, pp. 3125–3137, 2016

[2] B. Gao, L. He, and C. Chen, “Modelling the Bandwidth Allocation Problem in Mobile Service-

Oriented Networks,” in Proceedings of the 18th ACM International Conference on Modeling,

Analysis and Simulation of Wireless and Mobile Systems (MSWiM’15), pp. 307–311, 2015

[3] B. Gao, L. He, X. Lu, C. Chang, K. Li, and K. Li, “Developing Energy-Aware Task Allo-

cation Schemes in Cloud-Assisted Mobile Workflows,” in Proceedings of IEEE International

Conference on Ubiquitous Computing and Communications (IUCC’15), pp. 1266–1273, 2015

[4] B. Gao and L. He, “Modelling Energy-Aware Task Allocation in Mobile Workflows,” in Pro-

ceedings of the 10th International Conference on Mobile and Ubiquitous Systems: Computing,

Networking and Services (MobiQuitous’13), vol. 131, pp. 89–101, 2013

[5] B. Gao, L. He, L. Liu, K. Li, and S. Jarvis, “From Mobiles to Clouds: Developing Energy-

Aware Offloading Strategies for Workflows,” in Proceedings of the 13th ACM/IEEE Interna-

v

tional Conference on Grid Computing (GRID’12), pp. 139 –146, 2012

[6] H. Zhu, L. He, B. Gao, K. Li, and K. Li, “Modelling and Developing Co-Scheduling Strategies

on Multicore Processors,” in Proceedings of the 44th International Conference on Parallel

Processing (ICPP’15), 2015

[7] C. Chen, L. He, and B. Gao, “Modelling and Optimizing Bandwidth Provision for Interacting

Cloud Services,” in Proceedings of the 13th International Conference on Service Oriented

Computing (ICSOC’15), 2015

[8] S. Fu, L. He, X. Liao, C. Huang, K. Li, C. Chang, and B. Gao, “Cadros: The Cloud-Assisted

Data Replication in Decentralized Online Social Networks,” in Proceedings of the 11th IEEE

International Conference on Services Computing (SCC’14), pp. 43–50, 2014

[9] S. Fu, L. He, X. Liao, C. Huang, K. Li, C. Chang, and B. Gao, “Modelling and Predicting

the Data Availability in Decentralized Online Social Networks,” in Proceedings of the 21st

IEEE International Conference on Web Services (ICWS’14), pp. 161–168, 2014

[10] C. Chen, L. He, H. Chen, J. Sun, B. Gao, and S. A. Jarvis, “Developing Communication-aware

Service Placement Frameworks in the Cloud Economy,” in Proceedings of IEEE International

Conference on Cluster Computing (CLUSTER’13), pp. 1–8, 2013

[11] K. Li, Z. Zhang, Y. Xu, B. Gao, and L. He, “Chemical Reaction Optimization for Heteroge-

neous Computing Environments,” in Proceedings of the 10th IEEE International Symposium

on Parallel and Distributed Processing with Applications (ISPA’12), pp. 17–23, IEEE, 2012

[12] L. He, C. Huang, K. Li, H. Chen, J. Sun, B. Gao, K. Duan, and S. A. Jarvis, “Modelling and

Analyzing the Authorization and Execution of Video Workflows,” in Proceedings of the 18th

International Conference on High Performance Computing (HiPC’11), pp. 1–10, 2011

Sponsorship and Grants

The research presented in this thesis was made possible by the support of the following benefac-

tors and sources:

• Leverhulme Trust:

Research Project Grant (RPG-101)

• Department of Computer Science, The University of Warwick, United Kingdom:

Postgraduate Research Scholarship

vii

Abbreviations

2G Second Generation (Mobile Telecommunications Technology)

3G Third Generation (Mobile Telecommunications Technology)

4G Fourth Generation (Mobile Telecommunications Technology)

App Applications (Mobile)

CPU Central Processing Unit

GAO Greedy Autonomous Offload (Algorithm)

WGAO Workflow-oriented Greedy Autonomous Offload (Algorithm)

IP Integer Program

I/O Input/Output (Module)

I-O Input-Output (Analysis Model)

LAN Local Area Network

LP Linear Program

MCC Mobile Cloud Computing

MCP Mobile Cloud Platform

MGECP Minimum Group Energy Cost Problem

MIQP Mixed Integer Quadratic Program

MMUP Minimum Maximum Utilisation Problem

MSON Mobile Service-Oriented Network

OS Operating System

P2P Peer to Peer

QP Quadratic Program

QAP Quadratic Assignment Problem

QCP Quadratically Constrained Program

viii

QoS Quality of Service

SA Simulated Annealing (Algorithm)

SOA Service-Oriented Architecture

VANET Vehicular Ad Hoc Network

VM Virtual Machine

WAN Wide Area Network

Contents

Abstract ii

Dedication iii

Acknowledgements iv

Declarations v

Sponsorship and Grants vii

Abbreviations viii

List of Figures xvi

List of Tables xvii

1 Introduction 1

1.1 Mobile, Cloud, Cloud via Mobile and Mobile Cloud Computing 2

1.2 Mobile Cloud Workflow . 4

1.3 Outline of Research Contributions . 5

1.4 Thesis Organisation . 6

2 Mobile Cloud Computing 8

2.1 Architectures and Components of Mobile Cloud Computing 8

2.1.1 Enabling Mobile Computation Offload . 9

2.1.2 Mobile Workflow Engine . 10

x

2.2 Impact of Mobile Cloud Computing . 11

2.2.1 Motivational Applications of Mobile Cloud Computing 11

2.2.2 Illustrative Use Cases of Mobile Workflows 12

2.2.3 Advantages and Issues of Mobile Cloud Computing 15

3 Energy-Aware Task Allocation in Mobile Cloud Platforms 17

3.1 Mobile Cloud Platform Model . 18

3.1.1 Mobile, Cloud and Network Metrics . 18

3.1.2 Application Workflow Metrics . 19

3.1.3 Fixed and Constrained Tasks . 20

3.1.4 Allocation Scheme and Energy Costs . 20

3.2 Minimum Group Energy Cost Problem . 21

3.2.1 Assignment Matrix . 21

3.2.2 Quadratic Program Formulation . 22

3.2.3 Convexification . 23

3.3 Minimum Max-Utilisation Problem . 24

3.3.1 Device Cost Matrix . 25

3.3.2 Device Utilisation . 25

3.3.3 Quadratically Constrained Program Formulation 26

3.4 Heuristics . 27

3.4.1 Simulated Annealing . 27

3.4.2 Greedy Autonomous Offload . 30

3.4.3 Joint Search . 33

3.5 Simulations, Comparisons and Discussion . 33

3.5.1 Simulation Structure . 33

3.5.2 MCP Construction . 36

3.5.3 Results from Solving MGECP . 37

3.5.4 Results from Solving MMUP . 41

3.5.5 Comparing MGECP and MMUP . 42

3.6 Summary . 48

4 Offloading Strategies for Time-Constrained Mobile Workflows 50

4.1 Computation Offload with Cloudlets . 51

4.2 Offload Strategies for Mobile Workflows . 53

4.2.1 Preliminaries and Problem Definition . 53

4.2.2 Workflow-Oriented Greedy Autonomous Offload Algorithm 58

4.2.3 Discussion of Variations and Optimisation of WGAO 61

4.3 Simulations . 63

4.3.1 Communication Size and Network Connectivity 64

4.3.2 Computation Size and Cloudlet Speed . 69

4.3.3 Energy Profile . 70

4.4 Summary . 71

5 Bandwidth Dependency and Allocation in Mobile Service-Oriented Networks 73

5.1 Mobile Service-Oriented Networks . 74

5.1.1 Example and Definition . 74

5.1.2 Service-Oriented Architecture . 76

5.1.3 Applications of MSON . 77

5.1.4 Mobile Device as Service Hosts . 77

5.2 Input-Output Analysis in Economics . 78

5.3 The Economy of Mobile Service-Oriented Networks 79

5.3.1 Network I-O Model . 84

5.3.2 Network I-O Model with Latency . 86

5.4 Parametric Evaluation . 87

5.4.1 Effect of Service Arrival Rate . 88

5.4.2 Effect of Per Service Data Size . 89

5.4.3 Effect of Latency . 89

5.4.4 Alternative Allocation Scheme . 89

5.5 Cost-Based Bandwidth Allocation . 91

5.5.1 Problem Formulation . 91

5.5.2 Simulation . 92

5.6 Adaptive Bandwidth Allocation . 94

5.6.1 Problem Formulation . 94

5.6.2 Simulation . 96

5.7 Summary . 99

6 Rethinking the Offload Decision Models in Mobile Cloud Application Ecosys-

tems 100

6.1 Mobile Cloud Application Ecosystems . 101

6.1.1 Problem Statement . 102

6.1.2 Objective and Contribution . 105

6.1.3 System Notations . 105

6.2 Offload with Symmetrically Incomplete Information 107

6.3 Offload with Complete Information . 108

6.3.1 The Offload Game . 109

6.3.2 Mixed Strategies and Expected Costs . 109

6.3.3 Nash Equilibrium . 110

6.3.4 Social Cost and Price of Anarchy . 111

6.4 Cooperative Decision Model . 112

6.5 Simulations, Comparisons and Discussion . 114

6.5.1 Simulation Setup . 114

6.5.2 Strategy Behaviour of Non-Cooperative Applications 116

6.5.3 Social Costs . 120

6.5.4 Price of Anarchy . 120

6.6 Summary . 129

7 Conclusions and Further Work 130

7.1 Energy-Aware Task Allocation . 131

7.2 Offloading Strategies for Time-Constrained Workflows 132

7.3 Efficient Resource Allocation in Mobile Networks 132

7.4 Application Ecosystem and Offload Competition . 133

7.5 Directions for Further Work . 134

Bibliography 135

A MGECP Simulation Results 148

B MMUP Simulation Results 154

C Derivation of pRi 160

List of Figures

1.1 Research structure. 7

2.1 Example use case of an MCC workflow: Business task interaction. 14

2.2 Example use case of an MCC workflow: 3D scan workflow. 15

2.3 Example use case of an MCC workflow: Darts game. 15

3.1 Illustration of a Mobile Cloud Platform. 19

3.2 Results from solving MGECP: Solution optimality from S0 and M0. 38

3.3 Results from solving MGECP: Solution optimality from L0 and X0. 39

3.4 Results from solving MGECP: Solution time from S0, M0, L0 and X0. 40

3.5 Results from solving MMUP: Solution optimality from S0 and M0. 44

3.6 Results from solving MMUP: Solution optimality from L0 and X0. 45

3.7 Results from solving MMUP: Solution time from S0, M0, L0 and X0. 46

3.8 Prime and by objective values from S0, M0, L0 and X0. 47

4.1 Example showing cloudlet and faster network connections improve battery life on

mobile devices. 52

4.2 Offload expands the mapping into the Cloudlet space. 55

4.3 Effect of change in executable size and WiFi availability. 65

4.4 Offload savings when no WiFi is available. 67

4.5 Effect of change in communication data size and WiFi availability. 68

4.6 Effect of density of workload. 69

4.7 Effect of increase in cloudlet speedup. 70

xv

4.8 Energy distribution before and after offload. 71

5.1 A simple example of a personal MSON. 75

5.2 The economy of an MSON. 80

5.3 Four types of service communication patterns. 82

5.4 Parametric evaluation of the Network I-O model. 90

5.5 Effect of reductions in utilisation threshold (ui). 93

5.6 Comparison of adaptive strategies. 98

6.1 A mobile cloud application ecosystem . 102

6.2 Application composition of a mobile cloud application ecosystem. 106

6.3 Results from S1, S1F and S2: Offload strategy behaviours of application with

increasing weight, and the impact on social costs. 117

6.4 Results from S3 and S4: Offload strategy behaviours of application within increas-

ing weight, and the impact on social costs. 119

6.5 Results from Y1, Y2 and Y3: ΘP −ΘOpt. 122

6.6 Results from Y1, Y2 and Y3: PoAP = ΘP ∶ ΘOpt. 123

6.7 Results from Y1, Y2 and Y3: ΘB −ΘOpt. 124

6.8 Results from Y1, Y2 and Y3: PoAB = ΘB ∶ ΘOpt. 125

6.9 Results from Y1, Y2 and Y3: Social costs. 126

6.10 Price of anarchy following changes in platform parameters. 128

List of Tables

1.1 Development of mainstream mobile devices . 2

3.1 Simulation structure . 34

3.2 Simulation series specific parameters . 35

6.1 An example showning the effect of different offload decisions 104

6.2 Simulation parameters . 115

A.1 Comparison of algorithms for MGECP - S series - Solution optimality 149

A.2 Comparison of algorithms for MGECP - M series - Solution optimality 150

A.3 Comparison of algorithms for MGECP - L series - Solution optimality 151

A.4 Comparison of algorithms for MGECP - X series - Solution optimality 152

A.5 Comparison of algorithms for MGECP - Solution time 153

B.1 Comparison of algorithms for MMUP - S series - Solution optimality 155

B.2 Comparison of algorithms for MMUP - M series - Solution optimality 156

B.3 Comparison of algorithms for MMUP - L series - Solution optimality 157

B.4 Comparison of algorithms for MMUP - L series - Solution optimality 158

B.5 Comparison of algorithms for MMUP - Solution time 159

xvii

Chapter 1

Introduction

Technologies that were once thought to be futuristic like self-driving vehicles and wearable digital

assistants are fast becoming a reality with the proliferation of mobile smart devices. Indeed,

mobile computing is radically changing the way applications are delivered. From traditional

office productivity applications like word processors and spreadsheet, to emerging smart mobile

applications like personal AI assistants embedded in smart vehicles [13] and large-scale urban

sensing projects [14], mobile smart devices and services are at the centre of interest for application

developments.

Despite the rapid development of mobile computing technologies, mobile applications are

constrained by many limiting factors including battery power, storage space and CPU speed. To

overcome these issues, researches turn to cloud computing which has an abundance of computing

and storage resources accessible in forms of services that are scalable and easy to integrate.

Facilitating the intelligent, seamless and adaptive integration of the two platforms in this joint

venture is the role of the emerging research topic of Mobile Cloud Computing.

1

1.1 Mobile, Cloud, Cloud via Mobile and Mobile Cloud Computing

1.1 Mobile, Cloud, Cloud via Mobile and Mobile Cloud

Computing

Mobile smart devices are becoming the platform of choice for both enterprise and personal com-

puting needs. It was predicted that mobile application development projects would outnumber

desktop projects by a ratio of 4:1 by the end of 2015 [15]. Indeed, in recent years the mobile

platform’s ability to enable ubiquitous access to services on the move has broadened the usability

of many social and entertainment media and created great successes.

With the convenience provided by the compactness of mobile devices come many limitations

to its hardware, especially its battery size. In comparison to other components, the pace of devel-

opment in improving the energy density of smartphone batteries has been slow. In Table 1.1, we

list the component specifications of several mainstream smartphones from their first generation

to the latest. We see that battery size has not improved in the same order of magnitude as the

other components. Furthermore, improvements made at a hardware level have often been taken

up by extended software functionalities [16, 17]. Therefore, energy-awareness is crucial for all

mobile-related developments.

This energy-awareness also limits the processor’s performance on mobile devices. To prevent

over-heating and reduce energy consumption, mobile CPUs are considerably less powerful than

their desktop counter parts of the same frequency.

In contrast, Cloud computing has a resource rich infrastructure. Implemented over networks

of servers and data centres, computing power and storage space on a cloud seem “limitless” when

compared with their counter parts on mobile devices. What lacks in cloud computing is its ac-

cessibility to the end user. These characteristics make cloud computing a perfect complementary

Table 1.1: Development of mainstream mobile devices

OS Name Year CPU Memory Display Network App Store Battery

iOS iPhone 1 2007 412MHz 128MB 320×480 2G 500 1400mAh

iOS iPhone 6 2014 Dual 1.4GHz 1GB 750×1334 4G 1.2million 1810mAh

Android nexus 1 2010 1GHz 512MB 480×800 3G 30k 1400mAh

Android nexus 6 2014 Quad 2.7GHz 3GB 1440×2560 4G 1.4million 3220mAh

2

1.1 Mobile, Cloud, Cloud via Mobile and Mobile Cloud Computing

technology to overcome the disadvantages of mobile computing.

Mobile application developer has long adopted cloud services as the back end of mobile

applications. In this development paradigm, mobile devices act as an interface to the cloud

services which implements the actual logic of the mobile application and holds its database.

This Cloud via Mobile approach simply defines a client-server structure between mobile and

cloud. We further distinguish a mobile application with a cloud back end and a mobile cloud

application as we discuss in this thesis in Section 6.1.

As opposed to native mobile applications, applications with a cloud back end are able to take

advantage of the richness of cloud services, and are often more feature-rich. For example, user

data can be synchronised and shared across all devices registered to a user; more sophisticated

algorithms can be applied without concern over energy consumption; sensor data recorded on

mobile devices can be used to customise user experience of cloud services.

However, with this client-server structure and its dependency of a wireless connection come

new challenges:

1. In a client-server structure, mobile devices rely on wireless data links to communicate

with cloud services. Due to the high mobility of mobile devices, wireless data links have

fluctuating capacities which greatly affects service QoS.

2. Compared to local computation, wireless communication is associated with higher energy

costs. Constant communication with the server quickly drains the battery of mobile devices.

3. Applications of a client-server structure are only available when data link to the server is

established. The application does not function locally on device. The user can not use the

application unless a wireless data connection is established to the server.

4. The local computation capability of mobile devices has dramatically improved in recent

years (Table 1.1). The energy efficiency of these components has also improved. These

local computation resources are not fully utilised in a client-server structure.

5. When a group of mobile devices are to cooperate on a workflow, their communication has

to be routed via a cloud server. This not only affects the availability of the workflow, when

3

1.2 Mobile Cloud Workflow

these devices are of close geographical proximity to each other, this centralised network

topology also dictates a higher energy cost than that of a local ad hoc network.

Researches in Mobile Cloud Computing aim to address these issues in addition to the

limited energy, storage and processing capacities of mobile computing. As we discuss in this the-

sis, mobile cloud computing extends the integration of cloud and mobile computing further from

the client-server architecture and covers a broad spectrum of networking architectures. Mobile

cloud computing is more than making cloud services accessible through mobile devices. With

techniques like computation and storage offloading (Section 2.1.1), an intelligent and seamless

integration of mobile and cloud computing is envisioned in the research of mobile cloud comput-

ing.

We give a more detailed overview of mobile cloud computing, its key techniques like compu-

tation offloading and its research challenges in Chapter 2.

1.2 Mobile Cloud Workflow

Mobile computing and cloud computing are two of the most influential technologies that look set

to change the face of computing in the coming years. Combination of the two provides us with

an unprecedented opportunity to provide highly portable and yet content-rich and computation-

intensive applications to the end user.

With the rapid development of the smartphone and tablet market comes a new generation of

handheld devices equipped with faster processors, bigger memories and higher quality displays

that have not been seen before in the mobile world. With this improved hardware capability,

sophisticated, intelligent and mission-critical processes are being adapted from desktop computers

to mobile devices. We also expect to see novel applications utilising the unique features of the

devices developed for the mobile world. A workflow is the abstraction of the processes involved

in the execution of an application.

A mobile workflow, as discussed in this thesis, consists of a sequence of interactive compo-

nents1 that are deployed over a network of distributed mobile devices and cloud servers. In [18],

1In this thesis, the workload of one such component is referred to as a “task” in the context of a workflow.
The actual implementation of each task is referred to as a “service” that is deployed on either a cloud server or
on a mobile device.

4

1.3 Outline of Research Contributions

two scenarios are used to demonstrate how a mass of mobile devices, each used as a rich sensor,

organised in a cooperative mobile workflow, can be used to solve real-life problems that could

not have been solved by traditional methods. In the first scenario, photos taken on smartphones

within a two miles perimeter at a crowded location are gathered to locate a missing child. In the

second scenario, photos taken on smartphones in a disaster-stricken area are used to construct

detailed maps in aid of rescuing efforts.

Indeed, with the ability to collect rich sensor data and process data at anywhere and at

anytime, applications deployed over a network of mobile devices provide the user with much

more flexibility than the traditional desktop-based work environments.

To oversee and schedule the execution of mobile cloud workflows, a mobile workflow engine

plays an essential part in the development of mobile cloud workflows. The development of a

mobile workflow engines as shown in [19, 20, 21] suggests that an organisation is able to rely

on the computing and connectivity capabilities within the mobile devices as a substitute to a

technology back end server infrastructure.

The main logics and algorithms we discuss in this thesis reside on a workflow engine. We give

further description and use cases of mobile cloud workflows and workflow engines in Section 2.2.1.

1.3 Outline of Research Contributions

Workload offload [22, 23, 24, 25] is a key technique applied in mobile cloud computing. Aimed at

reducing the energy costs of mobile devices, its principle approach is to reduce the computation

workload on mobile devices by offloading it to the cloud. Most existing researches are constrained

within a one-to-one model in which offloading is carried out between a single device and a single

cloud.

In this thesis, we extend the existing research framework of mobile cloud computing and

investigate the issues embedded in the many-to-many model of mobile cloud computing which

underlies the future developments of the platform.

First, from the platform’s perspective, a quadratic program is constructed first to model the

energy-aware task allocation problem of a mobile cloud platform. Two energy objectives are

investigated looking at minimising the total energy cost and maximising the longevity of the

5

1.4 Thesis Organisation

platform respectively. Two heuristic algorithms are proposed to approximate the solution to

both objectives.

Second, from a workflow’s perspective, time constraints are considered as well as energy

constraints in developing offload strategies. A heuristic algorithm are proposed to produce offload

strategies that satisfies both constraints. Effect of hardware and software characteristics over

the offload-ability of the workflow are demonstrated.

Third, in order to address the need for efficient resource allocation in mobile networks, a

novel network I-O model is proposed to model the bandwidth dependencies between interactive

services of a mobile network. The network I-O model lays the foundation for further objective

developments. Based on the network I-O model, a cost-based bandwidth allocation scheme is

proposed, and models for adaptive bandwidth allocation strategies are also constructed.

Lastly, to address the competition between applications that share the same device, an exten-

sion to the classic load balancing game is developed. Three offload decision models of cooperative

and non-cooperative nature were constructed. Mixed-strategy Nash equilibrium is derived for

the non-cooperative offload game with complete information which further quantifies the price

of anarchy in such ecosystems.

More detailed summaries of our contributions are given at the end of Chapter 3, Chapter 4,

Chapter 5 and Chapter 6.

1.4 Thesis Organisation

This chapter provided a brief overview of the motivations of the research of mobile cloud comput-

ing and mobile workflows. It is important to distinguish and understand the relations between

mobile cloud computing and the cloud-based mobile application development paradigm as we

discussed at the beginning of this chapter.

In the next chapter, we give description of the mobile cloud computing architecture, and mo-

tivating applications of the mobile cloud platform. Computation workload offloading techniques

which is the key feature of mobile cloud computing and the basis for the development of our

efficient frameworks are discussed further in Section 2.1.1.

Each of the four technical chapters (Chapters 3 to 6) of this thesis looks at the mobile cloud

6

1.4 Thesis Organisation

Multiple Workflows

M
u

lt
ip

le
D

ev
ic

es
S

in
gl

e
D

ev
ic

e

Single Workflow

Chapter 3

Chapter 6

Chapter 4

Existing
Work

Chapter 5

Figure 1.1: Research structure.

computing platform from a different perspective. One way to understand the relations between

these chapters is by the number of workflows and the number of devices considered in the scenario

which is concerned with in that chapter as illustrated in Fig. 1.1.

From Fig. 1.1, we see that we start this thesis in Chapter 3 which extends existing work

from energy-aware offloading between single workflow on a single device to that of multiple

workflows on multiple devices. Then in Chapter 4, we take into account the time constraint that is

associated with individual workflows and develop offload strategies accordingly. In Chapter 5, we

develop a network I-O model to describe the bandwidth dependencies of general mobile networks

as a foundation for further efficient bandwidth allocation schemes. Lastly in Chapter 6, we focus

on the competition between mobile cloud applications on a single device which give further

insight into the importance of a coordinated offloading framework.

7

Chapter 2

Mobile Cloud Computing

This chapter gives description of the research topic of mobile cloud computing. We define the

scope of the platform as we discuss in this thesis and its architecture. We focus on existing imple-

mentations which enable the computation workload offloading ability of mobile cloud computing

platforms. Motivating scenarios and applications of mobile cloud computing are illustrated fol-

lowed by a discussion of the advantages and disadvantages of the platform.

2.1 Architectures and Components of Mobile Cloud Com-

puting

Mobile cloud computing is an emerging field of research that aims to provide a platform on

which intelligent and feature-rich applications are delivered to the user’s fingertips efficiently.

This efficiency comes from the adaptive offload ability of mobile cloud applications which is key

to the seamless integration of mobile devices and cloud servers. Pioneered by the likes of MAUI

[22], CloneCloud [23] and ThinkAir [26], adaptive computation offload as a core technology in

mobile cloud computing has gathered momentum in recent years and has grown from a futuristic

concept to a practical means to improve and augment the user’s experience of mobile applications.

In this thesis we give two illustrations of the architecture of mobile cloud computing, in Fig. 3.1

and Fig. 4.1. While Fig. 3.1 gives a simple illustration of the underlying network structure of

8

2.1 Architectures and Components of Mobile Cloud Computing

a mobile cloud platform and a change in task allocation, Fig. 4.1 adds an extra layer of cloud

computing resources referred to as cloudlets (Section 4.1) into the mobile cloud computing

picture and illustrate the benefit of computation offloading with cloudlets in the field.

Commonly applied to enable access to cloud resources a service-oriented architecture (SOA)

is also observed in a mobile cloud platform. We give further description of SOA in Section 5.1.2

and related researches that use mobile devices as service hosts in Section 5.1.4. In the rest of this

section, we focus on the techniques that enables computation offloading and researches related

to the development of mobile workflow engines which are most relevant to all technical chapters

of this thesis.

2.1.1 Enabling Mobile Computation Offload

The integration of mobile and cloud computing promises the user with convenient access to

powerful applications at any time and at any where. The research of computation offload plays

an essential part in this vision and ensures that this integration process is both seamless and

energy-efficient.

The idea of transferring computation to a nearby processing unit in order to improve mobile

application’s performance and reduce local energy cost has been researched along with the ma-

turity of mobile technologies. Many ideas and techniques we use in this paper are inspired by

this work.

Early research focuses on the partition schemes of an application. Aimed at energy manage-

ment, a compile-time framework supporting remote task execution was first introduced in [27].

Based on the same approach, a more detailed cost graph was used in [28] with a parametric

analysis on its effect at runtime presented in [29]. Another compiler-assisted approach was intro-

duced in [30], which turns the focus to reducing the application’s overall execution time. Spectra

[31] adds application fidelity (a run-time QoS measurement) into the decision making process

and uses it to leverage execution time and energy usage in its utility function. Spectra monitors

the hardware environment at run-time and choose between programmer pre-defined execution

plans. Chroma [32] builds on Spectra but constructs the utility function externally in a more

automated fashion. MAUI [22] also reduces the programmer’s workload by automating some

9

2.1 Architectures and Components of Mobile Cloud Computing

of the partitioning process models. The offload decision engine applies an integer programming

techniques to produce allocation schemes.

Before Cloud, opportunistic use of surrogates (untrusted machines) was adopted in [33] and

[34]. Slingshot [34] also identifies wireless hotspots as a platform to accommodate the virtual

machine capsule. As Cloud Computing and Virtual Machine technologies become mainstream,

more researches turned to the Cloud in search of a more secure, accessible and powerful offload

platform. OS supported VM migration was introduced in CloneCloud [35]. Calling-the-cloud

[36] add a middleware platform that manages an application’s execution between the phone and

the cloud. A consumption graph is used to model the application. Wishbone [37] looks at the

partitioning of sensor network applications in particular and models the decision making process

as a integer program. Aimed at reducing the communication costs [38] proposes the concept of

cloudlets, which brings the distant Cloud to the more commonly accessible WiFi hotspots. A

dynamic VM synthesis approach is also suggested in [38].

Our research is distinguishable to existing work since the applications that we investigate have

computation tasks scattered over a group of distributed mobile devices (i.e. a mobile workflow),

whereas existing researches look at applications that are implemented on one device only.

Besides existing research level implementations of mobile cloud applications (we recommend

three excellent surveys, [39], [40] and [41], to the interested readers for a comprehensive list

of existing researches in mobile cloud computing), we argue that the increasing popularity of

HTML5 as a mobile application development framework also greatly shortens the time required

to develop applications that are deployable both natively on the mobile device and remotely as

cloud services. The use of HTML5 and platforms like Apache Cordova help significantly lower the

level of technical challenges involved in the development of mobile cloud applications. We expect

to see an increasing number of mobile applications to adopt the adaptive execution approach

proposed by the research of mobile cloud computing in the near future.

2.1.2 Mobile Workflow Engine

A workflow engine is often required to oversee the execution of mobile workflows. In [19] a

detailed mobile workflow engine is implemented and tested on Nokia devices. A decentralised

10

2.2 Impact of Mobile Cloud Computing

workflow coordination architecture designed for mobile devices is presented in [42] for use in

biological studies and the supply-chain industry. Authors of [20] propose a rapid application

development framework based on a dynamic workflow engine for creating mobile web services.

A Field Service application is presented in [20] as an example use case.

Several researches has been carried out in workflow management issues in mobile social con-

tent sharing applications [43, 44, 45, 46]. A mobile P2P social content sharing framework was

proposed in [44]. In [45], a Java API based mobile workflow system was proposed. A content

distribution protocol was proposed in [47] for vehicular ad hoc networks (VANET). Clusters of

mobile devices has been proposed in [48] to support the execution of parallel applications. A

workflow engine is present in all these researches to oversee the scheduling of tasks.

The common approach towards an allocation problem often model the problem as a linear

programs (LP) [22, 49, 50] in the workflow engine. LPs are suitable for modelling situations

where communication time is not considered or when there are only two devices involved in

the process. However, in the cases of mobile workflows, communication tasks are an essential

part of the workload and occur significant amount of energy cost[51]. Thus we construct our

model’s objective function as a quadratic program in Chapter 3 in order to accurately capture

the communication costs.

2.2 Impact of Mobile Cloud Computing

2.2.1 Motivational Applications of Mobile Cloud Computing

Mobile cloud applications combine the accessibility, agility and the rich sensing ability of the

mobile computing platform with the abundance of services provided by the cloud computing

platform and is applicable in many fields of researches. [41]

Healthcare

Mobile medical treatment and health monitoring devices are constrained by its physical size just

like smartphones. mHealthMon [52] is a mobile health monitoring platform which adopts the

computation offloading technique in mobile cloud computing to improve the energy efficiency of

11

2.2 Impact of Mobile Cloud Computing

the process of continuously gather, process and update sensor readings for patients. In mHealth-

Mon, users publish and access sensor data via a cloud-based P2P overlay network. @HealthCloud

[53] proposes the implementation of a mobile system that enables electronic healthcare data stor-

age, update and retrieval utilising cloud services provided by Amazon S3 and an Android app.

Although computation offload is not applied in @HealthCloud, the system benefit greatly from

the cooperation of mobile and cloud computing.

Image and Video Processing

Cuckoo [24] implements a face detection over its offloading platform and is able to reduce the

energy cost as well as augment the features provided by the application. MAUI [22] is also

tested with a face detection application and significant energy savings has been make by apply-

ing computation offload. The two scenarios given in [18] as discussed in Section 1.2 are both

based on crowd-sourced imaging informations. GigaSight [54] is a scalable video crowd-sourcing

application which gathers video information from devices such as Google Glass. Privacy sensi-

tive information is automatically removed from the video based on time, location and content

informations. Cloudlets are used to support the computation and storage offloading of GigaSight

and also achieve scalability.

Gaming

A video game and a chess game is tested by MAUI [22]. Although significant energy savings were

made under good network conditions, significant savings in execution time has been made in the

video game application. In [55] an adaptive rendering technique is applied to maximise user

experience of cloud-based mobile gaming given constraints in communication and computation

in the wireless network.

2.2.2 Illustrative Use Cases of Mobile Workflows

A cloud-assisted mobile workflow as we discuss in this thesis is an application workflow that is

implemented over a group of mobile devices with access to cloud resources. The cloud resources

may either be a compulsory component in the execution of the workflow, or be in an assistant

12

2.2 Impact of Mobile Cloud Computing

role to handle computation offload requests sent from the mobile devices. Mobile application

workflows can be found when a group of mobile users are to share or communicate with each

other in order to accomplish a certain task. We give two example use cases of such workflows in

Fig. 2.1, Fig. 2.2 and Fig. 2.3 to further clarify our objective.

Enterprise use case: With increasing adaptation of mobile devices into enterprise business

models[15], modern enterprise applications often include or are entirely based on mobile devices.

Fig. 2.1 illustrates an application workflow involving three mobile devices and two cloud services

of a supply-chain business. Two employees are concerned with the receipt and sale of goods

respectively. Both activities require an up to date pricing information at runtime. A manager is

concerned with the trends that are developing in the company’s inventory in real-time which is

produced via a series of tasks like forecast and analysis.

There are two types of tasks in this workflow: tasks like login, record sale and database

queries that are fixed either on a mobile device or a cloud node; and tasks like data analysis and

forecast that can be offloaded between devices and clouds. Depending on the computation size

and communication size of these offload-able tasks, an energy-aware allocation scheme can help

optimise the execution of the workflow in term of its overall energy cost imposed onto the mobile

cloud platform.

Consumer use case 1: Because of it portability, mobile devices encourages the development

of collaborative application. In Fig. 2.2, we illustrate the collaboration of three mobile devices

in scanning the 3D structure of an object. Pictures of the object is taken on all three devices at

the same time and once pre-processed, these pictures are gathered to construct the 3D model of

the object. Two cloud services are available to the users, one for storage and one for application

hosting and computation offloading.

Similar to the enterprise use case, the tasks involved in this mobile application workflow can

either be fixed or offload-able over the mobile cloud platform. Allocation of tasks is critical

in deciding the energy-footprint of the workflow. For instance, once the picture has been pre-

processed, the subsequent communication size may be reduced. Comparing this reduction to the

computation cost of the pre-processing task on the mobile device, it may or may not be beneficial

for the device to offload this task to the cloud.

Our research investigates ways to model and optimise the energy efficiency of such workflows

13

2.2 Impact of Mobile Cloud Computing

receipt

forecast

sale

display
trend

login

analysis

Database Service

inventory
database

Application Service

user
database

pricing

Figure 2.1: Example use case of an MCC workflow: Business task interaction.
Solid circles represent tasks that are fixed on a device or a cloud service, whereas dashed circles

represent tasks that are free to offload / migrate between devices and clouds. Allocation of
tasks significantly affects the energy-efficiency of the mobile cloud platforms.

running atop a platform of mobile and cloud devices. Our goal is to develop ways to produce

energy-aware task allocation schemes and provide an energy efficient execution platform for

cloud-assisted mobile workflows.

Consumer use case 2: Fig. 2.3 illustrates three smartphones and a tablet, and expands on

the idea of a popular consumer game application [56] that allows the user to use a smartphone

and a tablet to emulate the equipments used in a darts game. The tablet is used to display a

dart board, the smartphones are used by each participating player as their darts. The workflow

starts when a player throws a dart (by waving the phone towards the tablet). Sensor readings

(accelerometer and gyroscope) are then taken from the phone and fed into a calculation module

to work out where the dart should land on the board. Once the calculation is finished, the result

is then passed on to the display module of the tablet.

Like all multi-player competitions, the game can only function until its weakest player with-

draws, which in this case, is the device that runs out of battery first. The module for calculating

the landing point might not cause too much energy to run each time, however, repeat execution

is required during the game. The device which runs this module consumes considerable amount

14

2.2 Impact of Mobile Cloud Computing

construct
3D model

take
photo

take
photo

take
photo

pre-
process
photo

pre-
process
photo

pre-
process
photo

view
model

save
model

Application Service

Storage Service

Figure 2.2: Example use case of an MCC workflow: 3D scan workflow.

sense
action

display

calculate
landing
point

sense
action

sense
action

Figure 2.3: Example use case of an MCC workflow: Darts game.

of energy more than the others over time. A fair task allocation, which we study in Section 3.3,

is needed in such scenarios to balance the contribution made by participating members of the

workflow.

2.2.3 Advantages and Issues of Mobile Cloud Computing

As a combination of mobile and cloud computing, mobile cloud computing combines the ad-

vantages of both platforms including convenient access to services at anywhere and at any time

enabled by the portability of the mobile device, and the on demand access to limitless computa-

tion and storage capacities provided by cloud services.

15

2.2 Impact of Mobile Cloud Computing

• Access to applications at anywhere and any time

• Greater computation power to implement sophisticated applications

• Bigger, more reliable and synchronised storage space

• On demand scalability of cloud services

• Reduced battery consumption

However, because of use of a wireless connection that is both energy-consuming, unstable

and limited in capacity, there are open issues that need to be addressed in order to maximise

the benefit of the mobile cloud platform.

Energy-Awareness Wireless communication is expensive in energy costs. The wireless

radio unit is the most energy-consuming component in smart devices[51, 57]. Therefore task

allocation and offloading actions which changes the communication costs of the workflow

need to be managed in an energy-efficient manner. We address these issues by developing

energy-aware task allocation and offload strategies in Chapter 3 and Chapter 4.

Network Capacity, Reliability and Cost Bandwidth is a valuable asset on all types of

mobile networks and limits the offload-ability and efficiency of mobile workflows. Therefore

knowing the bandwidth dependency between interacting mobile services is key to the resource

management aspect of mobile cloud computing. Furthermore, the reliability issue related to

the wireless network requires adaptive strategies to accommodate changes in network con-

ditions. Wireless connections can be expensive and therefore the provisioning of bandwidth

need to be cost effective. We address these issues by constructing a network I-O model in

Chapter 5.

Competition On Device Mobile devices are crowded with applications and services of dif-

ferent purposes. Many require the access to cloud resources. The unawareness of information

of other applications and the selfish behaviour exhibited by application put the system as a

whole in a sub-optimal position, We address this issue by constructing a game theoretical

framework to model the offload decision models in a mobile cloud platform and also propose

cooperative solutions to optimise system performance in Chapter 6.

16

Chapter 3

Energy-Aware Task Allocation in

Mobile Cloud Platforms

Improvement in mobile applications’ energy efficiency is one of the principle motivations behind

the development of mobile cloud computing technologies. This improvement is facilitated by the

computation offloading capability provided by mobile cloud platforms. Relocating offload-able

tasks in an application’s workflow from one host to another modifies the energy profile of the

platform. Therefore, solving the task allocation problem becomes a critical first step in ensuring

the energy efficiency of the mobile cloud platform. The optimality of task allocation schemes is

a fundamental issue which greatly affects the energy efficiency of application workflows running

atop a mobile cloud computing platform.

In this chapter, we investigate the energy-aware task allocation problem in a mobile cloud

platform with two distinctive objectives. For our first objective, which we refer to as the Minimum

Group Energy Cost Problem (MGECP), we aim to minimise the overall energy cost of the

platform. We construct a quadratic program to model the MGECP. Using the quadratic objective

function as constraints, we further developed a quadratically constrained program to model our

second objective which we refer to as the Minimum Maximum Utilisation Problem (MMUP). In

the MMUP, we aim to distribute the tasks fairly while taking into account the size of the residual

energy of each mobile devices of the platform.

17

3.1 Mobile Cloud Platform Model

In a cloud-assisted mobile application workflow, energy is spent on both executing the com-

putation of tasks and the communications between tasks. Therefore, quadratic objectives and

constraints are inevitable in modelling the allocation problem in such scenarios. This increases

the complexity of finding the exact solution to our problems. To approximate the optimal solu-

tion, we developed two heuristics including an implementation of the simulated annealing (SA)

algorithm and a greedy autonomous offload (GAO) algorithm.

The solution optimality and execution time cost of our heuristics are compared to that of

the QP and QCP solver libraries of CPLEX [58] version 12.6.1, an industry-leading optimisation

software package, herein through the analysis of a series of simulation results. We also investigate

and report on the relations between MGECP and MMUP based on simulation results.

3.1 Mobile Cloud Platform Model

3.1.1 Mobile, Cloud and Network Metrics

We consider a mobile cloud platform MCP consisting of a set of p processing nodes, denoted

P = {P1,⋯, Pp}. Each processing node may either be a mobile device node from set PM ⊆ P or a

cloud resource node from set PC ⊆ P , with PM ∩PC = ∅ and PM ∪PC = P . We denote a mobile

device node profile as PMi (si, ecmpi , esndi , ercvi , emnti), i ∈ {1, . . . , ∣PM ∣} and a cloud resource node

profile as PCi (si)1, i ∈ {1, . . . , ∣PC ∣} with parameters defined as follows:

si, denotes the peak processing speed of Pi ∈ P , measured in the number of clock cycles

available in a millisecond;

ecmp
i

, denotes the current draw from the battery of PMi ∈ PM when the device is executing

computation tasks at peak speed;

e
snd/rcv
i

, denotes the current draw from the battery of PMi ∈ PM when the device is send-

ing/receiving data to/from the data network.

1Although we don’t associate any particular energy metrics for a cloud processor, the notation of e
snd/rcv/mnt
i

is applied in the rest of this chapter even when i ∈ PC in order to keep the notations easy to follow. The reader
may assume that these variable are of value 0.

18

3.1 Mobile Cloud Platform Model

PC

PM

Public Cloud Enterprise Cloud

- constrained tasks

- re-locatable tasks

- change in allocation

Authentication Service Database Service

- workflow engine

Figure 3.1: Illustration of a Mobile Cloud Platform.

emnt
i

, denotes the current draw from the battery of PMi ∈ PM when the device is maintaining

the wireless connection alive to anticipate transmission of data.

All nodes (Pi ∈ P) are interconnected via a network (as illustrated in Fig. 3.1 with solid lines

being wired connections and dotted being wireless connections), and we use bij to denote the

bandwidth between devices Pi and Pj , i, j ∈ {1,2, . . . , p}. Thus, we have p-matrices B = (bij)p×p
and L = (lij)p×p which hold all of the bandwidth and latency information of the underlying

network of the MCP. When two adjacent tasks are assigned to the same device, we assume that

they share the same memory address space on the device. Therefore, we assign positive infinite

values to the principal diagonal elements of B, that is bii = +∞, i ∈ {1,2, . . . , p}, and zeros to the

principal diagonal elements of L, that is lii = 0, i ∈ {1,2, . . . , p}.

Our choice of energy profile parameters is in line with researches that investigate the energy

characteristics of mobile devices and wireless networks [51, 59, 60, 61, 62, 63, 64] especially for

the wireless module. We especially emphasis the difference in energy consumption between the

sender and the receiver of the data, and that it cost energy to maintain a live connection in

anticipation of data transmission. We refer the interested reader to [57] for a comprehensive

survey in energy consumption models and techniques of modern mobile devices.

3.1.2 Application Workflow Metrics

The tasks of application workflows hosted on MCP and their interactions are represented by

a directed graph W = (T,R) whose vertex set T = {t1, . . . tn} denotes the set of tasks of the

19

3.1 Mobile Cloud Platform Model

workflows. The ordering of the tasks are defined as the topological order given by W . We

assume that all tasks are defined via a service-oriented architecture (SOA) and that services

may be available on more than one device. An n-matrix D = (dab)n×n denotes the weighted

adjacency matrix of W , where dab is the size of the data package that is to be sent from ta to tb

for (ta, tb) ∈ R. All principle diagonal elements of D are zeros.

Each task has profile ta (d(.a), d(a.), ca), a ∈ {1, . . . n} where d(.a) and d(a.) are the a-th column

and the a-th row of D which represent the incoming and outgoing data respectively. ca denotes

the workload size of the task.

3.1.3 Fixed and Constrained Tasks

Not all tasks of a mobile workflow are suitable for offload from its host. For instance, a task

that authenticates the user’s identity using the fingerprint reader on the smartphone has to

be executed on the smartphone; a task that manages database files saved on a cloud-storage

service has to run locally on that cloud; a task which senses the user’s heartbeat resides on the

smart-watch, etc. These tasks are fixed on their hosts.

Furthermore, there may be tasks that are only allowed to be executed on a subset of the

devices from P . For instance, when a task is associated with sensitive data shared between a

group of users, or when the OS of each device varies in versions such that the execution of certain

tasks are not supported by all of P . The allocations of these tasks are constrained within a group

of devices.

We denote the set of devices that a task ta may execute on with P ta . For a fixed task, P ta

has a cardinality of one and contains only its host. For a constrained task, P ta includes only

devices on which ta is installed. For a task which is not at all constrained, P ta = P .

3.1.4 Allocation Scheme and Energy Costs

Given an allocation scheme ψ ∶ T → P , we first derive the energy cost of computing ta, a ∈ {1, . . . n}
to be

Ecmp
aψ(a) = ecmpψ(a) × ca

sψ(a) (3.1)

20

3.2 Minimum Group Energy Cost Problem

where ψ(a) is the device to which ta is assigned. Secondly, we have the energy cost of transferring

dab, (ta, tb) ∈ R as given by

Etranabψ(a)ψ(b) = esndψ(a) × dab
bψ(a)ψ(b) + emntψ(a)lab

´¹¹¹¸¹¹¹¶
sender’s cost

+ ercvψ(b) × dab
bψ(a)ψ(b) + emntψ(b)lab

´¹¹¸¹¹¹¶
receiver’s cost

(3.2)

(3.2) accounts the data transmission cost from both the sender device and the receiver device of

the data. Modern wirelss transmission components on a mobile device such as WiFi and cellular

3G and 4G modules apply a third power state to intermediate the off and transmit power states.

This power state is often referred to as the “idle” power state in related researches such as

[63, 64, 65, 66]. We refer to this power state as the “maintenance” cost of the data link, denoted

by emnti with i ∈ {1, . . . , ∣PM ∣}. In this power state, a device is ready to transmit or receive but

because of the latency between the devices, the actual transmition or receiving action has yet to

happen, therefore the higher power states (esndi and ercvi) do not yet apply.

3.2 Minimum Group Energy Cost Problem

In this section, our objective is to minimise the energy cost of the MCP as a whole. We first

show that the Minimum Group Energy Cost Problem (MGECP) can be modelled as a generalised

Quadratic Assignment Problem (QAP) [67] and then we convexify the objective function in order

to obtain the optimal solution using a QP solver.

3.2.1 Assignment Matrix

To represent an allocation scheme ψ, we first construct an n × p binary matrix Xψ = (xψai)n×p,
such that

xψai =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if ψ(a) = i, ta ∈ T, Pi ∈ P
0 otherwise.

(3.3)

21

3.2 Minimum Group Energy Cost Problem

We call matrix Xψ an assignment matrix and a valid assignment must satisfy the following

constraints

∑
Pi∈P ta

xψai = 1, a = 1,2, . . . , n, (3.4)

xψai ∈ {0,1} , a = 1,2, . . . , n, i = 1,2, . . . , p. (3.5)

(3.4) ensures that every task must be assigned to one and only one device within the group of

devices which it is able to execute. (3.5) states that all tasks are indivisible.

3.2.2 Quadratic Program Formulation

With (3.1) (3.2) and (3.3), we can derive the group energy cost function as

Eψ = n∑
b=1

p∑
j=1

n∑
a=1

p∑
i=1 ((esndi + ercvj)dab

bij
+ (emnti + emntj)lab)xψaixψbj

+ n∑
a=1

p∑
i=1 e

cmp
i

ca
si
xψai (3.6)

The quadratic terms in (3.6) gives the total energy cost for data transmission, whereas the

linear term gives the total energy cost for executing computing tasks. Next we introduce (pn)2
coefficients qaibj as given by

qaibj ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ecmpi

ca
si
+ (esndi + ercvj)dab

bij
+ (emnti + emntj)lab

´¹¹¹¸¹¹¶
=0

if (a, i) = (b, j),

esndi

dab
bij

+ emnti lab a < b,

ercvj
dba
bij

+ emntj lab a > b.

(3.7)

With (3.7) we can transform (3.6) to

minimise: Eψ = n∑
b=1

p∑
j=1

n∑
a=1

p∑
i=1 qaibjx

ψ
aix

ψ
bj (3.8)

as the objective function of our quadratic program.

22

3.2 Minimum Group Energy Cost Problem

Theorem 3.2.1. Let coefficients qaibj be the entries of an pn × pn matrix Q, such that qaibj is

on row (i − 1)n + a and column (j − 1)n + b, and vec(Xψ) = (xψ11, xψ12, . . . , xψ1n, xψ21, . . . , xψpn)T be

the vector formed from the columns of Xψ.

Equivalent formulations for the MGECP objective function are given by (3.8) and

minimise: Eψ = vec(Xψ)T ⋅Q ⋅ vec(Xψ) (3.9)

Proof. From the construction of vec (X), we observe that its u-th element vec(Xψ)u = xψai ⇔
u = (i − 1)n + a. Furthermore, given u = (i − 1)n + a and v = (j − 1)n + b, u, v ∈ {1,2, . . . , pn}, we

also get Quv = qaibj . Hence,

(3.9) = pn∑
v=1

pn∑
u=1 vec(Xψ)TuQuv vec (Xψ)

v
= n∑
b=1

p∑
j=1

n∑
a=1

p∑
i=1x

ψ
aiqaibjx

ψ
bj = (3.8)

Therefore (3.9) constrained by (3.4) and (3.5) completes our quadratic program formulation

for the MGECP. The assignment matrix for the MGECP is given by

arg min
Xψ

(Eψ) (3.10)

3.2.3 Convexification

With the quadratic program formulated, we can find its exact optimal solution using QP solvers.

In order to exploit the power of modern QP solvers, we first need to pre-process the problem

and convexify the objective function [68]. There are a number of ways of convexification. Our

process is similar to that use in [69].

Theorem 3.2.2. Let Q∗ ∶= 1/2 (Q +QT) + αI, where I is the pn × pn identity matrix, then Q∗
is positive definite if scalar α = 1+ ∥ Q ∥∞
Proof. We observe that Q∗ preserve the properties of being a square, non-negative matrix from

Q, and that it is also symmetric ⇔ q∗uv = q∗vu. Recall that ∥ Q ∥∞= max1≤u≤mn {∑mnv=1 ∣quv ∣}.

23

3.3 Minimum Max-Utilisation Problem

Therefore we have

xTQ∗x = mn∑
u=1 q

∗
uux

2
u + 2

mn−1∑
u=1

mn∑
v=u+1 q

∗
uvxuxv (3.11)

= mn∑
u=1

⎛⎜⎝q∗uu −
mn∑
v=1
v≠u

q∗uv
⎞⎟⎠x2u +

mn−1∑
u=1

mn∑
v=u+1 q

∗
uv (xu + xv)2

= mn∑
u=1

⎛⎜⎝quu + α −
mn∑
v=1
v≠u

q∗uv
⎞⎟⎠x2u +

mn−1∑
u=1

mn∑
v=u+1 q

∗
uv (xu + xv)2

= mn∑
u=1(2quu + α − mn∑

v=1 quv)x2u +
mn−1∑
u=1

mn∑
v=u+1 quv (xu + xv)2

≥ mn∑
u=1

⎛⎜⎜⎜⎜⎜⎜⎝
2quu + α − mn∑

v=1 quv´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶≥ 1

⎞⎟⎟⎟⎟⎟⎟⎠
x2u

Hence xTQ∗x > 0 for any x ≠ 0 and the proof is complete. Similar formulation was first

introduced in [69] to construct a negative definite matrix.

Addition of a constant on the main diagonal of Q only adds a constant to the value of (3.9)

and does not change its optimal solution to (3.10). Hence we can rewrite our objective function

as

minimise: vec (X)T Q∗ vec (X) (3.12)

This together with (3.4) and (3.5) completes the formulation of the QP solvable optimisation

problem of the MGECP. The positive definite property of Q∗ ensures that (3.12) is strictly convex

and a global minimum can be found by existing QP solvers.

3.3 Minimum Max-Utilisation Problem

While solutions generated by the MGECP ensures that the application workflows running atop

the MCP consumes minimum amount of energy from the mobile devices as a collection, it does not

consider the stress it has on individual devices. This could result in unfair energy cost distribution

within the MCP, and create over-utilised devices. Having such workflow executed repeatedly over

24

3.3 Minimum Max-Utilisation Problem

time without adjustment to its task allocation scheme could lead to early retirements of over-

utilised devices from the MCP. In a business environment, it is common to have authorisation

constrained services or tasks taking critical roles within workflows. In such cases, the MCP’s

inclusion of these authorised devices is critical to the fulfilment of the application workflow’s

functionalities. Retirement or withdrawal of devices which support this set of critical tasks could

lead to the retirement of the entire workflow. This leads to the shift in the workflow engine’s

priority from reducing the total energy cost of the group to ensuring the availability of individual

devices.

Hence in this section, we look at ways to adjust the task allocation provided by the MGECP

so that the availability period (or the number of run counts) of a workflow can be lengthened.

We refer to this class of problem as the Minimum Max-Utilisation Problem (MMUP).

3.3.1 Device Cost Matrix

Unlike the MGECP, we need to add additional constraint to individual devices’ energy cost in

order to control the outcome of the adjustment action. In order to formulate these constraints,

we first introduce the device specific cost matrix Qi:

Theorem 3.3.1. Let

Qiuv =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Quv if n × (i − 1) < u ≤ n × i,
0 otherwise.

(3.13)

for i ∈ {1, . . . , ∣PM ∣}. Then given an allocation scheme ψ and its allocation matrix Xψ, we have

the energy cost of Mi to be

Eψi = vec (Xψ)T Qi vec (Xψ) (3.14)

Proof. Proof is similar to the proof of Theorem 3.2.1 and can be worked out easily.

3.3.2 Device Utilisation

Next, we introduce the measure of device utilisation:

25

3.3 Minimum Max-Utilisation Problem

Definition 1. Given an allocation scheme ψ, the utilisation of Mi, denoted Uψi , equals Eψi /ERi ,

for Pi ∈ PM , where Eψi is the energy cost of Pi under ψ and ERi is the size of the residual energy

of Pi.

It is easy to see that the reciprocal of a device’s utilisation, (1/Uψi), is the number of times

PMi can support the workflow before it runs out of battery. The wholeness of the workflow is

limited to the device which can afford the least number of runs. This implies that the availability

period of a workflow is hence constrained by the member with the highest value of utilisation.

Redistribution of workload from over-utilised devices to under-utilised devices can help reduce

Ei and thus lengthen the workflow’s availability prospect.

By definition, another aspect that determines a device’s utilisation value is its residual battery

value ERi . Because the resources on most mobile devices are often not exclusively managed in

coordination with the services that serve the cause of the workflows, the workflow engine cannot

accurately predict the residual battery value over time. For instance, a user’s decision to watch

an online video over 3G network can quickly drain the battery, and that in turn will affect the

prospect of the workflows in which it plays a critical role. Furthermore, unlike devices with fixed

locations, mobile devices are constantly exposed to the changing conditions of the open world.

This is especially true with the changing signal strengths of the data links which can put extra

stress on the device’s battery.

3.3.3 Quadratically Constrained Program Formulation

The MMUP is a min-max problem over each device’s utilisation ratio:

minimise: max{ Uψi }, i ∈ 1, . . . , ∣PM ∣ (3.15)

subject to: (3.4) and (3.5)

With the introduction of an auxiliary variable

y ≥ Uψi , i ∈ 1, . . . , ∣PM ∣ (3.16)

26

3.4 Heuristics

we transform the formulation of the MMUP to a Quadratically Constrained Problem (QCP):

minimise: y (3.17)

subject to: (3.16), (3.4) and (3.5)

Our formulation of the MMUP is now complete. The problem is now solvable by QCP solvers.

We apply the same convexification process (Section 3.2.3) to the quadratic constraints (3.16).

3.4 Heuristics

Amongst all combinatorial optimisation problems, QAP is one of the hardest to solve [70].

Despite the development of modern QP solvers, finding the global optimal solution of a QAP

remains a computational consuming task. When the problem size gets bigger (p×n > 200 in our

experience on a laptop with a first generation Core i7 processor and 8GB of memory), finding

the exact solution becomes impractical. This is especially true with the QCP formulation of the

MMUP because of the number of quadratic constrains follows the number of mobile devices in

an MCP. Therefore we designed two heuristics to approximate the solutions.

Note that in both heuristics, we assume that an allocation scheme ψ is currently in place to

schedule all tasks on the MCP.

3.4.1 Simulated Annealing

Simulated annealing [71, 72] is a meta-heuristic algorithm often applied to NP-hard combinatorial

optimisation problems including QAP [70]. One of the main features of simulated annealing is

that by occasionally allowing inferior solutions on its search path, the algorithm is able to perform

uphill2 search steps so that its solution needs not get stuck at local optimal points.

The algorithm has a simple structure. As illustrated in Algorithm 1, the main procedure

has two nested loops. The outer loop (line 4 - 17) iterates for a number of cycles. Each cycle

2Note that because of the random uphill actions in a simulated annealing search, the solution from its last
trial may not be the best it has ever come across. Therefore, as well as letting the algorithm to develop a best
possible solution by itself, we also keep a record of the best solution throughout the searching process. We return
this best solution as the final output of the algorithm. We omit this from Algorithm 1 so that the structure of
the algorithm remains clear to the reader.

27

3.4 Heuristics

corresponds to a temperature T which is trialed in the inner loop (line 5 - 15) and cooled by a

cooling ratio (0 < Tc < 1) at the end of each cycle. At the start of the inner loop, a candidate (ψ′)
is randomly choosen from the local neighbourhood of the current solution (ψ∗). This candidate

is then accepted as the best solution either through the fact that it improves the value of our

objective function or with probability min{1, exp(−∣Objψ′ −Objψ∗ ∣/T)} regardless of whether it

improves the objective function or not.

The structure of the simulated annealing algorithm is independent from the problem it applies

to. Therefore our implementation for both MGECP and MMUP share the same structure as

presented in Algorithm 1. What do distinguish the two solutions are their implementation of the

objective function (Objψ), for the MGECP this is (3.9), and for the MMUP this is (3.15).

Next, we discuss details of our implementations of the simulated annealing algorithm.

Cooling Schedule

The use of the exponential function (line 10) in the simulated annealing algorithm means that

the probability (p) of a candidate / incumbent solution (ψ′) being accepted is directly related

to the temperature (T) of each cycle. The higher the temperature, the higher chance that an

inferior candidate solution may be accepted. Likewise, following the cooling (reduction) of T at

the end of each cycle, the probability of an inferior solution being accepted by the algorithm is

gradually reduced towards the end of the algorithm.

Because of this property, the performance of an implementation of the simulated annealing

algorithm greatly depends on its choice of a cooling schedule. On one hand, the initial temperature

must be high enough such that the final solution is independent from the initial solution (ψ0).

A low initial temperature constraints the development of the solution by assigning low or zero

probability to inferior solutions from the start of the algorithm. On the other hand, the exit

temperature needs to be small enough so that the development of the final solution is adequately

constrained by the algorithm. A solution produced by a high exit temperature is less refined and

may be randomly further away from the optimal solution.

In our implementation of the simulated annealing algorithm we set the initial and exit temper-

ature as T0 = (log(p0))−1 and Te = (log(pe))−1 where p0 and pe are the initial and exit acceptance

probabilities that we set out. Then we have Tc = (Te−T0) 1
NumberOfCylces−1 to complete the cooling

28

3.4 Heuristics

schedule. We also normalise ∣Eψ′ − Eψ∗∣ by its averages in each cycle at line 10. To preserve the

essential structures of a simulated annealing algorithm, fine tunings of the algorithm are not

presented in detail in Algorithm 1.

Calculating ∣Eψ′ − Eψ∗∣ for MGECP and ∣Eψ′i − Eψ∗i ∣ for MMUP

In each trial of the algorithm, the objective of the candidate solution (Eψ′ for MGECP, Eψ′i
for MMUP) is to be re-calculated (line 10). Therefore its calculation is crucial to the time

complexity of the algorithm as a whole. Because Q is of size (pn)2, the calculation of Eψ′ using

(3.9) becomes a time consuming task with increases in either p or n or both. In our experience,

as the complexity of the problem increases, it becomes less feasible to apply the heuristic than

that of an QP solver if (3.9) is used to calculate Eψ′.
To overcome this issue, we observe the following:

Theorem 3.4.1. If ψ′ is the allocation scheme which alters only the assignment of a ∈ T from

i to j (with i, j ∈ P) when compared with ψ∗, then

Eψ′−Eψ∗ = Q(j−1)n.vec(Xψ′)+Q.(j−1)nvec(Xψ′)T −Q(i−1)n.vec(Xψ∗)−Q.(i−1)nvec(Xψ∗)T (3.18)

where Q(j−1)n. and Q(i−1)n. denote the (j − 1)n-th and the (i − 1)n-th row of Q, Q.(j−1)n and

Q.(i−1)n denote the (j − 1)n-th and the (i − 1)n-th column of Q respectively.

Proof. Observe that an allocation matrix X has only binary values and that when one application

changes allocation from ψ to ψ′, only a pair of values of that allocation matrix is exchanged.

Apply these observations to (3.9), the reader should not find it difficult to come to (3.18).

With (3.18), we can quickly assign the probability of accepting a candidate solution. We

reduced the time complexity of calculating ∣Eψ′ − Eψ∗∣ from a complexity that is greater than

O((pn)2) for multiple vector-matrix multiplications to O(pn) for the sum of vector dot products.

Note that the same technique is also applied in our second heuristic introduced in the next

section.

29

3.4 Heuristics

Algorithm 1 Simulated Annealing - MGECP and MMUP

1: procedure SAnnealing(ψ0,Q)
2: T ← T0
3: ψ∗ ← ψ0

4: for c← 1,NumberOfCycles do
5: for t← 1,NumberOfTrials do
6: ψ′ ← local(ψ∗)
7: if Objψ

′ < Objψ∗ then
8: ψ∗ ← ψ′
9: else

10: p = exp(−∣Objψ′ −Objψ∗ ∣/T)
11: if p > rand(0,1) then
12: ψ∗ ← ψ′
13: end if
14: end if
15: end for
16: T = T × Tc
17: end for
18: return ψ∗
19: end procedure

3.4.2 Greedy Autonomous Offload

Heuristics that are used in the literature to approximate QAPs (e.g. simulated annealing) often

share a common evolution-like structure which iteratively improves on a best-known result. The

optimality of the final solution is often dependent on the number of iterations the algorithm

is allowed to run. In an MCP environment, workflows need to be nimble and adaptable to

the constantly changing network conditions of mobile devices. It is often not practical to let

the algorithm running for a large number of iterations. Therefore in the design of our second

heuristic, we take a step back from the established algorithms and aim to build an algorithm

that is most practical to the MCP.

In the design of this heuristic, as shown in Algorithm 2, we emphasis on the core feature

of an MCP which is computation offload (or migration) from mobile to cloud. On a workflow

engine level, the adjustment to the initial allocation scheme is carried out in rounds (line 3 to 9

for MGECP and line 17 to 21 for MMUP) triggered either by changes in MCP or periodically.

On a device level, we first associate each mobile device with the cloud which it has the best

connection with (line 25). Then all tasks currently located on this device and are not fixed to

this device is measured against each other in terms of the energy savings (or losses) that may

30

3.4 Heuristics

Algorithm 2 Greedy Autonomous Offload

1: procedure GAO-MGECP(ψ0, Q)
This procedure is executed by the workflow engine, triggered by the changes in network
conditions or periodically.

2: ψ′ ← ψ0

3: repeat
4: ψ∗ ← ψ′
5: for d ← 1, ∣PM ∣ do
6: ψ′d ← GAO-Device(d, ψ′)
7: end for
8: ψ′ ← Reduce (ψ′d)
9: until MaxIterations or ψ′ == ψ∗

10: return ψ′
11: end procedure

12: procedure GAO-MMUP(ψ0, Q)
13: ψ′ ← ψ0

14: for d ← 1, ∣PM ∣ do

15: maxheap.insert(Uψ′d , d)
16: end for
17: repeat
18: [Umax, d] ← maxheap.extract()
19: ψ′ ← GAO-Device(d, ψ′)
20: maxheap.insert(Uψ′d , d)

21: until MaxIterations or Uψ′d == Umax
22: return ψ′
23: end procedure

24: procedure GAO-Device(d, ψ′)
This procedure may either execute on the mobile devices or on the workflow engine.

25: c←BestConnectedCloud
26: ∆E∗ ← 0
27: ψ′Me.ID ← ψ′
28: for all a ∈Me.Offloadables do
29: ψ′′ ← ψ′Me.ID

30: ∆E ← Eψ′′(a)=cMe.ID - Eψ′′Me.ID

31: if ∆E > ∆E∗ then
32: ψ′Me.ID(a)← c
33: end if
34: end for
35: ψ′(a)← c
36: return ψ′Me.ID

37: end procedure

31

3.4 Heuristics

occur if it is offloaded to this designated cloud (line 28 to 34). This constitutes the device-level

decision making process of our algorithm.

The first two procedures of the algorithm are entry points for solving the MGECP and MMUP

respectively. For the MGECP, all devices from ∣PM ∣ are allowed to offload computation in each

iteration until no device is able to reduce its energy cost any further. For the MMUP, a heap data

structure is in place to hold the utilisation value of all devices. The device with the highest value

of utilisation is picked from the top of this max-heap in each iteration to offload its computation.

The procedure finishes when the device picked is unable to reduce it utilisation further.

This algorithm is greedy in that each device offload the one most “profitable” task to the

most “promising” location known to it. This means that the algorithm is quick and cheap (in

terms of energy cost) to execute on the device. Although it does not apply exhaustive search

methods for the optimal offload scheme, it produces good result which we demonstrate in the

next chapter. As a possible extension to this algorithm we could model the per-device offload

decision as an integer program as in [22] to obtain the optimal solution.

This algorithm is autonomous because it allows each device to make its own offload decisions

independently. This is due to the fact that the device-level procedure (line 24) of the algorithm

may execute locally on mobile devices. Note that although ψ′ is requested by the procedure as

input, this does not create any extra communication workload for the devices. The communi-

cation of ψ′ between the devices and the workflow engine is requested to guide the execution of

the workflow regardless of any offload requests. Once an offload decision has been made on the

device, only the difference between ψ′ and ψ′Me.ID is to be returned at line 36. This autonomous

behaviour also mimics the cooperation of mobile devices when each is equipped with one-to-one

mobile cloud computing offload schemes as suggested by [22, 23, 24].

Another benefit of the greedy autonomous structure is that the workflow engine is able to react

to the changing network conditions more efficiently. For instance, when a device is temporarily

cut-off from the MCP network, the workflow engine may pause the procedure and wait for the

device to come back online. Depending on the new connection speed that device has to the

MCP when it recovers, the workflow engine can decide whether to restart the whole procedure

or continue the existing procedure. Likewise, when a new cloud resource become available on

the MCP, the device can adjust its favourite offload destination and revise its decisions.

32

3.5 Simulations, Comparisons and Discussion

3.4.3 Joint Search

The solution produced by the greedy autonomous offload algorithm is sub-optimal because each

device only offload tasks to a destination which is considered the best by itself, whereas a joint

offload action with one of its neighbouring devices to the cloud of their choice may produce a

better result. This issue does not exist in the simulated annealing algorithm.

One the other hand, a disadvantage of the simulated annealing algorithm is that it does not

apply exhaustive local search around its solution, therefore its solution is not guaranteed to be

locally optimal. This local optimality gap can be reduced by applying the greedy autonomous

offload algorithm on the solution provided by the simulated annealing algorithm.

Therefore, in our experiments, we use the combination of the two heuristics, namely GAO+SA

and SA+GAO, to attempt to reduce the impact from each algorithm’s disadvantages.

3.5 Simulations, Comparisons and Discussion

In this section, we carry out simulation studies to verify and compare the results produced by the

proposed algorithms. We first layout the structure of our simulation in Section 3.5.1, and then

give details of the hardware and software parameters used in the simulations in Section 3.5.2.

Results produced from the simulations are analysed in the rest of this section.

3.5.1 Simulation Structure

There are four stages in our simulations as shown in Table 3.1. Each simulation test is constructed

at stage 1 with stochastic hardware and software parameters. We give details of the ranges of

these parameters in the next section (3.5.2). Since scalability is one of the main concerns which

led to the development of our heuristics, we construct four series of simulations of different

complexities to compare the performance of our heuristics under different circumstances. Each

series includes five test groups details of which are given in Table 3.2. We refer to each test group

by their ID (e.g. S0, M3) in the rest of this section. For brevity, we only discuss the results from

the first test group of each series in this section, i.e. S0, M0, L0 and X0. Data from all other

groups are attached in Appendix A and B for further reference.

33

3.5 Simulations, Comparisons and Discussion

Table 3.1: Simulation structure

Stage 1: Construct Simulation

Hardware Software

S M L X

Stage 2: Select Objective

MGECP MMUP

Stage 3: Apply Algorithms

Base − − SA ∗ GAO ∗ SA+GAO − CPLEX† ∗
SA-HT − GAO+SA +
SA-DC +

Stage 4: Analyse Results

Eψ σ{Eψi } max{Uψi } σ{Uψi } Execution Time

† - QP and QCP solvers are applied for MGECP and MMUP respectively.

Once a simulation environment has been constructed, we then solve each of the two objectives

at stage 2 with each of the algorithms listed at stage 3. Within stage 3, we first apply a baseline

algorithm (Base) which attempts to reduce the total energy cost by distributing the number of

tasks evenly across the MCP including both mobile and cloud nodes. This algorithm provides

a good baseline value because although it does not seek the benefit of using an energy efficient

device, its chance of being able to take that advantage is consistent. This baseline algorithm

also utilises cloud resources to execute a fair portion of the workloads. The allocation scheme

produced by Base is used as the initial allocation scheme for our heuristics.

Next, we apply both of our heuristics (SA and GAO) to solve the MGECP and MMUP of the

simulation. To demonstrate the effect of the two key parameters, NumberOfCycles and Num-

berOfTrials, used in SA (Algorithm 1), we apply two variations of our standard SA algorithm:

SA-HT, which apply only half the number of trials as compared to our standard SA; SA-DC,

which apply twice the number of cycles as compared to our standard SA. In terms of solution

quality, as compared to the standard SA algorithm, we expect SA-HT to produce a less optimal

34

3.5 Simulations, Comparisons and Discussion

Table 3.2: Simulation series specific parameters

S Series - Test Groups M Series - Test Groups

ID ∣P ∣(∣PC ∣) ∣T ∣/∣R∣ ID ∣P ∣(∣PC ∣) ∣T ∣/∣R∣
S0 10(2) 60/90 M0 20(2) 120/180

S1 10(2) 60/60 M1 20(2) 120/120

S2 10(2) 60/120 M2 20(2) 120/240

S3 10(4) 60/90 M3 20(4) 120/180

S4 10(2) 30/45 M4 20(2) 60/90

L Series - Test Groups X Series - Test Groups

ID ∣P ∣(∣PC ∣) ∣T ∣/∣R∣ ID ∣P ∣(∣PC ∣) ∣T ∣/∣R∣
L0 30(4) 180/270 X0 40(4) 240/360

L1 30(4) 180/180 X1 40(4) 240/240

L2 30(4) 180/360 X2 40(4) 240/480

L3 30(8) 180/270 X3 40(8) 240/360

L4 30(4) 90/135 X4 40(4) 120/180

solution with half the execution time and SA-DC to produce a better solution but twice the

execution time.

Joint search methods (SA+GAO and GAO+SA) are then applied to the simulated MCP.

Lastly, we apply QP and QCP solvers (CPLEX Component Libraries v12.6.1) for MGECP and

MMUP respectively. Because of the complexity of the QCP constructed for MMUP, we limit the

solver’s execution time at 5 times the execution time taken by our standard SA algorithm so the

solution produced by QCP is time constrained and is not necessarily optimal. No time limit is

applied to the QP while solving the MGECP and so the solutions produced by QP for MGECP

are all optimal. We also illustrate the symbols and colours which represent the results of each

algorithm in the rest of this section in Table 3.1.

Finally at stage 4, from every solution produced at stage 3, we collect key energy perfor-

mance indicators of the MCP including the mobile device group’s total energy cost (Eψ) and

the maximum energy utilisation (max{Uψi }, i ∈ PM) since these directly reflects the qualities

of the solutions in terms of MGECP and MMUP respectively. Additionally, we also record the

standard deviation of the per-device energy cost (σ{Eψi }, i ∈ PM) and the standard deviation of

the per-device energy utilisation (σ{Uψi }, i ∈ PM) to reflect the fairness of energy costs within

35

3.5 Simulations, Comparisons and Discussion

the MCP under different objectives. We also record the execution time of each algorithm to

compare their efficiency.

3.5.2 MCP Construction

While it is intractable to cover all possible use cases of mobile cloud platforms, we aim to base

our simulation closely to the characteristics of an average modern mobile device with wireless

connectivities typically ranged within the capacities of existing wireless technologies (e.g. WiFi,

3G and LTE). On a hardware level, we construct our simulation with two building blocks: a

typical mobile device and a typical wireless connection:

Definition 2. A typical mobile device has a battery capacity of 2000mAh, draws a current of

200-300mA during data transmission (with uplink drawing 20% more current than downlink)

and 100-200mA when executing local computation tasks.

Definition 3. A typical wireless connection has an uplink bandwidth of 2-10Mbps, and a latency

of 10-50ms.

The values in Definition 2 are based on the data presented in recent researches [51, 57, 59,

60, 66]. Characterisation of energy consumptions in smart devices and wireless networks is

a challenging research topic. Because of the rapid development of new devices and emerging

network standards, it is unrealistic to associate exact quantities to activities on mobile smart

devices. Therefore, we use value ranges to characterise the energy consumptions of devices and

networks in Definition 2 to simulate the variety of devices and power characteristics which may

exist in a mobile cloud computing environment. We also used the tools presented in [63] to verify

the values used in the definition. The network data in Definition 3 is based on the combination

of 3G and LTE data presented in a recent report produced by Ofcom [73].

Likewise, on a software task interaction level, we construct our simulation with two basic unit

workloads:

Definition 4. A task, ta ∈ T , has a unit computation workload if its execution, ca, takes 1 second

to complete on a typical device.

36

3.5 Simulations, Comparisons and Discussion

Definition 5. Two tasks, {ta, tb} ⊆ T, (ta, tb) ∈ R, have a unit communication workload if the

size of the data sent from ta to tb, dab, takes 1 second to complete on a typical wireless connection.

In our simulation, we specify each task’s workload size using multiples (real numbers between

1 and 20) of a unit computation workload and a unit communication workload. The size of W

of each simulation group is as specified in Table 3.2.

3.5.3 Results from Solving MGECP

We now compare the quality of the solutions produced by each algorithm in solving MGECP.

We examine the solution quality in terms of both optimality and time. We plot the results from

S0, M0, L0 and X0 in Fig. 3.2, Fig. 3.3 and Fig. 3.4. The optimality of each algorithm’s solutions

(Eψ) are plotted in Fig. 3.2 and Fig. 3.3. The corresponding execution times of each algorithm

are summarised in Fig. 3.4.

Each plot in Fig. 3.2 and Fig. 3.3 gives the solutions from 100 simulations produced by all

algorithms listed in stage 3 of Table 3.1 for S0, M0, L0 and X0 respectively. Since no time limit is

set for the CPLEX QP solver in solving MGECP, the allocation schemes produced by the solver

are optimal. For illustration purposes, in (a1) and (b1) of Fig. 3.2 and Fig. 3.3, we normalise Eψ
across the 100 simulations by their base value and sort them in ascending order of the optimal

value given by the QP solver.

In MGECP, our objective is to minimise the energy cost Eψ of the MCP as a whole. From

Fig. 3.2 and Fig. 3.3, we see that in all four (S0, M0, L0 and X0) groups, the proposed algorithms

are all able to reduce Eψ to some extent. When the scale of the problem is small (S0 and M0), the

differences between our heuristics and the solver is relatively small. This gap increases when the

scale of simulation gets larger as seen in the results from L0 and X0. The quality of the solutions

produced by the GAO algorithm are ranked second best consistently to that of the optimal

solution produced by the QP solver in all four simulation groups. Although not as consistent,

the joint search algorithm SA+GAO also produces good solutions that are better than GAO at

times. The GAO algorithm is also superior than all other algorithms in terms of execution time

as shown in Fig. 3.4.

37

3
.5

S
im

u
la

tio
n
s,

C
o
m

p
a
riso

n
s

a
n
d

D
isc

u
ssio

n

0

100

200

300

400

N
o
rm

a
li
se
d
Eψ

(m
A
h
)

(a1) S0 - solution quality - per simulation

SA SA(Linear Fit) SA-HT SA-DC GAO GAO(Linear Fit)

SA+GAO GAO+SA Optimal Optimal(Linear Fit) Base

(a2) S0 - solution quality - statistics

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

100 simulations in ascending order of EψOpt

N
or
m
al
is
ed
Eψ

(m
A
h
)

(b1) M0 - solution quality - per simulation

S
A

S
A
-H

T

S
A
-D

C

G
A
O

S
A
+
G
A
O

G
A
O
+
S
A

O
p
ti
m
a
l

(b2) M0 - solution quality - statistics

Figure 3.2: Results from solving MGECP: Solution optimality from S0 and M0.

38

3
.5

S
im

u
la

tio
n
s,

C
o
m

p
a
riso

n
s

a
n
d

D
isc

u
ssio

n

0

500

1,000

N
or
m
al
is
ed
Eψ

(m
A
h
)

(a1) L0 - solution quality - per simulation

SA SA(Linear Fit) SA-HT SA-DC GAO GAO(Linear Fit)

SA+GAO GAO+SA Optimal Optimal(Linear Fit) Base

(a2) L0 - solution quality - statistics

10 20 30 40 50 60 70 80 90 100
0

500

1,000

1,500

100 simulations in ascending order of EψOpt

N
o
rm

a
li
se
d
Eψ

(m
A
h
)

(b1) M0 - solution quality - per simulation

S
A

S
A
-H

T

S
A
-D

C

G
A
O

S
A
+
G
A
O

G
A
O
+
S
A

O
p
ti
m
a
l

(b2) M0 - solution quality - statistics

Figure 3.3: Results from solving MGECP: Solution optimality from L0 and X0.

39

3
.5

S
im

u
la

tio
n
s,

C
o
m

p
a
riso

n
s

a
n
d

D
isc

u
ssio

n

S
A

S
A
-H

T

S
A
-D

C

G
A
O

S
A
+
G
A
O

G
A
O
+
S
A

O
p
ti
m
a
l0

0.2

0.4

0.6

0.8

1

1.2

(a) S0 - solution time

S
A

S
A
-H

T

S
A
-D

C

G
A
O

S
A
+
G
A
O

G
A
O
+
S
A

O
p
ti
m
al

0

1

2

3

4

5

6

7

8

(b) M0 - solution time

S
A

S
A
-H

T

S
A
-D

C

G
A
O

S
A
+
G
A
O

G
A
O
+
S
A

O
p
ti
m
al

0

2

4

6

8

10

12

14

16

18

(c) L0 - solution time

S
A

S
A
-H

T

S
A
-D

C

G
A
O

S
A
+
G
A
O

G
A
O
+
S
A

O
p
ti
m
a
l0

10

20

30

40

50

60

70

(d) X0 - solution time

Figure 3.4: Results from solving MGECP: Solution time from S0, M0, L0 and X0.

40

3.5 Simulations, Comparisons and Discussion

As expected, of all three SA algorithms, SA-DC produces the best results with double the

amount of execution time taken by the standard SA algorithm, and SA-HT produces the worst

results within roughly half the amount of time. The difference in solution quality is less tangible

in S0 and M0 than in L0 and X0. Compared to GAO, solutions produced by SA is further away

from the optimal solution, and because of the stochastic nature of the algorithm, its solution

quality is also not consistent.

Between the two joint search algorithms, SA+GAO produces much better results than GAO+SA.

The fact that GAO+SA produces worse solutions than GAO is due to the random search meth-

ods applied by the SA at its initial stage which simply put the results already produced by GAO

to waste. On the contrary, because GAO only applies allocation changes when it is beneficial,

therefore in SA+GAO, the optimality of the result already produced by SA is preserved and

improved upon.

Optimal solutions are guaranteed by the CPLEX QP solver, and the solver’s time cost is

also acceptable in small scale problems like those simulated in S0 as shown in (a) of Fig. 3.4.

However, the scalability of the QP solver is very poor as shown by results from M0, L0 and X0

in (b-d) of Fig. 3.4. Additionally, it can be seen from (a-d) of Fig. 3.4 that the amount of time

it takes the solver to produce the optimal result occupies a large range of values (e.g. from less

than 3 seconds to more than 16 seconds in L0) and therefore is difficult to predict. In mobile

computing scenarios, the allocation of tasks need to be decided quickly to react to the network

conditions that are constantly changing and the poor scalability of the QP solver makes it less

favourable for solving scheduling problems in MCPs.

To summarise our results for the objective of MGECP, we see that the GAO algorithm is

the best when both scalability and solution optimality is considered. The QP solver is useful in

solving small scale problems.

3.5.4 Results from Solving MMUP

With a similar structure to the previous section, we now compare the quality of the solutions

produced by each algorithm for solving the MMUP in MCP. Results from S0, M0, L0 and X0 are

plotted in Fig. 3.5, Fig. 3.6 and Fig. 3.7. Results of the adjusted allocation schemes are shown

41

3.5 Simulations, Comparisons and Discussion

in Fig. 3.5 and Fig. 3.6. The execution times of each algorithm is shown in Fig. 3.7.

In MMUP, our objective is to minimise the maximum utilisation of the mobile device group

(max{ Uψi i ∈ PM}). Our results show that not all of the algorithms applied are able to adjust

the allocation schemes provided by the baseline algorithm to reduce the maximum utilisation

value for all simulations. This is especially true for the time-limited QCP solver and our greedy

algorithm GAO. However, GAO compensates this poor performance with very short execution

times as shown in Fig. 3.7.

Allocation schemes given by the SA algorithms provide the best results overall. In S0 both

variants of the standard SA share similar results to that of the standard SA. When the simulation

scale increases in M0, L0 and X0, the differences in solution optimality become more noticeable.

However, the relatively small reduction or improvement in solution optimality makes it difficult

to definitively choose one of the SA algorithms over another. It is also worth noting that because

of the random nature of SA, there is no guarantee that an increase in number of search trials

and cycles would produce better allocation schemes. This can be observed from the scatter plots

of Fig. 3.5 and Fig. 3.6. Given that the two variants cost significantly different amount of time

to execute, a choice can be made according to the requirements of specific use cases.

Neither of the two joint search methods (SA+GAO and GAO+SA) provides significant im-

provement to the solution’s optimality whilst costing more time than the standard SA and GAO

algorithms.

3.5.5 Comparing MGECP and MMUP

We now discuss the similarities and contradictions of solving MGECP and MMUP. Recall that

with each allocation scheme produced by our algorithms, as specified in stage 4 of Table 3.1, we

collect not only the objective value for the chosen problem, but also for the other problem. That

is to say, for instance, that when an allocation scheme (ψ) is given by an algorithm with the

objective to solve MGECP, we record not only the overall energy cost of the MCP under such an

allocation scheme (Eψ), but also the maximum utilisation value of the MCP (max{Uψi }, i ∈ PM)

which is the objective value for MMUP. We refer to the objective value which is given to the

algorithm as the prime objective value and the objective value of the other problem not given

42

3.5 Simulations, Comparisons and Discussion

to the algorithm as the by objective value. By doing this we are able to gain further insight into

the relations between solving MGECP and MMUP.

We plot and compare the prime and by objective values from S0, M0, L0 and X0 in Fig. 3.8.

In the first row of Fig. 3.8, we compare the overall energy cost of the allocation schemes produced

by solving MGECP and MMUP. In this row, results from the algorithms which have MGECP as

the given objective (e.g. SA-MGECP, GAO-MGECP) are their prime objective values, whereas

results from the algorithms which have MMUP as the given objective (e.g. SA-MMUP, GAO-

MMUP) are their by objective values.

It is clear from all four simulation groups that the total energy cost of MCP is significantly

lower when it is the prime objective of the algorithms. It is also worth noting that apart from

S0, by solving MMUP in M0, L0 and X0, the total energy cost of the MCP as a by objective

increases when compared with the baseline allocation scheme. This is because in MMUP, our

objective is to reduce the energy cost of individual devices. In doing so, a task may be offloaded

to a less energy-efficient device because it has greater amount of residual energy. Therefore, the

energy cost of executing this task becomes greater rather than being reduced.

In the second row of Fig. 3.8, we give the maximum utilisation values produced by solving

MGECP and MMUP. In this case, results from the algorithms which have MGECP as the given

objective are their by objective values, where as results from the algorithms which have MMUP

as the given objective are their prime objective values.

Here, results produced by SA are in line with what we observed from the first row of Fig. 3.8

meaning that it is preferable to set MMUP as the prime objective when we wish to minimise the

maximum utilisation value of the MCP. In contrast, we observe the opposite with results from

GAO and CPLEX (QCP solver). Although this gap is not obvious with GAO, we do not see

a huge improvement from the by objective results to the prime objective results. This reflects

the poor performance of GAO and CPLEX in solving MMUP as we have shown in the previous

section (3.5.4).

Contrary to what we observed from the first row of Fig. 3.8, we do not observe an increase in

the by objective values when compared with the baseline value. This is because in minimising the

overall energy cost of the MCP, the energy cost of each device is also reduced and the reduction

in utilisation follows.

43

3
.5

S
im

u
la

tio
n
s,

C
o
m

p
a
riso

n
s

a
n
d

D
isc

u
ssio

n

0

5

10

N
o
rm

a
li
se
d
m
ax
{U

ψ i
},%

(a1) S0 - solution optimality - per simulation

SA SA(Quadratic Fit) SA-HT SA-DC GAO GAO(Quadratic Fit)

SA+GAO GAO+SA QCP QCP(Quadratic Fit) Base

(a2) S0 - solution optimality - statistics

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

100 simulations in ascending order of max{ UψQCPi }

N
or
m
al
is
ed

m
a
x
{U

ψ i
},%

(b1) M0 - solution optimality - per simulation

S
A

S
A
-H

T

S
A
-D

C

G
A
O

S
A
+
G
A
O

G
A
O
+
S
A

Q
C
P

(b2) M0 - solution optimality - statistics

Figure 3.5: Results from solving MMUP: Solution optimality from S0 and M0.

44

3
.5

S
im

u
la

tio
n
s,

C
o
m

p
a
riso

n
s

a
n
d

D
isc

u
ssio

n

0

5

10

15

N
o
rm

a
li
se
d
m
ax
{U

ψ i
},%

(a1) L0 - solution optimality - per simulation

SA SA(Quadratic Fit) SA-HT SA-DC GAO GAO(Quadratic Fit)

SA+GAO GAO+SA QCP QCP(Quadratic Fit) Base

(a2) L0 - solution optimality - statistics

10 20 30 40 50 60 70 80 90 100
0

10

20

30

100 simulations in ascending order of max{ UψQCPi }

N
or
m
al
is
ed

m
a
x
{U

ψ i
},%

(b1) X0 - solution optimality - per simulation

S
A

S
A
-H

T

S
A
-D

C

G
A
O

S
A
+
G
A
O

G
A
O
+
S
A

Q
C
P

(b2) X0 - solution optimality - statistics

Figure 3.6: Results from solving MMUP: Solution optimality from L0 and X0.

45

3
.5

S
im

u
la

tio
n
s,

C
o
m

p
a
riso

n
s

a
n
d

D
isc

u
ssio

n

S
A

S
A
-H

T

S
A
-D

C

G
A
O

S
A
+
G
A
O

G
A
O
+
S
A

Q
C
P

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) S0 - solution time

S
A

S
A
-H

T

S
A
-D

C

G
A
O

S
A
+
G
A
O

G
A
O
+
S
A

Q
C
P

0

2

4

6

8

10

12

(b) M0 - solution time

S
A

S
A
-H

T

S
A
-D

C

G
A
O

S
A
+
G
A
O

G
A
O
+
S
A

Q
C
P

0

5

10

15

20

25

30

35

40

45

(c) L0 - solution time

S
A

S
A
-H

T

S
A
-D

C

G
A
O

S
A
+
G
A
O

G
A
O
+
S
A

Q
C
P

0

10

20

30

40

50

60

70

80

90

(d) X0 - solution time

Figure 3.7: Results from solving MMUP: Solution time from S0, M0, L0 and X0.

46

3
.5

S
im

u
la

tio
n
s,

C
o
m

p
a
riso

n
s

a
n
d

D
isc

u
ssio

n

0

100

200

300

400

p
ri
m
e
ob

j.

b
y
ob

j.

Eψ ,
m
A
h

(a)S0

200

400

600

800

(b)M0

400

600

800

1,000

1,200

(c)L0

500

1,000

1,500

(d)X0

B
as
e

S
A
-M

G
E
C
P

S
A
-M

M
U
P

G
A
O
-M

G
E
C
P

G
A
O
-M

M
U
P

C
P
L
E
X
-M

G
E
C
P

C
P
L
E
X
-M

M
U
P

0

5

10

15

b
y
o
b
j.

p
ri
m
e
ob

j.

m
ax
{Uψ i
},%

B
a
se

S
A
-M

G
E
C
P

S
A
-M

M
U
P

G
A
O
-M

G
E
C
P

G
A
O
-M

M
U
P

C
P
L
E
X
-M

G
E
C
P

C
P
L
E
X
-M

M
U
P

0

10

20

B
as
e

S
A
-M

G
E
C
P

S
A
-M

M
U
P

G
A
O
-M

G
E
C
P

G
A
O
-M

M
U
P

C
P
L
E
X
-M

G
E
C
P

C
P
L
E
X
-M

M
U
P

0

10

20

30

B
as
e

S
A
-M

G
E
C
P

S
A
-M

M
U
P

G
A
O
-M

G
E
C
P

G
A
O
-M

M
U
P

C
P
L
E
X
-M

G
E
C
P

C
P
L
E
X
-M

M
U
P

0

20

40

Figure 3.8: Prime and by objective values from S0, M0, L0 and X0.

47

3.6 Summary

From these results we conclude that allocation schemes generated when MGECP is the prime

objective with MMUP as a by objective have good level of optimality in achieving both objectives

in MGECP and MMUP. Solving MGECP not only reduces the energy cost of the MCP as a whole,

but also in some degree reduces the maximum utilisation of the MCP and boost the lifetime of

the MCP as a platform. When MMUP is a priority, the SA algorithm can be used to further

reduce the maximum utilisation of the MCP.

3.6 Summary

In this chapter, we first introduced the common structure of a multi-device and multi-workflow

mobile cloud platform and the task scheduling problems in such platforms. This distinguishes

our work from existing researches which model only the task scheduling problem in single-device

and single-workflow scenarios of mobile cloud computing.

Two aspects of the energy-aware requirements of a mobile cloud platform are investigated in

this chapter, namely the Minimum Group Energy Cost Problem (MGECP) and the Minimum

Maximum Utilisation Problem (MMUP). In MGECP, our objective is to minimise the overall

energy cost of the platform, whereas in MMUP, our objective is to maximise the energy-life of the

platform. Both problems are realistic and critical to improving the energy-efficiency of mobile

cloud platforms.

In order to model both objectives of the energy-aware task scheduling problem of a mobile

cloud platform, we first characterised the computation and communication costs of the platform

by abstracting the key parameters of the platform. We then summarised the total energy cost

of a mobile cloud platform with a quadratic binary program the solution of which provides

an optimal allocation scheme of the MGECP. Next, a quadratically constrained variant of the

quadratic program was developed to model the the MMUP.

Due to the computational complexity of solving the quadratic programs to optimal, we devel-

oped two heuristics to approximate the optimal solution for both scheduling problems in MGECP

and MMUP. In the first heuristic, we implemented a simulated annealing algorithm (SA) which

is often applied to combinatorial optimisation problems, especially for quadratic programs, in

literature. In the second heuristic, we took a greedy (GAO) approach to the problems, which

48

3.6 Summary

allows each device to make task offload decisions autonomously. We tailored both algorithms to

fit the requirements of our problems so that allocation schemes can be produced efficiently.

A comprehensive simulation study is carried out to verify and compare the performance and

quality of our algorithms to that of the solvers provided by CPLEX, an industry-leading opti-

misation package. In these simulations, we also applied two variants of our standard simulated

annealing algorithm to demonstrate and verify our choice of parameters in the standard simulated

annealing algorithm. Furthermore, we implemented two joint search algorithms which combines

SA and GAO in an attempt to overcome the disadvantages of each of the two heuristics.

From the simulation results, we evaluate each algorithm from two aspects: the optimality of

the allocation schemes produce by the algorithm, and the amount of time it took the algorithm to

execute. For the MGECP, we find that GAO is the best algorithm amongst all in terms of both

solution optimality and execution time. The joint search method SA+GAO is able to improve the

optimality of the solution while costing more time to execute. While guaranteeing the optimal

scheduling schemes, the QP solver from CPLEX is only applicable for small scale problems for

its high and unpredictable execution time. For the MMUP, we find that SA produces the best

solution, while GAO’s time cost remains small. The QCP solver from CPLEX is not able to

produce good solutions within five times the execution time of the standard version of our SA

algorithm.

Finally, we compare our results from MGECP and MMUP in terms of their contribution to

each other’s objective. Although both problems are critical in an energy-aware mobile cloud

platform, we wish to see the effect of solving one of the problems on the other, so that a decision

can be made when only one problem (objective) is to be selected. We find that solving MGECP

also has a positive effect towards our goal in the MMUP. On the contrary, solving MMUP alone

increases the overall energy cost of the MCP which is opposite to the goal of MGECP.

Based on our findings in this chapter, we see that a tailored greedy algorithm is able to

efficiently produce good solutions for energy-aware task scheduling problems in mobile cloud

computing scenarios.

The modelling technique we presented in this chapter is also applicable to other energy critical

scenarios.

49

Chapter 4

Offloading Strategies for

Time-Constrained Mobile

Workflows

Whereas energy cost is the priority for mobile cloud platforms, time cost is of equal importance

when an individual workflow is concerned. As well as energy, time is another important metric

associated with mobile application workflows. In this chapter, we investigate further into the

task allocation problem within a mobile cloud environment and look at developing offload strate-

gies for mobile workflows while taking into account both time and energy requirements of the

workflow.This distinguishes our work to existing researches which consider only one of these two

aspects (in time efficiency [30, 34, 38, 74] and in energy saving [27, 28]). A similar analysis on

the offload-abilities of tasks is included in [75], but not in any great detail, and also is only based

on single smartphone nodes.

To broaden our vision of a ubiquitous mobile cloud environment, we further introduce the

concept of cloudlets into our platform model which acts as an additional layer of execution

platform in our mobile cloud platform. Cloudlets as proposed in [38] are not as powerful as

standard cloud services. The advantage of cloudlets is their accessibility to mobile devices.

50

4.1 Computation Offload with Cloudlets

Located at the edges of the network, they have very close physical proximity to the mobile

devices. This greatly reduces the communication energy cost to the mobile cloud platform and

time cost to the mobile workflows.

Also different from the scenarios we looked at in Chapter 3 is that, in this chapter, we

assume all tasks are originally located on mobile devices. When an offload action is scheduled,

the executables associated with that task must be transmitted to the cloud or cloudlet before

that task can be executed remotely. This creates extra communications between mobile and

cloud. Consequently, this extra cost need to be considered when offloading decisions are made.

We develop an algorithm WGAO to produce the offload strategies in this chapter which is

based on the GAO algorithm. A comprehensive analysis of the simulation results give further

insight of the relation between different characteristics of a workflow and its offload-ability.

4.1 Computation Offload with Cloudlets

A new layer of network infrastructure referred to as cloudlets is the term used to capture the

offload destination in this chapter. The concept of a cloudlet was first introduced in [38] at the

end of the last decade, and was subsequently discussed in [18], [76] and [22]. In [38], a cloudlet is

described as a “data centre in a box” and is “self-managing, requiring little than power, Internet

connectivity, and access control for setup.”

In Fig. 4.1, we present an example in which an enterprise workflow is deployed over four

mobile devices including a laptop and three smartphones. A cloudlet is deployed next to a

WiFi hotspot in a coffee shop that is accessible to the user of the second smartphone. Another

cloudlet is deployed at a more remote location which is accessible to both the third and the

fourth smartphone. If we assume that all tasks of the workflow require the same amount of

energy per second to run on their host devices and that the communications between each task

are of the same size. We also assume that no other application draws energy from these devices

whilst the workflow is being executed, then when the workflow is run repeatedly, we can predict

that the first phone’s battery is to go flat first because its user is sitting in traffic and can only

communicate with the other phones over a 3G connection. Its offload activity (if any) also has

to go through a 3G connection (3G is generally more expensive than WiFi [77, 78, 79]).

51

4.1 Computation Offload with Cloudlets

Headquater

Internet

90%
35%

WiFiCloudlet WiFi

WiFiCloudlet

3G Cell
Tower

Public
Cloud

75%

t1 t2 t3 t4

Enterprise
Cloud

Figure 4.1: Example showing cloudlet and faster network connections improve battery life on
mobile devices.

The second smartphone communicates with others over the coffee shop’s WiFi and is able to

use its cloudlet to offload t3’s computation cost. Therefore its battery gets consumed the slowest.

The user of the last handset has access to a WiFi hotspot whilst travelling on the train. However

the train does not have a cloudlet deployed, so to offload t4’s computation it has to send the

executables to the more distant cloudlet which takes longer to reach and thus consumes more

energy.

In Fig. 4.1, an enterprise cloud at the firm’s headquarters and a distant cloud service on the

Internet are also available to support offload. These nodes may have faster processing speeds

than the cloudlets. Offload to these clouds could prove more beneficial if the network connection

is of high speed.

52

4.2 Offload Strategies for Mobile Workflows

4.2 Offload Strategies for Mobile Workflows

In this section, we first set the scene by abstracting the mobile workflow and its execution

platform into two graphs. We demonstrate the impact of an offload action to various interest

groups of a workflow with a simple example. Trade-offs in time and energy of an offload action

vary depending on the characteristics of the workflow and the hardware network that carries it.

We thus build these variables into our model and construct our objective functions. We then

present the algorithm and discuss the design philosophies behind these.

4.2.1 Preliminaries and Problem Definition

Two graphs are used in our definition, each annotates the workflow and the hardware network

respectively. Firstly, we annotate our mobile workflow as a directed acyclic graph W = (T,E)
whose vertices are the set of tasks of the workflow and whose edges are the communications

between these tasks. Each task requires a number of instructions to be processed in order to

complete its computation, which is given by function I. For example I(ti) gives the number of

instructions ti requires. Since to run the offloaded task on the cloudlet, the executable of the

task needs to be transmitted to the cloudlet, we have function U(ti) to represent the size of ti’s

executable. The size of the data carried within each communication call is given by function D.

Hence we have D(ti, tj) to represent the size of the message sent from ti to tj .

Our second graph H = (N,R) represents the hardware platform on which our workflow is

to be executed. Graph H’s vertices are the processing nodes, and its edges represents the data

links between these nodes. A processing node n ∈ N must be either a local smartphone (ns ∈ Ns)
or a cloudlet server (nc ∈ Nc) but not both, and hence we have N = Ns ∪Nc and Ns ∩Nc = ∅.

Effectively, this divides the hardware graph H into two processing spaces: the smartphone space

Hs and the cloudlet space Hc. Edges within the Hs space interconnect the smartphones together,

which in practice is most likely to be carried over via a 3G or 4G data network unless both phones

have established WiFi links. Cloudlet nodes within the Hc space are interconnected via Wide

Area Networks (WANs). A data link between the two spaces (i.e. a data link from a smartphone

to a cloudlet) is dependent on the smartphone’s location and can be either a 3G/4G or WiFi

connection in practice. The bandwidth of each data link varies depending on its carrier, and in

53

4.2 Offload Strategies for Mobile Workflows

our model we annotate function B to obtain the bandwidth property of an edge. For instance we

have B(na, nb) which gives the bandwidth between node na and nb. We also annotate function

S to give the processing speed of each node, for instance, S(na) represents the processing speed

of node na.

The mobile workflow graph W is mapped onto the hardware graph H by two mapping

functions: α ∶ T ↦ N and β ∶ E ↦ R to represent the execution plan of the workflow:

α(ti) = na⇔ task ti is executed on node na

edge e joins ti to tj ⇔ β(e) joins α(ti) to α(tj)
Before any offload action takes place, our workflow is executed on the smartphone space only:

(∀t)(t ∈ T → α(t) ∈ Ns)

Fig. 4.2 shows an example of a workflow consisting of three tasks, and the workflow is origi-

nally mapped to the smartphone nodes only:

α ∶ T → N,α(t1) = ns1, α(t2) = ns2, α(t3) = ns3
β ∶ E → R,β(e1) = r(ns1, ns2), β(e2) = r(ns2, ns3)

In order to reduce the energy cost of the smartphone space and also to take advantage of the fast

processing speed provided by the cloudlet space, our general agenda is to shift the workflow’s

tasks over to the cloudlet space as much as possible. In our example in Fig. 4.2, task t2 is

offloaded from its local smartphone node ns2 to cloudlet node nc1, and this changes the mapping

functions from W to H as:

α′ ∶ T → N,α′(t1) = ns1, α′(t2) = nc1, α′(t3) = ns3
β′ ∶ E → R,β′(e1) = r(ns1, nc1), β′(e2) = r(nc1, ns3)

54

4.2 Offload Strategies for Mobile Workflows

w2w1 w3a2

nc1

W
o

rk
fl

o
w

L
=

(W
, A

)

H
ar

d
w

ar
e

Pl
at

fo
rm

H
 =

 (
N

, R
) C

lo
u

d
le

t
Sp

a
ce

 H
c

Sm
ar

tp
h

on
e

Sp
ac

e
 H

s

original mapping offload mapping

ns1 ns2 ns3

Figure 4.2: Offload expands the mapping into the Cloudlet space.

This change effectively expands graph W ’s destination graph from H’s sub-graph Hs to the

rest of H and with this expansion comes a series of trade-offs to various interest groups of the

workflow:

(a) To the user of smartphone node ns2, because task t2’s computation is no longer executed

locally, this reduces the energy cost of his handset. Moreover, because the workflow is

redirected away from his handset, he also avoids sending and receiving messages to the

other handsets which also reduces the energy cost to his handset. The only extra cost

incurred from the offload action is that the executables of task t2 needs to be transmitted

to the cloudlet node nc1, which costs energy in this example.

Notice that in a real mobile application, as identified in several papers [22, 24, 37, 80], and

as we discussed earlier in Section 3.1.3, not all components are suitable for offload. In the

most common cases, components which require I/O access must be executed locally on the

55

4.2 Offload Strategies for Mobile Workflows

handset, the same also applies to user interface modules. Thus it is unlikely that a handset

can offload all of its duties from the workflow. In such cases those components which

are pinned on the handset require active connections to be kept between the handset and

its neighbours or the cloudlet depending on its relation with other tasks in the workflow.

Consequently offload becomes a less attractive option to the user.

(b) To the users of ns1 and ns3, this offload has a negative impact if the distance from it to

cloudlet nc1 is greater than that to ns2. For instance, consider an enterprise workflow and a

time in which both ns1 and ns2 resides in the same building and are connected through the

building’s local area network (LAN). Cloudlet nc1 however sits externally to this LAN. In

such a situation, at least one more network hop is required to complete the communication

between t1 and t2, which means that ns1 must remain active for a longer period of time

(with a higher energy cost) in order to confirm a safe exit from the workflow. On the

other hand, in a case where ns1 is connected to ns2 over a long distance network, it is

possible that communication from ns1 to nc1 is shorter than that to ns2, thus the offload

is beneficial to the user of ns1.

(c) Execution of a typical IT workflow is often constrained by time. While users of individual

handset might prioritise energy saving on their phone, the overall time-efficiency of the

workflow also needs to be ensured.

From this simple example, we see that managing the trade-offs between time and energy in

various aspects of the workflow is the key element to our algorithm’s decision making process.

Hence we first capture the time and energy cost both before and after the offload action, and

then with these functions we set our objectives to ensure the offload option has at least a positive

effect.

Time Constraint

Consider a task ti which is local to smartphone node nlti , we want to see if offloading it to cloudlet

node nc is a beneficial option. We have the time cost before (M l) and after (Mr) the offload as:

56

4.2 Offload Strategies for Mobile Workflows

M l(ti) = I(ti)
S(nlti) + ∑(tj ,ti)∈E

D(tj , ti)
B(ntj , nlti) + ∑(ti,tj)∈E

D(ti, tj)
B(nlti , ntj)

Mr(ti, nc) = I(ti)
S(nc) + ∑(tj ,ti)∈E

D(tj , ti)
B(ntj , nc) + ∑(ti,tj)∈E

D(ti, tj)
B(nc, ntj) +

U(ti)
B(nlti , nc)

The first term in both functions gives the amount of time task ti takes to execute on the

smartphone and the target cloudlet respectively. The second and third terms are the inbound

and outbound communication time costs. Note that ntj is the node which task tj is currently

assigned to. It can be either task tj ’s local smartphone node or a cloudlet node which task tj

is already offloaded to. The last term in the second function is the amount of time it takes to

transmit task tj ’s executables to nc.

Our objective is to ensure that the offload action does not delay the workflow’s progress.

We denote the slack time of task ti with Mslack
ti (the slack time is calculated according to the

workflow’s critical path) and have our time constraint as:

Mr(ti, nc) <M l(ti) +Mslack
ti (4.1)

Energy Constraint

Suppose the current draw on a smartphone node ns, in mAh, is Pc(ns) for computing, Pi(ns)
when it is idle, Pts(ns) for sending data and Ptc(ns) for receiving data. We have the energy cost

on the smartphone before (Gl) and after (Gr) offloading as:

Gl(ti) = I(ti)
S(nlti) × Pc(nlti)

+ ∑(tj ,ti)∈E
D(tj , ti)
B(ntj , nlti) × Ptc(nlti) + ∑(ti,tj)∈E

D(ti, tj)
B(nlti , ntj) × Pts(nlti)

Gr(ti, nc) = I(ti)
S(nc) × Pi(nlti)

+ ∑(tj ,ti)∈E∧ntj =nlti
D(tj , ti)
B(ntj , nc) × Ptc(nlti) + ∑(ti,tj)∈E∧ntj =nlti

D(ti, tj)
B(nc, ntj) × Pts(nlti)

+ U(ti)
B(nlti , nc) × Pts(nlti)

57

4.2 Offload Strategies for Mobile Workflows

The first term in both functions give the amount of energy the smartphone spends whilst the

task is being executed. The next two terms are the amount of energy spent receiving and sending

data to the neighbouring nodes respectively. Note that if the other end of the communication

is on a different node (ntj ≠ nlti), no energy is spent at ti’s local node for sending or receive

messages.

In order to guarantee that the offload action does not cause the smartphone to consume more

energy than its original setting, we set our energy constraint to:

Gr(ti, nc) < Gl(ti) (4.2)

For use in our algorithm, we also denote:

EPM(ti, nc) = it satisfies the time constraint (4.2) to offload ti to nc

EPG(ti, nc) = it satisfies the energy constraint (4.1) to offload ti to nc

4.2.2 Workflow-Oriented Greedy Autonomous Offload Algorithm

We now present a Workflow-Oriented Greedy Autonomous Offload (WGAO) Algorithm to pro-

duce offload strategies for mobile workflows, as shown in Algorithm 3. In this algorithm, we

apply a similar structure to that of the Greedy Autonomous Offload (GAO) algorithm which we

developed in Section 3.4.2 of Chapter 3.

We partition WGAO into two stages so that it can be implemented on the mobile nodes

and the workflow’s monitoring server respectively. The first two procedures (line 1 to 20) of our

algorithm are executed by the workflow engine. WGAO-Main (line 1) traverses the list of tasks

and communicates with each task’s host to see if any offload action is possible. If the host’s

feedback is positive, then the workflow engine tries to construct an offload tree cluster with that

task being the root using WGAO-Tree (line 11).

The third procedure (line 21) is implemented on the smartphones and helps its host to

find the best possible offload point for its tasks according to the environmental parameters it

gathers in real-time. For each of its tasks, out of all cloudlets that satisfy both time and energy

constraints (if any), it selects the one which gives the largest amount of energy savings as its

58

4.2 Offload Strategies for Mobile Workflows

offload destination. A user has the ability to set a task’s property to “isfixed” in order to protect

the relevant content from being offloaded. At line 25 Nc(nlti) represents the set of cloudlets that

are visible to task ti’s local mobile node at that time.

The following document some of the algorithm’s desired properties that we identified in

designing the algorithm:

Autonomous Decision Making Ability Each participating smartphone node should have

the ability to make simple offload decisions based on the environment it is currently situated

in without prior knowledge or instruction from the server. A mobile wireless data connection,

especially when implemented over a cellular network, is prone to connectivity disruption. In

such cases, the isolated node should be able to carry on executing its own tasks in an energy-

efficient manner. WGAO-Device is designed to take on such duty.

Offload Authorisation Not all resources on a mobile device are dedicated to a specific

workflow. Although an offload action might be beneficial to the overall performance of the

workflow, the owner of the device should still be able to have the authority to stop a task and

its relevant data to be offloaded. Examples of which include sensitive or private information

that the user is not prepared to share; extra financial expenditure for using a faster wireless

connection in range, etc. Hence the isfixed property as used in WGAO-Tree and WGAO-

Device.

This is especially true in choosing the type of wireless connections for the smartphone nodes.

In practice, although 3G and WiFi modules can be enabled at the same time on a smartphone,

it is normally up to the local OS to decide which connection is to be used for data transfer

tasks. A remote workflow decision engine’s role is to give advice to the user rather than

altering the existing settings on the device.

Furthermore, as discussed in Section 3.1.3, some tasks are not suitable to be offloaded. This

includes user interface processes, I/O components and processes that are observed by external

processes that require the output to be produced on the local node only [22, 24, 37, 80].

Task Clustering Offloading two tasks to the same cloudlet greatly reduces the energy con-

sumption in completing communication tasks between the two. Especially when those tasks

59

4.2 Offload Strategies for Mobile Workflows

Algorithm 3 Workflow-Oriented Greedy Autonomous Offload

1: procedure WGAO-Main(W)
This procedure is executed by the workflow engine, triggered by the changes in network
conditions or periodically.

2: sort workloads in set W in topological order
3: for ti ∈ T do
4: if ti.noff == null then
5: if WGAO-Device(ti)≠ null then
6: WGAO-Tree(ti)
7: end if
8: end if
9: end for

10: end procedure

11: procedure WGAO-Tree(ti)
12: for tj ∶ (tj ∈ T ∧ (ti, tj) ∈ E) do
13: if tj .noff == null ∧ ¬tj .isfixed then
14: if EPM(ti, nc) ∧ EPM(ti, nc) then
15: tj .noff ← ti.noff
16: WGAO-Tree(tj)
17: end if
18: end if
19: end for
20: end procedure

21: procedure WGAO-Device(ti)
This procedure may either execute on the mobile devices or on the workflow engine.

22: nc ← null
23: gmax ← 0 // maximum energy saving
24: if ti.isfixed then return nc end if
25: for all nj ∈ Nc(nlti) do

26: if EPM(ti, nc) ∧ EPM(ti, nc) ∧Gl(ti) −Gr(ti, nc) > gmax then
27: nc ← nj
28: gmax ← Gl(ti) −Gr(ti, nc)
29: end if
30: end for
31: if nc ≠ null then ti.noff ← nj end if
32: return nc
33: end procedure

60

4.2 Offload Strategies for Mobile Workflows

belong to different smartphone nodes, clustering essentially eliminates the need to transfer

data over a wireless connection between the mobile nodes. In WGAO-Tree, once a task

has been approved to offload to a cloudlet, we then attempt to exploit the same offload route

and offload the same task’s leaf tasks to the same cloudlet. Recursive calls to WGAO-Tree

expand the offload cluster.

Update on Event Mechanism The outcome of the decision making process depends heav-

ily on the mobile node’s real-time environmental parameters. Thus accuracy of this infor-

mation directly affects the offload’s efficiency. However, it is expensive in both time and

energy to constantly update the information onto the server [81], especially when no changes

have occurred between updates. One solution to this problem is to use the wake-on-event

mechanism provided by the mobile’s operating systems [51], especially on events like entering

a WiFi zone or moving into the range of a Cloudlet as demonstrated in [82].

Our algorithm is designed so that WGAO-Device is triggered on the handset when signifi-

cant change has occurred in its network connectivity. Updated information including a new

local offload plan is then feedback to the workflow engine.

4.2.3 Discussion of Variations and Optimisation of WGAO

In WGAO both constraints for time and energy, as specified by (4.1) and (4.2), are to be satisfied

in order for an offload decision to be approved. However, in some cases the workflow would have

preference in gaining saving in one metric over the other. For instance, in a business environment,

users of the workflow are highly mobile and the handheld device’s up time is critical for the

users to be able to answer voice calls at all time. A non-time-critical workflow within such an

environment has strong preference in saving battery life over execution time. Thus sacrifices in

task execution time can be made in order to help reduce the energy consumption on handsets.

Derived from this philosophy to trade-off gains and loses between time and energy, we describe

two variations of WGAO:

Minimum Battery Cost Our first variation prioritises energy saving over time costs. An

acceptable time delay Mallowed delay is added into the time constraint statement. We have

61

4.2 Offload Strategies for Mobile Workflows

the new time constraint as:

Mr(ti, nc) <M l(ti) +Mslack
ti +Mallowed delay

ti
(4.3)

This acceptable delay can be either a static value or a dynamic value that is dependent the

device’s current status (e.g. the current battery level, additional energy saving generated and

etc.).

Shortest Schedule Length In some cases, when the ability to re-charge the battery of

the smartphone is assured, it is often preferable to take advantage of this opportunity to

accelerate the execution of the workflow. In contrast to the first variation, we commit extra

energy consumption in exchange for faster execution speed in the second variation. We

introduce Gextra to the energy constraint and have the modified energy constraint:

Gr(ti, nc) < Gl(ti) +Gextra (4.4)

In the extreme case where the mobile device is docked to a charging station, we can remove

energy constraint EPG from WGAO-Device and WGAO-Tree completely, so that the

offload decisions are free from energy constraints.

Optimal Condition Expression Improvements in hardware resources can increase the

workflow’s offload-ability. However, there is a limit to the hardware’s performance. For instance,

an individual user’s available bandwidth to a WiFi hotspot is often capped. So to send a message

of a certain size over this connection takes at least
D(ti,tj)

BandwidthCap
seconds.

In order to reduce the complexity of our algorithm in real-time, we can use an optimal

conditional expression to pre-test a task to see if the time and energy constraints can be satisfied

provided that the device is in the best available hardware environments. For instance we can

62

4.3 Simulations

take a bandwidth cap value of 1Mbps into the time constraint and have:

Mr−opt(ti, nc) = I(ti)
S(nc) + ∑(tj ,ti)∈E

D(tj , ti)
1Mbps

+ ∑(ti,tj)∈E
D(ti, tj)
1Mbps

+ U(ti)
1Mbps

(4.5)

If the value given by this expression is greater than the local running time Gl(ti), this clearly

implies that task ti is not suitable to be offloaded to cloudlet nc. Increases in cloudlet processing

speed also have limited effect on improving the workflow’s offload-ability as we discuss further

in our simulation study. Pre-testing the workflow with this optimal conditional expression can

significantly reduce the algorithm’s workload at run time.

4.3 Simulations

We now present the results of the simulations conducted using our algorithm. Our aim is to

find out the impact of our offloading algorithm over workflows of various distinct characteristics

on top of different hardware environments. The key parameters of this study are the savings

made on the workflow’s total energy consumption and its schedule length. We vary the hardware

(e.g. processor speed, 3G/WiFi availability) and software (e.g. computation, executable size)

specifications and study their effects on the two metrics. For each environmental setup, we

conduct 100 runs of the simulation and use the averages as the experimental result. At the start

of each run, our model generates a random workflow which includes 40 independent workloads.

Then various parameters are fed into the model to construct a simulation of desired characteristics

before we let the offloading algorithm take action. The measured metrics are recorded within

each run before and after the offload for analysis.

In the simulation, we expect to see two pairs of metrics affect the offloading decision the most:

communication size and network connectivity, and computation size and cloudlet processing speed.

We also profile the energy consumption in our simulation as to what activity it is spent on, and

analyse the energy profile of the workflow before and after offload.

63

4.3 Simulations

4.3.1 Communication Size and Network Connectivity

In this group of simulations we aim to find out the impact of an increase in communication

size over a workflow’s offload-ability, and also see if improvements in the wireless connectivity

between the smartphone space and the cloudlet domain can help expand the benefits of the

offload activity. In order to eliminate the impact from the other critical attributes of a workflow,

the computation size, we fix the mean local (smartphone) processing time to 1/1000 of the mean

communication time, so that the offloading decisions in this group of simulations are all only

dependent on the workflow’s communication size.

An offloaded workflow’s communication expense comes from two sources: the process to send

the executable to the cloudlet and the re-routed inter-workload communication calls. We look

at their impact separately:

Executable Size As shown in Fig. 4.3 increases in a workflow’s mean workload executable

size (100KB, 200KB, 400KB, 800KB to 1600KB) derives a decrease in the saving generated

by the offload. More WiFi connection reduces the extra cost of transferring the executables

and thus generates better offload result. Sending a copy of the executable to the cloudlet

server is a procedure solely created to enable the offload action and only makes the offload a

more expensive in time and energy.

Like the app stores provided on iOS, Android and Windows Mobile, the concept of an enter-

prise application store has been widely accepted by the industry and is becoming a common

practice in business environments. This eliminates the cost to transfer executables to the

server. Similar framework can be found in MAUI [22], which keep a code repository on the

server which contain a copy of all executables to overcome this issue.

Although both plots in Fig. 4.3 look very similar to each other, we notice that at the 0% WiFi

connectivity mark, Fig. 4.3 (b) shows that the savings made in schedule length are mostly

zero, whereas Fig. 4.3 (a) indicates that of the same tests energy savings are positive. One

intuitive assumption would expect the saving in time and energy to be synchronised with

each other, and this contradiction seems impossible on first inspection. Furthermore, as in

Fig. 4.4 (a), out of the 100 runs which the WiFi connectivity was set to zero, the number

of runs which occurred saving in energy consumption is more than twice the number of runs

64

4.3 Simulations

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

20

40

60

80

100

E
n
er
g
y
sa
ve
d
,
%

(a) WiFi availability - Energy Saved

Executable Size - 100KB Executable Size - 200KB
Executable Size - 400KB Executable Size - 800KB
Executable Size - 1600KB

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

20

40

60

80

100

Percentage of smartphones with WiFi connectivity

S
ch
ed
u
le

le
n
gt
h
sa
ve
d
,
%

(b) WiFi availability - Time Saved

Figure 4.3: Effect of change in executable size and WiFi availability.
As the size of executables increase, fewer savings can be made in the workflow’s total energy cost
and schedule length (critical path). More WiFi connection makes offload appear more beneficial
in both metrics.

65

4.3 Simulations

with shortened schedule lengths.

In order to understand this result we decomposed this data (at 0% WiFi availability) and

found that the extra energy savings come from the tasks that do not reside on the critical

path as shown in Fig. 4.4 (b). This analysis indicates that to ensure the workflow gets

completed no longer that its original schedule length, tasks on its critical path cannot be

offloaded with poor network connectivity. However, away from the critical path where the

extra communication time created by an offload can be compensated by its slack time, offload

is still a feasible choice and helps preserve energy on the mobile nodes.

Inter-Task Communication Size It seems like a intuitive presumption in MCC that an in-

crease in communication size makes offload less favourable. Our simulation shown in Fig. 4.3,

which has an increasing executable size brings us to the same conclusion. However, our next

set of simulations with increasing inter-task communication size (100KB, 200KB, 400KB,

800KB to 1600KB) gives us an entirely different picture.

In this group of tests, we exchange the value used for executable size and inter-task com-

munication size in the previous simulation. The remainder of the workflow’s attributes stay

unchanged. As shown in both plots in Fig. 4.5, the lines are intertwined with each other,

which indicate that the increase in inter-task communication size did not have a significant

effect on how a workflow is offloaded.

To understand this we need to look at one of the fundamental differences our research has over

other work, which is that our experiment is based on a workflow whose tasks are scattered

across many different smartphone nodes, rather than all concentrated on one device. In

such cases, because the tasks are not all local to the same processor node, every inter-task

communication of the workflow would have already had a sizeable cost in both time and

energy in the original state. Therefore re-routing these tasks does not necessarily occur any

additional costs.

Fig. 4.6 shows a comparison between two groups of simulations with contrasting smartphone

to workload ratios. It is very clear in the graph that the workflow that has a higher concentra-

tion of workload reacts negatively when its inter-task communication size increases, whereas

the other workflow which has half the workload concentration rate shows an opposite trend.

66

4.3 Simulations

100KB 200KB 300KB 400KB 800KB 1600KB
0

20

40

60

80

100

N
u

m
b

er
of

te
st

ru
n

s
w

it
h

sa
v
in

gs (a) Number of runs

In energy cost In schedule length

100KB 200KB 300KB 400KB 800KB 1600KB
0

5

10

15

S
av

in
gs

,
%

(b) Savings on and off the critical path

Energy saved on critical path Energy saved off critical path
Time saved on critical path Time saved off critical path

Figure 4.4: Offload savings when no WiFi is available.

67

4.3 Simulations

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

20

40

60

80

100

E
n
er
g
y
sa
ve
d
,
%

(a) WiFi availability - Energy Saved

Data Size - 100KB Data Size - 200KB
Data Size - 400KB Data Size - 800KB
Data Size - 1600KB

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

20

40

60

80

100

Percentage of smartphones with WiFi connectivity

S
ch
ed
u
le

le
n
gt
h
sa
ve
d
,
%

(b) WiFi availability - Time Saved

Figure 4.5: Effect of change in communication data size and WiFi availability.
When scattered, increase in workflow’s local inter-task message data size does not affect its
offload-ability. More WiFi connection makes offload appear more beneficial in both metrics.

68

4.3 Simulations

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Increase in Communication Data Size (KB)

S
av

in
gs

af
te

r
offl

oa
d

,
%

Schedule length savings (20 tasks to 1 device)

Energy savings (20 tasks to 1 device)

Schedule length savings (40 tasks to 1 device)

Energy savings (40 tasks to 1 device)

Figure 4.6: Effect of density of workload.
When tasks (workloads) are clustered onto a small number of smartphones, workflows with a
bigger local communication size produce less energy gain after offload. The contrary applies
when tasks are scattered. All devices have WiFi connection.

4.3.2 Computation Size and Cloudlet Speed

The fast processing speed provided by the cloudlet space helps reduce the execution time of

tasks and helps to reduce the overall schedule length of the workflow. Energy wise, although the

device might need to be in idle mode whilst waiting for the task to be executed on the cloudlet,

the energy cost in idle is much lower than that of computation [51]. Hence we expect a group of

cloudlets with higher processing speed to produce better offload gains.

In this group of simulations, we set the bandwidth of smartphone-to-cloudlet and smartphone-

to-smartphone connections to be the same in order to prevent the result from being influenced

by network parameters. Fig. 4.7 shows the variation of savings made in both schedule length and

energy consumption with respect to the increase in cloudlet processing speed (from 1 to 1024

times greater to the smartphone speed). We observe that the benefit of offload increases as the

cloudlets gets faster. However, both lines fall flat after the smartphone-to-cloudlet gets beyond

1:16.

Recall our discussion on an optimal condition expression at the end of the algorithm section.

69

4.3 Simulations

1
:1

1
:2

1
:4

1
:8

1:
16

1:
32

1:
64

1:
12

8

1
:2

56

1
:5

12

1:
10

2
4

0

20

40

60

80

100

Smartphone to cloudlet processing speed ratio

S
av

in
gs

a
ft

er
offl

oa
d

,
%

In energy cost In schedule length

Figure 4.7: Effect of increase in cloudlet speedup.
Improvements in both savings fall become flat as cloudlet processing speed increases.

Although we do not apply a cap to the cloudlet’s speed in our simulation, the effect from a

faster cloudlet is capped to a certain level. In our functions which work out constraint functions

(4.1) and (4.2), we can see that this is because the functions all follow a reciprocal relation to

the processor speeds on the cloudlets i.e. S(nc). The same also applies to network bandwidth

B(ni, nj). This indicates that improvements in hardware environments help increase the offload-

ability of workflows but excessive investment is not necessary.

4.3.3 Energy Profile

In our simulations, as well as seeing the savings made by offload, we are also interested in what

activities (computation or communication) the energy was spent on before and after the offload.

Fig. 4.8 includes two stacked bar plots. The one in the background shows the energy distributions

of the original workflow. The second plot, in the foreground, shows the energy distributions of

the offloaded workflow. The top section of both plots indicate the share of energy that is spent on

communication. The data is grouped so that on the very left is the data gathered from workflows

that are offloaded only to take advantage of the fast processing speeds of the cloudlet (i.e. with

poor network bandwidth). On the very right are data from workflows that are offloaded only

70

4.4 Summary

10
:0

9:
1

8:
2

7:
3

6:
4

5:
5

4:
6

3:
7

2:
8

1:
9

0
:1

0

0

0.2

0.4

0.6

0.8

1

Smartphone to cloudlet processing speed ratio

E
n

er
gy

C
o
st

D
is

tr
ib

u
ti

on
,

%

Before offload computation Before offload communication
After offload computation After offload communication

Figure 4.8: Energy distribution before and after offload.
Offloaded workflows are proportionally more reliant on the network.

to eliminate communication costs (slow cloudlet speed). We can clearly see that in all groups,

the share of energy spent on communication has been increased after offload. This is a clear

indication that an offloaded workflow is proportionally more reliant on network connectivity

than its original form.

4.4 Summary

In this chapter, we presented our approach to managing a mobile workflow over its supporting

platform in an energy- and time-aware manner. With a model which reflects the software and

hardware characteristics of the scenario, we developed a heuristic algorithm to build and update

the offload plan dynamically based on the time and energy constraints of the workflow. Variations

of the objective functions are also discussed together with optimisation of the algorithm.

A series of simulation studies concludes that:

1. When no code repository is available at the server side, a large executable size invariably

generates a negative effect on a workflow’s offload-ability.

2. Large inter-task communication size within a workflow only makes offload less feasible when

71

4.4 Summary

tasks are concentrated on a small number of smartphones.

3. Energy savings can be found easier on workloads that are not on the workflow’s critical

path, so even when offload is proven not to be preferable by the time constraint, savings

can still be made in the workflow’s overall energy consumption.

4. The significance of the savings brought about by offload follow a reciprocal relation to the

hardware metrics.

5. Offloaded workflows are proportionally more reliant on the network.

72

Chapter 5

Bandwidth Dependency and

Allocation in Mobile

Service-Oriented Networks

Bandwidth is another influential factor to the QoS of mobile applications and services alongside

energy. As we have demonstrated in the previous chapters, the bandwidth variable plays a pivotal

role in the management of mobile cloud computing platforms. When the services requested by

mobile application workflows are distributed over a network of cooperative mobile smart devices

and clouds, the question arises as to which service should be allocated with how much bandwidth

and when in order to satisfy service demands? Moreover, how to adjust the bandwidth allocation

to accommodate changes in service demands whilst maintaining service QoS? Furthermore, the

mobility of smart mobile devices brings forward the challenge to determine how changes in mobile

network conditions affect the bandwidth requirements of interacting services.

To answer these questions, in this chapter, we investigate the resource management aspect of

mobile cloud computing platforms, more specifically on modelling the bandwidth dependencies

between interactive components of mobile application workflows. We generalise the bandwidth

allocation problem in mobile cloud computing platforms to that of generic mobile wireless net-

73

5.1 Mobile Service-Oriented Networks

works which we refer to as Mobile Service-Oriented Networks (MSON)s, so that the model is

applicable to a wider scope of problems. We assume all computation nodes are mobile devices

and don’t specifically include cloud nodes in our model. This generalisation does not alter the

structure of the model since we wish to quantify the bandwidth requirements of each computa-

tion nodes and whether the node is mobile or cloud does not affect this value. We give further

definition of an MSON in Section 5.1.

In Section 5.2 we give introduction to the Leontief I-O model which is th foundation of

economic studies. Then in Section 5.3 we adopt and extend on the analytical framework of

the Leontief Input-Output model and develop a network I-O model to describe the bandwidth

dependencies within an MSON. Various factors such as bandwidth, latency, service demand and

costs are accounted for in the model. A set of equilibrium equations are derived to produce the

bandwidth requirements of mobile devices.

Based on the Network I-O model, first a cost-based bandwidth allocation scheme is developed

to maximise service benefit in Section 5.5. Next, a set of adaptive bandwidth allocation strategies

is also proposed to accommodate changes in service demands and network conditions while

minimising the overall impact on application workflows in Section 5.5. Results from simulation

studies are presented at the end of each section to demonstrate the effectiveness of the proposed

methods.

5.1 Mobile Service-Oriented Networks

In this chapter, we assume that mobile (cloud) application workflows are manifested as dynamic

compositions of services located on mobile devices. We refer to the underlying network structure

as a Mobile Service-Oriented Network (MSON).

5.1.1 Example and Definition

Consider as a example a wireless network of personal mobile smart devices as shown in Fig. 5.1.

The network consists of a smartphone, a tablet and a smart TV. A remote file storage service

is also accessible from the network. Each device provides (within the dotted boxes) services

(illustrated in solid boxes) to the user. Each service module (e.g. in the form of mobile apps)

74

5.1 Mobile Service-Oriented Networks

Transcode

Translation

Voice
Call

Voice
to

Text

Video
Playback

eBook
Reader

File Storage

Figure 5.1: A simple example of a personal MSON.

serves a different purpose to the user and is able to run independently. However, when connected

via a network, these services can also be dynamically combined to serve more complex mobile

application workflows.

For instance, as illustrated in Fig. 5.1 by the coloured lines, the user can use the tablet to

stream a remote video file from the storage service by transcoding it to a format that is readable

by the smart TV. At the same time, if the smartphone is also available (has adequate bandwidth)

to the network, the tablet can transcode the video file to a voice stream that can be transcribed

to a text stream on the smartphone. This text information can then be translated on the tablet

to a language chosen by the user and streamed to the smart TV as subtitles.

Observe that the process of service composition is dynamic and non-deterministic. The

composition decision may be influenced by many factors such as 1) network conditions: the

smartphone might not have enough bandwidth therefore the “Voice-to-Text” service on the

smartphone cannot receive the voice stream from the “Transcode” service on the tablet; 2)

dynamic application information: the film may be in a language which the user can understand,

and therefore the “Translation” service is not included in the workflow.

In this chapter, we refer to this type of mobile networks as Mobile Service-Oriented Networks

(MSON)s on which a universe of services is distributed, and mobile applications are manifested as

dynamic compositions of these services. It is easy to see that one of the key challenges that comes

with the research in MSON is the constrained and unpredictable wireless network connection

capacity (e.g. bandwidth). In contrast to desktop based SOA networks [83, 84, 85], focus of the

bandwidth allocation problem has shifted from the centre of the network (considered fast in an

75

5.1 Mobile Service-Oriented Networks

MSON) to the access points at the edge of the network. If the required bandwidth for a service

were not met, it is not just a matter of delaying the execution of other interacting services,

but more importantly the matter of the collective waste of bandwidth that is created down the

application workflow pipeline [86].

Bandwidth allocation schemes are commonly found residing in the one-station-to-many-device

cell structures, and are in charge of distributing available bandwidth of the mobile station to

devices within its cell proximity. The bandwidth allocation problem of a mobile station with

three radio interfaces (IEEE 802.11, WLAN and CDMA) is modelled as a bankruptcy game in

[87]. In [88], a bandwidth allocation scheme is proposed for the WCDMA system. In [89], the

multiple fractional channel reservation strategy is used to maximise wireless channel capacity

in wireless networks with multiple radio interfaces. We refer the interested reader to [90] for a

comprehensive survey of bandwidth allocation strategies in such settings.

In contrast, our Network I-O model applies to the service-to-service cooperative network

structures, such as MSONs, supporting mobile application workflows. The allocation schemes

derived from the model are technology independent in that the backbone of this network may be

a LAN, a WAN or a WANET, the access network for each device may also vary from WiFi, 3G

to WiMAX, LTE. We focus on the interactions between services hosted on mobile devices that

are connected through a backbone network infrastructure. These devices may be distributed ge-

ographically and do not necessarily need to be connected to the same mobile station. Allocations

are done at a device level for services supporting mobile application workflows. We also don’t

assume the knowledge of call graphs between services as in Chapter 3 and Chapter 4.

5.1.2 Service-Oriented Architecture

The characteristics and challenges faced by mobile application workflows motivates the adoption

of the service-oriented architecture (SOA) [91] which advocates:

Encapsulation of core functionalities, therefore an application workflow can be developed

as a composition of service modules. For instance, a train timetable application may go one

step further and invoke a traffic and navigation service to guide the user to the train station,

a video streaming service may further compose a voice to text service to add subtitles to the

76

5.1 Mobile Service-Oriented Networks

video as we have shown in Fig. 5.1.

Loose coupling principle of SOA ensures that the dependency between two services is min-

imised, and that the services only maintain a knowledge of the existence of each other, with

composition of services done on demand. The P2P file sharing architecture presented in

[46] and the mobile based social interaction system proposed in [92] exploits this principle.

Therefore our timetable application may choose to overpass the traffic service if the current

network bandwidth is limited or when the residual battery life is low.

Service discovery makes the detection of services over the network possible, and facilitates

the usage between services. For instance, in order to construct a virtual traffic light system

as presented in [93], vehicles approaching the same junction must be able to discover the

service of each other to cooperate, a tour guide service may be located at a tourist attraction

to enrich the user’s experience.

5.1.3 Applications of MSON

An MSON infrastructure can be observed from many research areas. In vehicular wireless systems

(VANETs), many applications [13] are built on top of cooperative networks of mobile smart

devices installed on smart vehicles. Exemplar applications includes BitTorrent-styled location

significant content downloading [94] and vehicle-to-vehicle environment and safety sensing [93].

A mobile-based social interaction application is presented in [92]. In biomedical applications,

a mobile application workflow is used in [95] to describe a sensor-based biomedical application

which includes mobile devices used as both sensors and data processing units. The motivating

scenario addressed in [84] describes the benefit of using service composition in a hospital resource

scheduling application. In other mobile application areas, a mobile P2P file sharing framework is

presented in [46]. A framework for mobile P2P social content sharing is presented in [44]. These

studies all share the same underlying MSON infrastructure.

5.1.4 Mobile Device as Service Hosts

Extensive research has been carried out to use mobile devices as service hosts. The idea of

mobile devices as service hosts is also an active research topic. In [96], an SOA-based approach

77

5.2 Input-Output Analysis in Economics

is presented to support interactions between business applications running on J2ME. In [97],

opportunistic composition of sequentially-connected service over a decentralised mobile ad hoc

network is proposed. Experiments conducted in [98] demonstrates that this opportunistic com-

munication is viable at scale. A power-aware mobile service composition algorithm is presented

in [86]. In the same work, the problem of wasted network resource down a service workflow

pipeline is also discussed. A middleware is created in [99] to reduce user perceived latency while

accessing remote services on mobiles by pre-fetching and caching data according to a sequence

prediction algorithm. The same technique has been shown to reduce battery cost. All of these

studies are about developing the service-oriented architecture on mobile devices. None of the

work discusses the bandwidth requirement of mobile services.

5.2 Input-Output Analysis in Economics

Suppose a nation’s economy is divided into n sectors that produce goods or services. Let xi be

the value of goods or services produced by sector i, we then have a production vector x ∈ Rn

to list the output from all sectors of the economy. In order to avoid waste and deficiency,

production is planned in accordance to the demand of goods and services which originates from

two channels: External demand represents consumer demands, exports, planned surplus, etc.

from the economy. Let di be the external demand of sector i, then d ∈ Rn, namely the external

demand vector, lists the external demand (output) of all sectors of the economy. Intermediate

demand , represents intra-sector demand of good and services. For instance, assume a small

town with two primary industries: a steel plant and a railway. Then in order to produce goods,

the steel plant requires services from the railway. To represent the intermediate demand, a

square matrix A ∈ Rn×n, namely the consumption matrix, is assumed, in which aij denotes the

production (input) needed from sector i per unit of production (output) by sector j. With this

definition, we have that in order to produce xj units of good or services, sector j will demand

xjaij units from sector i, that is the intermediate demand by sector j from sector i. When the

78

5.3 The Economy of Mobile Service-Oriented Networks

economy’s production balances the total demand for that production exactly, we have:

x´¸¶
production

= Ax´¸¶
intermediate demand

+ d´¸¶
external demand

(5.1)

which is the cornerstone of the Leontief Input-Output model of economics. This model helps

economists understand how changes in one sector affect others, and predict the production level

required to balance the demand exactly. Such is the significance of his research in the I-O analysis

of economics, Leontief was awarded the Nobel Prize in Economics in 1973.

5.3 The Economy of Mobile Service-Oriented Networks

We consider each service as a sector of the network economy. Entailed by the SOA paradigm,

services are combined and possibly recombined to create complex applications (workflows) that

serve the demand of the end users. This composition of services is a dynamic run-time deci-

sion process which adapts to: the fluctuating network conditions (which is especially true for

a mobile network), various application-dependent QoS level requirements [100, 101, 102] and

dynamic application information (e.g., whether the user requires translation for a video). This

means that the exact execution sequence of services is not predefined and therefore the commu-

nication demands between services are non-deterministic. This behaviour is similar to that of the

common economies analysed by the Leontief I-O model. For instance, consider manufacturing

and raw material as two sectors of an economy. Each product of the manufacturing sector has

its own bill of materials and may require different amount of input from the raw material sector.

Furthermore, a repair service may avoid input from the raw material sector completely if it does

not require any replacement parts.

Besides the non-deterministic behaviour, when exchanges between economic entities are made,

interactions within an MSON manifest many common characteristics to that of interacting sectors

of a common economy. Notwithstanding these similarities, key economic entities need to be

identified and their behaviours modelled before the bandwidth I-O model of an MSON can be

constructed. We describe the construction of such an economy in the rest of this section which

is supplemented by Fig. 5.2 throughout.

79

5.3 The Economy of Mobile Service-Oriented Networks

w1

w2

w4

w3

w5

w
orkflow

s

Ç½
Ç½Ç½Ç½

Ç½

Ç½
Ç½ Ç½

Ç½
services

S

S1
S2

S3
S4

S5
S6

S7
S8

S9⋯
uplink

downlink

mobiles
M

Θ(S
5) =m

2

m
1↑ ↓ m

2↑ ↓ m
3↑ ↓ m

4↑ ↓ ⋯

b↑
1 b↓

1 b↑
2 b↓

2 b↑
3 b↓

3 b↑
4 b↓

4 ⋯
us

er
-in

iti
at

ed

re
la

ye
d

re
la

ye
d

re
la

ye
d

ba
nd

w
id

th
T

T

network

Figure 5.2: The economy of an MSON.
There are three planes in this illustration. The service-mobile plane laying flat in the centre gives
the allocation scheme (Θ). The one standing vertically on the left shows that the communication
behaviour between services (represented by circles) is a statistical process of all possible service
compositions (workflows). The plane standing on the right shows that each mobile device has
its uplink and downlink bandwidth to facilitate its communication to the network.

80

5.3 The Economy of Mobile Service-Oriented Networks

Data as Commodity

Services (sectors) of an MSON economy produce and exchange data to serve the demands of its

end users. This data as a commodity may carry information requested by the user (e.g., query

services), which may be the product in accordance to user input (e.g., image processing service),

or simply be the confirmation from the service that the user’s request has been recorded (e.g.,

flight check-in service).

Bandwidth as Currency

Exchange of data is facilitated by the network. One unit of network bandwidth facilitates the

exchange of one unit of data in one unit of time. Similar to the common currency (e.g., one

US dollar) used in an economy to measure goods and services of different sectors, one unit of

bandwidth is the common currency of an MSON economy.

Exchange of Data

Let S denote the universe of services distributed over the network containing a set M of mobile

devices, according to a mapping scheme Θ ∶ S → M. (In Fig. 5.2, we have Θ(s1) = m1,Θ(s2) =
m1,Θ(s3) =m3, and so on.) For each service si ∈ S, assuming that historical data (e.g., collected

by filtering logging data) are available [103, 104], and let βi, measured in units of bandwidth,

denote the (average) size of data produced by each run of si as an intermediate step of a service

composition. The effect of βi is three-fold:

First, as an intermediate product, βi needs to be communicated to the next service(s) sj ∈ S
as instructed by the service composition (application workflow). If sj is not located on the same

device as si, then βi needs to be sent from its host Θ(si) ∈ M over the MSON. We define a

co-location indicator

ωij =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if Θ(si) = Θ(sj),
1 otherwise.

(5.2)

so that ωij = 1 indicates that, if destined to sj , the task of sending βi would consume the uplink

bandwidth of Θ(si). As illustrated in Fig. 5.2, when a service workflow w1 is initiated on m1,

because the next service (s5) is located on a different device (m2), m1 has to first upload the

81

5.3 The Economy of Mobile Service-Oriented Networks

1 2 3 4 5

1
2
3
4
5

sj

si

w2 - Centralised

1 2 3 4 5
sj

w3 - Chain

pij

6 7 8 9 10 6 7 8 9 101 2 3 4 5 1 2 3 4 5 6 7 8 9 10
sj

w4 - Ring

6 7 8 9 10

6
7
8
9
10

sj

si

w5 - Fully Connected

Figure 5.3: Four types of service communication patterns.

data to the network. We refer to this type of bandwidth cost as self-initiated cost later on in this

subsection. We assume that a square matrix P = [pij]∣S∣×∣S∣, in which pij denotes the probability

that a run of si is to be succeed by a call to sj (βi is to be sent to sj), is known through profiling

[103, 104]. Together with our co-location indicator ωij , we define

ρi =∑
j

pijωij (5.3)

which gives the probability that each unit product (data) of si is to be uploaded to the MSON

by Θ(si). Fig. 5.3 illustrates the communication patterns of four typical service composition

patterns, w2, w3, w4 and w5. These are also illustrated in the left vertical plane of Fig. 5.2.

Note that ∑j pij is not necessarily one, because each run of si is not necessarily succeeded by a

call to another service. We also assume that data is passed on to the user (e.g., at the end of

an application workflow) by the service located on the user’s mobile device. Therefore all data

presented to the user is considered a local resource on the user’s device and does not consume

any bandwidth.

Second, for a service sj to receive βi, the downlink bandwidth of Θ(sj) is consumed. In the

example illustrated in Fig. 5.2, this receive action is taken by m2 which hosts s5. This creates

a dependency between the consumption of the uplink bandwidth of the sender device and the

downlink bandwidth of the receiver device in the MSON economy. We define

ηij = pijωij∑k pikωik , sk ∈ S (5.4)

82

5.3 The Economy of Mobile Service-Oriented Networks

which gives the probability that a unit of data sent by si to the MSON is to be received by sj .

We refer to the cost occurred in this type of process as relayed cost later on in this section.

Third, depending on the specification of the application workflow, the service which received

βi may be requested to further communicate with other services. Take for instance the example

workflow illustrated in Fig. 5.2, s5 is to continue the workflow and communicate with s9. This

action consumes the uplink bandwidth of m2 and the downlink bandwidth of m3. As such,

following a service workflow, a sequence of services in the service composition would be requested

to perform communication tasks. This chain effect exists in every application and is triggered

by the execution of the head services of the workflow. In the following section, we refer to the

data produced by the head services as self-initiated cost and all subsequent production of data

as relayed cost, and discuss in more details.

Self-initiated Cost vs. Relayed Cost

Recall that one of the key characteristics of the Leontief I-O model is that it classifies production

of goods and services by their corresponding demand into two groups, namely external demand

and intermediate demand. Following previous discussion, we discover that the production of

data, and thus the cost of bandwidth, in a MSON can also be classified into two classes: Self-

initiated production of data refers to data generated by the head services executed at the start

of every application workflow and exhibits the same characteristics as the external demands

in Leontief’s model. Devices that hosts these head services bear the cost of sending data to

subsequent services. These costs are in the form of uplink bandwidth of the sender device, and

are initiated solely by the service itself (e.g., triggered by user action). Let λi denote the arrival

rate of si, then the self-initiated cost to the uplink of Θ(si) which we denote c↑i is given by

c↑i = λiβiρi (5.5)

The other class of data production is in contrast caused by services that executed prior in the

application workflow and thus no consequent cost is self-inflicted. We refer to this as relayed

production of data. Bandwidth cost from this class of data production can be in forms of both

uplink and downlink bandwidth. We derive the cost function of this class in the proof of Theorem

83

5.3 The Economy of Mobile Service-Oriented Networks

5.3.1.

Note that the same data which is considered to be self-initiated by its sender, is classified

as relayed by the receiving service(s). This is because that the receiving service is selected

by a dynamic service composition process (reflected in P), and this selection process is not

deterministic.

Markets: Uplink vs. Downlink

We consider uplink and downlink as two related markets on which data are traded. The difference

between the two is that the data exchanged through the uplink market includes both self-initiated

and relayed data, whereas the demands for downlink bandwidth are all relayed from the uplink

market. Thus in the next section we derive one set of I-O equations for each of the two markets.

5.3.1 Network I-O Model

Given a service si ∈ S, let xi = x↑i + x↓i denote its total, uplink and downlink bandwidth costs

respectively. We now construct a model that derives these values with the limited information

we have about the MSON, i.e., Θ, P , β and λ.

Definition 6. For each pair of services {si, sj} ∈ S2, the elements of the uplink consumption

coefficient matrix of S, denoted A↑ = [a↑ij]∣S∣×∣S∣ is given by

a↑ij = 1

βjρj
pjiβiρi (5.6)

Theorem 5.3.1. Let x↑ = [x↑i]∣S∣×1 denote the uplink bandwidth demand vector of S, and c↑ =
[c↑i]∣S∣×1 denote the self-initiated demand vector of S, then when the network is in equilibrium

(meaning that each service is given the amount of bandwidth it requires to run without delay) the

following equation holds

x↑´¸¶
uplink cost

= A↑x↑´¹¸¶
relayed uplink demand

+ c↑´¸¶
self-initiated demand

(5.7)

Proof. From our earlier discussion in 5.3, we know that the send (uplink) action of a service si

84

5.3 The Economy of Mobile Service-Oriented Networks

is triggered by two sources, namely self-initiated and relayed. With c↑i defined in (5.5), let h↑ji
denote the uplink demand that is relayed from sj to si, i.e., when sj immediately precedes si in

an application workflow. Therefore

x↑i =∑
j

h↑ji + c↑i (5.8)

With (5.3) we derive that each run of sj and si is to generate data of size βjρj and βiρi respec-

tively. If service sj were to be allocated an uplink bandwidth of x↑j , as an equilibrium entails, sj

would execute x↑j/βjρj times. From the communication probability matrix P , we know that for

every one run of sj there is a probability pji a subsequent run of si is triggered. Therefore we

have

h↑ji = x↑j
βjρj

pjiβiρi
(5.8)⇒ x↑i =∑

j

x↑j
βjρj

pjiβiρi + c↑i (5.9)

Consider i ∈ {1,2,⋯, ∣S∣}, (5.9) derives the same set of equations as given by taking (5.6) into

(5.7).

Definition 7. For each pair of services {si, sj} ∈ S2, the elements of the downlink consumption

coefficient matrix of S, denoted A↓ = [a↓ij]∣S∣×∣S∣ is given by

a↓ij = ηji = pjiωji∑k pjkωjk , sk ∈ S (5.10)

Theorem 5.3.2. Let x↓ = [x↓i]∣S∣×1 denote the downlink bandwidth demand vector of S, then

when the network is in equilibrium (meaning that each service is given the amount of bandwidth

it requires to run without delay) the following equation holds

x↓´¸¶
downlink cost

= A↓x↑´¹¸¶
relayed downlink demand

(5.11)

Proof. It is easy to understand that within the MSON, the downlink cost is totally dependent

on the uplink cost in the sense that no receive action is required if no data was sent, and that

all data sent by a service in context of the MSON must be received by another service of the

MSON. On this basis, let h↓ji denote the downlink cost relayed from data sent from sj to si, i.e.,

85

5.3 The Economy of Mobile Service-Oriented Networks

the amount of data sent from sj to si, and we have

x↓i =∑
j

h↓ji (5.12)

Recall from (5.4) that the probability that a unit of data sent by si to sj is given by ηij , we

derive

h↓ji = x↑jηji (5.12)⇒ x↓i =∑
j

x↑j pjiωji∑k pjkωjk , sk ∈ S (5.13)

Similarly to the proof of theorem 5.3.1, by enumerating (5.13) with i ∈ {1,2,⋯, ∣S∣}, we get the

same set of equations as given by taking (5.10) into (5.11).

Observe that from the definition given by (5.2), we know that ωji = 0 when i = j, therefore

the entries on the main diagonal of A↓ are all zero. In contrast, the main diagonal of A↑ are not

necessarily all zero. These properties of the two coefficient matrices match the behaviour of a ser-

vice in a practical sense. When a service (recursively) calls on itself (refer to the communication

pattern given by [103] and [104]), the pair of send and receive action itself is local and thus does

not cost the hosting device’s bandwidth to the access network. However, the consequence of this

communication does not exclude the possibility of data being produced by the newly invoked

service call. This new data has a non-zero possibility (if ρi > 0) to be destined to services that

are not locally available, and thus would incur a cost to the hosing device’s uplink bandwidth.

To conclude the network I-O model, we gather the per-service cost from both markets and

derive the total bandwidth cost for a host device m ∈M as

bm = b↑m + b↓m =∑
i

x↑i +∑
i

x↓i =∑
i

xi , Θ(si) =m (5.14)

with bm, b↑m and b↓m denote the total, uplink and downlink bandwidth cost of m.

5.3.2 Network I-O Model with Latency

Network latency is another crucial factor in network performance modelling. Whereas the band-

width based network I-O model we presented so far describes the dependencies of the bandwidth

demands between mobile services when the effect of network latency is negligible (in cases where

86

5.4 Parametric Evaluation

latency may be modelled as a constant reduction of available bandwidth), it does not provide the

necessary means to reflect the dynamics of network latency. Therefore in this section, we extend

the network I-O model to incorporate the network latency factor and demonstrate its effect in

an MSON. From the definition of network latency and bandwidth we know

time = latency + data size

bandwidth
(5.15)

which indicates that when latency increases, the amount of bandwidth that is required in order

to transfer the same amount of data in the same amount of time also increases. We denote

li and x¡i to be the latency and uplink bandwidth of service si (when latency is considered)

respectively. Similar to bandwidth (uplink at source and downlink at destination), the network

latency between two services also depends on the latencies at both ends of the link between the

service pair, therefore the latency between si and sj is given by lij = (li + lj)ωij , with ωij as

defined by (5.2). The amount of data needs to be transferred (in a unit of time t = 1 second)

with latency considered remains the same as is given by x↑i . Therefore from (5.15) we derive

t =∑
j

x↑i
βiρi

pij lij + x↑i
x¡i
⇒ x¡i = x↑i/(t −∑

j

x↑i
βiρi

pij lij) (5.16)

which establishes the adjustment from x↑i to x¡i .
For the second part of our extension to the network I-O model with latency, we establish the

relay relation from the uplink bandwidth of the sender service to the downlink bandwidth of the

receiver service. We denote x£i as the downlink bandwidth of si (when latency is considered).

Deriving from (5.15) again, we have

t =∑
j

x↑j
βjρj

pjilji + x↓i
x£i
⇒ x£i = x↓i/(t −∑

j

x↑j
βjρj

pjilji) (5.17)

5.4 Parametric Evaluation

To summarise, our network I-O model (given by (5.7) and (5.11)) describes the dependencies

of an MSON’s properties: Given a mapping scheme Θ, a communication pattern P , a latency

87

5.4 Parametric Evaluation

vector l and two service QoS metrics vectors β and λ, we can derive a per service bandwidth

allocation vector x which further derives a per device bandwidth allocation vector b.

In this section, we conduct a series of simulation studies based on two types of service topolo-

gies: centralised and chain (illustrated by w2 and w3 in Fig. 5.2 and Fig. 5.3) to demonstrate

the basic dynamics of the network I-O model. We assume a service-to-mobile allocation scheme

given as Θ(s1) = Θ(s2) =M1, Θ(s3) = Θ(s4) =M2 and Θ(s5) =M3 in both sets of experiments.

5.4.1 Effect of Service Arrival Rate

In comparison to the other properties of an MSON, the service arrival rate vector λ in reality is

likely to have short term fluctuations. Recall that all bandwidth costs are either directly inflicted

by the service’s self-initiated actions, or are the relay consequence of the self-initiated actions

of other services. Therefore each service request initiated in the MSON may inflict bandwidth

costs to both its host device and those it communicates with.

In this set of simulations, we demonstrate the dynamics of the network I-O model by exam-

ining the effect of increase in λ on the bandwidth costs of all services in S. Furthermore, we map

each service to a mobile device and examine the effect of the same action on each device’s total

bandwidth requirement. Changes in β, e.g., change in per frame resolution of video streamed

from one user to the other due to network connection changes, can be examined in a similar

fashion.

In a centralised topology (w2), we identify s5 to be the core service and gradually increase

λ5 from 20 to 40. Results as illustrated in the first row of Fig. 5.4 show that the increased

traffic is evenly relayed to the downlink bandwidth cost of the other services (due to the service

topology), and because the traffic relayed back from the leaf services are less significant (due

to the communication pattern), M3 which hosts s5 does not require great increase in downlink

capacity.

In a chain topology (w3), we identify the head service s1 to be the core service and increase

λ1 to double its initial value. As shown in the second row of Fig. 5.4, s1 itself does not demand

much extra bandwidth since its succeeding service is located on the same device (M1). This

co-location factor also explains why only x↑2 and x↑4 is showing an increase in the first plot and x↓3

88

5.4 Parametric Evaluation

and x↓5 in the second plot. When these values are summarised per device, b2 shows the greatest

increase because it has to accommodate both the increase in x↓3 and x↑4.

5.4.2 Effect of Per Service Data Size

In this set of simulations, we examine the effect of increase in per request data size (i.e., β). In

practice, this can be observed when the per frame resolution of a video stream from one user to

the other is changed. As shown in the third row of Fig. 5.4, as we increase β5, both x↑5 and b↑5
increase as they do in the first row of Fig. 5.4. However, x↓5 remains unchanged. Furthermore,

the uplink bandwidth demand of all other services and their hosts remain unchanged. This is

because the increase in β5 does not affect the relayed uplink bandwidth of the service which is

called by s5, therefore the effect of increase in β is more confined within the MSON than that

in λ. The same can be observed from the fourth row of Fig. 5.4 which illustrates the result from

a chain topology (increase in β1).

5.4.3 Effect of Latency

We apply a 10ms latency to the key service’s host device (M3 for centralised and M1 for chain)

in all simulations and compare the results with the originals. The increase in bandwidth demand

as a consequence is shown in the latter three columns of Fig. 5.4. In the second and fourth row

of the figure, it shows that because of the chain service topology, the effect of this added latency

is almost entirely passed on to M2 which then acted as a filter to stop this effect to be passed

on to M3. When available bandwidth is capped or limited, high latency implies a lower service

rate.

5.4.4 Alternative Allocation Scheme

One common bandwidth allocation scheme, as an alternative scheme to our network I-O model,

evenly distributes the available bandwidth to the services it hosts. As a result, the service rate

of an MSON is prematurely capped by the service which requires the most amount of bandwidth

as shown by λ′ of Fig. 5.4 (zoom). It can be seen that the scheme as given by the I-O model,

capped at λ′′, realise greater potential from the MSON.

89

5
.4

P
a
ra

m
e
tric

E
v
a
lu

a
tio

n

0

200

400

600

k
b
p
s

x↑i x↓i

zoom

xi b↑m b↓m bm

2
0

2
5

3
0

3
5

4
0

0

200

400

600

800

k
b
p
s

2
0

2
5

3
0

3
5

4
0

2
0

2
5

3
0

3
5

4
0

2
0

2
5

3
0

3
5

4
0

2
0

2
5

3
0

3
5

4
0

2
0

2
5

3
0

3
5

4
0

2
0

2
2

2
4

2
6

2
8

3
0

50

100

150

← →

λ′ λ′′

zoom

0

200

400

600

k
b
p
s

x↑i x↓i xi b↑m b↓m bm

2
0

2
5

3
0

3
5

4
0

0

200

400

600

800

k
b
p
s

2
0

2
5

3
0

3
5

4
0

2
0

2
5

3
0

3
5

4
0

2
0

2
5

3
0

3
5

4
0

2
0

2
5

3
0

3
5

4
0

2
0

2
5

3
0

3
5

4
0

0

200

400

600

800

k
b
p
s

2
0

3
0

4
0

5
0

6
0

0

200

400

600

k
b
p
s

2
0

3
0

4
0

5
0

6
0

s1(M1)
s2(M1)
s3(M2)
s4(M2)
s5(M3)

2
0

3
0

4
0

5
0

6
0

2
0

3
0

4
0

5
0

6
0

2
0

3
0

4
0

5
0

6
0

2
0

3
0

4
0

5
0

6
0

0

200

400

600

800

k
b
p
s

2
0

3
0

4
0

5
0

6
0

0

200

400

600

k
b
p
s

2
0

3
0

4
0

5
0

6
0

2
0

3
0

4
0

5
0

6
0

2
0

3
0

4
0

5
0

6
0

2
0

3
0

4
0

5
0

6
0

m =M1(latency)

m =M1

m =M2(latency)

m =M2

m =M3(latency)

m =M3

2
0

3
0

4
0

5
0

6
0

Figure 5.4: Parametric evaluation of the Network I-O model.
The increases in λ5 of w2, λ1 of w3, β5 of w2 and β1 of w3 are projected onto the x-axis of each of the four rows of plots respectively.
The effects of these increases including the uplink (x↑i), downlink (x↓i) and total (xi) bandwidth demands of each service (s1 to s5 as in
plot legends), and the uplink (b↑m), downlink (b↓m) and total (bm) bandwidth demands of each device (M1 to M3 as in plot legends) are
presented in each of the six columns of plots respectively.

90

5.5 Cost-Based Bandwidth Allocation

5.5 Cost-Based Bandwidth Allocation

In a dynamic mobile environment, a number of QoS metrics must be supported by the network

in order to provide performance guarantees for mobile applications. Once we have derived the

bandwidth demand vector from the network I-O model, the question arises as How much band-

width should the user provision when cost is considered? In this section, we propose a cost-based

method for the bandwidth allocation problem and then demonstrate the solution with a case

study.

5.5.1 Problem Formulation

The QoS required from an MSON is diverse (e.g., throughput, loss and jitter guarantees). We

assume that these QoS metrics are mapped to a utilisation threshold of each service’s access

network link (a technique that is commonly used by network service providers) [83], and define a

utilisation threshold ui for each si ∈ S, such that QoS is ensured for si as long as its average link

utilisation in a unit of time is no greater than ui. Given si with an average bandwidth demand

of x̄i, we allocate x̄i/ui units of bandwidth to si to ensure its QoS. It is easy to see that a low

ui provides better QoS guarantee. However, this increased over-provisioning of bandwidth also

brings a greater overall cost (e.g., A 4G network provides more bandwidth than 3G but is also

more expensive) to the MSON. Furthermore, the QoS gain from a lower network utilisation is

also capped. Therefore, a trade-off relation exists between service QoS and the overall cost.

Let ri, κi and ϕi denote the revenue (per service request), provision cost (per unit of time

for reserving one unit of bandwidth) and the penalty cost (per unit bandwidth that is requested

over the reserved bandwidth limit per unit of time) of si ∈ S respectively1. Then we derive the

total net income of the network in a unit of time (t) as

Vt =∑
i

λtiri

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
revenue

−∑
i

x̄i
ui
κi

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
cost

−∑
i

max(xti − x̄iui ,0)ϕi´¹¹¸¹¹¹¶
penalty

(5.18)

1In practice, the revenue, cost and penalty values may be better presented as non-linear increasing functions of
service request and bandwidth. The exact algorithm varies in different scenarios and technologies. We approximate
the effect of these functions with increasing linear functions to keep our approach generic rather than technology-
specific.

91

5.5 Cost-Based Bandwidth Allocation

with λti and xti denote the arrival rate and bandwidth demand of si in time t respectively. One

underlying dependency exists between λti and xti which is given by (5.7) and (5.5) of the network

I-O model. Over a period of time T = {1,2,3...}, the total income is given by VT = ∑t∈T Vt.
Observe that for a given period of time: the revenue term in (5.18) is constant because the

total number of request made to the MSON is constant in the same period of time; the cost

term is an increasing function when ui is reduced because a lower link utility implies a higher

provisioning cost; and the penalty term is a decreasing function when ui is reduced because

a lower link utility implies a smaller probability that xti is greater than x̄i/ui. Therefore it is

easy to see that there exist an optimal ui which balances the cost and penalty term and gives

a maximum VT . However, deriving the optimal ui is not a straightforward task. This is largely

due to the complexity in predicting the value of the penalty term. From the network I-O model,

we know that xti can be dependent on the arrival rate of all services in MSON which may follow

different probability functions. Therefore we apply a numerical approach based on simulation to

illustrate the trade-off and approximate the optimal ui and leave further analysis to future work.

5.5.2 Simulation

Consider an MSON with two groups of five services (s1 − s5 and s6 − s10) and an administrative

service (s11). This grouping setup is borrowed from the datasets presented in [103] and [104].

Assume that the services in the first group is fully connected and the services in the second

group has a ring like topology, then the communication pattern of this MSON is as illustrate by

Fig. 5.5(a). We set both λ and β to follow normal distributions with means of 20 and 10 Kb

respectively.

We model the arrival process of each service’s request as a Poisson process (note that a differ-

ent probability function or a different mixture of probability functions would produce different

results) with mean λi, and conduct simulations that last 50 units of time, T = {1,2,⋯,50} as

shown in Fig. 5.5(b). Although each service has an independent arrival process, the fluctuations

of bandwidth demand (as illustrated by the solid lines plotted in Fig. 5.5(b)) have great simi-

larities within each group of services. This is because each service’s bandwidth demand is not

only generated by its own arrival rate, but also by that of the others’, especially by the services

92

5.5 Cost-Based Bandwidth Allocation

1 5 6 1011

1

5
6

10
11

sj

si

(a) pij

1 10 20 30 40 50

0
20
0

4
00

b1 ∼ b5

b6 ∼ b10
b11

Simulation time

(b)bi(kbps)

0 5 10 15 20

0.5

1

1.5

2

⋅105

1 − ui (%)

(c) Per Service Cost

0 5 10 15 20
0

500

1,000

1 − ui (%)

(d) Per Service Penalty

0 5 10 15 20
0.6

0.8

1

⋅106

1 − ui (%)

(e) MSON Income (VT)

ϕ ∶ κ = 1 ∶ 1
ϕ ∶ κ = 3 ∶ 1
ϕ ∶ κ = 5 ∶ 1

Figure 5.5: Effect of reductions in utilisation threshold (ui).

with which it frequently communicates. This result also verifies our classification of bandwidth

demands in Section 5.3. Each value in vector λ is plotted as a dotted lines in Fig. 5.5(b).

As we reduce ui from 100% to 80%, the bandwidth provision cost increases as shown in

Fig. 5.5(c), and the penalty is gradually reduced as shown in Fig. 5.5(d). Note that each service

has a line in both plots, this may not be clearly seen from the figures because of overlaps.

Combine the results from Fig. 5.5(c) and Fig. 5.5(d) together with a constant revenue value

we get the trade-off curve between ui and VT as illustrated in Fig. 5.5(e). We conduct this

simulation with different penalty to cost ratios because a higher penalty to cost ratio implies a

greater incentive to reduce the penalty (i.e., a lower ui). Each curve clearly has its own peak

(optimal value for ui). In the case of the 1:1 ratio, there is no incentive for a ui lower than 1

because of the relatively low penalty to cost ratio. Note that the data presented in Fig. 5.5(b-d)

93

5.6 Adaptive Bandwidth Allocation

have ϕ ∶ κ = 5 ∶ 1. In reality, ϕ can be seen as a temporary purchase of bandwidth from the

network provider, or as an additional bandwidth usage that is above the contracted limit. In

such situations, it is common to have a higher bandwidth price than that of long term contracts

(κ).

5.6 Adaptive Bandwidth Allocation

Wireless connections are prone to change. Mobile smart devices frequently travel from areas

covered by one network to that of another (e.g., switch from WiFi to 3G). The differences

between each network’s capacity not only affect the QoS of the services that are locally hosted

on that device, but also affect that of the remote services which require communication with

these local services. In this section, we consider the arrival rates of the service requests that the

service can accommodate as the key QoS metric of the MSON and investigate the impact of the

reduction in bandwidth with different adaptive strategies.

5.6.1 Problem Formulation

Assuming that the physical bandwidth of device µ is reduced from Bµ to B̌µ, with B̌µ < bµ < Bµ.

Then if Θ, P and β are to remain the same, reduction has to be made in λ (with λi as in (5.5)),

i.e., the arrival rate of some or all of the services in S is to be reduced. Let λ and λ̌ denote the

arrival rate vector of S before and after the reduction respectively. Then one intuitive objective

2 when adapting to this reduction is to find a new bandwidth allocation vector x̌ = x̌↑ + x̌↓ for

S which minimises the difference between λ and λ̌, i.e., share the impact of the reduction with

minimal deviation from the original state. Formally, we formulate this problem as a constrained

2This objective often derives from the nature of the mobile applications and can vary significantly between
different types of MSONs. For instance, the changes in λ can be weighted if each service has a priority assigned
to it. Furthermore, a cost-based function similar to (5.18) as given in Section 5.5 can also be used as an objective
function to the problem. We use (5.19) in our demonstration for its brevity and intuitiveness.

94

5.6 Adaptive Bandwidth Allocation

least squares problem:

min
λ̌

∥λ − λ̌∥2 (5.19)

s.t. (A↑ − I)x̌↑ + λ̌ ○β ○ ρ = 0 (5.20)

A↓x̌↑ − x̌↓ = 0 (5.21)

b̌m =∑i
x̌↑i +∑i

x̌↓i , Θ(si) =m (5.22)

b̌m ≤ bm, m ∈ {M − µ} (5.23)

b̌µ ≤ B̌µ (5.24)

(5.19) states our objective which is to minimise the deviation from the original state. The first

set of equality constraints, ensuring the dependency between λ̌ and x̌↑, are given by (5.20) which

is derived from (5.5) and (5.7) with ○ denotes the Hadamard product (also known as the element

wise product) of two vectors. The second set of equality constraints as given by (5.21) ensures

the dependency between x̌↑ and x̌↓. Recall from (5.14) that bm denotes the total bandwidth cost

of m ∈ M given x↑, x↓ and Θ. Let b̌m denote the new bandwidth cost of m by summarising x̌↑,
x̌↓ using (5.14), we have (5.22). (5.23) states that the new bandwidth cost should not be greater

than the original values. (5.24) ensures that the new bandwidth cost for µ cannot be greater

than B̌µ which denotes the current (after reduction) physical (available) bandwidth of µ.

The adaptive strategy as given by (5.19) to (5.24) describes a scenario in which all devices

are cooperative towards the reduction in one device’s bandwidth availability and are willing to

reduce the service rate of the services it hosts. However, this universal unselfishness might not be

true. Therefore, as a comparison, we give two alternative adaptive strategies to present varying

degrees of selfishness.

In the first alternative strategy, µ keeps the arrival rates of its own services (i.e., workflows

initiated by µ) unchanged and rejects only requests received from other devices. We denote this

alternative solution with λ̌′, then the set of constraints for this adaptive problem, in addition to

95

5.6 Adaptive Bandwidth Allocation

(5.21)-(5.24), becomes

s.t. (A↑ − I)x̌↑ + λ̌′ ○β ○ ρ = 0 (5.25)

λ̌′i = λi, Θ(si) = µ (5.26)

In practice, this strategy is equivalent to a device which priorities requests of its owner, and

when bandwidth is limited, choose to reject requests sent by remote services first.

In contrast, a second alternative strategy keeps all service arrival rates unchanged except

those hosted by µ. We denote this alternative solution with λ̌′′, then the set of constraints for

this adaptive problem, in addition to (5.21)-(5.24), becomes

s.t. (A↑ − I)x̌↑ + λ̌′′ ○β ○ ρ = 0 (5.27)

λ̌′′i = λi, Θ(si) ≠ µ (5.28)

In practice, this strategy is equivalent to a scenario in which the device which suffered a loss of

bandwidth would be forced to prioritise requests arrived from other devices and delay the requests

generated locally. Note that a positive solution to the adaptive problem is not guaranteed (e.g.,

when the physical bandwidth of µ is very small).

5.6.2 Simulation

Basic Set

Our first set of simulations is based on the four scenarios presented in Fig. 5.3. We first set

the initial arrival rates of all five services at 20 and calculate the initial bandwidth demand

vector x accordingly. We assume each service is assigned to a unique device for illustration

purposes and select the host of s3 (s8 in the latter two cases) to be µ and reduce b3 by 10%, i.e.,

B̌µ = bµ ∗ 90% = x3 ∗ 90%. We then apply all three adaptive strategies and solve each problem as

a linear program. Results from this set of experiments are presented in Fig. 5.6 (a-d). In each

plot, there are three groups of five vertical bars representing the arrival rate of each of the five

services given by the three adaptive strategies.

96

5.6 Adaptive Bandwidth Allocation

From Fig. 5.6 (a), we see that being the core service s5 is affected the most in both λ̌ and λ̌′.
Because of their relative independent status from each other in a centralised setting, the selfish

behaviour of s3 in λ̌′ has relatively small impact towards s1, s2 and s4. In Fig. 5.6 (b) when s3

is selfish, both λ1 and λ2 have to be reduced. Without the cooperation from other services, λ̌′′3
is greatly reduced from its original value. From Fig. 5.6 (c) we see that s9 is affected when s8 is

being selfish (recall that p98 is of relatively high value in w4 of Fig. 5.3), whereas in Fig. 5.6 (d)

this effect is also observed from s6 and s7 because the topology in the latter entails a more equal

status among the services. In all four cases, when the other services are non-cooperative, λ3 has

the greatest reductions. Note that in Fig. 5.6 (c & d), because s10 is very loosely connected to

the others, λ10 is not significantly affected in all cases.

Random Set

In the second set of simulation, we construct a case of larger scale containing 51 services which

while has a similar two group plus a administrator pattern similar to that of Fig. 5.5 (a), contains

25 services in each of the two main groups. Both groups are of a fully connected topology. We

also assume that each service is assigned to a unique device as in the first set of simulations and

that b3 is reduced by 90%. We set the mean arrival rate (normal distribution) of all services in

the first group (which includes s3) and the second group at 10 and 15 respectively (in order to

distinguish the data from the two groups when plotted), and give 6 as the arrival rate of the

administrator service s51. Fig. 5.6 (e) gives a comparison between λ, λ̌ and λ̌′ (we omit results

from the second alternative strategy, λ̌′′, because in this scenario it is difficult for the host device

to accommodate all bandwidth reductions on its own, therefore a positive solution is unlikely).

In Fig. 5.6 (e), the set of circles along the diagonal indicates the values of original service

arrival rates. The deviation of the set of + marks from the diagonal indicates a reduction in

arrival rates according to the fully cooperative adaptive strategy (λ̌). The set of x further deviates

from the diagonal indicating further reductions made in service arrival rates according to the

selfish adaptive strategy (λ̌′). The communication pattern can be clearly seen from the data

presented in Fig. 5.6 (e). Because the reduction is made in s3 which belongs to the first group

(group A in Fig. 5.6 (e)), the arrival rate of the second communication group is not affected.

Reduction is made in the administrator s51 because of its communication with s3. The selfish

97

5.6 Adaptive Bandwidth Allocation

10

15

20 λ = [20 20 20 20 20]
(a) Centralised (b) Chain

λ̌ λ̌′ λ̌′′
10

15

20

(c) Ring

λ̌ λ̌′ λ̌′′

(d) Fully Connected

4 6 8 10 12 14 16 18
4

6

8

10

12

14

16

18

administrator (s51)

group A (s1 ∼ s25)

group B (s26 ∼ s50)

λ̌3

λ̌′3

(e) Random set: an MSON with 51 services

(x = λ, y = λ)(x = λ, y = λ̌)(x = λ, y = λ̌′)

Figure 5.6: Comparison of adaptive strategies.

98

5.7 Summary

strategy sees λ̌′3 positioned along the diagonal in contrast to the reduction seen in λ̌3.

5.7 Summary

Besides energy, bandwidth is another critical factor limiting the QoS of mobile services and

applications. This significance is further amplified in mobile cloud computing settings where

application workflows are to be executed over a group of mobile devices and clouds the commu-

nications between which are purely reliant on the conditions of the underlying wireless network

(e.g. MSON).

In this chapter, we assume mobile application workflows are manifested dynamically as com-

positions of mobile services. In order to describe the bandwidth dependencies between services,

we proposed a novel network I-O model which extends on the original framework proposed in the

Leontief Input-Output analysis in economics. In the construction of our network I-O model, we

interpreted a number of factors of an MSON including bandwidth, latency and service arrival rate

to describe the underlying structure of mobile network economies. A set of equilibrium equations

are derived to produce the bandwidth requirements of mobile devices. A series of parametric

studies is carried out to validate and demonstrate the dynamics of the proposed network I-O

model.

Based on the proposed network I-O model, we further developed bandwidth allocation schemes

that are applicable to two common optimisation objectives of MSONs. We selected two objective

applications of our network I-O model to cover the cases of static as well as dynamic conditions

of MSONs. The maximisation of service benefit is considered as the first objective in which the

trade-off between application QoS and bandwidth cost is demonstrated. In our second applica-

tion of the network I-O model, a set of adaptive bandwidth allocation schemes are formulated

and compared to demonstrate how service QoS is affected by the changing conditions of the

wireless network. The effect of cooperative and uncooperative status of the mobile devices is

also demonstrated.

Our network I-O model is not only applicable to mobile cloud computing scenarios, but also

lays the foundation for further objective developments mobile networks in general.

99

Chapter 6

Rethinking the Offload Decision

Models in Mobile Cloud

Application Ecosystems

With the increasing popularity and maturity of technologies such as HTML5 and JavaScript,

mobile cloud computing as a new design paradigm of mobile application developments is be-

coming increasingly accessible to the developers of mobile applications. With this increase in

popularity, multiple mobile cloud applications will reside on the same device in the near future,

and they will be competing for the limited resources available on a mobile device. Furthermore,

even if there is only one mobile cloud application installed on the device, it still cannot ignore

the existence of other standard (native or remote) applications that are also installed on the

same mobile device. This competition for resources affects an application’s perception of the

mobile cloud platform and its offload decision making process. However this competition is not

yet considered in existing researches of mobile cloud computing.

In the final contribution of this thesis, we take this potential competition into account and

examine how it affects the behaviour of mobile cloud applications. We look at the mobile cloud

computing platform from a per-device perspective and develop a theoretical framework to analyse

100

6.1 Mobile Cloud Application Ecosystems

and compare the outcomes of different offload decision models. One of our prime contribution

in this chapter is the game theoretical model we constructed for the offload game in Section 6.3,

and the derivation of the mixed-strategy Nash equilibrium of the game that follows.

In Section 6.1, we give more detailed context of a mobile cloud application ecosystem and

outline the problem statement, objective and contribution of this chapter.

6.1 Mobile Cloud Application Ecosystems

A mobile cloud application as we discuss in this chapter is an application whose main functionality

may be executed independently on either a mobile device or a cloud server. This means that

the application is able to offload or migrate itself seamlessly between the two platforms. This

offload decision is often taken at runtime according to the current network condition and the

anticipated workload size [22, 75], as we have demonstrated in Chapter 3 and 4. We refer to this

class of applications as Hybrids as opposed to Native and Remote to distinguish applications

by their designated execution platform.

It is important to note that our use of these three terms, hybrid, native and remote, refers

to the place of execution of the application’s main functionality and especially its ability to

seamlessly offload or migrate between mobile devices and cloud, rather than the traditional

usage of these terms in mobile application developments where they refer to the environment it

is developed in. Traditionally for an application developer, when an application is written in a

native language like Objective-C for iOS devices or Java for Android devices, it is referred to as

a native application; an application that is run on a web server (cloud back end) and delivered

to the user via a browser is referred to as a remote mobile web application. A hybrid application

in this sense is a crossover between these two approaches. The majority of a hybrid application’s

code is usually written in HTML5 and JavaScript and rendered by the device’s web engine, so

the code is portable between platforms. A hybrid application also include native codes to refine

user experience and get access to a wider range of device functionalities. This code portability

is an attractive option for the development of mobile cloud applications. However, a hybrid

application as in mobile cloud computing is more intelligent in utilising different platforms at

runtime.

101

6.1 Mobile Cloud Application Ecosystems

N H R

N H R

CPU Transceiver
VMH

Mobile Cloud

Offload decision

Figure 6.1: A mobile cloud application ecosystem

In order to qualify as a hybrid application as we discuss in this chapter, the application

need not only be deployable to different platforms, but also make offload decisions at runtime

to improve user experience. The code portability of a hybrid mobile cloud application also need

not be limited to the use of HTML5, MAUI [22] is written in C# for Microsoft’s .NET Common

Language Runtime, CloneCloud [23] modified the Dalvik VM for code migration on Android OS,

ThinkAir [26] builds its offload platform with a modified version of Android x86. A more recent

work [105] utilises a modified version of WebKit to support the offload of HTML5 workers.

6.1.1 Problem Statement

With the increasing popularity of mobile cloud applications come one problem currently missing

from the researches of mobile cloud computing which is the recognition of the competition for

resources between applications on mobile devices.

Applications are selfish entities each aims to maximise its own performance. Notwithstanding

the cooperative interactions that may exist within certain application workflows, given a host

device, each application’s performance is proportional to the exclusivity it has over its host’s

resources. Therefore the competition for resources underlies each community of applications that

lives on the same computing device. Recognising the existence of this competition is especially

important for the applications that are hosted by resource constrained mobile devices.

With the popularity of mobile applications (or apps in short), the real estate of a mobile

102

6.1 Mobile Cloud Application Ecosystems

device has already been heavily competed on by the many apps that are currently installed on

each device. According to the data published by Google’s Our Mobile Planet report [106] for

2013, on average 28.5 apps are installed on each smartphone in the UK which is just above

the overall average (26) among the 47 countries included in the survey. In South Korea and

Switzerland this number is higher at 40 apps per smartphone. A similar figure is reported by

Nielsen in their early 2014 report [107] which includes both Android and iOS users. [108] report

an average number of 177 apps installed on their participant’s android devices.

We illustrate the resource competition in a mobile cloud application ecosystem with Fig. 6.1.

Three classes of applications share the same mobile device. A wireless connection is established

to a remote cloud service supporting computation offload1. The main functionality of a native

application is carried out on the local CPU, whereas a remote application carry out the majority

of its computation via cloud services. To access a cloud service, data is sent via the transceiver

of equipped on the mobile device. A hybrid application has the ability to choose between the

two platforms. Its offload decision precedes the execution of its main functionality.

Competition of resources comes with either options for a hybrid application. The path of

native execution is shared with other native applications at the CPU, whereas the path of remote

execution is firstly bottlenecked at the transceiver, and consequently congested at the supporting

cloud server. This competition is apparent between hybrids and other two classes of applications,

but more importantly it exists within the hybrid class itself.

Existing researches in mobile cloud computing focus on the application’s ability to offload

computation between mobile and cloud. Offload decisions in existing work are based on the

device’s parameters without taking into account that it may not be the only application that’s

using these resources (i.e. the processing unit and the wireless data connection). This unin-

formed decision making process means that the offload decision made may not be as beneficial

as predicated.

103

6.1 Mobile Cloud Application Ecosystems

Table 6.1: An example showning the effect of different offload decisions

Scenario A Scenario B Scenario C

i ∈ [s]H N R N R N R

i = 1 15 10 15 10 15 10

i = 2 18 15 18 15 18 15

Cost/Platform 0 25 15 15 18 15

Social Cost 25 15 18

Example

We demonstrate the effect of an uninformed offload decision with a simple example as shown

in Table 6.1. We assume three scenarios where two hybrid applications share a device. Each

number in the table represents the amount of time it takes the application to run on a platform

assuming exclusive usage of the device’s resources, in seconds. A circle represents the decision

made by the application. Scenario A is a typical example of applications making uninformed

decisions. Both applications assume that it is the only application running on the device and

the cost comparison between the two platforms means both applications prefer to execute on the

cloud. This makes R congested while leaving the N vacant. The total cost on R is 25 seconds

compared to the cost of 0 on N.

From the user’s point of view, the makespan (i.e. social cost as we discuss in detail in

Section 6.3.4 and Section 6.4) of the system as a whole is 25 seconds. This social cost is higher

than either of the other scenarios where the applications’ choice of platform are split between N

and R.

From each application’s point of view, in A, if applications’ sub tasks are scheduled in a

round-robin way on R, the expected time costs for both applications are 25 seconds; if the

scheduling order is randomly chosen between the two applications as a whole, the expected cost

is 17.5 seconds for i = 1, and 20 seconds for i = 2, all higher than the cost if it were run on N.

1A remote application does not have to run on the same cloud server as the hybrid applications. A proprietary
application (e.g. Facebook or Twitter) is usually supported by its own servers. Furthermore, a proprietary server
is also unlikely to accept offload requests from a personal device. For these type of remote applications, we set
wb

i to be zero in our model since they don’t consume the computation resources on our cloud.

104

6.1 Mobile Cloud Application Ecosystems

6.1.2 Objective and Contribution

In this chapter, we model each of the three offload decision models that applies to a mobile cloud

computing scenario in Section 6.2, 6.3 and 6.4. We especially focus on the game theoretical

modelling of the offload game with complete information. We derive the mixed-strategy Nash

equilibrium of the game and its social cost at equilibrium in Section 6.3. The derivation of the

Nash equilibrium is significant that it provides a basis for measuring the distance (referred to as

the “price of anarchy” of the game which we introduce in Section 6.3.4) between a non-cooperative

and a cooperative application ecosystem. With the model we present in Section 6.3, we also

extend the classic load balancing game [109] which has been highly cited since its publication.

Comprehensive simulation experiments has been conducted and presented in Section 6.5. Results

from the comparisons between the three models provide us with a rare insight into the behaviours

of applications within a community (ecosystem).

The impact and future direction of this chapter is in two folds. First, from the user’s per-

spective, we provide a suite of modelling tools to quantify the costs and benefits of different

offload decision making processes so that an informed decision can be made on a global level.

Our results pave the way for future development of manager services of hybrid applications on

the device to provide a cooperative environment. Second, from a hybrid application’s point of

view, in absence of a cooperative mechanism, it is able to derive an offload strategy that’s most

beneficial to itself.

6.1.3 System Notations

To describe a mobile cloud application ecosystem, we assume a set of n independent applications

sharing the same mobile device, denoted [n] = {1, . . . , n}. Each application i ∈ [n] is to choose

between two parallel execution platforms, which we refer to as the remote cloud R and the native

processing unit N in our model, in order to minimise its execution time cost.

Let aji be a binary variable indicating i’s decision to execute on platform j. All aji together

constitute an assignment A ∶ [n] → {R,N} with A(i) denotes the chosen platform for i. The

weight of each application i has two components:

wd
i
, denotes the size of the data that is to be transmitted over the wireless network if appli-

105

6.1 Mobile Cloud Application Ecosystems

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

[n]

[n]N
Native

[n]H
Hybrid

[n]R
Remote

Figure 6.2: Application composition of a mobile cloud application ecosystem.

cation i is offloaded to R,

wb
i
, denotes the amount of computation binary that is associated with i.

In correspondence, the speed in which each platform j ∈ {R,N} can process an application also

consists of two components:

sd
j
, denotes the data transmission speed2 to j, with sdN = inf and sdR = bandwidth between N and R,

sb
j
, denotes the computation speed of j’s processing unit, we assume sbN < sbR.

Not all mobile applications in [n] has the ability to migrate between N and R. Some are fixed

to run natively (locally), whereas some may rely on an active data connection to run remotely.

To represent this distinction within [n], we divide [n] into three distinct subsets:

[n]N, for native applications fixed to run on N,

[n]R, for remote applications fixed to run on R,

[n]H, for hybrid (mobile cloud) applications that may run on either N or R.

This composition of applications is illustrated by Fig. 6.2.

2When an application is run on the local device, we assume that the speed at which its binary reaches the
processor is infinite. This way we keep the equations generic, and we don’t have to add an indicator variable
inside the subsequent equations (e.g. (6.2)).

106

6.2 Offload with Symmetrically Incomplete Information

Note that we use subscripts for applications and superscripts for platforms when a variable

is associated with both sets. With these notations, we first derive the classic offload decision

model.

In a mobile cloud computing scenario, applications have the option to either execute locally

on its host device or offload and execute remotely on a supporting cloud platform. The ap-

plication must estimate the cost and benefit of an offload action prior to making a decision.

Depending on how much information this application has of other applications running on the

same device, this decision making process may yield different results. In the next three sections

(Section 6.2, Section 6.3 and Section 6.4), we formulate the different decision models of a mobile

cloud application ecosystem.

6.2 Offload with Symmetrically Incomplete Information

In this scenario, each application i knows the properties of both platforms (sdj , s
d
j , j ∈ N,R)

and of its own task (wdi , w
b
i), but is unaware of the other applications who also share the

resources provided by the same device. Due to this limitation, exclusive usage of the device’s

data connection and processor is assumed by all applications. Hence the offload decision of i is

given by

aRi =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, If
wdi
sdR

+ wbi
sbR

< wdi
sdN

+ wbi
sbN

0, Otherwise.

(6.1)

with aNi = 1 − aRi .

Depending on the capacity of the device’s wireless data connection (sdR), the benefit of remote

execution (i.e. reduced execution time, given by wbi /sbN −wbi /sbR) may be offset by the additional

communication cost (between the device and the cloud, given by wdi /sdR) when applications are

run on or offloaded to the cloud. Therefore mobile cloud applications often requires that the data

connection speed between N and R to be greater than a certain threshold before an offload action

is considered [5, 75]. The capacity of the device’s wireless data connection greatly influence the

decision making process of offload-able applications.

107

6.3 Offload with Complete Information

There are two potential flaws in this offload decision model. First, the wireless connection

may be occupied by other applications, which means that the actual data transmission cost is

greater than wdi /sdR. Second, the local processing unit is also shared with other applications,

hence the cost of local execution wbi /sbN and therefore the benefit of remote execution as given

by wbi /sbN − wbi /sbR are also under-estimated. Both flaws are direct results of the incomplete

information given to each application.

To complete the notation of this section, we denote ΘB to represent the social cost of the

system under the symmetrically incomplete information decision model. We further discuss the

definition of social costs in Section 6.3.4 and Section 6.4. The “B” in this notation comes from

the fact that the wireless data bandwidth plays a crucial role in this decision model. Next, we

derive the decision model when applications are given complete information of other applications.

6.3 Offload with Complete Information

We now consider the scenario in which all applications are given complete information of the

weights3 of all other applications (wbi , w
d
i , i ∈ [n]). Given an assignment A ∶ [n] → {R,N}, the

cost (time delay) for application i is given by

ci = ∑
k∈[n]

A(k)=A(i)

⎛⎝ wdk
sd
A(k)

+ wbk
sb
A(k)

⎞⎠ (6.2)

which assumes that no priority is assigned to any application. That is to say that both data

packets over the data connection and instructions in the processor stack are scheduled in a

round-robin way. Following this, the cost of platform j is given by

Cj = ∑
i∈[n]
A(i)=j

⎛⎝w
d
i

sdj
+ wbi
sbj

⎞⎠ (6.3)

(6.2) and (6.3) together correct the inaccuracy caused by incomplete information.

3In practical terms, the weights of an application can be predicted based on its historic profiles as done in
[108].

108

6.3 Offload with Complete Information

6.3.1 The Offload Game

It is easy to see that the decision of each application is directly influenced by the decisions made

by others. Since each application’s goal is to minimise its own cost, the offload decision model

with complete information can be described by a non-cooperative game theoretic framework.

In this game, which we refer to as the offload game, each application is an agent (player)

whose objective is to minimise ci. Each application has a strategy profile of {N,R}. A collection

of pure strategies of all applications i ∈ [n] constitutes an assignment A. A mixed strategy 4 is a

probability distribution over the set of pure strategies {N,R}.

6.3.2 Mixed Strategies and Expected Costs

We first denote the probability that agent i choose to run on platform j with pji = P[A(i) = j].
Then the expected cost of platform j under the strategy profile P = {pji , i ∈ [n], j ∈ {N,R}} is

E[Cj] =∑
i∈[n]

pji
⎛⎝w

d
i

sdj
+ wbi
sbj

⎞⎠. (6.4)

For application i, its expected cost when selecting j is

E[cji] = wdisdj + wbi
sbj

+∑
k∈[n]
k≠i
pjk

⎛⎝w
d
k

sdj
+ wbk
sbj

⎞⎠. (6.5)

This together with (6.4), we have

E[cji] = E[Cj] + (1 − pji)⎛⎝w
d
i

sdj
+ wbi
sbj

⎞⎠ (6.6)

4We consider mixed strategies rather than pure strategies because it is a better match to the mobile cloud
computing scenario. First, in a game, there may be multiple (or none as in the rock-paper-scissors game) pure
strategy equilibria, including the optimal assignment which we derive in Section 6.4. To reach a pure strategy
equilibrium, the order in which each agent is given the right to make a strategy decision affects which pure strategy
equilibrium the system would reach. In our mobile cloud scenario, the mobile OS does not explicitly define this
order, and it also wouldn’t be fair for the OS to do so without user consent. Second, beside the saving in execution
time, hybrid applications can also provide the user with higher quality service when it is run on a remote cloud
as seen in [24]. Therefore, the user may opt for a remote execution regardless. Therefore, only a probability of
an application’s pure strategy can be observed. Because of these reasons a pure strategy profile is not a stable
representation of our offload game.
On the contrary, a mixed strategy profile only requires that each application is aware of the probability of others’
offload decisions. The mobile OS has this information readily available from its network access log, and is able to
share this with all applications.

109

6.3 Offload with Complete Information

which derives

pji
⎛⎝w

d
i

sdj
+ wbi
sbj

⎞⎠ = E[Cj] −E[cji] + ⎛⎝w
d
i

sdj
+ wbi
sbj

⎞⎠ (6.7)

and further derives

pji = ⎛⎝E[Cj] −E[cji] + (wdi
sdj

+ wbi
sbj

)⎞⎠/⎛⎝w
d
i

sdj
+ wbi
sbj

⎞⎠ (6.8)

which gives all applications’ mixed strategies as a function of E[Cj] and E[cji] and constitutes

P .

6.3.3 Nash Equilibrium

We now describe the Nash equilibrium of this game. A game is said to be in Nash equilibrium

when no agent (application i) of the game, with complete knowledge of all other agents’ strategies

(P), is able to make gains or reduce its cost by unilateral actions. Not all strategy profiles define

a Nash equilibrium. In order to find the P which defines a Nash equilibrium, further constraints

is to be added to (6.8).

First, in a Nash equilibrium, each application agent only assign non-zero probabilities to

platform j if

E[ci] = E[cji] = min
j∈{N,R}E[cji], i ∈ [n]. (6.9)

We define a support indicator

αji =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if pji > 0

0, otherwise.

(6.10)

Take (6.7) into (6.4) with the introduction of αji and (6.9), we get

E[Cj] =∑
i∈[n]

αji
⎛⎝E[Cj] −E[ci] + (wdi

sdj
+ wbi
sbj

)⎞⎠ (6.11)

110

6.3 Offload with Complete Information

for j ∈ {N,R}.

Second, each application i should distribute all of its weight completely, that is

∑
j∈{N,R}p

j
i = 1, i ∈ [n]. (6.12)

Take (6.8) into (6.12) with the introduction of αji and we get

∑
j∈{N,R}α

j
i

⎛⎝E[Cj] −E[ci] + (wdi
sdj

+ wbi
sbj

)⎞⎠ = ⎛⎝w
d
i

sdj
+ wbi
sbj

⎞⎠ (6.13)

for i ∈ [n].
Observe that (6.11) and (6.13) together have n + 2 variables (E[Cj] and E[ci]) and n + 2

equations, meaning that a unique solution is defined. Therefore, the strategy profile of the Nash

equilibrium of our offload game is completely defined by (6.8), (6.11) and (6.13). We further give

the solution of pRi as

pRi = ⎛⎝w
d
i

sdR
+ wbi
sbR

⎞⎠/⎛⎝w
d
i

sdN
+ wbi
sbN

+ wdi
sdR

+ wbi
sbR

⎞⎠
+⎛⎝CfR −CfN + ∑

k∈[n]H
⎛⎝w

d
k

sdR
+ wbk
sbR

⎞⎠ − ⎛⎝w
d
k

sdN
+ wbk
sbN

⎞⎠⎞⎠/⎛⎝⎛⎝1 − ∣[n]H∣⎞⎠⎛⎝w
d
i

sdN
+ wbi
sbN

+ wdi
sdR

+ wbi
sbR

⎞⎠⎞⎠
(6.14)

with CfR and CfN denote the cost from [n]R and [n]N respectively. The corresponding derivation

is attached in Appendix C.

6.3.4 Social Cost and Price of Anarchy

So far we have been looking at the costs from each application’s perspective. Indeed, because of

the non-cooperative nature of the offload game, the derivation of P is driven by each application’s

expected ci. However, from the device’s user’s perspective, the overall cost of the system is of

greater importance. In game theory terms, this system cost is referred to as the social cost of the

game system. In our offload game, we define the social cost to be the makespan of the system.

We discuss the optimal social cost in Section 6.4 with the cooperative decision model. But first,

111

6.4 Cooperative Decision Model

following our results of the Nash equilibrium strategy profile P , we derive the social cost of the

system at Nash equilibrium.

Given a strategy profile P we derive the social cost (expected makespan) of the system at P ,

which we denote with ΘP as

ΘP = ∑
A(1)∈{N,R}⋯ ∑

A(n)∈{N,R}
n∏
i=1 p

A(i)
i max

j∈{N,R}E[Cj] (6.15)

This quantity gives an indication of the system’s performance at P . When strategy profile P

defines an equilibrium, it is important to compare ΘP (Nash social cost) with the system’s

optimal performance (optimal social cost), denoted Θopt which we discuss in Section 6.4. The

ratio ΘP ∶ Θopt is referred to as the price of anarchy (also referred to as “coordination ratio” in

[109]) of the game.

We study the price of anarchy of a system which is an indication of how much worse a system

would perform if no control is applied on a system level. First introduced in [109], price of

anarchy is a key concept often associated with the study of Nash equilibrium in game theory. A

Nash equilibrium as we have shown is driven by the selfish behaviours of the agents of a system.

Because each agent is only concerned with its own cost when making strategy decisions, without

system level control, the overall performance of the system in anarchy becomes as a by-product

of the competition between the agents. The distance between this by-product and the optimal

performance is represented by the price of anarchy of the game.

We show in next section that the system cost can be minimised when system level control is

applied. Then in Section 6.5.3 and Section 6.5.4 we further demonstrate how system performance

is described by price of anarchy.

6.4 Cooperative Decision Model

The offload decision models we discussed in the previous two sections both assume non-cooperative

behaviours within the system. In this third offload decision model, we assume the contrary where

a global authority is in place to manage the offload / migration behaviour of the mobile cloud

application ecosystem.

112

6.4 Cooperative Decision Model

From a global perspective, recall that the cost of the system (also referred to as social cost in

game theory terms) is defined to be the makespan, that is, the maximum schedule length between

the two platforms. This naturally leads to a variation of the classic makespan scheduling problem.

Recall that aji indicates if i chooses to run on j, and that [n]N and [n]R denote the subsets of

applications that are fixed to run on N and R respectively. With these we formulate the problem

as an integer program:

minimise Θopt = max
j∈{R,N}

n∑
i=1a

j
i

⎛⎝w
d
i

sdj
+ wbi
sbj

⎞⎠ (6.16)

subject to aRi + aNi = 1, i ∈ [n] (6.17)

aji ∈ {0,1}, i ∈ [n], j ∈ {R,N} (6.18)

aNi = 1, i ∈ [n]N (6.19)

aRi = 1, i ∈ [n]R. (6.20)

Note that our problem is different from the classic makespan scheduling problem in that the speed

of each machine (platform) consists of two sub-speeds (sj = {sdj , sbj}). Therefore the machines in

our problem can not be ordered by their speeds as in the classic makespan scheduling problem

[110]. The complexity of this problem is at least NP-hard since it contains a special case, when

∀j ∈ {R,N} ∶ sdj = sbj , which can be reduced to a classic makespan scheduling problem which is

NP-hard even for two identical machines.

The solution of this integer program gives us the optimal assignment in terms of minimising

the social cost of the system. However, besides the complexity, the solution also assumes that

there is a global authority that enforces the assignment which is not the case in the current

mobile cloud computing framework. Operating systems who manage the wireless data protocol

on mobile devices does not schedule where applications are run. Techniques exist to exploit delay-

tolerant property of some applications to reduce the tail energy overhead [111]. Pre-fetching is

another technique used to improve the efficiency of the data link [111, 112]. Though in all

cases, the operating system attempts to complete all requests from applications and does not

proactively seek to offload any particular application.

113

6.5 Simulations, Comparisons and Discussion

Existing offload techniques in mobile cloud computing assumes exclusivity over the host

device’s data link. Offload decisions are made selfishly by the application. Therefore we next

introduce a game theoretic framework to study the effect of the selfish behaviours in the ecosystem

of mobile cloud applications.

6.5 Simulations, Comparisons and Discussion

6.5.1 Simulation Setup

In this section we demonstrate and visualise the behaviours of mobile cloud applications under

different offload decision models, and the influence of such over the social cost of mobile cloud

application ecosystems.

Each group of simulations is referred to in this chapter by a group ID which is given in the

first column of Table 6.2. For instance, test group S1 has 40 test cycles. With each test cycle

generates one simulation, S1 includes 40 simulations. Detailed parameters of these test groups

are also given in this table. We define each application’s data and computation weights to be

the multiples of a unit weight, and each platform’s processing data and computation speeds to

be the number of unit weights it may process in one second. Therefore the social costs are also

measured in seconds.

Note that in the results we present in Section 6.5, we use red to illustrate the results from

the symmetrically incomplete information game, blue for systems in Nash equilibrium of the

complete information game and black for results from the cooperative decision model.

114

6
.5

S
im

u
la

tio
n
s,

C
o
m

p
a
riso

n
s

a
n
d

D
isc

u
ssio

n

Table 6.2: Simulation parameters

Test Application Parameters Platform Parameters

Group Cycles [∣[n]N∣, ∣[n]R∣, ∣[n]H∣] Support [wdi ,wbi] Observed [wdk,wbk] [sdN, sbN, sdR, sbR]
S1 40 [0,0,10] i ∈ {2, . . . ,10} [50,500] k ∈ {1} [50, (+10)500†] [inf,200,50,800]

S1F 40 [0,0,10] i ∈ {2, . . . ,10} [50,500] k ∈ {1} [50, (+10)500] [inf,200,50,1600]
S2 40 [0,0,10] i ∈ {2, . . . ,10} [50,500] k ∈ {1} [50,500(+10)] [inf,200,20,800]
S3 40 [0,0,10] i ∈ {2, . . . ,10} [50, (+10)500] k ∈ {1} [50,500] [inf,200,50,800]
S4 40 [0,0,10] i ∈ {2, . . . ,10} [50,500(+10)] k ∈ {1} [50,500] [inf,200,20,800]
Y1 200 [1,1,15] i ∈ [n] [50,Expo(500)] - - [inf,200,50,800]
Y2 200 [1,1,15] i ∈ [n] [50, Pois(500)] - - [inf,200,50,800]
Y3 200 [1,1,15] i ∈ [n] [50, Unif(0 ∶ 1000)] - - [inf,200,50,800]
V1 100 [1,1,15] i ∈ [n] [100,700] - - [inf,100,50, (400 ∶ 3600)]
V2 100 [1,1,15] i ∈ [n] [100,500] - - [inf,100,50, (400 ∶ 3600)]
V3 100 [1,1,15] i ∈ [n] [50,700] - - [inf,100,50, (400 ∶ 3600)]
V4 100 [1,1,15] i ∈ [n] [100,700] - - [inf,200, (10 ∶ 500),800]
V5 100 [1,1,15] i ∈ [n] [100,500] - - [inf,200, (10 ∶ 500),800]
V6 100 [1,1,15] i ∈ [n] [50,700] - - [inf,200, (10 ∶ 500),800]

† - Increase by specified amount in every cycle. “(+10)500” means increase by 10 until 500 is reached,
“500(+10)” means increase by 10 starting with 500.

115

6.5 Simulations, Comparisons and Discussion

6.5.2 Strategy Behaviour of Non-Cooperative Applications

In this group of experiments, we observe the behaviour of individual applications under different

offload decision models.

Application with increasing weight

In this group of tests (S1 and S2), we assume a system of 10 hybrid applications. We increase the

weight of one of the applications (observed) while keeping all other (support) applications’ weights

unchanged. In S1 and S1F, as shown in (a) and (b) of Fig. 6.3, we increase the computation

weight of the observed application by 10 units until it reaches 500 at which point it has identical

weights to the support applications. In S2, as shown in (c) and (d) of Fig. 6.3 , we begin with a

group of 10 identical applications and gradually increase the computation weight of the observed

application. The applications’ non-cooperative offload strategies towards remote execution are

as shown in (a) and (c) of Fig. 6.3 . The corresponding social costs are as shown in (b) and (d)

of Fig. 6.3.

Recall that when offload decisions are made according to incomplete information, all appli-

cations assume exclusive usage of the device’s data connection. Because the wireless bandwidth

in S1 and S1F are sufficiently large (sdR = 50 for wdR = 50 takes 1 second), the delay caused by this

communication task is small enough to not deter the support applications (i ∈ {2, . . . ,10}) from

remote execution. For the observed application (k = 1), because its initial computation size is

relatively small, unlike the applications in the support group, its benefit of remote execution is

not sufficiently large enough to overcome the extra cost of data communication at early stages

of S1 and S1F and prefers native execution.

On the contrary, when applications are given complete information of others’ strategies, we

see from Fig. 6.3 (a) that the observed application’s preference on remote execution (pR1) is

reduced as its computation weight increases.

This behaviour seems counterintuitive and counter-productive since it follows a completely

opposite direction to that of the incomplete information scenario. Further reduction to (6.14)

helps understand this strategy choice. We apply S1’s application composition to (6.14) and

116

6.5 Simulations, Comparisons and Discussion

200 300 400 500
0

0.2

0.4

0.6

0.8

1

x = wb
1

(a) Strategies (S1&S1F)

200 300 400 500
0

5

10

15

20

x = wb
1

(b) Social Costs (S1)

500 600 700 800
0

0.2

0.4

0.6

0.8

1

x = wb
1

(c) Strategies (S2)

pR1 pRi
aR1 aRi

500 600 700 800
0

10

20

30

x = wb
1

(d) Social Costs (S2)

ΘB ΘN
B ΘR

B

ΘP Θopt

Figure 6.3: Results from S1, S1F and S2: Offload strategy behaviours of application with in-
creasing weight, and the impact on social costs.

117

6.5 Simulations, Comparisons and Discussion

derives

pR1 =
8(wd1
sdR

+ wb1
sbR

) + wb1
sbN

+ 9(wbi
sbN

− (wdi
sdR

+ wbi
sbR

))

9(wd1
sdR

+ wb1
sbR

+ wb1
sbN

)
(6.21)

In (6.21) we see that pR1 is dependent on both internal and external terms. When the platform

parameters are fixed, the internal terms are influenced only by the weights of the observed

application itself. The external term in (6.21) represents the collective gain that would have

been obtained by other applications if they were to execute remotely.

In S1 and S2, the external term is a constant since the weights of the support applications

are constants. When wb1 increases, the second internal term always increase faster than the first,

the reduction in pR1 as shown in (a) and (c) of Fig. 6.3 follows.

Note that in the first few test cycles, in S1, the external term dominates (6.21) and the

observed application become a pure strategy agent with pR1 = 1.

Application within Increasing weights

In S3 and S4, we fix the weight of the observed application and increase the support group’s

computation weight instead. In such cases, the external term in (6.21) become the variable.

Because the increase in computation weights, the collective gain of the support group, i.e. the

external term increases, and the increase in pR1 in (a) and (c) of Fig. 6.4 follows.

Also note that because of the switch of role between the observed application and the support

group in terms of weight increase from S1 and S2 to S3 and S4, strategies of the observed

application and the support group under incomplete information also swapped positions. In

Fig. 6.3 (a) and (c) the observed application switched from native execution to remote execution

as its weight increases, whereas in Fig. 6.4 (a) and (c), the same strategy is instead adopted by

the support group.

118

6.5 Simulations, Comparisons and Discussion

200 300 400 500
0

0.2

0.4

0.6

0.8

1

x = wb
i

(a) Strategies (S3)

200 300 400 500
0

5

10

15

20

x = wb
i

(b) Social Costs (S3)

500 600 700 800
0

0.2

0.4

0.6

0.8

1

x = wb
i

(c) Strategies (S4)

pR1 pRi
aR1 aRi

500 600 700 800
0

10

20

30

40

x = wb
i

(d) Social Costs (S4)

ΘB ΘN
B ΘR

B

ΘP Θopt

Figure 6.4: Results from S3 and S4: Offload strategy behaviours of application within increasing
weight, and the impact on social costs.

119

6.5 Simulations, Comparisons and Discussion

Change in platform parameters

Simulations in S1F is carried out as a comparison study to the results from S1. In S1F, we

double the computation speed of the remote platform, therefore the remote platform become

more attractive to all applications as compared to S1. The results shown in Fig. 6.3 (a) matches

our expectation. In the incomplete information scenario, the observed application adopts remote

execution (aR1) earlier than in S1. In the complete information offload game, all players shifted

their strategy towards R.

Also note that the external term dominated pR1 for more number of cycles at the beginning

of S1F than in S1.

6.5.3 Social Costs

We now look at the social costs of different decision models of mobile cloud application ecosys-

tems. As shown in (b) and (d) in both Fig. 6.3and Fig. 6.4, in the incomplete information

scenario, a step change is often observed because of the change of strategy by applications at

certain thresholds. We plot the social cost (ΘB) alongside the cost of N (ΘN
B) and R (ΘR

B) to

illustrate the relations between the makespan and the costs of each platform.

Compared with the other two decision models, the incomplete information model produces

systems with highest social costs. Systems that are in Nash equilibrium as defined by the

complete information game have significant higher social costs (ΘP) than the optimal solution

(ΘOpt). We further observe that the gap (price of anarchy) between the optimal social costs

and Nash social costs in Fig. 6.3 (d) and Fig. 6.4 (d) increase while the gap between application

computation weights increase. Therefore in the next group of tests, we investigate the relation

between price of anarchy and the weight deviation in [n].
6.5.4 Price of Anarchy

Recall that the price of anarchy of the complete information game is defined by the ratio between

the Nash social cost (ΘP) and the optimal social cost (ΘOpt) of the system, which we denote with

PoAP . For comparison, we further define the price of anarchy in the symmetrically incomplete

information game to be PoAB = ΘB ∶ ΘOpt. From S4 and S2, we observe slight increases in the

120

6.5 Simulations, Comparisons and Discussion

price of anarchy when the difference in weight increases in [n]. This leads us to the hypothesis

that the price of anarchy is more significant when the weights in [n] have a high value of deviation.

Price of anarchy and application weight deviation

Following on the hypothesis, we conducted tests Y1, Y2 and Y3 the results from which are shown

in Fig .6.5 to 6.9. In these three groups of experiments, we run each cycle of our simulation with

the same parameters except the computation weights5 of applications which is randomly drawn

from three different distributions (exponential, Poisson and uniform) at each test cycle. We

choose these three distributions not only because of their differences in range and variance, but

also because each distribution may be suitable to simulate the workload pattern of particular

mobile application ecosystems. For instance, a set of applications whose workload depends on

the arrival time of different user requests may be more suited to the exponential distribution.

Applications whose workload is pre-defined to be within a range with equal probability to pick

within this range is more suited to the uniform distribution model.

We label the simulation generated by each test cycle with the standard deviation of the

computation weights of all applications (i.e. δ({wbi}, i ∈ [n])), and apply all three decision

models to the system simulated in that cycle. With each of the two non-cooperative decision

models, we record its social cost and compare it with the optimal social cost produced by the

cooperative model. We plot five properties of the system against its deviation label in Fig .6.5 to

6.9. These properties includes ΘP - ΘOpt in Fig .6.5, PoAP = ΘP ∶ ΘOpt in Fig .6.6, ΘB - ΘOpt

in Fig .6.7, ΘB :ΘOpt in Fig .6.8 and the social costs of the system in Fig .6.9. Each property of

each simulation (generated in each test cycle) is plotted with its application weight deviation as

x and the value of the property as y in each of the plots in Fig .6.5 to 6.9.

From (a) and (c) of Fig. 6.5, we observe that the increase in application weight deviation

(along the x-axis) indeed increase the probability of bigger gaps between ΘP and ΘOpt. The

same trend is also observed in (a) and (c) of Fig. 6.6 for the price of anarchy albeit with a smaller

gradient. In contrast, as shown in (b) of Fig. 6.5 and (b) of Fig. 6.6, all simulations in Y2 have

a similar and stable price of anarchy. This is because Poisson distribution generates application

5We also conducted experiments that randomised both data and computation weights. The results are similar
to that of Y1, Y2 and Y3 and so are omitted for brevity.

121

6.5 Simulations, Comparisons and Discussion

200 300 400 500 600 700 800 900 1,000 1,100
0

5

10

15

20

Θ
P
−Θ

O
p
t

(s
ec

on
d
s)

(a) Y1

12 14 16 18 20 22 24 26 28 30 32 34
0

5

10

15

20

Θ
P
−Θ

O
p
t

(s
ec

on
d
s)

(b) Y2

Simulation Result
Moving Averages
Polynomial Fitting

220 240 260 280 300 320 340 360
0

2

4

6

8

10

x = δ({wb
i}, i ∈ [n])

Θ
P
−Θ

O
p
t

(s
ec

o
n
d
s)

(c) Y3

Figure 6.5: Results from Y1, Y2 and Y3: ΘP −ΘOpt.

122

6.5 Simulations, Comparisons and Discussion

200 300 400 500 600 700 800 900 1,000 1,100
1

1.5

2

2.5

P
o
A
P

(a) Y1

12 14 16 18 20 22 24 26 28 30 32 34
1

1.5

2

2.5

P
oA

P

(b) Y2

Simulation Result
Moving Averages
Polynomial Fitting

220 240 260 280 300 320 340 360
1

1.2

1.4

1.6

1.8

2

x = δ({wb
i}, i ∈ [n])

P
oA

P

(c) Y3

Figure 6.6: Results from Y1, Y2 and Y3: PoAP = ΘP ∶ ΘOpt.

123

6.5 Simulations, Comparisons and Discussion

200 300 400 500 600 700 800 900 1,000 1,100
0

5

10

15

20

Θ
B
−Θ

O
p
t

(s
ec

on
d
s)

(a) Y1

12 14 16 18 20 22 24 26 28 30 32 34
0

5

10

15

20

Θ
B
−Θ

O
p
t

(s
ec

on
d
s)

(b) Y2

Simulation Result
Moving Averages
Polynomial Fitting

220 240 260 280 300 320 340 360
0

5

10

15

20

x = δ({wb
i}, i ∈ [n])

Θ
B
−Θ

O
p
t

(s
ec

on
d
s)

(c) Y3

Figure 6.7: Results from Y1, Y2 and Y3: ΘB −ΘOpt.

124

6.5 Simulations, Comparisons and Discussion

200 300 400 500 600 700 800 900 1,000 1,100
1

1.5

2

2.5

Θ
B
∶Θ O

p
t

(a) Y1

12 14 16 18 20 22 24 26 28 30 32 34
1

1.5

2

2.5

Θ
B
∶Θ O

p
t

(b) Y2

Simulation Result
Moving Averages
Polynomial Fitting

220 240 260 280 300 320 340 360
1

1.5

2

2.5

x = δ({wb
i}, i ∈ [n])

Θ
B
∶Θ O

p
t

(c) Y3

Figure 6.8: Results from Y1, Y2 and Y3: PoAB = ΘB ∶ ΘOpt.

125

6.5 Simulations, Comparisons and Discussion

200 300 400 500 600 700 800 900 1,000 1,100
0

10

20

30
Θ

(s
ec

on
d
s)

(a) Y1

12 14 16 18 20 22 24 26 28 30 32 34
0

10

20

30

Θ
(s

ec
on

d
s)

(b) Y2

ΘOpt ΘP ΘB

220 240 260 280 300 320 340 360
0

10

20

30

x = δ({wb
i}, i ∈ [n])

Θ
(s

ec
on

d
s)

(c) Y3

Figure 6.9: Results from Y1, Y2 and Y3: Social costs.

126

6.5 Simulations, Comparisons and Discussion

weights with small deviations (c.f. range of x-axis in (b) of Fig .6.5 to 6.9). Furthermore, because

applications simulated in Y2 are very similar to each other, the social costs of all three decision

models are bounded within three small region as shown in (b) of Fig .6.9.

Fig. 6.7 Fig. 6.8 illustrate the difference between ΘB and ΘOpt. While results from Y2 follow

a similar pattern as in Fig. 6.5 Fig. 6.6, results from Y1 and Y3 are rather chaotic. This is

due to the behaviour of the offload model based on incomplete information. Recall that the

model predict an application’s cost on both platforms based on incomplete information. This

split is largely influenced by the device’s bandwidth. When the bandwidth is given, this split is

determined by the weights of the applications. When these weights are randomly chosen within

a relatively big range as in Y1 and Y3, this split of applications is likely to produce randomly

unbalanced groups. Compared to the optimal split produced by the cooperative model, it is

predictable that the ΘB produced by this rather random behaviour has such random distance to

ΘOpt. We also observe from (a) and (c) of Fig. 6.7 Fig. 6.8 that as well as having a big distance

from ΘOpt (distance from the x-axis), it is also possible for the incomplete information model to

produce near optimal results (near to the x-axis).

The actual system costs of Y1-Y3 are shown in Fig. 6.9. The increase in price of anarchy is

most observable in (a) for it has the greatest x range.

Price of anarchy and changes in platform parameters

To further observe the price of anarchy in the system, we also conducted V1-V3 in which sbR is

gradually increased in each test cycle, and V4-V6 in which sdR is gradually increased in each test

cycle. As shown in Fig. 6.10, the price of anarchy in these tests are significantly lower than that

from Y1 and Y3 because all applications have similar weights.

The increase in either processing speed and wireless bandwidth reduces and then stabilises

the price of anarchy. This is because once a speed term is greater than a certain value, the cost

term it is related to tends to zero and no longer have any effect over the system cost. Note

that the turning points in Fig. 6.10 are caused when the optimal cooperative strategy switches

one of the application’s allocation from N to R as R becomes more and more attractive with its

increasing computation speed (or wireless bandwidth).

127

6.5 Simulations, Comparisons and Discussion

500 1,000 1,500 2,000 2,500 3,000 3,500
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

x = sbR

P
o
A

(a) Increase in remote processing speed

50 100 150 200 250 300 350 400 450 500
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

x = sdR

P
oA

(b) Increase in wireless bandwidth

PoAP (V4) PoAP (V5) PoAP (V6)

PoAB(V4) PoAB(V5) PoAB(V6)

Figure 6.10: Price of anarchy following changes in platform parameters.

128

6.6 Summary

6.6 Summary

In this chapter, we investigated the efficiency of application offload in mobile cloud computing.

We especially focus on the competition between mobile cloud applications residing on the same

device which is overlooked by existing researches of mobile cloud computing.

Our main contribution is the game theoretic modelling of the non-cooperative offload game

with complete information. This model is an extension to the classic load balancing game. We

presented detailed derivation of the mixed-strategy Nash equilibrium of this game. To compare

the system’s performance at equilibrium with existing computation offload mechanisms, we also

modelled existing offload decision processes as a non-cooperative offload game with symmetrically

incomplete information. Furthermore, we propose a cooperative scenario and solve the offload

decision problem as a min-max integer program to obtain optimal offload schedules.

We compare the performance of all three offload decision models with a series of simulation

experiments. On an application level, we observe the counterintuitive strategy decisions made

by applications in the complete information game which help understand application behaviours

when no global control is applied. On a system level, we discuss the price of anarchy in non-

cooperative scenarios. We show that significant reduction in social cost can be obtained in a

cooperative setting. The dependencies between price of anarchy and various system parameters

are also investigated. We show that high deviation in application weights encourages high price

of anarchy in non-cooperative scenarios.

Our study demonstrates the importance of recognising the potential competition between

mobile cloud computing applications, and provide a suite of modelling tools to simulate and

solve the offload decision problem in ecosystems of mobile cloud computing applications.

129

Chapter 7

Conclusions and Further Work

The work described in this thesis has been concerned with improvements and extensions to

the energy-aware workload offloading frameworks behind the latest development in mobile cloud

computing. Recent years have seen significant growth in the size of the mobile computing market,

and yet the rarest commodity in the world of mobile computing remains to be its battery power.

Despite the moderately improved battery capacity on modern smart devices, user demands of

applications with more complex functionalities continue to challenge the energy limit of mobile

devices. Mobile cloud computing has emerged as a research topic which aim to overcome the

limitations of the mobile platform by integrating cloud services onto the platform. One key

technique applied in mobile cloud computing is computation workload offload. In this thesis,

we extend existing scheduling and resource management framework of computation workload

offload in mobile cloud computing.

The energy-aware task allocation problem were formulated for the mobile cloud platform.

Two energy-aware objectives (MGECP and MMUP) were investigated. Two heuristics (SA and

GAO) were proposed to approximate the solutions for both objectives. Offload strategies were

developed taking into account both energy and time constraints. A heuristic algorithm (WGAO)

were proposed to produce offload strategies and demonstrate the effect of different software

and hardware characteristics. Bandwidth dependencies of mobile networks were modelled by a

network I-O model. Cost-based and adaptive bandwidth allocation schemes were developed on

130

7.1 Energy-Aware Task Allocation

top of the network I-O model. Competition between applications that reside on the same device

is highlighted.

Key contributions are summarised in the first four sections of this chapter. Further work is

discussed in Section 7.5.

7.1 Energy-Aware Task Allocation

Task allocation is a key optimisation problem in the development of workflow management

mechanisms of mobile cloud computing. For a mobile cloud platform to efficiently support the

execution of many collaborative application workflows, solving the task allocation problem is a

critical first step in ensuring the energy efficiency of the mobile cloud platform.

In Chapter 3, we started by looking at the energy-aware task allocation problem from the

mobile cloud platform’s point of view. We constructed a quadratic binary program to model the

task allocation problem in a general mobile cloud computing platform. We investigated the task

allocation problem for two energy-aware objectives: the overall energy cost of the platform which

we refer to as the MGECP, and the longevity of the platform which we refer to as the MMUP.

In order to overcome the poor scalability of generic quadratic program solvers, we presented

an implementation of the simulated annealing (SA) algorithm and also proposed a greedy au-

tonomous offload (GAO) algorithm to approximate the optimal solution. Both heuristics are

tailored to solve our task allocation problem efficiently. We verified and compared our algo-

rithms against a commercial quadratic program solver in a series of simulations. Results show

that both heuristics produce good solutions to the task allocation problem. Solutions provided

by GAO is consistently close to optimal and can be obtained in a time efficient manor. The

methodologies presented in this work are also applicable to other energy critical task allocation

problems.

Readers who are familiar with the facility location problem may find a similar underlying

structure in our formulation of the task allocation problem in Chapter 3. Our model extends a

standard facility location problem in that multiple facilities may reside on the same device, some

facilities are fixed or constrained within a set of locations and that not all locations have to be

occupied.

131

7.2 Offloading Strategies for Time-Constrained Workflows

7.2 Offloading Strategies for Time-Constrained Workflows

In Chapter 4, we investigated further into the energy-aware task allocation problem from a work-

flow’s perspective. Offloading strategies were developed for mobile workflows. Compared to the

general case of a mobile cloud computing platform discussed in Chapter 3, extra time constraint

is applied when an individual workflow is concerned. Therefore, we model both energy and time

constraints in our objective functions in this chapter. In order to develop offloading strategies

accordingly, we apply the same design principles of GAO and further develop a workflow-oriented

greedy autonomous offload (WGAO) algorithm to develop offload strategies for time-constrained

mobile workflows. Simulation results illustrate how different hardware specifications affect the

offload-abilities of the workflow and its efficiency. We also introduce a layer of computation

offload platform referred to as cloudlets [38, 113] in our platform model of Chapter 4.

Note that in Chapter 3, we assume that the services that support the execution of workflow

tasks are already deployed on compatible devices and therefore offloading a task from one device

to another only requires modification in the workflow engine’s task allocation scheme. In Chap-

ter 4, we assume that the workflow is initially deployed only on the mobile devices, offloading a

task occurs extra communication cost for uploading the task’s binary from mobile to cloud.

7.3 Efficient Resource Allocation in Mobile Networks

Bandwidth is a key limiting factor in enabling workload offload in mobile cloud computing as

we have shown in Chapter 3 and Chapter 4. Therefore, in Chapter 5 we looked at the resource

management issues in mobile cloud computing, more specifically, the bandwidth allocation prob-

lem. In this chapter, we abstract the underlying network structure of a mobile cloud computing

platform into a generic mobile service-oriented network (MSON) to that the approach we propose

is applicable to general mobile networks rather than just for mobile cloud platforms.

In Chapter 5, we borrowed ideas from the Leontief I-O model in economy and present a

network I-O model to formulate the bandwidth dependencies of an MSON. We take into account

various factors such as interaction patterns among services, changing network conditions such as

bandwidth and latency, arrival rate of service requests, service cost and so on in the model.

132

7.4 Application Ecosystem and Offload Competition

Based on the network I-O model, a cost-based bandwidth allocation scheme was proposed

with the objective to maximise the benefit gained from completing service requests while taking

into account bandwidth cost and penalties from QoS violations. Furthermore, we proposed a

set of adaptive bandwidth allocation strategies also derived from our Network I-O model. When

the bandwidths of mobile devices decrease (e.g., from WiFi to 3G), these adaptive strategies are

able to adjust the bandwidth allocations for each service in the way that the overall impact on

the service QoS is minimised. Simulation studies are presented which verify and demonstrate

the effectiveness of the model.

7.4 Application Ecosystem and Offload Competition

Mobile devices are shared between applications. Existing offload frameworks assume exclusive

usage of the host device’s resources like the bandwidth. In the scenarios where only a few

applications are installed on the same device, and they are in sleep states most of the time, our

assumption is close to reality. However, with the increasing popularity of mobile applications,

and the emerging trend of intellegent mobile cloud applications, competition is likely to exist

over the device’s resources. Therefore offload decision models are to be adjusted accordingly.

In Chapter 6, we rethink the offload decision making processes of mobile cloud computing

when applications deployed on the platform exhibit non-cooperative behaviours according to

different level of knowledge they have in terms of the existence and strategies of each other. To

this end, we extended the framework of the classic load balancing game and derive the mixed-

strategy Nash equilibrium of the non-cooperative offload game. With this model we are able to

derive system performance at equilibrium and compare it with that of a managed and cooperative

environment.

We quantify the price of anarchy in non-cooperative settings and highlight the importance

of a global offloading management mechanism to enforce cooperation in mobile cloud computing

environments to maximise system performance. The equilibrium strategies we derived also help

the decision making processes of individual applications when no global authority is in place.

133

7.5 Directions for Further Work

7.5 Directions for Further Work

Two energy-aware objectives were studied in Chapter 3, namely MGECP and MMUP. As well

as optimising toward each objective individually, it is also beneficial to join these two objectives

in search of an energy-aware task allocation scheme. For instance, as shown in [4], adjustment to

allocation schemes produced for MGECP may be adjusted towards the objective of MMUP. One

issue related with such objective is how to control the balance between the two objectives. As we

have shown in our work, allocation schemes produced for one of the objectives contradict with

the goal of the other. Another issue related to this extension is the complexity of the quadratic

program. Similar to the QCP of MMUP, many quadratic constraints are to be added to the

program which dramatically increases the complexity of finding the exact solution.

The network I-O model proposed in Chapter 5 lays the foundation for further objective

developments in other networked environments. For instance, we also apply the network I-O

model to analyse the interaction between VMs of computation clusters in [7] and make resource

management decisions in high performance computing infrastructures.

The game theoretical model we proposed in Chapter 6 extends the classic load balancing

game which applicable to a wide spectrum of computing environments. Mixed-strategy Nash

equilibriums for the classic load balancing game was developed for machines with only one

processor which may be of different speed. Our extension to the model adds a second processor

to the machine. This greatly expands the applicability of the model. For instance, in cluster

computing, each node have two processors, a CPU and a GPU. Our model is ideal in modelling

the Nash equilibrium in such high performance computing resources.

Finally, with the maturity of technologies like HTML5 and JavaScript, mobile application

development frameworks like Apache Cordova dramatically reduce the complexity of develop-

ing mobile applications which is executable on both locally on device and remotely on cloud.

We would like to propose further extension to such development environments like Apache Cor-

dova to enable the offload mechanisms of mobile cloud computing implementing the theoretical

frameworks we proposed in this thesis.

134

Bibliography

[1] B. Gao, L. He, and S. A. Jarvis, “Offload Decision Models and the Price of Anarchy in

Mobile Cloud Application Ecosystems,” IEEE Access, Special Section on Emerging Cloud-

Based Wireless Communications and Networks, vol. 3, pp. 3125–3137, 2016.

[2] B. Gao, L. He, and C. Chen, “Modelling the Bandwidth Allocation Problem in Mobile

Service-Oriented Networks,” in Proceedings of the 18th ACM International Conference on

Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM’15), pp. 307–

311, 2015.

[3] B. Gao, L. He, X. Lu, C. Chang, K. Li, and K. Li, “Developing Energy-Aware Task Alloca-

tion Schemes in Cloud-Assisted Mobile Workflows,” in Proceedings of IEEE International

Conference on Ubiquitous Computing and Communications (IUCC’15), pp. 1266–1273,

2015.

[4] B. Gao and L. He, “Modelling Energy-Aware Task Allocation in Mobile Workflows,” in

Proceedings of the 10th International Conference on Mobile and Ubiquitous Systems: Com-

puting, Networking and Services (MobiQuitous’13), vol. 131, pp. 89–101, 2013.

[5] B. Gao, L. He, L. Liu, K. Li, and S. Jarvis, “From Mobiles to Clouds: Developing Energy-

Aware Offloading Strategies for Workflows,” in Proceedings of the 13th ACM/IEEE Inter-

national Conference on Grid Computing (GRID’12), pp. 139 –146, 2012.

[6] H. Zhu, L. He, B. Gao, K. Li, and K. Li, “Modelling and Developing Co-Scheduling Strate-

gies on Multicore Processors,” in Proceedings of the 44th International Conference on Par-

allel Processing (ICPP’15), 2015.

135

BIBLIOGRAPHY

[7] C. Chen, L. He, and B. Gao, “Modelling and Optimizing Bandwidth Provision for In-

teracting Cloud Services,” in Proceedings of the 13th International Conference on Service

Oriented Computing (ICSOC’15), 2015.

[8] S. Fu, L. He, X. Liao, C. Huang, K. Li, C. Chang, and B. Gao, “Cadros: The Cloud-

Assisted Data Replication in Decentralized Online Social Networks,” in Proceedings of the

11th IEEE International Conference on Services Computing (SCC’14), pp. 43–50, 2014.

[9] S. Fu, L. He, X. Liao, C. Huang, K. Li, C. Chang, and B. Gao, “Modelling and Predicting

the Data Availability in Decentralized Online Social Networks,” in Proceedings of the 21st

IEEE International Conference on Web Services (ICWS’14), pp. 161–168, 2014.

[10] C. Chen, L. He, H. Chen, J. Sun, B. Gao, and S. A. Jarvis, “Developing Communication-

aware Service Placement Frameworks in the Cloud Economy,” in Proceedings of IEEE

International Conference on Cluster Computing (CLUSTER’13), pp. 1–8, 2013.

[11] K. Li, Z. Zhang, Y. Xu, B. Gao, and L. He, “Chemical Reaction Optimization for Hetero-

geneous Computing Environments,” in Proceedings of the 10th IEEE International Sympo-

sium on Parallel and Distributed Processing with Applications (ISPA’12), pp. 17–23, IEEE,

2012.

[12] L. He, C. Huang, K. Li, H. Chen, J. Sun, B. Gao, K. Duan, and S. A. Jarvis, “Modelling

and Analyzing the Authorization and Execution of Video Workflows,” in Proceedings of

the 18th International Conference on High Performance Computing (HiPC’11), pp. 1–10,

2011.

[13] M. Gerla and L. Kleinrock, “Vehicular networks and the future of the mobile internet,”

Computer Networks, vol. 55, no. 2, pp. 457–469, 2011.

[14] D. Cuff, M. Hansen, and J. Kang, “Urban sensing: Out of the Woods,” Communications

of the ACM, vol. 51, pp. 24–33, Mar. 2008.

[15] Gartner Research, “Gartner Reveals Top Predictions for IT Organizations and Users for

2012 and Beyond,” 2011.

136

BIBLIOGRAPHY

[16] J. Paradiso and T. Starner, “Energy Scavenging for Mobile and Wireless Electronics,”

IEEE Pervasive Computing, vol. 4, pp. 18–27, Jan. 2005.

[17] K. Pentikousis, “In Search of Energy-Efficient Mobile Networking,” IEEE Communications

Magazine, vol. 48, pp. 95–103, Jan. 2010.

[18] M. Satyanarayanan, “Mobile computing: the Next Decade,” in Proceedings of the 1st ACM

Workshop on Mobile Cloud Computing & Services Social Networks and Beyond - MCS ’10,

pp. 1–6, 2010.

[19] L. Pajunen and S. Chande, “Developing Workflow Engine for Mobile Devices,” in EDOC’07

11th IEEE International Enterprise Distributed Object Computing Conference, Oct. 2007.

[20] A. Mnaoue and A. Shekhar, “A Generic Framework for Rapid Application Development

of Mobile Web Services with Dynamic Workflow Management,” in SCC’04 IEEE Interna-

tional Conference on Services Computing, 2004.

[21] L. Pajunen and A. Ruokonen, “Modeling and Generating Mobile Business Processes,” in

IEEE International Conference on Web Services (ICWS 2007), pp. 920–927, July 2007.

[22] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and

P. Bahl, “MAUI: Making Smartphones Last Longer with Code Offload,” in MobiSys’10

The 8th International Conference on Mobile Systems, Applications, and Services, June

2010.

[23] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud: elastic execution

between mobile device and cloud,” in Proceedings of the sixth conference on Computer

systems - EuroSys ’11, p. 301, 2011.

[24] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo : a Computation Offloading

Framework for Smartphones,” in MOBICASE 2010 IEEE Computer Society, 2010.

[25] D. Huang, X. Zhang, M. Kang, and J. Luo, “MobiCloud: Building Secure Cloud Framework

for Mobile Computing and Communication,” in 2010 Fifth IEEE International Symposium

on Service Oriented System Engineering, pp. 27–34, IEEE, June 2010.

137

BIBLIOGRAPHY

[26] S. Kosta, A. Aucinas, and R. Mortier, “ThinkAir: Dynamic resource allocation and parallel

execution in the cloud for mobile code offloading,” in 2012 Proceedings IEEE INFOCOM,

pp. 945–953, 2012.

[27] U. Kremer, J. Hicks, and J. M. Rehg, “Compiler-directed remote task execution for power

management,” Workshop on Compilers and Operating Systems for Low Power (COLP’00),

2000.

[28] Z. Li, C. Wang, and R. Xu, “Computation offloading to save energy on handheld devices,”

in Proceedings of the international conference on Compilers, architecture, and synthesis for

embedded systems - CASES ’01, p. 238, 2001.

[29] C. Wang and Z. Li, “Parametric analysis for adaptive computation offloading,” in Pro-

ceedings of the ACM SIGPLAN 2004 conference on Programming language design and

implementation - PLDI ’04, vol. 39, (New York, New York, USA), p. 119, June 2004.

[30] S. Kim, H. Rim, and H. Han, “Distributed execution for resource-constrained mobile con-

sumer devices,” IEEE Transactions on Consumer Electronics, vol. 55, pp. 376–384, May

2009.

[31] J. Flinn and M. Satyanarayanan, “Balancing performance, energy, and quality in perva-

sive computing,” in Proceedings 22nd International Conference on Distributed Computing

Systems, pp. 217–226, 2002.

[32] R. K. Balan, M. Satyanarayanan, S. Y. Park, and T. Okoshi, “Tactics-based remote exe-

cution for mobile computing,” in Proceedings of the 1st international conference on Mobile

systems, applications and services - MobiSys ’03, (New York, New York, USA), pp. 273–

286, 2003.

[33] J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satyanaryanan, “Data Staging on Untrusted

Surrogates,” in USENIX Conference on file and storage technologies (2nd: 2003: San

Francisco, CA), pp. 15–28, Mar. 2003.

[34] Y.-Y. Su and J. Flinn, “Slingshot: Deploying Stateful Services in Wireless Hotspots,”

138

BIBLIOGRAPHY

in Proceedings of the 3rd international conference on Mobile systems, applications, and

services - MobiSys ’05, p. 79, June 2005.

[35] B.-G. Chun and P. Maniatis, “Augmented smartphone applications through clone cloud

execution,” p. 8, May 2009.

[36] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling the cloud: enabling

mobile phones as interfaces to cloud applications,” in Middleware’09 Proceedings of the

ACM/IFIP/USENIX 10th international conference on Middleware, pp. 83–102, Nov. 2009.

[37] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and S. Madden, “Wishbone: profile-based

partitioning for sensornet applications,” in Proceedings of the 6th USENIX symposium on

Networked systems design and implementation, pp. 395–408, Apr. 2009.

[38] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The Case for VM-Based Cloudlets

in Mobile Computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23, 2009.

[39] M. A. Khan, “A survey of computation offloading strategies for performance improvement

of applications running on mobile devices,” Journal of Network and Computer Applications,

vol. 56, pp. 28–40, 2015.

[40] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A Survey of Computation Offloading for

Mobile Systems,” Mobile Networks and Applications, vol. 18, no. 1, pp. 129–140, 2012.

[41] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A survey,” Future

Generation Computer Systems, vol. 29, no. 1, pp. 84–106, 2013.

[42] J. Balasooriya, J. Joshi, S. K. Prasad, and S. Navathe, “Distributed Coordination of Work-

flows over Web Services and Their Handheld-Based Execution,” in ICDCN’08 Proceedings

of the 9th International Conference on Distributed Computing and Networking, pp. 39–53,

Jan. 2008.

[43] Y. Sun, Y. Li, X. Wen, and Z. Zhao, “Mobile P2P Content Distribution in Wireless Net-

works Environment,” in 2010 International Conference on E-Business and E-Government,

May 2010.

139

BIBLIOGRAPHY

[44] C. Chang, S. N. Srirama, and S. Ling, “An adaptive mediation framework for mobile p2p

social content sharing,” in Proceedings of the 10th International Conference on Service-

Oriented Computing, ICSOC’12, Nov. 2012.

[45] E. Philips, A. L. Carreton, N. Joncheere, W. De Meuter, and V. Jonckers, “Orchestrating

Nomadic Mashups using Workflows,” in Mashups ’09/’10 The 3rd and 4th International

Workshop on Web APIs and Services Mashups, Dec. 2010.

[46] C.-M. Huang, T.-H. Hsu, and M.-F. Hsu, “Network-aware P2P file sharing over the wireless

mobile networks,” IEEE Journal on Selected Areas in Communications, vol. 25, pp. 204–

210, Jan. 2007.

[47] U. Lee, J.-S. Park, J. Yeh, G. Pau, and M. Gerla, “CodeTorrent: Content Distribution using

Network Coding in VANET,” in MobiShare’06 1st International Workshop on Decentralized

Resource Sharing in Mobile Computing and Networking, p. 1, Sept. 2006.

[48] Z. Zong, M. Nijim, A. Manzanares, and X. Qin, “Energy Efficient Scheduling for Parallel

Applications on Mobile Clusters,” Cluster Computing, vol. 11, pp. 91–113, Nov. 2007.

[49] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A Scalable Application Placement

Controller for Enterprise Data Centers,” in WWW’07 The 16th International Conference

on World Wide Web, May 2007.

[50] H. Shachnai and T. Tamir, “On Two Class-Constrained Versions of the Multiple Knapsack

Problem,” Algorithmica, vol. 29, pp. 442–467, Mar. 2001.

[51] J. Sharkey, “Coding for life - Battery Life, that is.,” Google IO Developer Conference 2009,

2009.

[52] J. H. Ahnn and M. Potkonjak, “mHealthMon: toward energy-efficient and distributed

mobile health monitoring using parallel offloading,” Journal of medical systems, vol. 37,

p. 9957, Oct. 2013.

[53] C. Doukas, T. Pliakas, and I. Maglogiannis, “Mobile healthcare information management

utilizing Cloud Computing and Android OS.,” Conference proceedings : ... Annual In-

ternational Conference of the IEEE Engineering in Medicine and Biology Society. IEEE

140

BIBLIOGRAPHY

Engineering in Medicine and Biology Society. Annual Conference, vol. 2010, pp. 1037–40,

Jan. 2010.

[54] P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, and M. Satyanarayanan, “Scalable crowd-

sourcing of video from mobile devices,” in Proceeding of the 11th annual international

conference on Mobile systems, applications, and services - MobiSys ’13, p. 139, ACM

Press, June 2013.

[55] S. Wang and S. Dey, “Rendering Adaptation to Address Communication and Compu-

tation Constraints in Cloud Mobile Gaming,” in 2010 IEEE Global Telecommunications

Conference GLOBECOM 2010, pp. 1–6, Dec. 2010.

[56] Key Lime 314 LLC, “KL Dartboard,” 2011.

[57] N. Vallina-Rodriguez and J. Crowcroft, “Energy Management Techniques in Modern Mo-

bile Handsets,” IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp. 179–198,

2013.

[58] IBM, “IBM CPLEX Optimizer,” June 2015.

[59] M. Dong and L. Zhong, “Self-Constructive High-Rate System Energy Modeling for Battery-

Powered Mobile Systems,” in MobiSys’11 The 9th International Conference on Mobile

systems, Applications, and Services, 2011.

[60] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside my app? Fine

Grained Energy Accounting on Smartphones with Eprof,” in EuroSys’12 7th ACM european

conference on Computer Systems, ACM Press, Apr. 2012.

[61] L. Feeney and M. Nilsson, “Investigating the Energy Consumption of a Wireless Network

Interface in an Ad Hoc Networking Environment,” in INFOCOM’01. Conference on Com-

puter Communications. Twentieth Annual Joint Conference of the IEEE Computer and

Communications Society, 2001.

[62] A. Rahmati and L. Zhong, “Context-for-wireless: Context-Sensitive Energy-Efficient Wire-

less Data Transfer,” in Proceedings of the 5th international conference on Mobile systems,

applications and services - MobiSys ’07, p. 165, June 2007.

141

BIBLIOGRAPHY

[63] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang, “Accurate

online power estimation and automatic battery behavior based power model generation for

smartphones,” in CODES+ISSS’10 Eighth IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis, 2010.

[64] G. Ananthanarayanan and I. Stoica, “Blue-Fi: Enhancing Wi-Fi Performance using Blue-

tooth Signals,” in Proceedings of the 7th international conference on Mobile systems, ap-

plications, and services - Mobisys ’09, (New York, New York, USA), p. 249, 2009.

[65] A. Shye, B. Scholbrock, and G. Memik, “Into the wild: studying real user activity patterns

to guide power optimizations for mobile architectures,” in Proceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture - Micro-42, p. 168, ACM Press,

Dec. 2009.

[66] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A close examination

of performance and power characteristics of 4G LTE networks,” in Proceedings of the

10th international conference on Mobile systems, applications, and services - MobiSys ’12,

p. 225, 2012.

[67] R. E. Burkard, L. S. Pitsoulis, J. Linearization, and Q. A. P. Polytopes, “The Quadratic

Assignment Problem,” in Handbook of Combinatorial Optimization, 1998.

[68] A. Billionnet and S. Elloumi, “Using a Mixed Integer Quadratic Programming Solver for

the Unconstrained Quadratic 0-1 Problem,” Mathematical Programming, vol. 109, pp. 55–

68, June 2006.

[69] M. S. Bazaraa and H. D. Sherali, “On the Use of Exact and Heuristic Cutting Plane

Methods for the Quadratic Assignment Problem,” Journal of the Operational Research

Society, vol. 33, pp. 991–1003, Nov. 1982.

[70] C. A. Floudas and P. M. Pardalos, eds., Encyclopedia of Optimization. 2009.

[71] R. Burkard and F. Rendl, “A thermodynamically motivated simulation procedure for com-

binatorial optimization problems,” European Journal of Operational Research, vol. 17,

pp. 169–174, Aug. 1984.

142

BIBLIOGRAPHY

[72] M. R. Wilhelm and T. L. Ward, “Solving Quadratic Assignment Problems by Simulated

Annealing,” IIE Transactions, vol. 19, pp. 107–119, Mar. 1987.

[73] Ofcom, “Ofcom publishes 4G and 3G mobile broadband speeds research,” 2014.

[74] Y. Kun, O. Shumao, and C. Hsiao-Hwa, “On effective offloading services for resource-

constrained mobile devices running heavier mobile Internet applications,” IEEE Commu-

nications Magazine, vol. 46, pp. 56–63, Jan. 2008.

[75] K. Kumar, “Cloud Computing for Mobile Users: Can Offloading Computation Save En-

ergy?,” Computer, vol. 43, pp. 51–56, Apr. 2010.

[76] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients in cloud comput-

ing,” in HotCloud’10 Proceedings of the 2nd USENIX conference on Hot topics in cloud

computing, p. 4, June 2010.

[77] A. Gupta and P. Mohapatra, “Energy Consumption and Conservation in WiFi Based

Phones: A Measurement-Based Study,” in 2007 4th Annual IEEE Communications Society

Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 122–131,

IEEE, June 2007.

[78] G. P. Perrucci, F. H. Fitzek, G. Sasso, W. Kellerer, and J. Widmer, “On the impact of

2G and 3G network usage for mobile phones’ battery life,” in 2009 European Wireless

Conference, pp. 255–259, IEEE, May 2009.

[79] K. Lee, I. Rhee, J. Lee, S. Chong, and Y. Yi, “Mobile Data Offloading: How Much Can

WiFi Deliver?,” in Proceedings of the 6th International COnference on - Co-NEXT ’10,

p. 1, Nov. 2010.

[80] G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan, M. Irwin, and R. Chandramouli,

“Studying energy trade offs in offloading computation/compilation in Java-enabled mobile

devices,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, pp. 795–809,

Sept. 2004.

143

BIBLIOGRAPHY

[81] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao, “Energy-accuracy trade-off for contin-

uous mobile device location,” in Proceedings of the 8th international conference on Mobile

systems, applications, and services - MobiSys ’10, p. 285, June 2010.

[82] E. Shih, P. Bahl, and M. J. Sinclair, “Wake on wireless: An Event Driven Energy Saving

Strategy for Battery Operated Devices,” in Proceedings of the 8th annual international

conference on Mobile computing and networking - MobiCom ’02, p. 160, Sept. 2002.

[83] Z. Duan, Z.-l. Zhang, and Y. T. Hou, “Service overlay networks: SLAs, QoS, and bandwidth

provisioning,” IEEE/ACM Transactions on Networking, vol. 11, pp. 870–883, Dec. 2003.

[84] N. B. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, and V. Issarny, “QoS-aware

service composition in dynamic service oriented environments,” in Lecture Notes in Com-

puter Science SpringerLink, vol. 5896, pp. 123–142, 2009.

[85] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz, “OverQos: an overlay based

architecture for enhancing internet Qos,” in Proceedings of the 1st USENIX Symposium on

Networked Systems Design and Implementation, NSDI’04, pp. 6–20, Mar. 2004.

[86] E. Park and H. Shin, “Reconfigurable service composition and categorization for power-

aware mobile computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 19,

no. 11, pp. 1553–1564, 2008.

[87] D. Niyato and E. Hossain, “A Cooperative Game Framework for Bandwidth Allocation in

4G Heterogeneous Wireless Networks,” in Proceedings of IEEE International Conference

on Communications, vol. 9, pp. 4357–4362, June 2006.

[88] L. Xu, X. Shen, and J. W. Mark, “Dynamic bandwidth allocation with fair scheduling for

WCDMA systems,” IEEE Wireless Communications, vol. 9, pp. 26–32, Apr. 2002.

[89] H. Heredia-Ureta, F. Cruz-Perez, and L. Ortigoza-Guerrero, “Capacity optimization in

multiservice mobile wireless networks with multiple fractional channel reservation,” IEEE

Transactions on Vehicular Technology, vol. 52, pp. 1519–1539, Nov. 2003.

144

BIBLIOGRAPHY

[90] I. Katzela and M. Naghshineh, “Channel assignment schemes for cellular mobile telecom-

munication systems: a comprehensive survey,” IEEE Personal Communications, vol. 3,

pp. 10–31, June 1996.

[91] T. Erl, Service-oriented architecture: A field guide to integrating xml and web services.

Prentice Hall, 2004.

[92] J. Teng, B. Zhang, X. Li, X. Bai, and D. Xuan, “E-Shadow: Lubricating social interac-

tion using mobile phones,” in Proceedings of 31st International Conference on Distributed

Computing Systems, ICDCS’11, pp. 909–918, June 2011.

[93] M. Ferreira, R. Fernandes, H. Conceição, W. Viriyasitavat, and O. K. Tonguz, “Self-

organized traffic control,” in Proceedings of the seventh ACM international workshop on

VehiculAr InterNETworking, VANET’10, p. 85, Sept. 2010.

[94] J.-S. Park, U. Lee, S. Y. Oh, M. Gerla, and D. S. Lun, “Emergency related video streaming

in VANET using network coding,” in Proceedings of the 3rd international workshop on

Vehicular ad hoc networks, VANET ’06, ACM Press, Sept. 2006.

[95] H. Viswanathan, E. K. Lee, and D. Pompili, “Enabling real-time in-situ processing of

ubiquitous mobile-application workflows,” in Proceedings of IEEE 10th International Con-

ference on Mobile Ad-Hoc and Sensor Systems, MASS’13, pp. 324–332, Oct. 2013.

[96] Y. Natchetoi, H. Wu, and Y. Zheng, “Service-Oriented mobile applications for ad-hoc net-

works,” in Proceedings of IEEE International Conference on Services Computing, SCC’08,

July 2008.

[97] C. Groba and S. Clarke, “Opportunistic composition of sequentially-connected services

in mobile computing environments,” in Proceedings of IEEE International Conference on

Web Services, ICWS’11, pp. 17–24, July 2011.

[98] S. Liu and A. D. Striegel, “Exploring the potential in practice for opportunistic networks

amongst smart mobile devices,” in Proceedings of the 19th annual international conference

on Mobile computing & networking - MobiCom’13, Sept. 2013.

145

BIBLIOGRAPHY

[99] A. Gob, D. Schreiber, L. Hamdi, E. Aitenbichler, and M. Muhlhauser, “Reducing user

perceived latency with a middleware for mobile SOA access,” in Proceedings of IEEE

International Conference on Web Services, ICWS’09, July 2009.

[100] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for web services selection with end-

to-end QoS constraints,” ACM Transactions on the Web, vol. 1, May 2007.

[101] D. Ardagna and B. Pernici, “Adaptive service composition in flexible processes,” IEEE

Transactions on Software Engineering, vol. 33, pp. 369–384, June 2007.

[102] M. Alrifai and T. Risse, “Combining global optimization with local selection for efficient

QoS-aware service composition,” in Proceedings of the 18th International Conference on

World Wide Web, WWW’09, Apr. 2009.

[103] P. Bod́ık, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and I. Stoica, “Surviving

failures in bandwidth-constrained datacenters,” in Proceedings of ACM SIGCOMM Con-

ference on Applications, Technologies, Architectures, and Protocols for Computer Commu-

nication, SIGCOMM’12, pp. 431–442, Aug. 2012.

[104] Y. Chen, S. Jain, V. K. Adhikari, Z.-L. Zhang, and K. Xu, “A first look at inter-data

center traffic characteristics via Yahoo! datasets,” in Proceedings of IEEE INFOCOM,

INFOCOM’11, pp. 1620–1628, Apr. 2011.

[105] M. Zbierski and P. Makosiej, “Bring the Cloud to Your Mobile: Transparent Offloading of

HTML5 Web Workers,” in 2014 IEEE 6th International Conference on Cloud Computing

Technology and Science, pp. 198–203, IEEE, Dec. 2014.

[106] Google, “Our Mobile Planet,” 2013.

[107] Nielsen, “Smartphones: So many apps, so much time,” 2014.

[108] C. Shin, J.-H. Hong, and A. K. Dey, “Understanding and prediction of mobile application

usage for smart phones,” in Proceedings of ACM Conference on Ubiquitous Computing,

UbiComp’12, pp. 173–182, 2012.

146

BIBLIOGRAPHY

[109] E. Koutsoupias and C. Papadimitriou, “Worst-case equilibria,” in Proceedings of the 16th

annual conference on Theoretical aspects of computer science, STACS’09, pp. 404–413,

1999.

[110] C. Chekuri and M. Bender, “An Efficient Approximation Algorithm for Minimizing

Makespan on Uniformly Related Machines,” in Proceedings of the 6th Conference on Integer

Programming and Combinatorial Oprimization, 1998.

[111] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption

in mobile phones,” in Proceedings of the 9th ACM SIGCOMM conference on Internet

measurement conference - IMC ’09, p. 280, 2009.

[112] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie, “Optimal cache allocation for Content-

Centric Networking,” in 2013 21st IEEE International Conference on Network Protocols

(ICNP), pp. 1–10, Oct. 2013.

[113] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets: bringing the cloud to

the mobile user,” in Proceedings of the third ACM workshop on Mobile cloud computing

and services - MCS ’12, p. 29, June 2012.

147

Appendix A

MGECP Simulation Results

148

Table A.1: Comparison of algorithms for MGECP - S series - Solution optimality

S Series - Test Groups† MEGCP Solution Eψ in mAh: Cost, (Cost/Optimal Cost), [Standard Deviation].

ID ∣P ∣(∣PC ∣) ∣T ∣/∣R∣ Base SA SA-HT SA-DC GAO SA+GAO GAO+SA Optimal‡

S0 10(2) 60/90 252.20 146.15 156.82 138.98 140.56 134.08 142.89 124.87

(2.01) (1.17) (1.25) (1.11) (1.12) (1.07) (1.14) (1.00)

[18.04] [12.03] [12.79] [11.56] [12.71] [11.70] [11.93] [10.67]

S1 10(2) 60/60 229.23 127.62 137.07 121.97 124.60 118.47 124.58 110.62

(2.07) (1.15) (1.23) (1.10) (1.12) (1.07) (1.12) (1.00)

[18.50] [12.01] [12.53] [11.66] [13.20] [11.93] [11.84] [10.89]

S2 10(2) 60/120 302.67 179.15 194.02 170.14 171.43 164.22 177.04 154.56

(1.95) (1.15) (1.25) (1.10) (1.10) (1.06) (1.14) (1.00)

[20.49] [14.30] [15.25] [13.80] [15.03] [13.93] [14.30] [12.94]

S3 10(4) 60/90 195.29 101.94 107.43 98.94 107.78 99.51 99.72 91.44

(2.13) (1.11) (1.17) (1.08) (1.17) (1.08) (1.09) (1.00)

[19.84] [11.80] [12.25] [11.47] [13.04] [11.59] [11.53] [10.67]

S4 10(2) 30/45 137.83 72.83 75.77 71.36 73.95 69.21 72.89 65.36

(2.10) (1.11) (1.15) (1.09) (1.13) (1.05) (1.11) (1.00)

[10.18] [7.19] [7.36] [7.09] [7.86] [7.16] [7.24] [6.65]

Series Summary: 2.05 1.14 1.21 1.09 1.13 1.07 1.12 1.00

† - Each test group contains 100 simulation instances the averages of which is used to represent the performance of the group.
‡ - The optimal solution is obtained from CPLEX’s QP solver.

149

Table A.2: Comparison of algorithms for MGECP - M series - Solution optimality

M Series - Test Groups† MEGCP Solution Eψ in mAh: Cost, (Cost/Optimal Cost), [Standard Deviation].

ID ∣P ∣(∣PC ∣) ∣T ∣/∣R∣ Base SA SA-HT SA-DC GAO SA+GAO GAO+SA Optimal‡

M0 20(2) 120/180 607.44 419.66 475.15 383.13 329.80 331.36 408.51 297.63

(2.04) (1.40) (1.59) (1.28) (1.10) (1.11) (1.37) (1.00)

[21.80] [15.84] [17.98] [14.83] [15.20] [14.76] [15.39] [12.94]

M1 20(2) 120/120 549.39 384.75 424.16 342.46 308.41 306.77 365.97 272.86

(2.01) (1.41) (1.55) (1.25) (1.13) (1.12) (1.34) (1.00)

[26.61] [19.36] [20.81] [17.67] [19.66] [18.81] [17.96] [15.92]

M2 20(2) 120/240 715.30 504.30 563.05 459.95 394.60 396.75 500.38 359.37

(1.99) (1.40) (1.56) (1.27) (1.09) (1.10) (1.39) (1.00)

[22.00] [17.41] [19.18] [16.20] [16.34] [16.01] [17.03] [14.15]

M3 20(4) 120/180 536.15 341.53 386.90 311.83 295.05 291.96 333.71 256.24

(2.09) (1.33) (1.50) (1.21) (1.15) (1.13) (1.30) (1.00)

[23.03] [15.75] [17.54] [15.10] [15.78] [15.09] [15.64] [13.02]

M4 20(2) 60/90 328.89 203.52 221.14 187.98 177.11 172.95 198.73 158.60

(2.07) (1.28) (1.39) (1.18) (1.11) (1.09) (1.25) (1.00)

[11.72] [9.17] [9.87] [8.68] [9.40] [8.94] [9.04] [7.95]

Series Summary: 2.04 1.36 1.52 1.24 1.12 1.11 1.33 1.00

† - Each test group contains 100 simulation instances the averages of which is used to represent the performance of the group.
‡ - The optimal solution is obtained from CPLEX’s QP solver.

150

Table A.3: Comparison of algorithms for MGECP - L series - Solution optimality

L Series - Test Groups† MEGCP Solution Eψ in mAh: Cost, (Cost/Optimal Cost), [Standard Deviation].

ID ∣P ∣(∣PC ∣) ∣T ∣/∣R∣ Base SA SA-HT SA-DC GAO SA+GAO GAO+SA Optimal‡

L0 30(4) 180/270 904.11 639.40 725.73 570.41 477.75 483.82 613.68 413.85

(2.18) (1.54) (1.75) (1.37) (1.15) (1.16) (1.48) (1.00)

[26.93] [19.30] [21.25] [17.57] [17.78] [17.39] [17.90] [14.33]

L1 30(4) 180/180 816.93 575.58 645.15 508.91 434.04 440.41 539.51 374.58

(2.18) (1.53) (1.72) (1.35) (1.15) (1.17) (1.44) (1.00)

[33.07] [22.50] [25.08] [20.44] [21.73] [21.15] [20.51] [17.00]

L2 30(4) 180/360 1058.71 759.86 862.95 672.71 563.38 566.80 733.70 489.61

(2.16) (1.55) (1.76) (1.37) (1.15) (1.15) (1.49) (1.00)

[25.85] [19.79] [22.03] [17.97] [17.74] [17.38] [18.69] [14.59]

L3 30(8) 180/270 773.90 490.82 561.49 443.28 420.63 415.25 475.44 350.30

(2.20) (1.40) (1.60) (1.26) (1.20) (1.18) (1.35) (1.00)

[27.91] [18.80] [20.95] [17.60] [18.63] [17.88] [18.40] [14.66]

L4 30(4) 90/135 480.17 294.68 328.45 265.74 249.94 246.05 288.69 215.55

(2.22) (1.36) (1.52) (1.23) (1.15) (1.14) (1.33) (1.00)

[13.51] [9.95] [10.99] [9.36] [9.98] [9.50] [9.75] [8.14]

Series Summary: 2.19 1.48 1.67 1.32 1.16 1.16 1.42 1.00

† - Each test group contains 100 simulation instances the averages of which is used to represent the performance of the group.
‡ - The optimal solution is obtained from CPLEX’s QP solver.

151

Table A.4: Comparison of algorithms for MGECP - X series - Solution optimality

X Series - Test Groups† MEGCP Solution Eψ in mAh: Cost, (Cost/Optimal Cost), [Standard Deviation].

ID ∣P ∣(∣PC ∣) ∣T ∣/∣R∣ Base SA SA-HT SA-DC GAO SA+GAO GAO+SA Optimal‡

X0 40(4) 240/360 1252.37 999.46 1086.62 887.60 679.18 698.92 924.78 591.77

(2.11) (1.68) (1.83) (1.49) (1.14) (1.18) (1.56) (1.00)

[30.14] [24.11] [25.56] [21.62] [20.99] [20.77] [20.99] [16.93]

X1 40(4) 240/240 1101.84 890.55 965.24 803.00 630.87 641.10 821.99 542.33

(2.03) (1.64) (1.77) (1.48) (1.16) (1.18) (1.51) (1.00)

[36.41] [28.89] [31.11] [26.33] [27.48] [26.63] [25.35] [21.29]

X2 40(4) 240/480 1473.55 1164.38 1271.99 1040.54 777.43 796.29 1088.53 679.46

(2.16) (1.71) (1.87) (1.53) (1.14) (1.17) (1.60) (1.00)

[28.07] [22.39] [24.05] [20.83] [19.05] [18.90] [20.23] [15.72]

X3 40(8) 240/360 1124.08 805.36 910.34 714.17 615.75 621.79 767.64 517.63

(2.17) (1.55) (1.75) (1.37) (1.18) (1.20) (1.48) (1.00)

[30.08] [22.00] [24.23] [20.16] [21.00] [20.29] [20.87] [16.27]

X4 40(4) 120/180 671.97 455.97 507.98 410.32 356.18 356.97 441.87 307.26

(2.18) (1.48) (1.65) (1.33) (1.15) (1.16) (1.43) (1.00)

[15.59] [11.98] [13.14] [11.10] [11.71] [11.38] [11.30] [9.36]

Series Summary: 2.13 1.61 1.77 1.44 1.16 1.17 1.52 1.00

† - Each test group contains 100 simulation instances the averages of which is used to represent the performance of the group.
‡ - The optimal solution is obtained from CPLEX’s QP solver.

152

Table A.5: Comparison of algorithms for MGECP - Solution time

Test Groups MGECP Solution Time in seconds, (Ratio to Optimal Solution)

ID SA SA-HT SA-DC GAO SA+GAO GAO+SA Optimal†

S0 0.46 (1.94) 0.24 (1.01) 0.90 (3.79) 0.03 (0.13) 0.46 (1.94) 0.49 (2.05) 0.23 (1)

S1 0.48 (2.07) 0.25 (1.07) 0.95 (4.07) 0.03 (0.13) 0.48 (2.07) 0.50 (2.16) 0.23 (1)

S2 0.45 (1.64) 0.23 (0.85) 0.91 (3.29) 0.02 (0.09) 0.45 (1.64) 0.48 (1.75) 0.27 (1)

S3 0.44 (2.34) 0.22 (1.20) 0.87 (4.63) 0.02 (0.10) 0.44 (2.34) 0.46 (2.45) 0.18 (1)

S4 0.41 (3.22) 0.21 (1.63) 0.81 (6.28) 0.01 (0.08) 0.41 (3.22) 0.42 (3.28) 0.13 (1)

M0 0.69 (0.21) 0.37 (0.11) 1.33 (0.42) 0.10 (0.03) 0.69 (0.21) 0.75 (0.23) 3.16 (1)

M1 0.66 (0.26) 0.35 (0.14) 1.28 (0.52) 0.09 (0.04) 0.66 (0.26) 0.73 (0.29) 2.47 (1)

M2 0.71 (0.21) 0.39 (0.11) 1.37 (0.40) 0.11 (0.03) 0.71 (0.21) 0.78 (0.23) 3.36 (1)

M3 0.66 (0.34) 0.35 (0.18) 1.30 (0.67) 0.09 (0.04) 0.66 (0.34) 0.73 (0.37) 1.93 (1)

M4 0.53 (0.58) 0.28 (0.30) 1.04 (1.14) 0.04 (0.04) 0.53 (0.58) 0.56 (0.61) 0.91 (1)

L0 1.25 (0.18) 0.74 (0.10) 2.30 (0.33) 0.42 (0.06) 1.25 (0.18) 1.47 (0.21) 6.89 (1)

L1 1.14 (0.16) 0.65 (0.09) 2.14 (0.31) 0.35 (0.05) 1.14 (0.16) 1.35 (0.19) 6.87 (1)

L2 1.32 (0.20) 0.76 (0.11) 2.46 (0.38) 0.41 (0.06) 1.32 (0.20) 1.55 (0.24) 6.47 (1)

L3 1.18 (0.19) 0.68 (0.11) 2.21 (0.37) 0.33 (0.05) 1.18 (0.19) 1.36 (0.22) 5.97 (1)

L4 0.80 (0.32) 0.45 (0.18) 1.52 (0.61) 0.15 (0.06) 0.80 (0.32) 0.88 (0.35) 2.48 (1)

X0 2.74 (0.13) 1.66 (0.08) 4.92 (0.23) 0.97 (0.04) 2.74 (0.13) 3.15 (0.15) 20.55 (1)

X1 2.54 (0.12) 1.52 (0.07) 4.58 (0.21) 0.91 (0.04) 2.54 (0.12) 2.95 (0.14) 21.06 (1)

X2 2.89 (0.14) 1.76 (0.08) 5.15 (0.25) 1.03 (0.05) 2.89 (0.14) 3.28 (0.16) 20.11 (1)

X3 2.57 (0.13) 1.54 (0.08) 4.65 (0.24) 0.86 (0.04) 2.57 (0.13) 2.94 (0.15) 19.16 (1)

X4 1.33 (0.19) 0.82 (0.12) 2.37 (0.35) 0.42 (0.06) 1.33 (0.19) 1.46 (0.21) 6.72 (1)

† - The optimal solution is obtained from CPLEX’s QP solver.

153

Appendix B

MMUP Simulation Results

154

Table B.1: Comparison of algorithms for MMUP - S series - Solution optimality

Test Groups MMUP Solutions max{Uψi } in %: Algorithm, (Algorithm/Solver), [σ{Uψi }]

ID Base SA SA-HT SA-DC GAO SA+GAO GAO+SA QCP‡

S0 6.93 3.63 3.76 3.53 4.46 3.62 3.55 5.29

(1.30) (0.68) (0.71) (0.66) (0.84) (0.68) (0.67) (1)

[2.23] [1.35] [1.38] [1.31] [1.53] [1.34] [1.31] [1.79]

S1 7.17 3.70 3.89 3.62 4.87 3.70 3.67 5.55

(1.29) (0.66) (0.70) (0.65) (0.87) (0.66) (0.66) (1)

[2.31] [1.34] [1.41] [1.31] [1.63] [1.33] [1.32] [1.88]

S2 8.76 4.70 4.86 4.60 5.96 4.70 4.66 6.99

(1.25) (0.67) (0.69) (0.65) (0.85) (0.67) (0.66) (1)

[2.77] [1.75] [1.84] [1.73] [2.00] [1.74] [1.75] [2.34]

S3 6.75 3.49 3.61 3.45 4.42 3.49 3.46 5.21

(1.29) (0.66) (0.69) (0.66) (0.84) (0.67) (0.66) (1)

[2.35] [1.44] [1.49] [1.44] [1.67] [1.44] [1.45] [1.91]

S4 3.84 1.98 2.06 1.95 2.67 1.99 1.97 2.66

(1.44) (0.74) (0.77) (0.73) (1.00) (0.74) (0.74) (1)

[1.25] [0.74] [0.77] [0.73] [0.90] [0.74] [0.74] [0.94]

Series Summary†: 6.69 3.50 3.64 3.43 4.48 3.50 3.46 5.14

† - These are the averages of each algorithm’s max{Uψi } over all groups in this series.
‡ - The CPLEX QCP solver is time-limited to run within 5 times the execution time of SA.

155

Table B.2: Comparison of algorithms for MMUP - M series - Solution optimality

Test Groups MMUP Solutions max{Uψi } in %: Algorithm, (Algorithm/Solver), [σ{Uψi }]

ID Base SA SA-HT SA-DC GAO SA+GAO GAO+SA QCP‡

M0 11.19 6.14 6.55 5.86 7.54 6.03 5.90 7.58

(1.47) (0.80) (0.86) (0.77) (0.99) (0.79) (0.77) (1)

[2.79] [1.82] [1.96] [1.75] [2.01] [1.79] [1.76] [1.95]

M1 12.89 7.47 7.88 7.11 9.61 7.33 7.19 9.41

(1.37) (0.79) (0.83) (0.75) (1.02) (0.77) (0.76) (1)

[3.10] [2.15] [2.22] [2.05] [2.38] [2.09] [2.04] [2.27]

M2 11.51 6.04 6.41 5.77 7.43 5.98 5.90 7.80

(1.47) (0.77) (0.82) (0.74) (0.95) (0.76) (0.75) (1)

[2.88] [1.82] [1.93] [1.78] [2.05] [1.80] [1.81] [2.04]

M3 10.39 5.58 5.95 5.38 6.89 5.56 5.44 7.09

(1.46) (0.78) (0.83) (0.75) (0.97) (0.78) (0.76) (1)

[2.67] [1.82] [1.94] [1.78] [1.96] [1.81] [1.77] [1.87]

M4 5.61 3.11 3.25 3.02 4.08 3.10 3.04 3.99

(1.40) (0.77) (0.81) (0.75) (1.02) (0.77) (0.76) (1)

[1.41] [0.97] [1.00] [0.95] [1.08] [0.96] [0.93] [1.06]

Series Summary†: 10.32 5.67 6.01 5.43 7.11 5.60 5.49 7.17

† - These are the averages of each algorithm’s max{Uψi } over all groups in this series.
‡ - The CPLEX QCP solver is time-limited to run within 5 times the execution time of SA.

156

Table B.3: Comparison of algorithms for MMUP - L series - Solution optimality

Test Groups MMUP Solutions max{Uψi } in %: Algorithm, (Algorithm/Solver), [σ{Uψi }]

ID Base SA SA-HT SA-DC GAO SA+GAO GAO+SA QCP‡

L0 16.11 8.77 9.60 8.28 10.58 8.48 8.20 10.88

(1.48) (0.80) (0.88) (0.76) (0.97) (0.77) (0.75) (1)

[3.32] [2.32] [2.47] [2.22] [2.36] [2.24] [2.14] [2.34]

L1 20.31 10.16 11.10 9.36 11.96 9.57 9.32 11.54

(1.75) (0.88) (0.96) (0.81) (1.03) (0.82) (0.80) (1)

[4.02] [2.51] [2.69] [2.36] [2.55] [2.37] [2.31] [2.42]

L2 15.14 7.97 8.98 7.58 9.75 7.86 7.67 10.36

(1.46) (0.76) (0.86) (0.73) (0.94) (0.75) (0.74) (1)

[3.39] [2.31] [2.58] [2.21] [2.50] [2.28] [2.26] [2.38]

L3 13.97 7.83 8.50 7.27 9.49 7.63 7.39 9.18

(1.52) (0.85) (0.92) (0.79) (1.03) (0.83) (0.80) (1)

[3.10] [2.29] [2.42] [2.18] [2.35] [2.22] [2.20] [2.07]

L4 8.27 4.28 4.52 4.21 5.53 4.29 4.24 5.20

(1.59) (0.82) (0.87) (0.80) (1.06) (0.82) (0.81) (1)

[1.78] [1.25] [1.27] [1.21] [1.30] [1.24] [1.21] [1.19]

Series Summary†: 12.76 7.80 8.54 7.34 9.46 7.56 7.37 9.43

† - These are the averages of each algorithm’s max{Uψi } over all groups in this series.
‡ - The CPLEX QCP solver is time-limited to run within 5 times the execution time of SA.

157

Table B.4: Comparison of algorithms for MMUP - L series - Solution optimality

Test Groups MMUP Solutions max{Uψi } in %: Algorithm, (Algorithm/Solver), [σ{Uψi }]

ID Base SA SA-HT SA-DC GAO SA+GAO GAO+SA QCP‡

X0 18.28 10.78 11.98 10.43 12.22 10.08 9.66 11.83

(1.54) (0.91) (1.01) (0.88) (1.03) (0.85) (0.81) (1)

[3.42] [2.55] [2.79] [2.52] [2.45] [2.36] [2.27] [2.32]

X1 23.59 14.42 16.61 13.60 17.09 13.86 13.52 16.97

(1.39) (0.84) (0.97) (0.80) (1.00) (0.81) (0.79) (1)

[4.10] [2.99] [3.31] [2.92] [3.06] [2.87] [2.82] [3.02]

X2 17.64 9.26 10.39 8.59 10.70 8.86 8.57 11.32

(1.55) (0.81) (0.91) (0.75) (0.94) (0.78) (0.75) (1)

[3.49] [2.50] [2.73] [2.35] [2.51] [2.38] [2.31] [2.37]

X3 19.27 11.45 12.32 10.60 13.49 10.99 10.61 13.18

(1.46) (0.86) (0.93) (0.80) (1.02) (0.83) (0.80) (1)

[3.63] [2.79] [2.94] [2.61] [2.76] [2.69] [2.59] [2.52]

X4 9.78 5.66 6.06 5.44 7.23 5.60 5.50 7.02

(1.39) (0.80) (0.86) (0.77) (1.02) (0.79) (0.78) (1)

[1.88] [1.41] [1.50] [1.38] [1.47] [1.39] [1.38] [1.41]

Series Summary†: 11.91 7.31 6.27 6.73 6.74 6.88 6.57 6.66

† - These are the averages of each algorithm’s max{Uψi } over all groups in this series.
‡ - The CPLEX QCP solver is time-limited to run within 5 times the execution time of SA.

158

Table B.5: Comparison of algorithms for MMUP - Solution time

Test Groups MMUP Solution Time in Seconds, (Ratio to QCP’s Time)

ID SA SA-HT SA-DC GAO SA+GAO GAO+SA QCP†

S0 0.83 (0.27) 0.42 (0.14) 1.64 (0.54) 0.02 (0.00) 0.83 (0.28) 0.84 (0.28) 2.99 (1)

S1 0.83 (0.30) 0.41 (0.15) 1.61 (0.59) 0.01 (0.00) 0.83 (0.30) 0.83 (0.30) 2.74 (1)

S2 0.82 (0.25) 0.41 (0.12) 1.64 (0.50) 0.01 (0.00) 0.82 (0.25) 0.82 (0.25) 3.24 (1)

S3 0.80 (0.28) 0.40 (0.14) 1.58 (0.56) 0.01 (0.00) 0.80 (0.28) 0.80 (0.28) 2.81 (1)

S4 0.76 (0.27) 0.38 (0.13) 1.49 (0.53) 0.00 (0.00) 0.76 (0.27) 0.77 (0.27) 2.78 (1)

M0 2.09 (0.33) 1.08 (0.17) 4.11 (0.66) 0.06 (0.01) 2.10 (0.34) 2.09 (0.33) 6.17 (1)

M1 1.99 (0.39) 1.01 (0.20) 3.89 (0.76) 0.04 (0.00) 2.00 (0.39) 1.98 (0.39) 5.07 (1)

M2 2.07 (0.33) 1.05 (0.17) 4.03 (0.65) 0.07 (0.01) 2.08 (0.33) 2.06 (0.33) 6.20 (1)

M3 1.95 (0.40) 0.98 (0.20) 3.80 (0.79) 0.06 (0.01) 1.96 (0.40) 1.95 (0.40) 4.79 (1)

M4 1.54 (0.45) 0.79 (0.23) 3.06 (0.90) 0.02 (0.01) 1.54 (0.45) 1.55 (0.45) 3.38 (1)

L0 7.56 (0.33) 3.89 (0.17) 14.80 (0.66) 0.26 (0.01) 7.60 (0.33) 7.60 (0.33) 22.43 (1)

L1 7.01 (0.34) 3.58 (0.17) 13.64 (0.66) 0.23 (0.01) 7.06 (0.34) 7.01 (0.34) 20.55 (1)

L2 7.60 (0.35) 3.90 (0.18) 14.81 (0.68) 0.29 (0.01) 7.63 (0.35) 7.70 (0.35) 21.69 (1)

L3 6.78 (0.35) 3.44 (0.17) 13.32 (0.69) 0.20 (0.01) 6.81 (0.35) 6.85 (0.35) 19.24 (1)

L4 5.04 (0.42) 2.58 (0.21) 9.95 (0.84) 0.11 (0.00) 5.06 (0.42) 5.07 (0.42) 11.81 (1)

X0 15.46 (0.33) 8.14 (0.17) 30.29 (0.65) 0.86 (0.01) 15.58 (0.33) 15.73 (0.34) 45.99 (1)

X1 13.16 (0.36) 6.86 (0.18) 26.25 (0.72) 0.56 (0.01) 13.22 (0.36) 13.60 (0.37) 36.22 (1)

X2 14.56 (0.30) 7.62 (0.16) 28.87 (0.60) 0.74 (0.01) 14.64 (0.30) 14.96 (0.31) 47.44 (1)

X3 13.38 (0.34) 7.15 (0.18) 26.15 (0.67) 0.84 (0.02) 13.45 (0.34) 13.84 (0.35) 38.49 (1)

X4 9.09 (0.37) 4.71 (0.19) 17.69 (0.72) 0.39 (0.01) 9.12 (0.37) 9.06 (0.37) 24.36 (1)

† - The CPLEX QCP solver is time-limited to run within 5 times the execution time of SA.

159

Appendix C

Derivation of pRi

When a game is in a state of mixed-strategy equilibrium, we have E[cRi] = E[cNi]. This with (6.6) we get

E[CR] + (1 − pRi)⎛⎝w
d
i

sdR
+ wbi
sbR

⎞⎠ = E[CN] + (1 − pNi)⎛⎝w
d
i

sdN
+ wbi
sbN

⎞⎠ = E[CN] + pRi ⎛⎝w
d
i

sdN
+ wbi
sbN

⎞⎠
pRi

⎛⎝w
d
i

sdN
+ wbi
sbN

+ wdi
sdR

+ wbi
sbR

⎞⎠ − ⎛⎝w
d
i

sdR
+ wbi
sbR

⎞⎠ = E[CR] −E[CN] (C.1)

For applications that are fixed to run on either N or R, i.e. i ∈ [n]N ∪ [n]R we define

Cfj = ∑
i∈[n]j

⎛⎝w
d
i

sdj
+ wbi
sbj

⎞⎠, j ∈ {N,R} (C.2)

Take this into (6.4) we have

E[CN] = CfN + ∑
i∈[n]−[n]N p

N
i

⎛⎝w
d
i

sdN
+ wbi
sbN

⎞⎠ and E[CR] = CfR + ∑
i∈[n]−[n]R p

R
i

⎛⎝w
d
i

sdR
+ wbi
sbR

⎞⎠ (C.3)

160

Take these into (6.11) we have

E[CN] = CfN + ∑
i∈[n]−[n]N

aNi
⎛⎝E[CN] −E[cNi] + ⎛⎝w

d
i

sdN
+ wbi
sbN

⎞⎠⎞⎠ (C.4)

E[CR] = CfR + ∑
i∈[n]−[n]R

aRi
⎛⎝E[CR] −E[cRi] + ⎛⎝w

d
i

sdR
+ wbi
sbR

⎞⎠⎞⎠ (C.5)

Take a difference between these two equations we have

E[CR] −E[CN] = CfR −CfN + ∣[n]H∣(E[CR] −E[CN]) + ∑
k∈[n]H

⎛⎝w
d
k

sdR
+ wbk
sbR

⎞⎠ − ⎛⎝w
d
k

sdN
+ wbk
sbN

) (C.6)

E[CR] −E[CN] = ⎛⎝CfR −CfN + ∑
k∈[n]H

⎛⎝w
d
k

sdR
+ wbk
sbR

⎞⎠ − ⎛⎝w
d
k

sdN
+ wbk
sbN

⎞⎠⎞⎠/⎛⎝1 − ∣[n]H∣⎞⎠ (C.7)

Finally, compare this with (C.1) we get

pRi
⎛⎝w

d
k

sdN
+ wbk
sbN

+ wdk
sdR

+ wbk
sbR

⎞⎠ − ⎛⎝w
d
k

sdR
+ wbk
sbR

⎞⎠ = ⎛⎝CfR −CfN + ∑
k∈[n]H

⎛⎝w
d
k

sdR
+ wbk
sbR

⎞⎠ − ⎛⎝w
d
k

sdN
+ wbk
sbN

⎞⎠⎞⎠/⎛⎝1 − ∣[n]H∣⎞⎠ (C.8)

pRi = ⎛⎝w
d
i

sdR
+ wbi
sbR

⎞⎠/⎛⎝w
d
i

sdN
+ wbi
sbN

+ wdi
sdR

+ wbi
sbR

⎞⎠ + ⎛⎝CfR −CfN + ∑
k∈[n]H

⎛⎝w
d
k

sdR
+ wbk
sbR

⎞⎠ − ⎛⎝w
d
k

sdN
+ wbk
sbN

⎞⎠⎞⎠/⎛⎝⎛⎝1 − ∣[n]H∣⎞⎠⎛⎝w
d
i

sdN
+ wbi
sbN

+ wdi
sdR

+ wbi
sbR

⎞⎠⎞⎠ (C.9)

161

	Thesis_BoGao.pdf
	Abstract
	Dedication
	Acknowledgements
	Declarations
	Sponsorship and Grants
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Mobile, Cloud, Cloud via Mobile and Mobile Cloud Computing
	Mobile Cloud Workflow
	Outline of Research Contributions
	Thesis Organisation

	Mobile Cloud Computing
	Architectures and Components of Mobile Cloud Computing
	Enabling Mobile Computation Offload
	Mobile Workflow Engine

	Impact of Mobile Cloud Computing
	Motivational Applications of Mobile Cloud Computing
	Illustrative Use Cases of Mobile Workflows
	Advantages and Issues of Mobile Cloud Computing

	Energy-Aware Task Allocation in Mobile Cloud Platforms
	Mobile Cloud Platform Model
	Mobile, Cloud and Network Metrics
	Application Workflow Metrics
	Fixed and Constrained Tasks
	Allocation Scheme and Energy Costs

	Minimum Group Energy Cost Problem
	Assignment Matrix
	Quadratic Program Formulation
	Convexification

	Minimum Max-Utilisation Problem
	Device Cost Matrix
	Device Utilisation
	Quadratically Constrained Program Formulation

	Heuristics
	Simulated Annealing
	Greedy Autonomous Offload
	Joint Search

	Simulations, Comparisons and Discussion
	Simulation Structure
	MCP Construction
	Results from Solving MGECP
	Results from Solving MMUP
	Comparing MGECP and MMUP

	Summary

	Offloading Strategies for Time-Constrained Mobile Workflows
	Computation Offload with Cloudlets
	Offload Strategies for Mobile Workflows
	Preliminaries and Problem Definition
	Workflow-Oriented Greedy Autonomous Offload Algorithm
	Discussion of Variations and Optimisation of WGAO

	Simulations
	Communication Size and Network Connectivity
	Computation Size and Cloudlet Speed
	Energy Profile

	Summary

	Bandwidth Dependency and Allocation in Mobile Service-Oriented Networks
	Mobile Service-Oriented Networks
	Example and Definition
	Service-Oriented Architecture
	Applications of MSON
	Mobile Device as Service Hosts

	Input-Output Analysis in Economics
	The Economy of Mobile Service-Oriented Networks
	Network I-O Model
	Network I-O Model with Latency

	Parametric Evaluation
	Effect of Service Arrival Rate
	Effect of Per Service Data Size
	Effect of Latency
	Alternative Allocation Scheme

	Cost-Based Bandwidth Allocation
	Problem Formulation
	Simulation

	Adaptive Bandwidth Allocation
	Problem Formulation
	Simulation

	Summary

	Rethinking the Offload Decision Models in Mobile Cloud Application Ecosystems
	Mobile Cloud Application Ecosystems
	Problem Statement
	Objective and Contribution
	System Notations

	Offload with Symmetrically Incomplete Information
	Offload with Complete Information
	The Offload Game
	Mixed Strategies and Expected Costs
	Nash Equilibrium
	Social Cost and Price of Anarchy

	Cooperative Decision Model
	Simulations, Comparisons and Discussion
	Simulation Setup
	Strategy Behaviour of Non-Cooperative Applications
	Social Costs
	Price of Anarchy

	Summary

	Conclusions and Further Work
	Energy-Aware Task Allocation
	Offloading Strategies for Time-Constrained Workflows
	Efficient Resource Allocation in Mobile Networks
	Application Ecosystem and Offload Competition
	Directions for Further Work

	Bibliography
	MGECP Simulation Results
	MMUP Simulation Results
	Derivation of piR

